3820 lines
102 KiB
C
3820 lines
102 KiB
C
/*
|
|
* drivers/net/gianfar.c
|
|
*
|
|
* Gianfar Ethernet Driver
|
|
* This driver is designed for the non-CPM ethernet controllers
|
|
* on the 85xx and 83xx family of integrated processors
|
|
* Based on 8260_io/fcc_enet.c
|
|
*
|
|
* Author: Andy Fleming
|
|
* Maintainer: Kumar Gala
|
|
* Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
|
|
*
|
|
* Copyright 2002-2011 Freescale Semiconductor, Inc.
|
|
* Copyright 2007 MontaVista Software, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* Gianfar: AKA Lambda Draconis, "Dragon"
|
|
* RA 11 31 24.2
|
|
* Dec +69 19 52
|
|
* V 3.84
|
|
* B-V +1.62
|
|
*
|
|
* Theory of operation
|
|
*
|
|
* The driver is initialized through of_device. Configuration information
|
|
* is therefore conveyed through an OF-style device tree.
|
|
*
|
|
* The Gianfar Ethernet Controller uses a ring of buffer
|
|
* descriptors. The beginning is indicated by a register
|
|
* pointing to the physical address of the start of the ring.
|
|
* The end is determined by a "wrap" bit being set in the
|
|
* last descriptor of the ring.
|
|
*
|
|
* When a packet is received, the RXF bit in the
|
|
* IEVENT register is set, triggering an interrupt when the
|
|
* corresponding bit in the IMASK register is also set (if
|
|
* interrupt coalescing is active, then the interrupt may not
|
|
* happen immediately, but will wait until either a set number
|
|
* of frames or amount of time have passed). In NAPI, the
|
|
* interrupt handler will signal there is work to be done, and
|
|
* exit. This method will start at the last known empty
|
|
* descriptor, and process every subsequent descriptor until there
|
|
* are none left with data (NAPI will stop after a set number of
|
|
* packets to give time to other tasks, but will eventually
|
|
* process all the packets). The data arrives inside a
|
|
* pre-allocated skb, and so after the skb is passed up to the
|
|
* stack, a new skb must be allocated, and the address field in
|
|
* the buffer descriptor must be updated to indicate this new
|
|
* skb.
|
|
*
|
|
* When the kernel requests that a packet be transmitted, the
|
|
* driver starts where it left off last time, and points the
|
|
* descriptor at the buffer which was passed in. The driver
|
|
* then informs the DMA engine that there are packets ready to
|
|
* be transmitted. Once the controller is finished transmitting
|
|
* the packet, an interrupt may be triggered (under the same
|
|
* conditions as for reception, but depending on the TXF bit).
|
|
* The driver then cleans up the buffer.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/of_mdio.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/udp.h>
|
|
#include <linux/in.h>
|
|
#include <linux/inetdevice.h>
|
|
#include <sysdev/fsl_soc.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/uaccess.h>
|
|
#include <linux/module.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/mii.h>
|
|
#include <linux/phy.h>
|
|
#include <linux/phy_fixed.h>
|
|
#include <linux/of.h>
|
|
#include <net/xfrm.h>
|
|
|
|
#include <net/tcp.h>
|
|
|
|
#include "gianfar.h"
|
|
#include "hook.h"
|
|
|
|
//#include "fsl_pq_mdio.h"
|
|
|
|
#define TX_TIMEOUT (1*HZ)
|
|
|
|
#undef BRIEF_GFAR_ERRORS
|
|
#undef VERBOSE_GFAR_ERRORS
|
|
|
|
extern void tcp_v4_send_reset(struct sock* sk, struct sk_buff* skb);
|
|
const char gfar_driver_name[] = "Gianfar Ethernet";
|
|
const char gfar_driver_version[] = "1.4-skbr1.1.5";
|
|
|
|
static int gfar_enet_open(struct net_device* dev);
|
|
static int gfar_start_xmit(struct sk_buff* skb, struct net_device* dev);
|
|
static void gfar_reset_task(struct work_struct* work);
|
|
static void gfar_timeout(struct net_device* dev);
|
|
static int gfar_close(struct net_device* dev);
|
|
struct sk_buff* gfar_new_skb(struct net_device* dev);
|
|
static void gfar_new_rxbdp(struct gfar_priv_rx_q* rx_queue, struct rxbd8* bdp,
|
|
struct sk_buff* skb);
|
|
static int gfar_set_mac_address(struct net_device* dev);
|
|
static int gfar_change_mtu(struct net_device* dev, int new_mtu);
|
|
static void adjust_link(struct net_device* dev);
|
|
static void init_registers(struct net_device* dev);
|
|
static int init_phy(struct net_device* dev);
|
|
static int gfar_probe(struct of_device* ofdev,
|
|
const struct of_device_id* match);
|
|
static int gfar_remove(struct of_device* ofdev);
|
|
static void free_skb_resources(struct gfar_private* priv);
|
|
static void gfar_set_multi(struct net_device* dev);
|
|
static void gfar_set_hash_for_addr(struct net_device* dev, u8* addr);
|
|
static void gfar_configure_serdes(struct net_device* dev);
|
|
static int gfar_poll_tx(struct napi_struct* napi, int budget);
|
|
static int gfar_poll_rx(struct napi_struct* napi, int budget);
|
|
|
|
int gfar_clean_rx_ring(struct gfar_priv_rx_q* rx_queue, int rx_work_limit);
|
|
static int gfar_clean_tx_ring(struct gfar_priv_tx_q* tx_queue,
|
|
int tx_work_limit);
|
|
|
|
static int gfar_process_frame(struct net_device* dev, struct sk_buff* skb,
|
|
int amount_pull);
|
|
void gfar_halt(struct net_device* dev);
|
|
static void gfar_halt_nodisable(struct net_device* dev);
|
|
void gfar_start(struct net_device* dev);
|
|
static void gfar_clear_exact_match(struct net_device* dev);
|
|
static void gfar_set_mac_for_addr(struct net_device* dev, int num, u8* addr);
|
|
static int gfar_ioctl(struct net_device* dev, struct ifreq* rq, int cmd);
|
|
|
|
MODULE_AUTHOR("Freescale Semiconductor, Inc");
|
|
MODULE_DESCRIPTION("Gianfar Ethernet Driver");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
static void gfar_init_rxbdp(struct gfar_priv_rx_q* rx_queue, struct rxbd8* bdp,
|
|
dma_addr_t buf)
|
|
{
|
|
u32 lstatus;
|
|
|
|
bdp->bufPtr = buf;
|
|
|
|
lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
|
|
|
|
if(bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
|
|
{
|
|
lstatus |= BD_LFLAG(RXBD_WRAP);
|
|
}
|
|
|
|
eieio();
|
|
|
|
bdp->lstatus = lstatus;
|
|
}
|
|
|
|
static int gfar_init_bds(struct net_device* ndev)
|
|
{
|
|
struct gfar_private* priv = netdev_priv(ndev);
|
|
struct gfar_priv_tx_q* tx_queue = NULL;
|
|
struct gfar_priv_rx_q* rx_queue = NULL;
|
|
struct txbd8* txbdp;
|
|
struct rxbd8* rxbdp;
|
|
int i, j, num;
|
|
|
|
for(i = 0; i < priv->num_tx_queues; i++)
|
|
{
|
|
tx_queue = priv->tx_queue[i];
|
|
/* Initialize some variables in our dev structure */
|
|
tx_queue->num_txbdfree = tx_queue->tx_ring_size;
|
|
tx_queue->dirty_tx = tx_queue->tx_bd_base;
|
|
tx_queue->cur_tx = tx_queue->tx_bd_base;
|
|
tx_queue->skb_curtx = 0;
|
|
tx_queue->skb_dirtytx = 0;
|
|
|
|
/* Initialize Transmit Descriptor Ring */
|
|
txbdp = tx_queue->tx_bd_base;
|
|
|
|
for(j = 0; j < tx_queue->tx_ring_size; j++)
|
|
{
|
|
txbdp->lstatus = 0;
|
|
txbdp->bufPtr = 0;
|
|
txbdp++;
|
|
}
|
|
|
|
/* Set the last descriptor in the ring to indicate wrap */
|
|
txbdp--;
|
|
txbdp->status |= TXBD_WRAP;
|
|
}
|
|
|
|
if((priv->device_flags & FSL_GIANFAR_DEV_HAS_ARP_PACKET))
|
|
{
|
|
num = priv->num_rx_queues - 1;
|
|
}
|
|
else
|
|
{
|
|
num = priv->num_rx_queues;
|
|
}
|
|
|
|
for(i = 0; i < num; i++)
|
|
{
|
|
rx_queue = priv->rx_queue[i];
|
|
rx_queue->cur_rx = rx_queue->rx_bd_base;
|
|
rx_queue->skb_currx = 0;
|
|
rxbdp = rx_queue->rx_bd_base;
|
|
|
|
for(j = 0; j < rx_queue->rx_ring_size; j++)
|
|
{
|
|
struct sk_buff* skb = rx_queue->rx_skbuff[j];
|
|
|
|
if(skb)
|
|
{
|
|
gfar_init_rxbdp(rx_queue, rxbdp,
|
|
rxbdp->bufPtr);
|
|
}
|
|
else
|
|
{
|
|
skb = gfar_new_skb(ndev);
|
|
|
|
if(!skb)
|
|
{
|
|
pr_err("%s: Can't allocate RX buffers\n",
|
|
ndev->name);
|
|
goto err_rxalloc_fail;
|
|
}
|
|
|
|
rx_queue->rx_skbuff[j] = skb;
|
|
|
|
gfar_new_rxbdp(rx_queue, rxbdp, skb);
|
|
}
|
|
|
|
rxbdp++;
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_rxalloc_fail:
|
|
free_skb_resources(priv);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
unsigned long alloc_bds(struct gfar_private* priv, dma_addr_t* addr)
|
|
{
|
|
unsigned long vaddr;
|
|
unsigned long region_size;
|
|
|
|
region_size = (sizeof(struct txbd8) + sizeof(struct sk_buff*)) *
|
|
priv->total_tx_ring_size +
|
|
(sizeof(struct rxbd8) + sizeof(struct sk_buff*)) *
|
|
priv->total_rx_ring_size;
|
|
|
|
vaddr = (unsigned long) dma_alloc_coherent(&priv->ofdev->dev,
|
|
region_size, addr, GFP_KERNEL);
|
|
|
|
return vaddr;
|
|
}
|
|
|
|
static inline void gfar_rx_checksum(struct sk_buff* skb, struct rxfcb* fcb)
|
|
{
|
|
/* If valid headers were found, and valid sums
|
|
* were verified, then we tell the kernel that no
|
|
* checksumming is necessary. Otherwise, it is */
|
|
if((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
|
|
{
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
}
|
|
else
|
|
{
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
}
|
|
}
|
|
|
|
static int gfar_alloc_skb_resources(struct net_device* ndev)
|
|
{
|
|
void* vaddr;
|
|
dma_addr_t addr;
|
|
int i, j, k;
|
|
struct gfar_private* priv = netdev_priv(ndev);
|
|
struct gfar_priv_tx_q* tx_queue = NULL;
|
|
struct gfar_priv_rx_q* rx_queue = NULL;
|
|
struct rxbd8* wkbdp;
|
|
unsigned long wk_buf_paddr;
|
|
unsigned long wk_buf_vaddr;
|
|
int err = 0;
|
|
|
|
priv->total_tx_ring_size = 0;
|
|
|
|
for(i = 0; i < priv->num_tx_queues; i++)
|
|
{
|
|
priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
|
|
}
|
|
|
|
priv->total_rx_ring_size = 0;
|
|
|
|
for(i = 0; i < priv->num_rx_queues; i++)
|
|
{
|
|
priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
|
|
}
|
|
|
|
/* Allocate memory for the buffer descriptors */
|
|
vaddr = (void*)alloc_bds(priv, &addr);
|
|
|
|
if(!vaddr)
|
|
{
|
|
if(netif_msg_ifup(priv))
|
|
pr_err("%s: Could not allocate buffer descriptors!\n",
|
|
ndev->name);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for(i = 0; i < priv->num_tx_queues; i++)
|
|
{
|
|
tx_queue = priv->tx_queue[i];
|
|
tx_queue->tx_bd_base = (struct txbd8*) vaddr;
|
|
tx_queue->tx_bd_dma_base = addr;
|
|
tx_queue->dev = ndev;
|
|
/* enet DMA only understands physical addresses */
|
|
addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
|
|
vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
|
|
}
|
|
|
|
/* Start the rx descriptor ring where the tx ring leaves off */
|
|
for(i = 0; i < priv->num_rx_queues; i++)
|
|
{
|
|
rx_queue = priv->rx_queue[i];
|
|
rx_queue->rx_bd_base = (struct rxbd8*) vaddr;
|
|
rx_queue->rx_bd_dma_base = addr;
|
|
rx_queue->dev = ndev;
|
|
addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
|
|
vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
|
|
}
|
|
|
|
/* Setup the skbuff rings */
|
|
for(i = 0; i < priv->num_tx_queues; i++)
|
|
{
|
|
tx_queue = priv->tx_queue[i];
|
|
|
|
tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
|
|
tx_queue->tx_ring_size, GFP_KERNEL);
|
|
|
|
if(!tx_queue->tx_skbuff)
|
|
{
|
|
if(netif_msg_ifup(priv))
|
|
pr_err("%s: Could not allocate tx_skbuff\n",
|
|
ndev->name);
|
|
|
|
goto cleanup;
|
|
}
|
|
|
|
for(k = 0; k < tx_queue->tx_ring_size; k++)
|
|
{
|
|
tx_queue->tx_skbuff[k] = NULL;
|
|
}
|
|
}
|
|
|
|
for(i = 0; i < priv->num_rx_queues; i++)
|
|
{
|
|
rx_queue = priv->rx_queue[i];
|
|
|
|
rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
|
|
rx_queue->rx_ring_size, GFP_KERNEL);
|
|
|
|
if(!rx_queue->rx_skbuff)
|
|
{
|
|
if(netif_msg_ifup(priv))
|
|
pr_err("%s: Could not allocate rx_skbuff\n",
|
|
ndev->name);
|
|
|
|
goto cleanup;
|
|
}
|
|
|
|
for(j = 0; j < rx_queue->rx_ring_size; j++)
|
|
{
|
|
rx_queue->rx_skbuff[j] = NULL;
|
|
}
|
|
}
|
|
|
|
if(gfar_init_bds(ndev))
|
|
{
|
|
goto cleanup;
|
|
}
|
|
|
|
if((priv->device_flags & FSL_GIANFAR_DEV_HAS_ARP_PACKET))
|
|
{
|
|
/* Alloc wake up rx buffer, wake up buffer need 64 bytes aligned */
|
|
rx_queue = priv->rx_queue[priv->num_rx_queues - 1];
|
|
rx_queue->cur_rx = rx_queue->rx_bd_base;
|
|
vaddr = (void*) dma_alloc_coherent(&priv->ofdev->dev,
|
|
priv->wk_buffer_size * rx_queue->rx_ring_size \
|
|
+ RXBUF_ALIGNMENT, &addr, GFP_KERNEL);
|
|
|
|
if(vaddr == 0)
|
|
{
|
|
if(netif_msg_ifup(priv))
|
|
printk(KERN_ERR
|
|
"%s:Could not allocate wakeup buffer!\n" , ndev->name);
|
|
|
|
err = -ENOMEM;
|
|
goto wk_buf_fail;
|
|
}
|
|
|
|
priv->wk_buf_vaddr = (unsigned long)vaddr;
|
|
priv->wk_buf_paddr = addr;
|
|
wk_buf_vaddr = (unsigned long)(vaddr + RXBUF_ALIGNMENT) \
|
|
& ~(RXBUF_ALIGNMENT - 1);
|
|
wk_buf_paddr = (unsigned long)(addr + RXBUF_ALIGNMENT) \
|
|
& ~(RXBUF_ALIGNMENT - 1);
|
|
priv->wk_buf_align_vaddr = wk_buf_vaddr;
|
|
priv->wk_buf_align_paddr = wk_buf_paddr;
|
|
|
|
/* Setup wake up rx ring and buffer */
|
|
wkbdp = rx_queue->rx_bd_base;
|
|
|
|
for(i = 0; i < rx_queue->rx_ring_size; i++)
|
|
{
|
|
wkbdp->status = RXBD_EMPTY | RXBD_INTERRUPT;
|
|
wkbdp->length = 0;
|
|
wkbdp->bufPtr = wk_buf_paddr + priv->wk_buffer_size * i;
|
|
wkbdp++;
|
|
}
|
|
|
|
/* Set the last descriptor in the ring to wrap */
|
|
wkbdp--;
|
|
wkbdp->status |= RXBD_WRAP;
|
|
}
|
|
|
|
return 0;
|
|
|
|
wk_buf_fail:
|
|
dma_free_coherent(&priv->ofdev->dev,
|
|
priv->wk_buffer_size * rx_queue->rx_ring_size \
|
|
+ RXBUF_ALIGNMENT, (void*)priv->wk_buf_vaddr,
|
|
priv->wk_buf_paddr);
|
|
cleanup:
|
|
free_skb_resources(priv);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void gfar_init_tx_rx_base(struct gfar_private* priv)
|
|
{
|
|
struct gfar __iomem* regs = priv->gfargrp[0].regs;
|
|
u32 __iomem* baddr;
|
|
int i;
|
|
|
|
baddr = ®s->tbase0;
|
|
|
|
for(i = 0; i < priv->num_tx_queues; i++)
|
|
{
|
|
gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
|
|
baddr += 2;
|
|
}
|
|
|
|
baddr = ®s->rbase0;
|
|
|
|
for(i = 0; i < priv->num_rx_queues; i++)
|
|
{
|
|
gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
|
|
baddr += 2;
|
|
}
|
|
}
|
|
|
|
static void gfar_init_mac(struct net_device* ndev)
|
|
{
|
|
struct gfar_private* priv = netdev_priv(ndev);
|
|
struct gfar __iomem* regs = priv->gfargrp[0].regs;
|
|
u32 rctrl = 0;
|
|
u32 tctrl = 0;
|
|
u32 attrs = 0;
|
|
|
|
/* write the tx/rx base registers */
|
|
gfar_init_tx_rx_base(priv);
|
|
|
|
/* Configure the coalescing support */
|
|
gfar_configure_tx_coalescing(priv, 0xFF);
|
|
gfar_configure_rx_coalescing(priv, 0xFF);
|
|
|
|
if(priv->rx_filer_enable)
|
|
{
|
|
rctrl |= RCTRL_FILREN;
|
|
/* Program the RIR0 reg with the required distribution */
|
|
gfar_write(®s->rir0, DEFAULT_RIR0);
|
|
}
|
|
|
|
if(priv->rx_csum_enable)
|
|
{
|
|
rctrl |= RCTRL_CHECKSUMMING;
|
|
}
|
|
|
|
if(priv->extended_hash)
|
|
{
|
|
rctrl |= RCTRL_EXTHASH;
|
|
|
|
gfar_clear_exact_match(ndev);
|
|
rctrl |= RCTRL_EMEN;
|
|
}
|
|
|
|
if(priv->padding)
|
|
{
|
|
rctrl &= ~RCTRL_PAL_MASK;
|
|
rctrl |= RCTRL_PADDING(priv->padding);
|
|
}
|
|
|
|
/* Init rctrl based on our settings */
|
|
gfar_write(®s->rctrl, rctrl);
|
|
|
|
if(ndev->features & NETIF_F_IP_CSUM)
|
|
{
|
|
tctrl |= TCTRL_INIT_CSUM;
|
|
}
|
|
|
|
tctrl |= TCTRL_TXSCHED_WRRS;
|
|
|
|
gfar_write(®s->tr03wt, WRRS_TR03WT);
|
|
gfar_write(®s->tr47wt, WRRS_TR47WT);
|
|
|
|
gfar_write(®s->tctrl, tctrl);
|
|
|
|
/* Set the extraction length and index */
|
|
attrs = ATTRELI_EL(priv->rx_stash_size) |
|
|
ATTRELI_EI(priv->rx_stash_index);
|
|
|
|
gfar_write(®s->attreli, attrs);
|
|
|
|
/* Start with defaults, and add stashing or locking
|
|
* depending on the approprate variables */
|
|
attrs = ATTR_INIT_SETTINGS;
|
|
|
|
if(priv->bd_stash_en)
|
|
{
|
|
attrs |= ATTR_BDSTASH;
|
|
}
|
|
|
|
if(priv->rx_stash_size != 0)
|
|
{
|
|
attrs |= ATTR_BUFSTASH;
|
|
}
|
|
|
|
gfar_write(®s->attr, attrs);
|
|
|
|
}
|
|
|
|
static struct net_device_stats* gfar_get_stats(struct net_device* dev)
|
|
{
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
struct netdev_queue* txq;
|
|
unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
|
|
unsigned long tx_packets = 0, tx_bytes = 0;
|
|
int i = 0;
|
|
|
|
for(i = 0; i < priv->num_rx_queues; i++)
|
|
{
|
|
rx_packets += priv->rx_queue[i]->stats.rx_packets;
|
|
rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
|
|
rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
|
|
}
|
|
|
|
dev->stats.rx_packets = rx_packets;
|
|
dev->stats.rx_bytes = rx_bytes;
|
|
dev->stats.rx_dropped = rx_dropped;
|
|
|
|
for(i = 0; i < priv->num_tx_queues; i++)
|
|
{
|
|
txq = netdev_get_tx_queue(dev, i);
|
|
tx_bytes += txq->tx_bytes;
|
|
tx_packets += txq->tx_packets;
|
|
}
|
|
|
|
dev->stats.tx_bytes = tx_bytes;
|
|
dev->stats.tx_packets = tx_packets;
|
|
|
|
return &dev->stats;
|
|
}
|
|
|
|
static const struct net_device_ops gfar_netdev_ops =
|
|
{
|
|
.ndo_open = gfar_enet_open,
|
|
.ndo_start_xmit = gfar_start_xmit,
|
|
.ndo_stop = gfar_close,
|
|
.ndo_change_mtu = gfar_change_mtu,
|
|
.ndo_set_multicast_list = gfar_set_multi,
|
|
.ndo_tx_timeout = gfar_timeout,
|
|
.ndo_do_ioctl = gfar_ioctl,
|
|
.ndo_get_stats = gfar_get_stats,
|
|
.ndo_set_mac_address = eth_mac_addr,
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
};
|
|
|
|
void lock_rx_qs(struct gfar_private* priv)
|
|
{
|
|
int i = 0x0;
|
|
|
|
for(i = 0; i < priv->num_rx_queues; i++)
|
|
{
|
|
spin_lock(&priv->rx_queue[i]->rxlock);
|
|
}
|
|
}
|
|
|
|
void lock_tx_qs(struct gfar_private* priv)
|
|
{
|
|
int i = 0x0;
|
|
|
|
for(i = 0; i < priv->num_tx_queues; i++)
|
|
{
|
|
spin_lock(&priv->tx_queue[i]->txlock);
|
|
}
|
|
}
|
|
|
|
void unlock_rx_qs(struct gfar_private* priv)
|
|
{
|
|
int i = 0x0;
|
|
|
|
for(i = 0; i < priv->num_rx_queues; i++)
|
|
{
|
|
spin_unlock(&priv->rx_queue[i]->rxlock);
|
|
}
|
|
}
|
|
|
|
void unlock_tx_qs(struct gfar_private* priv)
|
|
{
|
|
int i = 0x0;
|
|
|
|
for(i = 0; i < priv->num_tx_queues; i++)
|
|
{
|
|
spin_unlock(&priv->tx_queue[i]->txlock);
|
|
}
|
|
}
|
|
|
|
/* Returns 1 if incoming frames use an FCB */
|
|
static inline int gfar_uses_fcb(struct gfar_private* priv)
|
|
{
|
|
return priv->rx_csum_enable;
|
|
}
|
|
|
|
static void free_tx_pointers(struct gfar_private* priv)
|
|
{
|
|
int i = 0;
|
|
|
|
for(i = 0; i < priv->num_tx_queues; i++)
|
|
{
|
|
kfree(priv->tx_queue[i]);
|
|
}
|
|
}
|
|
|
|
static void free_rx_pointers(struct gfar_private* priv)
|
|
{
|
|
int i = 0;
|
|
|
|
for(i = 0; i < priv->num_rx_queues; i++)
|
|
{
|
|
kfree(priv->rx_queue[i]);
|
|
}
|
|
}
|
|
|
|
static void unmap_group_regs(struct gfar_private* priv)
|
|
{
|
|
int i = 0;
|
|
|
|
for(i = 0; i < MAXGROUPS; i++)
|
|
if(priv->gfargrp[i].regs)
|
|
{
|
|
iounmap(priv->gfargrp[i].regs);
|
|
}
|
|
}
|
|
|
|
static void disable_napi(struct gfar_private* priv)
|
|
{
|
|
int i = 0;
|
|
|
|
for(i = 0; i < priv->num_grps; i++)
|
|
{
|
|
napi_disable(&priv->gfargrp[i].napi_tx);
|
|
napi_disable(&priv->gfargrp[i].napi_rx);
|
|
}
|
|
}
|
|
|
|
static void enable_napi(struct gfar_private* priv)
|
|
{
|
|
int i = 0;
|
|
|
|
for(i = 0; i < priv->num_grps; i++)
|
|
{
|
|
|
|
napi_enable(&priv->gfargrp[i].napi_tx);
|
|
|
|
napi_enable(&priv->gfargrp[i].napi_rx);
|
|
}
|
|
}
|
|
|
|
static int gfar_parse_group(struct device_node* np,
|
|
struct gfar_private* priv, const char* model)
|
|
{
|
|
u32* queue_mask;
|
|
|
|
priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
|
|
|
|
if(!priv->gfargrp[priv->num_grps].regs)
|
|
{
|
|
return -ENOMEM;
|
|
}
|
|
|
|
priv->gfargrp[priv->num_grps].interruptTransmit =
|
|
irq_of_parse_and_map(np, 0);
|
|
|
|
/* If we aren't the FEC we have multiple interrupts */
|
|
if(model && strcasecmp(model, "FEC"))
|
|
{
|
|
priv->gfargrp[priv->num_grps].interruptReceive =
|
|
irq_of_parse_and_map(np, 1);
|
|
priv->gfargrp[priv->num_grps].interruptError =
|
|
irq_of_parse_and_map(np, 2);
|
|
|
|
if(priv->gfargrp[priv->num_grps].interruptTransmit < 0 ||
|
|
priv->gfargrp[priv->num_grps].interruptReceive < 0 ||
|
|
priv->gfargrp[priv->num_grps].interruptError < 0)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
|
|
priv->gfargrp[priv->num_grps].priv = priv;
|
|
spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
|
|
|
|
if(priv->mode == MQ_MG_MODE)
|
|
{
|
|
queue_mask = (u32*)of_get_property(np,
|
|
"rx-bit-map", NULL);
|
|
priv->gfargrp[priv->num_grps].rx_bit_map =
|
|
queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
|
|
queue_mask = (u32*)of_get_property(np,
|
|
"tx-bit-map", NULL);
|
|
priv->gfargrp[priv->num_grps].tx_bit_map =
|
|
queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
|
|
}
|
|
else
|
|
{
|
|
priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
|
|
priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
|
|
}
|
|
|
|
priv->num_grps++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gfar_of_init(struct of_device* ofdev, struct net_device** pdev)
|
|
{
|
|
const char* model;
|
|
const char* ctype;
|
|
const void* mac_addr;
|
|
int err = 0, i;
|
|
struct net_device* dev = NULL;
|
|
struct gfar_private* priv = NULL;
|
|
struct device_node* np = ofdev->dev.of_node;
|
|
struct device_node* child = NULL;
|
|
const u32* stash;
|
|
const u32* stash_len;
|
|
const u32* stash_idx;
|
|
unsigned int num_tx_qs, num_rx_qs;
|
|
u32* tx_queues, *rx_queues;
|
|
u32* busFreq;
|
|
u32 etsec_clk;
|
|
int* ucc_num_addr = NULL;
|
|
int ucc_num = -1;
|
|
u32 max_filer_rules;
|
|
|
|
if(!np || !of_device_is_available(np))
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
|
|
ucc_num_addr = (int*)of_get_property(np, "fsl,index", NULL);
|
|
ucc_num = ucc_num_addr ? *ucc_num_addr : 0;
|
|
|
|
/* parse the num of tx and rx queues */
|
|
tx_queues = (u32*)of_get_property(np, "fsl,num_tx_queues", NULL);
|
|
|
|
num_tx_qs = tx_queues ? *tx_queues : 1;
|
|
|
|
if(num_tx_qs > MAX_TX_QS)
|
|
{
|
|
printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
|
|
num_tx_qs, MAX_TX_QS);
|
|
printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
rx_queues = (u32*)of_get_property(np, "fsl,num_rx_queues", NULL);
|
|
num_rx_qs = rx_queues ? *rx_queues : 1;
|
|
|
|
if(num_rx_qs > MAX_RX_QS)
|
|
{
|
|
printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
|
|
num_tx_qs, MAX_TX_QS);
|
|
printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
|
|
dev = *pdev;
|
|
|
|
if(NULL == dev)
|
|
{
|
|
return -ENOMEM;
|
|
}
|
|
|
|
priv = netdev_priv(dev);
|
|
priv->node = ofdev->dev.of_node;
|
|
priv->ndev = dev;
|
|
priv->ucc_num = ucc_num;
|
|
|
|
busFreq = (u32*)of_get_property
|
|
(of_get_parent(np), "bus-frequency", NULL);
|
|
|
|
if(busFreq)
|
|
{
|
|
/* etsec_clk is CCB/2 */
|
|
etsec_clk = *busFreq / 2;
|
|
/* Divide by 1000000 to get freq in MHz */
|
|
etsec_clk /= 1000000;
|
|
/*
|
|
* eTSEC searches the table at a rate of two entries every
|
|
* eTSEC clock cycle, so for the worst case all 256 entries
|
|
* can be searched in the time taken to receive a 64-byte
|
|
* Ethernet frame which comes out to be 672 ns at 1Gbps rate
|
|
* including inter frame gap and preamble.
|
|
* Hence max_filer_rules = etsec_clk * reception time for one
|
|
* packet * 2. Divide by 1000 to match the units.
|
|
*/
|
|
max_filer_rules = etsec_clk * 672 * 2 / 1000;
|
|
|
|
if(max_filer_rules > MAX_FILER_IDX)
|
|
{
|
|
priv->max_filer_rules = MAX_FILER_IDX;
|
|
}
|
|
else
|
|
{
|
|
priv->max_filer_rules = max_filer_rules;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
printk(KERN_INFO "Bus Frequency not found in DTS, "
|
|
"setting max_filer_rules to %d\n",
|
|
MAX_FILER_IDX);
|
|
priv->max_filer_rules = MAX_FILER_IDX;
|
|
}
|
|
|
|
dev->num_tx_queues = num_tx_qs;
|
|
dev->real_num_tx_queues = num_tx_qs;
|
|
priv->num_tx_queues = num_tx_qs;
|
|
priv->num_rx_queues = num_rx_qs;
|
|
priv->num_grps = 0x0;
|
|
|
|
model = of_get_property(np, "model", NULL);
|
|
|
|
for(i = 0; i < MAXGROUPS; i++)
|
|
{
|
|
priv->gfargrp[i].regs = NULL;
|
|
}
|
|
|
|
/* Parse and initialize group specific information */
|
|
if(of_device_is_compatible(np, "fsl,etsec2"))
|
|
{
|
|
priv->mode = MQ_MG_MODE;
|
|
for_each_child_of_node(np, child)
|
|
{
|
|
if(of_device_is_compatible
|
|
(child, "fsl,etsec2-mdio") ||
|
|
of_device_is_compatible
|
|
(child, "fsl,etsec2-tbi"))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
err = gfar_parse_group(child, priv, model);
|
|
|
|
if(err)
|
|
{
|
|
goto err_grp_init;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
priv->mode = SQ_SG_MODE;
|
|
err = gfar_parse_group(np, priv, model);
|
|
|
|
if(err)
|
|
{
|
|
goto err_grp_init;
|
|
}
|
|
}
|
|
|
|
for(i = 0; i < priv->num_tx_queues; i++)
|
|
{
|
|
priv->tx_queue[i] = NULL;
|
|
}
|
|
|
|
for(i = 0; i < priv->num_rx_queues; i++)
|
|
{
|
|
priv->rx_queue[i] = NULL;
|
|
}
|
|
|
|
for(i = 0; i < priv->num_tx_queues; i++)
|
|
{
|
|
priv->tx_queue[i] = (struct gfar_priv_tx_q*)kzalloc(
|
|
sizeof(struct gfar_priv_tx_q), GFP_KERNEL);
|
|
|
|
if(!priv->tx_queue[i])
|
|
{
|
|
err = -ENOMEM;
|
|
goto tx_alloc_failed;
|
|
}
|
|
|
|
priv->tx_queue[i]->tx_skbuff = NULL;
|
|
priv->tx_queue[i]->qindex = i;
|
|
priv->tx_queue[i]->dev = dev;
|
|
spin_lock_init(&(priv->tx_queue[i]->txlock));
|
|
}
|
|
|
|
for(i = 0; i < priv->num_rx_queues; i++)
|
|
{
|
|
priv->rx_queue[i] = (struct gfar_priv_rx_q*)kzalloc(
|
|
sizeof(struct gfar_priv_rx_q), GFP_KERNEL);
|
|
|
|
if(!priv->rx_queue[i])
|
|
{
|
|
err = -ENOMEM;
|
|
goto rx_alloc_failed;
|
|
}
|
|
|
|
priv->rx_queue[i]->rx_skbuff = NULL;
|
|
priv->rx_queue[i]->qindex = i;
|
|
priv->rx_queue[i]->dev = dev;
|
|
spin_lock_init(&(priv->rx_queue[i]->rxlock));
|
|
}
|
|
|
|
|
|
stash = of_get_property(np, "bd-stash", NULL);
|
|
|
|
if(stash)
|
|
{
|
|
priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
|
|
priv->bd_stash_en = 1;
|
|
}
|
|
|
|
stash_len = of_get_property(np, "rx-stash-len", NULL);
|
|
|
|
if(stash_len)
|
|
{
|
|
priv->rx_stash_size = *stash_len;
|
|
}
|
|
|
|
stash_idx = of_get_property(np, "rx-stash-idx", NULL);
|
|
|
|
if(stash_idx)
|
|
{
|
|
priv->rx_stash_index = *stash_idx;
|
|
}
|
|
|
|
if(stash_len || stash_idx)
|
|
{
|
|
priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
|
|
}
|
|
|
|
/* Handle IEEE1588 node */
|
|
printk(KERN_INFO "IEEE1588: disable on the system.\n");
|
|
|
|
mac_addr = of_get_mac_address(np);
|
|
|
|
if(mac_addr)
|
|
{
|
|
memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
|
|
}
|
|
|
|
if(model && !strcasecmp(model, "TSEC"))
|
|
priv->device_flags =
|
|
FSL_GIANFAR_DEV_HAS_GIGABIT |
|
|
FSL_GIANFAR_DEV_HAS_COALESCE |
|
|
FSL_GIANFAR_DEV_HAS_RMON |
|
|
FSL_GIANFAR_DEV_HAS_MULTI_INTR;
|
|
|
|
if(model && !strcasecmp(model, "eTSEC"))
|
|
{
|
|
priv->device_flags =
|
|
FSL_GIANFAR_DEV_HAS_GIGABIT |
|
|
FSL_GIANFAR_DEV_HAS_COALESCE |
|
|
FSL_GIANFAR_DEV_HAS_RMON |
|
|
FSL_GIANFAR_DEV_HAS_MULTI_INTR |
|
|
FSL_GIANFAR_DEV_HAS_PADDING |
|
|
FSL_GIANFAR_DEV_HAS_CSUM |
|
|
FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
|
|
}
|
|
|
|
ctype = of_get_property(np, "phy-connection-type", NULL);
|
|
|
|
/* We only care about rgmii-id. The rest are autodetected */
|
|
if(ctype && !strcmp(ctype, "rgmii-id"))
|
|
{
|
|
priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
|
|
}
|
|
else
|
|
{
|
|
priv->interface = PHY_INTERFACE_MODE_MII;
|
|
}
|
|
|
|
if(of_get_property(np, "fsl,magic-packet", NULL))
|
|
{
|
|
priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
|
|
}
|
|
|
|
if(of_get_property(np, "fsl,wake-on-filer", NULL))
|
|
{
|
|
priv->device_flags |= FSL_GIANFAR_DEV_HAS_ARP_PACKET;
|
|
}
|
|
|
|
priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
|
|
|
|
/* Find the TBI PHY. If it's not there, we don't support SGMII */
|
|
priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
|
|
|
|
return 0;
|
|
|
|
rx_alloc_failed:
|
|
free_rx_pointers(priv);
|
|
tx_alloc_failed:
|
|
free_tx_pointers(priv);
|
|
err_grp_init:
|
|
unmap_group_regs(priv);
|
|
free_netdev(dev);
|
|
return err;
|
|
}
|
|
|
|
/* Ioctl MII Interface */
|
|
static int gfar_ioctl(struct net_device* dev, struct ifreq* rq, int cmd)
|
|
{
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
int retVal = 0;
|
|
|
|
if(!netif_running(dev))
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
if(!priv->phydev)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
|
|
if((cmd >= PTP_GET_RX_TIMESTAMP_SYNC) &&
|
|
(cmd <= PTP_CLEANUP_TIMESTAMP_BUFFERS))
|
|
{
|
|
retVal = -ENODEV;
|
|
}
|
|
else
|
|
{
|
|
retVal = phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
|
|
}
|
|
|
|
return retVal;
|
|
}
|
|
|
|
static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
|
|
{
|
|
unsigned int new_bit_map = 0x0;
|
|
int mask = 0x1 << (max_qs - 1), i;
|
|
|
|
for(i = 0; i < max_qs; i++)
|
|
{
|
|
if(bit_map & mask)
|
|
{
|
|
new_bit_map = new_bit_map + (1 << i);
|
|
}
|
|
|
|
mask = mask >> 0x1;
|
|
}
|
|
|
|
return new_bit_map;
|
|
}
|
|
|
|
static u32 cluster_entry_per_class(struct gfar_private* priv, u32 rqfar,
|
|
u32 class)
|
|
{
|
|
u32 rqfpr = FPR_FILER_MASK;
|
|
u32 rqfcr = 0x0;
|
|
|
|
rqfar--;
|
|
rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
|
|
priv->ftp_rqfpr[rqfar] = rqfpr;
|
|
priv->ftp_rqfcr[rqfar] = rqfcr;
|
|
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
|
|
|
|
rqfar--;
|
|
rqfcr = RQFCR_CMP_NOMATCH;
|
|
priv->ftp_rqfpr[rqfar] = rqfpr;
|
|
priv->ftp_rqfcr[rqfar] = rqfcr;
|
|
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
|
|
|
|
rqfar--;
|
|
rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
|
|
rqfpr = class;
|
|
priv->ftp_rqfcr[rqfar] = rqfcr;
|
|
priv->ftp_rqfpr[rqfar] = rqfpr;
|
|
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
|
|
|
|
rqfar--;
|
|
rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
|
|
rqfpr = class;
|
|
priv->ftp_rqfcr[rqfar] = rqfcr;
|
|
priv->ftp_rqfpr[rqfar] = rqfpr;
|
|
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
|
|
|
|
return rqfar;
|
|
}
|
|
|
|
static void gfar_init_filer_table(struct gfar_private* priv)
|
|
{
|
|
int i = 0x0;
|
|
u32 rqfar = priv->max_filer_rules;
|
|
u32 rqfcr = 0x0;
|
|
u32 rqfpr = FPR_FILER_MASK;
|
|
|
|
if(!priv->ftp_rqfpr)
|
|
{
|
|
priv->ftp_rqfpr = kmalloc((priv->max_filer_rules + 1) * sizeof
|
|
(u32), GFP_KERNEL);
|
|
|
|
if(!priv->ftp_rqfpr)
|
|
{
|
|
pr_err("Could not allocate ftp_rqfpr\n");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if(!priv->ftp_rqfcr)
|
|
{
|
|
priv->ftp_rqfcr = kmalloc((priv->max_filer_rules + 1) * sizeof
|
|
(u32), GFP_KERNEL);
|
|
|
|
if(!priv->ftp_rqfcr)
|
|
{
|
|
pr_err("Could not allocate ftp_rqfcr\n");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* Default rule */
|
|
rqfcr = RQFCR_CMP_MATCH;
|
|
priv->ftp_rqfcr[rqfar] = rqfcr;
|
|
priv->ftp_rqfpr[rqfar] = rqfpr;
|
|
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
|
|
|
|
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
|
|
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
|
|
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
|
|
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
|
|
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
|
|
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
|
|
|
|
/* cur_filer_idx indicated the fisrt non-masked rule */
|
|
priv->cur_filer_idx = rqfar;
|
|
|
|
/* Program the RIR0 reg with the required distribution */
|
|
priv->gfargrp[0].regs->rir0 = DEFAULT_RIR0;
|
|
|
|
/* Rest are masked rules */
|
|
rqfcr = RQFCR_CMP_NOMATCH;
|
|
|
|
for(i = 0; i < rqfar; i++)
|
|
{
|
|
priv->ftp_rqfcr[i] = rqfcr;
|
|
priv->ftp_rqfpr[i] = rqfpr;
|
|
gfar_write_filer(priv, i, rqfcr, rqfpr);
|
|
}
|
|
|
|
return;
|
|
out:
|
|
kfree(priv->ftp_rqfcr);
|
|
kfree(priv->ftp_rqfpr);
|
|
priv->ftp_rqfpr = priv->ftp_rqfcr = NULL;
|
|
|
|
}
|
|
|
|
/* Set up the ethernet device structure, private data,
|
|
* and anything else we need before we start */
|
|
static int gfar_probe(struct of_device* ofdev,
|
|
const struct of_device_id* match)
|
|
{
|
|
u32 tempval;
|
|
struct net_device* dev = NULL;
|
|
struct gfar_private* priv = NULL;
|
|
struct gfar __iomem* regs = NULL;
|
|
int err = 0, i, grp_idx = 0;
|
|
int len_devname;
|
|
u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
|
|
u32 isrg = 0;
|
|
u32 __iomem* baddr;
|
|
|
|
err = gfar_of_init(ofdev, &dev);
|
|
|
|
if(err)
|
|
{
|
|
return err;
|
|
}
|
|
|
|
priv = netdev_priv(dev);
|
|
priv->ndev = dev;
|
|
priv->ofdev = ofdev;
|
|
priv->node = ofdev->dev.of_node;
|
|
SET_NETDEV_DEV(dev, &ofdev->dev);
|
|
|
|
spin_lock_init(&priv->bflock);
|
|
INIT_WORK(&priv->reset_task, gfar_reset_task);
|
|
|
|
dev_set_drvdata(&ofdev->dev, priv);
|
|
regs = priv->gfargrp[0].regs;
|
|
|
|
/* Stop the DMA engine now, in case it was running before */
|
|
/* (The firmware could have used it, and left it running). */
|
|
gfar_halt(dev);
|
|
|
|
/* Reset MAC layer */
|
|
gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET);
|
|
|
|
/* We need to delay at least 3 TX clocks */
|
|
udelay(2);
|
|
|
|
tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
|
|
gfar_write(®s->maccfg1, tempval);
|
|
|
|
/* Initialize MACCFG2. */
|
|
gfar_write(®s->maccfg2, MACCFG2_INIT_SETTINGS);
|
|
|
|
/* Initialize ECNTRL */
|
|
gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS);
|
|
|
|
/* Set the dev->base_addr to the gfar reg region */
|
|
dev->base_addr = (unsigned long) regs;
|
|
|
|
SET_NETDEV_DEV(dev, &ofdev->dev);
|
|
|
|
/* Fill in the dev structure */
|
|
dev->watchdog_timeo = TX_TIMEOUT;
|
|
dev->mtu = 1500;
|
|
dev->netdev_ops = &gfar_netdev_ops;
|
|
dev->ethtool_ops = &gfar_ethtool_ops;
|
|
|
|
/* Seperate napi for tx and rx for each group */
|
|
for(i = 0; i < priv->num_grps; i++)
|
|
{
|
|
|
|
netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
|
|
gfar_poll_tx, GFAR_DEV_WEIGHT);
|
|
|
|
netif_napi_add(dev, &priv->gfargrp[i].napi_rx, gfar_poll_rx,
|
|
GFAR_DEV_WEIGHT);
|
|
}
|
|
|
|
if(priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM)
|
|
{
|
|
priv->rx_csum_enable = 1;
|
|
dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
|
|
}
|
|
else
|
|
{
|
|
priv->rx_csum_enable = 0;
|
|
}
|
|
|
|
priv->vlgrp = NULL;
|
|
|
|
if(priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
|
|
{
|
|
dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
|
|
}
|
|
|
|
if(priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH)
|
|
{
|
|
priv->extended_hash = 1;
|
|
priv->hash_width = 9;
|
|
|
|
priv->hash_regs[0] = ®s->igaddr0;
|
|
priv->hash_regs[1] = ®s->igaddr1;
|
|
priv->hash_regs[2] = ®s->igaddr2;
|
|
priv->hash_regs[3] = ®s->igaddr3;
|
|
priv->hash_regs[4] = ®s->igaddr4;
|
|
priv->hash_regs[5] = ®s->igaddr5;
|
|
priv->hash_regs[6] = ®s->igaddr6;
|
|
priv->hash_regs[7] = ®s->igaddr7;
|
|
priv->hash_regs[8] = ®s->gaddr0;
|
|
priv->hash_regs[9] = ®s->gaddr1;
|
|
priv->hash_regs[10] = ®s->gaddr2;
|
|
priv->hash_regs[11] = ®s->gaddr3;
|
|
priv->hash_regs[12] = ®s->gaddr4;
|
|
priv->hash_regs[13] = ®s->gaddr5;
|
|
priv->hash_regs[14] = ®s->gaddr6;
|
|
priv->hash_regs[15] = ®s->gaddr7;
|
|
|
|
}
|
|
else
|
|
{
|
|
priv->extended_hash = 0;
|
|
priv->hash_width = 8;
|
|
|
|
priv->hash_regs[0] = ®s->gaddr0;
|
|
priv->hash_regs[1] = ®s->gaddr1;
|
|
priv->hash_regs[2] = ®s->gaddr2;
|
|
priv->hash_regs[3] = ®s->gaddr3;
|
|
priv->hash_regs[4] = ®s->gaddr4;
|
|
priv->hash_regs[5] = ®s->gaddr5;
|
|
priv->hash_regs[6] = ®s->gaddr6;
|
|
priv->hash_regs[7] = ®s->gaddr7;
|
|
}
|
|
|
|
if(priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
|
|
{
|
|
priv->padding = DEFAULT_PADDING;
|
|
}
|
|
else
|
|
{
|
|
priv->padding = 0;
|
|
}
|
|
|
|
if(dev->features & NETIF_F_IP_CSUM)
|
|
{
|
|
priv->padding = 0x8;
|
|
dev->hard_header_len += GMAC_FCB_LEN;
|
|
}
|
|
|
|
/* Program the isrg regs only if number of grps > 1 */
|
|
if(priv->num_grps > 1)
|
|
{
|
|
baddr = ®s->isrg0;
|
|
|
|
for(i = 0; i < priv->num_grps; i++)
|
|
{
|
|
isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
|
|
isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
|
|
gfar_write(baddr, isrg);
|
|
baddr++;
|
|
isrg = 0x0;
|
|
}
|
|
}
|
|
|
|
/* Need to reverse the bit maps as bit_map's MSB is q0
|
|
* but, for_each_set_bit parses from right to left, which
|
|
* basically reverses the queue numbers */
|
|
for(i = 0; i < priv->num_grps; i++)
|
|
{
|
|
priv->gfargrp[i].tx_bit_map = reverse_bitmap(
|
|
priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
|
|
priv->gfargrp[i].rx_bit_map = reverse_bitmap(
|
|
priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
|
|
}
|
|
|
|
/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
|
|
* also assign queues to groups */
|
|
for(grp_idx = 0; grp_idx < priv->num_grps; grp_idx++)
|
|
{
|
|
priv->gfargrp[grp_idx].num_rx_queues = 0x0;
|
|
for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
|
|
priv->num_rx_queues)
|
|
{
|
|
priv->gfargrp[grp_idx].num_rx_queues++;
|
|
priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
|
|
rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
|
|
rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
|
|
}
|
|
priv->gfargrp[grp_idx].num_tx_queues = 0x0;
|
|
for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
|
|
priv->num_tx_queues)
|
|
{
|
|
priv->gfargrp[grp_idx].num_tx_queues++;
|
|
priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
|
|
tstat = tstat | (TSTAT_CLEAR_THALT >> i);
|
|
tqueue = tqueue | (TQUEUE_EN0 >> i);
|
|
}
|
|
priv->gfargrp[grp_idx].rstat = rstat;
|
|
priv->gfargrp[grp_idx].tstat = tstat;
|
|
rstat = tstat = 0;
|
|
}
|
|
|
|
gfar_write(®s->rqueue, rqueue);
|
|
gfar_write(®s->tqueue, tqueue);
|
|
|
|
priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
|
|
priv->wk_buffer_size = DEFAULT_WK_BUFFER_SIZE;
|
|
|
|
/* Initializing some of the rx/tx queue level parameters */
|
|
for(i = 0; i < priv->num_tx_queues; i++)
|
|
{
|
|
if(i == 0)
|
|
{
|
|
priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE * 16;
|
|
}
|
|
else
|
|
{
|
|
priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
|
|
}
|
|
|
|
priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
|
|
priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
|
|
priv->tx_queue[i]->txic = DEFAULT_TXIC;
|
|
}
|
|
|
|
priv->rx_queue[priv->num_rx_queues - 1]->rx_ring_size = DEFAULT_WK_RING_SIZE;
|
|
|
|
/* enable filer if using multiple RX queues*/
|
|
if(priv->num_rx_queues > 1)
|
|
{
|
|
priv->rx_filer_enable = 1;
|
|
}
|
|
|
|
for(i = 0; i < priv->num_rx_queues; i++)
|
|
{
|
|
if(i == 0)
|
|
{
|
|
priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE * 16;
|
|
}
|
|
else
|
|
{
|
|
priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
|
|
}
|
|
|
|
priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
|
|
priv->rx_queue[i]->rxic = DEFAULT_RXIC;
|
|
}
|
|
|
|
/* Enable most messages by default */
|
|
priv->msg_enable = (NETIF_MSG_IFUP << 1) - 1;
|
|
|
|
/* Carrier starts down, phylib will bring it up */
|
|
netif_carrier_off(dev);
|
|
|
|
err = register_netdev(dev);
|
|
|
|
if(err)
|
|
{
|
|
printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
|
|
dev->name);
|
|
goto register_fail;
|
|
}
|
|
|
|
if((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) ||
|
|
(priv->device_flags & FSL_GIANFAR_DEV_HAS_ARP_PACKET))
|
|
{
|
|
device_set_wakeup_capable(&ofdev->dev, true);
|
|
device_set_wakeup_enable(&ofdev->dev, false);
|
|
}
|
|
|
|
/* fill out IRQ number and name fields */
|
|
len_devname = strlen(dev->name);
|
|
|
|
for(i = 0; i < priv->num_grps; i++)
|
|
{
|
|
strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
|
|
len_devname);
|
|
|
|
if(priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR)
|
|
{
|
|
strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
|
|
"_g", sizeof("_g"));
|
|
priv->gfargrp[i].int_name_tx[
|
|
strlen(priv->gfargrp[i].int_name_tx)] = i + 48;
|
|
strncpy(&priv->gfargrp[i].int_name_tx[strlen(
|
|
priv->gfargrp[i].int_name_tx)],
|
|
"_tx", sizeof("_tx") + 1);
|
|
|
|
strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
|
|
len_devname);
|
|
strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
|
|
"_g", sizeof("_g"));
|
|
priv->gfargrp[i].int_name_rx[
|
|
strlen(priv->gfargrp[i].int_name_rx)] = i + 48;
|
|
strncpy(&priv->gfargrp[i].int_name_rx[strlen(
|
|
priv->gfargrp[i].int_name_rx)],
|
|
"_rx", sizeof("_rx") + 1);
|
|
|
|
strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
|
|
len_devname);
|
|
strncpy(&priv->gfargrp[i].int_name_er[len_devname],
|
|
"_g", sizeof("_g"));
|
|
priv->gfargrp[i].int_name_er[strlen(
|
|
priv->gfargrp[i].int_name_er)] = i + 48;
|
|
strncpy(&priv->gfargrp[i].int_name_er[strlen(\
|
|
priv->gfargrp[i].int_name_er)],
|
|
"_er", sizeof("_er") + 1);
|
|
}
|
|
else
|
|
{
|
|
priv->gfargrp[i].int_name_tx[len_devname] = '\0';
|
|
}
|
|
}
|
|
|
|
/* Initialize the filer table */
|
|
gfar_init_filer_table(priv);
|
|
|
|
/* Create all the sysfs files */
|
|
gfar_init_sysfs(dev);
|
|
|
|
/* Print out the device info */
|
|
printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
|
|
|
|
/* Even more device info helps when determining which kernel */
|
|
/* provided which set of benchmarks. */
|
|
printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
|
|
|
|
for(i = 0; i < priv->num_rx_queues; i++)
|
|
printk(KERN_INFO "%s: RX BD ring size for Q[%d]: %d\n",
|
|
dev->name, i, priv->rx_queue[i]->rx_ring_size);
|
|
|
|
for(i = 0; i < priv->num_tx_queues; i++)
|
|
printk(KERN_INFO "%s: TX BD ring size for Q[%d]: %d\n",
|
|
dev->name, i, priv->tx_queue[i]->tx_ring_size);
|
|
|
|
return 0;
|
|
|
|
register_fail:
|
|
|
|
unmap_group_regs(priv);
|
|
free_tx_pointers(priv);
|
|
free_rx_pointers(priv);
|
|
|
|
if(priv->phy_node)
|
|
{
|
|
of_node_put(priv->phy_node);
|
|
}
|
|
|
|
if(priv->tbi_node)
|
|
{
|
|
of_node_put(priv->tbi_node);
|
|
}
|
|
|
|
free_netdev(dev);
|
|
return err;
|
|
}
|
|
|
|
static int gfar_remove(struct of_device* ofdev)
|
|
{
|
|
struct gfar_private* priv = dev_get_drvdata(&ofdev->dev);
|
|
|
|
if(priv->phy_node)
|
|
{
|
|
of_node_put(priv->phy_node);
|
|
}
|
|
|
|
if(priv->tbi_node)
|
|
{
|
|
of_node_put(priv->tbi_node);
|
|
}
|
|
|
|
dev_set_drvdata(&ofdev->dev, NULL);
|
|
|
|
unregister_netdev(priv->ndev);
|
|
unmap_group_regs(priv);
|
|
|
|
kfree(priv->ftp_rqfpr);
|
|
kfree(priv->ftp_rqfcr);
|
|
free_netdev(priv->ndev);
|
|
return 0;
|
|
}
|
|
|
|
#define GFAR_PM_OPS NULL
|
|
|
|
/* Reads the controller's registers to determine what interface
|
|
* connects it to the PHY.
|
|
*/
|
|
static phy_interface_t gfar_get_interface(struct net_device* dev)
|
|
{
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
struct gfar __iomem* regs = priv->gfargrp[0].regs;
|
|
u32 ecntrl;
|
|
|
|
ecntrl = gfar_read(®s->ecntrl);
|
|
|
|
if(ecntrl & ECNTRL_SGMII_MODE)
|
|
{
|
|
return PHY_INTERFACE_MODE_SGMII;
|
|
}
|
|
|
|
if(ecntrl & ECNTRL_TBI_MODE)
|
|
{
|
|
if(ecntrl & ECNTRL_REDUCED_MODE)
|
|
{
|
|
return PHY_INTERFACE_MODE_RTBI;
|
|
}
|
|
else
|
|
{
|
|
return PHY_INTERFACE_MODE_TBI;
|
|
}
|
|
}
|
|
|
|
if(ecntrl & ECNTRL_REDUCED_MODE)
|
|
{
|
|
if(ecntrl & ECNTRL_REDUCED_MII_MODE)
|
|
{
|
|
return PHY_INTERFACE_MODE_RMII;
|
|
}
|
|
else
|
|
{
|
|
phy_interface_t interface = priv->interface;
|
|
|
|
/*
|
|
* This isn't autodetected right now, so it must
|
|
* be set by the device tree or platform code.
|
|
*/
|
|
if(interface == PHY_INTERFACE_MODE_RGMII_ID)
|
|
{
|
|
return PHY_INTERFACE_MODE_RGMII_ID;
|
|
}
|
|
|
|
return PHY_INTERFACE_MODE_RGMII;
|
|
}
|
|
}
|
|
|
|
if(priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
|
|
{
|
|
return PHY_INTERFACE_MODE_GMII;
|
|
}
|
|
|
|
return PHY_INTERFACE_MODE_MII;
|
|
}
|
|
|
|
/* Initializes driver's PHY state, and attaches to the PHY.
|
|
* Returns 0 on success.
|
|
*/
|
|
static int mdio_phy_config(struct net_device* dev)
|
|
{
|
|
struct phy_device* mdio_phy;
|
|
struct gfar_private* priv = NULL;
|
|
|
|
|
|
// printk(" ************ %s run ***********\n",__func__);
|
|
priv = netdev_priv(dev);
|
|
|
|
if(!priv->phy_node)
|
|
{
|
|
dev_warn(&dev->dev, "error: SGMII mode requires that the "
|
|
"device tree specify a mdio-handle\n");
|
|
return -1;
|
|
}
|
|
|
|
mdio_phy = of_phy_find_device(priv->phy_node);
|
|
|
|
if(!mdio_phy)
|
|
{
|
|
dev_err(&dev->dev, "error: Could not get TBI device\n");
|
|
return -1;
|
|
}
|
|
|
|
phy_write(mdio_phy, 0x16, 0x12);
|
|
phy_write(mdio_phy, 0x14, 0x1);
|
|
phy_write(mdio_phy, 0x14, 0x8001);
|
|
phy_write(mdio_phy, 0x16, 0x0);
|
|
|
|
return 0 ;
|
|
}
|
|
|
|
|
|
/* Initializes driver's PHY state, and attaches to the PHY.
|
|
* Returns 0 on success.
|
|
*/
|
|
static int init_phy(struct net_device* dev)
|
|
{
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
uint gigabit_support =
|
|
priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
|
|
SUPPORTED_1000baseT_Full : 0;
|
|
phy_interface_t interface;
|
|
|
|
priv->oldlink = 0;
|
|
priv->oldspeed = 0;
|
|
priv->oldduplex = -1;
|
|
|
|
interface = gfar_get_interface(dev);
|
|
|
|
priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
|
|
interface);
|
|
|
|
if(!priv->phydev)
|
|
priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
|
|
interface);
|
|
|
|
if(!priv->phydev)
|
|
{
|
|
dev_err(&dev->dev, "could not attach to PHY\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if(interface == PHY_INTERFACE_MODE_SGMII)
|
|
{
|
|
gfar_configure_serdes(dev);
|
|
mdio_phy_config(dev);
|
|
}
|
|
|
|
/* Remove any features not supported by the controller */
|
|
priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
|
|
priv->phydev->advertising = priv->phydev->supported;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize TBI PHY interface for communicating with the
|
|
* SERDES lynx PHY on the chip. We communicate with this PHY
|
|
* through the MDIO bus on each controller, treating it as a
|
|
* "normal" PHY at the address found in the TBIPA register. We assume
|
|
* that the TBIPA register is valid. Either the MDIO bus code will set
|
|
* it to a value that doesn't conflict with other PHYs on the bus, or the
|
|
* value doesn't matter, as there are no other PHYs on the bus.
|
|
*/
|
|
static void gfar_configure_serdes(struct net_device* dev)
|
|
{
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
struct phy_device* tbiphy;
|
|
|
|
if(!priv->tbi_node)
|
|
{
|
|
dev_warn(&dev->dev, "error: SGMII mode requires that the "
|
|
"device tree specify a tbi-handle\n");
|
|
return;
|
|
}
|
|
|
|
tbiphy = of_phy_find_device(priv->tbi_node);
|
|
|
|
if(!tbiphy)
|
|
{
|
|
dev_err(&dev->dev, "error: Could not get TBI device\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the link is already up, we must already be ok, and don't need to
|
|
* configure and reset the TBI<->SerDes link. Maybe U-Boot configured
|
|
* everything for us? Resetting it takes the link down and requires
|
|
* several seconds for it to come back.
|
|
*/
|
|
if(phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
|
|
{
|
|
return;
|
|
}
|
|
|
|
/* Single clk mode, mii mode off(for serdes communication) */
|
|
phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
|
|
|
|
phy_write(tbiphy, MII_ADVERTISE,
|
|
ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
|
|
ADVERTISE_1000XPSE_ASYM);
|
|
|
|
phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
|
|
BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
|
|
}
|
|
|
|
static void init_registers(struct net_device* dev)
|
|
{
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
struct gfar __iomem* regs = NULL;
|
|
int i = 0;
|
|
|
|
for(i = 0; i < priv->num_grps; i++)
|
|
{
|
|
regs = priv->gfargrp[i].regs;
|
|
/* Clear IEVENT */
|
|
gfar_write(®s->ievent, IEVENT_INIT_CLEAR);
|
|
|
|
/* Initialize IMASK */
|
|
gfar_write(®s->imask, IMASK_INIT_CLEAR);
|
|
}
|
|
|
|
regs = priv->gfargrp[0].regs;
|
|
/* Init hash registers to zero */
|
|
gfar_write(®s->igaddr0, 0);
|
|
gfar_write(®s->igaddr1, 0);
|
|
gfar_write(®s->igaddr2, 0);
|
|
gfar_write(®s->igaddr3, 0);
|
|
gfar_write(®s->igaddr4, 0);
|
|
gfar_write(®s->igaddr5, 0);
|
|
gfar_write(®s->igaddr6, 0);
|
|
gfar_write(®s->igaddr7, 0);
|
|
|
|
gfar_write(®s->gaddr0, 0);
|
|
gfar_write(®s->gaddr1, 0);
|
|
gfar_write(®s->gaddr2, 0);
|
|
gfar_write(®s->gaddr3, 0);
|
|
gfar_write(®s->gaddr4, 0);
|
|
gfar_write(®s->gaddr5, 0);
|
|
gfar_write(®s->gaddr6, 0);
|
|
gfar_write(®s->gaddr7, 0);
|
|
|
|
/* Zero out the rmon mib registers if it has them */
|
|
if(priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON)
|
|
{
|
|
memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
|
|
|
|
/* Mask off the CAM interrupts */
|
|
gfar_write(®s->rmon.cam1, 0xffffffff);
|
|
gfar_write(®s->rmon.cam2, 0xffffffff);
|
|
}
|
|
|
|
/* Initialize the max receive buffer length */
|
|
gfar_write(®s->mrblr, priv->rx_buffer_size);
|
|
|
|
/* Initialize the Minimum Frame Length Register */
|
|
gfar_write(®s->minflr, MINFLR_INIT_SETTINGS);
|
|
}
|
|
|
|
|
|
/* Halt the receive and transmit queues */
|
|
static void gfar_halt_nodisable(struct net_device* dev)
|
|
{
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
struct gfar __iomem* regs = NULL;
|
|
u32 tempval;
|
|
int i = 0;
|
|
|
|
for(i = 0; i < priv->num_grps; i++)
|
|
{
|
|
regs = priv->gfargrp[i].regs;
|
|
/* Mask all interrupts */
|
|
gfar_write(®s->imask, IMASK_INIT_CLEAR);
|
|
|
|
/* Clear all interrupts */
|
|
gfar_write(®s->ievent, IEVENT_INIT_CLEAR);
|
|
}
|
|
|
|
regs = priv->gfargrp[0].regs;
|
|
/* Stop the DMA, and wait for it to stop */
|
|
tempval = gfar_read(®s->dmactrl);
|
|
|
|
if((tempval & (DMACTRL_GRS | DMACTRL_GTS))
|
|
!= (DMACTRL_GRS | DMACTRL_GTS))
|
|
{
|
|
tempval |= (DMACTRL_GRS | DMACTRL_GTS);
|
|
gfar_write(®s->dmactrl, tempval);
|
|
|
|
spin_event_timeout(((gfar_read(®s->ievent) &
|
|
(IEVENT_GRSC | IEVENT_GTSC)) ==
|
|
(IEVENT_GRSC | IEVENT_GTSC)), -1, 0);
|
|
}
|
|
}
|
|
|
|
/* Halt the receive and transmit queues */
|
|
void gfar_halt(struct net_device* dev)
|
|
{
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
struct gfar __iomem* regs = priv->gfargrp[0].regs;
|
|
u32 tempval;
|
|
|
|
gfar_halt_nodisable(dev);
|
|
|
|
/* Disable Rx and Tx */
|
|
tempval = gfar_read(®s->maccfg1);
|
|
tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
|
|
gfar_write(®s->maccfg1, tempval);
|
|
}
|
|
|
|
void free_bds(struct gfar_private* priv)
|
|
{
|
|
unsigned long region_size = 0;
|
|
region_size = (sizeof(struct txbd8) + sizeof(struct sk_buff*)) *
|
|
priv->total_tx_ring_size +
|
|
(sizeof(struct rxbd8) + sizeof(struct sk_buff*)) *
|
|
priv->total_rx_ring_size;
|
|
|
|
dma_free_coherent(&priv->ofdev->dev,
|
|
region_size,
|
|
priv->tx_queue[0]->tx_bd_base,
|
|
priv->tx_queue[0]->tx_bd_dma_base);
|
|
|
|
}
|
|
|
|
void stop_gfar(struct net_device* dev)
|
|
{
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
unsigned long flags;
|
|
|
|
phy_stop(priv->phydev);
|
|
|
|
|
|
/* Lock it down */
|
|
local_irq_save(flags);
|
|
lock_tx_qs(priv);
|
|
lock_rx_qs(priv);
|
|
|
|
gfar_halt(dev);
|
|
|
|
unlock_rx_qs(priv);
|
|
unlock_tx_qs(priv);
|
|
local_irq_restore(flags);
|
|
|
|
free_skb_resources(priv);
|
|
}
|
|
|
|
static void free_skb_tx_queue(struct gfar_priv_tx_q* tx_queue)
|
|
{
|
|
struct txbd8* txbdp;
|
|
struct gfar_private* priv = netdev_priv(tx_queue->dev);
|
|
int i, j;
|
|
|
|
txbdp = tx_queue->tx_bd_base;
|
|
|
|
for(i = 0; i < tx_queue->tx_ring_size; i++)
|
|
{
|
|
if(!tx_queue->tx_skbuff[i])
|
|
{
|
|
continue;
|
|
}
|
|
|
|
dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
|
|
txbdp->length, DMA_TO_DEVICE);
|
|
txbdp->lstatus = 0;
|
|
|
|
for(j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
|
|
j++)
|
|
{
|
|
txbdp++;
|
|
dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
|
|
txbdp->length, DMA_TO_DEVICE);
|
|
}
|
|
|
|
txbdp++;
|
|
dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
|
|
tx_queue->tx_skbuff[i] = NULL;
|
|
}
|
|
|
|
kfree(tx_queue->tx_skbuff);
|
|
}
|
|
|
|
static void free_skb_rx_queue(struct gfar_priv_rx_q* rx_queue)
|
|
{
|
|
struct rxbd8* rxbdp;
|
|
struct gfar_private* priv = netdev_priv(rx_queue->dev);
|
|
int i;
|
|
|
|
rxbdp = rx_queue->rx_bd_base;
|
|
|
|
for(i = 0; i < rx_queue->rx_ring_size; i++)
|
|
{
|
|
if(rx_queue->rx_skbuff[i])
|
|
{
|
|
dma_unmap_single(&priv->ofdev->dev,
|
|
rxbdp->bufPtr, priv->rx_buffer_size,
|
|
DMA_FROM_DEVICE);
|
|
dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
|
|
rx_queue->rx_skbuff[i] = NULL;
|
|
}
|
|
|
|
rxbdp->lstatus = 0;
|
|
rxbdp->bufPtr = 0;
|
|
rxbdp++;
|
|
}
|
|
|
|
kfree(rx_queue->rx_skbuff);
|
|
}
|
|
|
|
/* If there are any tx skbs or rx skbs still around, free them.
|
|
* Then free tx_skbuff and rx_skbuff */
|
|
static void free_skb_resources(struct gfar_private* priv)
|
|
{
|
|
struct gfar_priv_tx_q* tx_queue = NULL;
|
|
struct gfar_priv_rx_q* rx_queue = NULL;
|
|
int i;
|
|
|
|
if((priv->device_flags & FSL_GIANFAR_DEV_HAS_ARP_PACKET))
|
|
{
|
|
rx_queue = priv->rx_queue[priv->num_rx_queues - 1];
|
|
dma_free_coherent(&priv->ofdev->dev,
|
|
priv->wk_buffer_size * rx_queue->rx_ring_size \
|
|
+ RXBUF_ALIGNMENT, (void*)priv->wk_buf_vaddr,
|
|
priv->wk_buf_paddr);
|
|
}
|
|
|
|
/* Go through all the buffer descriptors and free their data buffers */
|
|
for(i = 0; i < priv->num_tx_queues; i++)
|
|
{
|
|
tx_queue = priv->tx_queue[i];
|
|
|
|
if(tx_queue->tx_skbuff)
|
|
{
|
|
free_skb_tx_queue(tx_queue);
|
|
}
|
|
}
|
|
|
|
for(i = 0; i < priv->num_rx_queues; i++)
|
|
{
|
|
rx_queue = priv->rx_queue[i];
|
|
|
|
if(rx_queue->rx_skbuff)
|
|
{
|
|
free_skb_rx_queue(rx_queue);
|
|
}
|
|
}
|
|
|
|
free_bds(priv);
|
|
}
|
|
|
|
void gfar_start(struct net_device* dev)
|
|
{
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
struct gfar __iomem* regs = priv->gfargrp[0].regs;
|
|
u32 tempval;
|
|
int i = 0;
|
|
|
|
/* Enable Rx and Tx in MACCFG1 */
|
|
tempval = gfar_read(®s->maccfg1);
|
|
tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
|
|
gfar_write(®s->maccfg1, tempval);
|
|
|
|
/* Initialize DMACTRL to have WWR and WOP */
|
|
tempval = gfar_read(®s->dmactrl);
|
|
tempval |= DMACTRL_INIT_SETTINGS;
|
|
gfar_write(®s->dmactrl, tempval);
|
|
|
|
/* Make sure we aren't stopped */
|
|
tempval = gfar_read(®s->dmactrl);
|
|
tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
|
|
gfar_write(®s->dmactrl, tempval);
|
|
|
|
for(i = 0; i < priv->num_grps; i++)
|
|
{
|
|
regs = priv->gfargrp[i].regs;
|
|
/* Clear THLT/RHLT, so that the DMA starts polling now */
|
|
gfar_write(®s->tstat, priv->gfargrp[i].tstat);
|
|
gfar_write(®s->rstat, priv->gfargrp[i].rstat);
|
|
/* Unmask the interrupts we look for */
|
|
gfar_write(®s->imask, IMASK_DEFAULT);
|
|
}
|
|
|
|
dev->trans_start = jiffies; /* prevent tx timeout */
|
|
}
|
|
|
|
void gfar_configure_tx_coalescing(struct gfar_private* priv,
|
|
long unsigned int tx_mask)
|
|
{
|
|
struct gfar __iomem* regs = priv->gfargrp[0].regs;
|
|
u32 __iomem* baddr;
|
|
int i = 0, mask = 0x1;
|
|
|
|
/* Backward compatible case ---- even if we enable
|
|
* multiple queues, there's only single reg to program
|
|
*/
|
|
if(priv->mode == SQ_SG_MODE)
|
|
{
|
|
gfar_write(®s->txic, 0);
|
|
|
|
if(likely(priv->tx_queue[0]->txcoalescing))
|
|
{
|
|
gfar_write(®s->txic, priv->tx_queue[0]->txic);
|
|
}
|
|
}
|
|
|
|
if(priv->mode == MQ_MG_MODE)
|
|
{
|
|
baddr = ®s->txic0;
|
|
|
|
for(i = 0; i < priv->num_tx_queues; i++)
|
|
{
|
|
if(tx_mask & mask)
|
|
{
|
|
if(likely(priv->tx_queue[i]->txcoalescing))
|
|
{
|
|
gfar_write(baddr + i, 0);
|
|
gfar_write(baddr + i,
|
|
priv->tx_queue[i]->txic);
|
|
}
|
|
}
|
|
|
|
mask = mask << 0x1;
|
|
}
|
|
}
|
|
}
|
|
|
|
void gfar_configure_rx_coalescing(struct gfar_private* priv,
|
|
long unsigned int rx_mask)
|
|
{
|
|
struct gfar __iomem* regs = priv->gfargrp[0].regs;
|
|
u32 __iomem* baddr;
|
|
int i = 0, mask = 0x1;
|
|
|
|
/* Backward compatible case ---- even if we enable
|
|
* multiple queues, there's only single reg to program
|
|
*/
|
|
if(priv->mode == SQ_SG_MODE)
|
|
{
|
|
gfar_write(®s->rxic, 0);
|
|
|
|
if(unlikely(priv->rx_queue[0]->rxcoalescing))
|
|
{
|
|
gfar_write(®s->rxic, priv->rx_queue[0]->rxic);
|
|
}
|
|
}
|
|
|
|
if(priv->mode == MQ_MG_MODE)
|
|
{
|
|
baddr = ®s->rxic0;
|
|
|
|
for(i = 0; i < priv->num_rx_queues; i++)
|
|
{
|
|
if(rx_mask & mask)
|
|
{
|
|
if(likely(priv->rx_queue[i]->rxcoalescing))
|
|
{
|
|
gfar_write(baddr + i, 0);
|
|
gfar_write(baddr + i,
|
|
priv->rx_queue[i]->rxic);
|
|
}
|
|
}
|
|
|
|
mask = mask << 0x1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Bring the controller up and running */
|
|
int startup_gfar(struct net_device* ndev)
|
|
{
|
|
struct gfar_private* priv = netdev_priv(ndev);
|
|
struct gfar __iomem* regs = NULL;
|
|
int err, i;
|
|
|
|
|
|
for(i = 0; i < priv->num_grps; i++)
|
|
{
|
|
regs = priv->gfargrp[i].regs;
|
|
gfar_write(®s->imask, IMASK_INIT_CLEAR);
|
|
}
|
|
|
|
regs = priv->gfargrp[0].regs;
|
|
err = gfar_alloc_skb_resources(ndev);
|
|
|
|
if(err)
|
|
{
|
|
return err;
|
|
}
|
|
|
|
gfar_init_mac(ndev);
|
|
|
|
/* Start the controller */
|
|
gfar_start(ndev);
|
|
|
|
phy_start(priv->phydev);
|
|
|
|
gfar_configure_tx_coalescing(priv, 0xFF);
|
|
gfar_configure_rx_coalescing(priv, 0xFF);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Called when something needs to use the ethernet device */
|
|
/* Returns 0 for success. */
|
|
static int gfar_enet_open(struct net_device* dev)
|
|
{
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
int err;
|
|
|
|
if(priv->ucc_num == 2)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
enable_napi(priv);
|
|
|
|
/* Initialize a bunch of registers */
|
|
init_registers(dev);
|
|
|
|
gfar_set_mac_address(dev);
|
|
|
|
err = init_phy(dev);
|
|
|
|
if(err)
|
|
{
|
|
disable_napi(priv);
|
|
return err;
|
|
}
|
|
|
|
err = startup_gfar(dev);
|
|
|
|
if(err)
|
|
{
|
|
disable_napi(priv);
|
|
return err;
|
|
}
|
|
|
|
netif_tx_start_all_queues(dev);
|
|
|
|
device_set_wakeup_enable(&priv->ofdev->dev, priv->wol_en);
|
|
|
|
priv->opened_ref = 1;
|
|
|
|
ipstack_hook_get(priv->ucc_num)->hook_init(priv);
|
|
|
|
return err;
|
|
}
|
|
|
|
static inline struct txfcb* gfar_add_fcb(struct sk_buff* skb)
|
|
{
|
|
struct txfcb* fcb = (struct txfcb*)skb_push(skb, GMAC_FCB_LEN);
|
|
|
|
memset(fcb, 0, GMAC_FCB_LEN);
|
|
|
|
return fcb;
|
|
}
|
|
|
|
static inline void gfar_tx_checksum(struct sk_buff* skb, struct txfcb* fcb)
|
|
{
|
|
u8 flags = 0;
|
|
|
|
/* If we're here, it's a IP packet with a TCP or UDP
|
|
* payload. We set it to checksum, using a pseudo-header
|
|
* we provide
|
|
*/
|
|
flags = TXFCB_DEFAULT;
|
|
|
|
/* Tell the controller what the protocol is */
|
|
/* And provide the already calculated phcs */
|
|
if(!((ip_hdr(skb)->frag_off) & htons(IP_MF | IP_OFFSET)))
|
|
{
|
|
/* If not fragmented packet */
|
|
if(ip_hdr(skb)->protocol == IPPROTO_UDP)
|
|
{
|
|
if(udp_hdr(skb)->check)
|
|
{
|
|
fcb->phcs = udp_hdr(skb)->check;
|
|
flags |= TXFCB_NPH;
|
|
}
|
|
|
|
flags |= TXFCB_UDP | TXFCB_TUP | TXFCB_CTU;
|
|
}
|
|
else if(ip_hdr(skb)->protocol == IPPROTO_TCP)
|
|
{
|
|
if(tcp_hdr(skb)->check)
|
|
{
|
|
flags |= TXFCB_NPH;
|
|
fcb->phcs = tcp_hdr(skb)->check;
|
|
}
|
|
|
|
flags |= TXFCB_TUP | TXFCB_CTU;
|
|
}
|
|
}
|
|
|
|
/* l3os is the distance between the start of the
|
|
* frame (skb->data) and the start of the IP hdr.
|
|
* l4os is the distance between the start of the
|
|
* l3 hdr and the l4 hdr */
|
|
fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
|
|
fcb->l4os = skb_network_header_len(skb);
|
|
|
|
fcb->flags = flags;
|
|
}
|
|
|
|
void inline gfar_tx_vlan(struct sk_buff* skb, struct txfcb* fcb)
|
|
{
|
|
fcb->flags |= TXFCB_VLN;
|
|
fcb->vlctl = vlan_tx_tag_get(skb);
|
|
}
|
|
|
|
static inline struct txbd8* skip_txbd(struct txbd8* bdp, int stride,
|
|
struct txbd8* base, int ring_size)
|
|
{
|
|
struct txbd8* new_bd = bdp + stride;
|
|
|
|
return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
|
|
}
|
|
|
|
static inline struct txbd8* next_txbd(struct txbd8* bdp, struct txbd8* base,
|
|
int ring_size)
|
|
{
|
|
return skip_txbd(bdp, 1, base, ring_size);
|
|
}
|
|
|
|
static int gfar_start_xmit(struct sk_buff* skb, struct net_device* dev)
|
|
{
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
return ipstack_hook_get(priv->ucc_num)->xmit_filter(skb);
|
|
}
|
|
/* This is called by the kernel when a frame is ready for transmission. */
|
|
/* It is pointed to by the dev->hard_start_xmit function pointer */
|
|
#if 0
|
|
static int gfar_start_xmit(struct sk_buff* skb, struct net_device* dev)
|
|
{
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
struct gfar_priv_tx_q* tx_queue = NULL;
|
|
struct netdev_queue* txq;
|
|
struct gfar __iomem* regs = NULL;
|
|
struct txfcb* fcb = NULL;
|
|
struct txbd8* txbdp, *txbdp_start, *base;
|
|
u32 lstatus;
|
|
int i, rq = 0;
|
|
u32 bufaddr;
|
|
unsigned long flags;
|
|
unsigned int nr_frags, length;
|
|
|
|
rq = skb->queue_mapping;
|
|
|
|
tx_queue = priv->tx_queue[rq];
|
|
txq = netdev_get_tx_queue(dev, rq);
|
|
base = tx_queue->tx_bd_base;
|
|
regs = tx_queue->grp->regs;
|
|
|
|
/* make space for additional header when fcb is needed */
|
|
if(((skb->ip_summed == CHECKSUM_PARTIAL) ||
|
|
(priv->vlgrp && vlan_tx_tag_present(skb))) &&
|
|
(skb_headroom(skb) < GMAC_FCB_LEN))
|
|
{
|
|
struct sk_buff* skb_new;
|
|
|
|
skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
|
|
|
|
if(!skb_new)
|
|
{
|
|
dev->stats.tx_errors++;
|
|
kfree_skb(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
kfree_skb(skb);
|
|
skb = skb_new;
|
|
}
|
|
|
|
if(skb_shinfo(skb)->gso_size)
|
|
{
|
|
return gfar_tso(skb, dev, rq);
|
|
}
|
|
|
|
/* total number of fragments in the SKB */
|
|
nr_frags = skb_shinfo(skb)->nr_frags;
|
|
|
|
|
|
/* check if there is space to queue this packet */
|
|
if((nr_frags + 1) > tx_queue->num_txbdfree)
|
|
{
|
|
/* no space, stop the queue */
|
|
netif_tx_stop_queue(txq);
|
|
dev->stats.tx_fifo_errors++;
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
/* Update transmit stats */
|
|
txq->tx_bytes += skb->len;
|
|
txq->tx_packets ++;
|
|
|
|
txbdp = txbdp_start = tx_queue->cur_tx;
|
|
|
|
|
|
if(nr_frags == 0)
|
|
{
|
|
lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
|
|
}
|
|
else
|
|
{
|
|
/* Place the fragment addresses and lengths into the TxBDs */
|
|
for(i = 0; i < nr_frags; i++)
|
|
{
|
|
/* Point at the next BD, wrapping as needed */
|
|
txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
|
|
|
|
length = skb_shinfo(skb)->frags[i].size;
|
|
|
|
lstatus = txbdp->lstatus | length |
|
|
BD_LFLAG(TXBD_READY);
|
|
|
|
/* Handle the last BD specially */
|
|
if(i == nr_frags - 1)
|
|
{
|
|
lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
|
|
}
|
|
|
|
bufaddr = dma_map_page(&priv->ofdev->dev,
|
|
skb_shinfo(skb)->frags[i].page,
|
|
skb_shinfo(skb)->frags[i].page_offset,
|
|
length,
|
|
DMA_TO_DEVICE);
|
|
|
|
/* set the TxBD length and buffer pointer */
|
|
txbdp->bufPtr = bufaddr;
|
|
txbdp->lstatus = lstatus;
|
|
}
|
|
|
|
lstatus = txbdp_start->lstatus;
|
|
}
|
|
|
|
/* Set up checksumming */
|
|
if(CHECKSUM_PARTIAL == skb->ip_summed)
|
|
{
|
|
fcb = gfar_add_fcb(skb);
|
|
lstatus |= BD_LFLAG(TXBD_TOE);
|
|
gfar_tx_checksum(skb, fcb);
|
|
}
|
|
|
|
if(priv->vlgrp && vlan_tx_tag_present(skb))
|
|
{
|
|
if(unlikely(NULL == fcb))
|
|
{
|
|
fcb = gfar_add_fcb(skb);
|
|
lstatus |= BD_LFLAG(TXBD_TOE);
|
|
}
|
|
|
|
gfar_tx_vlan(skb, fcb);
|
|
}
|
|
|
|
if(priv->ptimer_present)
|
|
{
|
|
/* Enable ptp flag so that Tx time stamping happens */
|
|
if(gfar_ptp_do_txstamp(skb))
|
|
{
|
|
if(fcb == NULL)
|
|
{
|
|
fcb = gfar_add_fcb(skb);
|
|
}
|
|
|
|
fcb->ptp = 0x01;
|
|
lstatus |= BD_LFLAG(TXBD_TOE);
|
|
}
|
|
}
|
|
|
|
/* setup the TxBD length and buffer pointer for the first BD */
|
|
txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
|
|
skb_headlen(skb), DMA_TO_DEVICE);
|
|
|
|
lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
|
|
|
|
/*
|
|
* We can work in parallel with gfar_clean_tx_ring(), except
|
|
* when modifying num_txbdfree. Note that we didn't grab the lock
|
|
* when we were reading the num_txbdfree and checking for available
|
|
* space, that's because outside of this function it can only grow,
|
|
* and once we've got needed space, it cannot suddenly disappear.
|
|
*
|
|
* The lock also protects us from gfar_error(), which can modify
|
|
* regs->tstat and thus retrigger the transfers, which is why we
|
|
* also must grab the lock before setting ready bit for the first
|
|
* to be transmitted BD.
|
|
*/
|
|
|
|
spin_lock_irqsave(&tx_queue->txlock, flags);
|
|
|
|
/*
|
|
* The powerpc-specific eieio() is used, as wmb() has too strong
|
|
* semantics (it requires synchronization between cacheable and
|
|
* uncacheable mappings, which eieio doesn't provide and which we
|
|
* don't need), thus requiring a more expensive sync instruction. At
|
|
* some point, the set of architecture-independent barrier functions
|
|
* should be expanded to include weaker barriers.
|
|
*/
|
|
eieio();
|
|
|
|
txbdp_start->lstatus = lstatus;
|
|
|
|
eieio(); /* force lstatus write before tx_skbuff */
|
|
|
|
tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
|
|
|
|
/* Update the current skb pointer to the next entry we will use
|
|
* (wrapping if necessary) */
|
|
tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
|
|
TX_RING_MOD_MASK(tx_queue->tx_ring_size);
|
|
|
|
tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
|
|
|
|
/* reduce TxBD free count */
|
|
tx_queue->num_txbdfree -= (nr_frags + 1);
|
|
|
|
/* If the next BD still needs to be cleaned up, then the bds
|
|
are full. We need to tell the kernel to stop sending us stuff. */
|
|
if(!tx_queue->num_txbdfree)
|
|
{
|
|
netif_stop_subqueue(dev, tx_queue->qindex);
|
|
|
|
dev->stats.tx_fifo_errors++;
|
|
}
|
|
|
|
dev->trans_start = jiffies;
|
|
/* Tell the DMA to go go go */
|
|
gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
|
|
|
|
/* Unlock priv */
|
|
|
|
spin_unlock_irqrestore(&tx_queue->txlock, flags);
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Stops the kernel queue, and halts the controller */
|
|
static int gfar_close(struct net_device* dev)
|
|
{
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
|
|
disable_napi(priv);
|
|
|
|
cancel_work_sync(&priv->reset_task);
|
|
stop_gfar(dev);
|
|
|
|
priv->opened_ref = 0;
|
|
|
|
ipstack_hook_get(priv->ucc_num)->hook_exit(priv);
|
|
|
|
/* Disconnect from the PHY */
|
|
phy_disconnect(priv->phydev);
|
|
priv->phydev = NULL;
|
|
|
|
netif_tx_stop_all_queues(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Changes the mac address if the controller is not running. */
|
|
static int gfar_set_mac_address(struct net_device* dev)
|
|
{
|
|
gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gfar_change_mtu(struct net_device* dev, int new_mtu)
|
|
{
|
|
int tempsize, tempval;
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
struct gfar __iomem* regs = priv->gfargrp[0].regs;
|
|
int oldsize = priv->rx_buffer_size;
|
|
int frame_size = new_mtu + ETH_HLEN;
|
|
|
|
if((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE))
|
|
{
|
|
if(netif_msg_drv(priv))
|
|
printk(KERN_ERR "%s: Invalid MTU setting\n",
|
|
dev->name);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
if(gfar_uses_fcb(priv))
|
|
{
|
|
frame_size += GMAC_FCB_LEN;
|
|
}
|
|
|
|
frame_size += priv->padding;
|
|
|
|
tempsize =
|
|
(frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
|
|
INCREMENTAL_BUFFER_SIZE;
|
|
|
|
/* Only stop and start the controller if it isn't already
|
|
* stopped, and we changed something */
|
|
if((oldsize != tempsize) && (dev->flags & IFF_UP))
|
|
{
|
|
stop_gfar(dev);
|
|
}
|
|
|
|
priv->rx_buffer_size = tempsize;
|
|
|
|
dev->mtu = new_mtu;
|
|
|
|
gfar_write(®s->mrblr, priv->rx_buffer_size);
|
|
gfar_write(®s->maxfrm, priv->rx_buffer_size);
|
|
|
|
/* If the mtu is larger than the max size for standard
|
|
* ethernet frames (ie, a jumbo frame), then set maccfg2
|
|
* to allow huge frames, and to check the length */
|
|
tempval = gfar_read(®s->maccfg2);
|
|
|
|
if(priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
|
|
{
|
|
tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
|
|
}
|
|
else
|
|
{
|
|
tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
|
|
}
|
|
|
|
gfar_write(®s->maccfg2, tempval);
|
|
|
|
if((oldsize != tempsize) && (dev->flags & IFF_UP))
|
|
{
|
|
startup_gfar(dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* gfar_reset_task gets scheduled when a packet has not been
|
|
* transmitted after a set amount of time.
|
|
* For now, assume that clearing out all the structures, and
|
|
* starting over will fix the problem.
|
|
*/
|
|
static void gfar_reset_task(struct work_struct* work)
|
|
{
|
|
struct gfar_private* priv = container_of(work, struct gfar_private,
|
|
reset_task);
|
|
struct net_device* dev = priv->ndev;
|
|
|
|
if(dev->flags & IFF_UP)
|
|
{
|
|
netif_tx_stop_all_queues(dev);
|
|
stop_gfar(dev);
|
|
startup_gfar(dev);
|
|
netif_tx_start_all_queues(dev);
|
|
}
|
|
|
|
netif_tx_schedule_all(dev);
|
|
}
|
|
|
|
static void gfar_timeout(struct net_device* dev)
|
|
{
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
|
|
dev->stats.tx_errors++;
|
|
schedule_work(&priv->reset_task);
|
|
}
|
|
|
|
/* Interrupt Handler for Transmit complete */
|
|
|
|
static int gfar_clean_tx_ring(struct gfar_priv_tx_q* tx_queue,
|
|
int tx_work_limit)
|
|
{
|
|
struct net_device* dev = tx_queue->dev;
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
struct gfar_priv_rx_q* rx_queue = NULL;
|
|
struct txbd8* bdp;
|
|
struct txbd8* lbdp = NULL;
|
|
struct txbd8* base = tx_queue->tx_bd_base;
|
|
struct sk_buff* skb;
|
|
int skb_dirtytx;
|
|
int tx_ring_size = tx_queue->tx_ring_size;
|
|
int frags = 0;
|
|
int i;
|
|
int howmany = 0;
|
|
u32 lstatus;
|
|
int isRtpBuf = 0;
|
|
|
|
rx_queue = priv->rx_queue[tx_queue->qindex];
|
|
bdp = tx_queue->dirty_tx;
|
|
skb_dirtytx = tx_queue->skb_dirtytx;
|
|
|
|
while((skb = tx_queue->tx_skbuff[skb_dirtytx]))
|
|
{
|
|
struct ipstack_hook_t* pHook = ipstack_hook_get(priv->ucc_num);
|
|
|
|
isRtpBuf = pHook->is_rtp_kbuf((char*)skb, priv->ucc_num);
|
|
|
|
if(isRtpBuf == 1)
|
|
{
|
|
frags = 0;
|
|
}
|
|
else
|
|
{
|
|
frags = skb_shinfo(skb)->nr_frags;
|
|
}
|
|
|
|
lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
|
|
|
|
lstatus = lbdp->lstatus;
|
|
|
|
/* Only clean completed frames */
|
|
if((lstatus & BD_LFLAG(TXBD_READY)) &&
|
|
(lstatus & BD_LENGTH_MASK))
|
|
{
|
|
break;
|
|
}
|
|
|
|
if(isRtpBuf == 0)
|
|
{
|
|
dma_unmap_single(&priv->ofdev->dev,
|
|
bdp->bufPtr,
|
|
bdp->length,
|
|
DMA_TO_DEVICE);
|
|
}
|
|
|
|
bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
|
|
bdp = next_txbd(bdp, base, tx_ring_size);
|
|
|
|
for(i = 0; i < frags; i++)
|
|
{
|
|
dma_unmap_page(&priv->ofdev->dev,
|
|
bdp->bufPtr,
|
|
bdp->length,
|
|
DMA_TO_DEVICE);
|
|
bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
|
|
bdp = next_txbd(bdp, base, tx_ring_size);
|
|
}
|
|
|
|
if(isRtpBuf == 1)
|
|
{
|
|
struct rtp_tx_buf_t* current_ktx = (struct rtp_tx_buf_t*)skb;
|
|
current_ktx->status = 0;
|
|
}
|
|
else
|
|
{
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
tx_queue->tx_skbuff[skb_dirtytx] = NULL;
|
|
|
|
skb_dirtytx = (skb_dirtytx + 1) &
|
|
TX_RING_MOD_MASK(tx_ring_size);
|
|
|
|
howmany++;
|
|
|
|
tx_queue->num_txbdfree += frags + 1;
|
|
|
|
}
|
|
|
|
/* If we freed a buffer, we can restart transmission, if necessary */
|
|
if(__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
|
|
{
|
|
netif_wake_subqueue(dev, tx_queue->qindex);
|
|
}
|
|
|
|
/* Update dirty indicators */
|
|
tx_queue->skb_dirtytx = skb_dirtytx;
|
|
tx_queue->dirty_tx = bdp;
|
|
|
|
return howmany;
|
|
}
|
|
|
|
static void gfar_schedule_cleanup_rx(struct gfar_priv_grp* gfargrp)
|
|
{
|
|
unsigned long flags;
|
|
u32 imask = 0;
|
|
|
|
if(napi_schedule_prep(&gfargrp->napi_rx))
|
|
{
|
|
spin_lock_irqsave(&gfargrp->grplock, flags);
|
|
imask = gfar_read(&gfargrp->regs->imask);
|
|
imask = imask & IMASK_RX_DISABLED;
|
|
gfar_write(&gfargrp->regs->imask, imask);
|
|
spin_unlock_irqrestore(&gfargrp->grplock, flags);
|
|
__napi_schedule(&gfargrp->napi_rx);
|
|
}
|
|
else
|
|
{
|
|
gfar_write(&gfargrp->regs->ievent, IEVENT_RX_MASK);
|
|
}
|
|
}
|
|
|
|
static void gfar_schedule_cleanup_tx(struct gfar_priv_grp* gfargrp)
|
|
{
|
|
unsigned long flags;
|
|
u32 imask = 0;
|
|
|
|
spin_lock_irqsave(&gfargrp->grplock, flags);
|
|
|
|
|
|
if(napi_schedule_prep(&gfargrp->napi_tx))
|
|
{
|
|
|
|
imask = gfar_read(&gfargrp->regs->imask);
|
|
imask = imask & IMASK_TX_DISABLED;
|
|
gfar_write(&gfargrp->regs->imask, imask);
|
|
|
|
__napi_schedule(&gfargrp->napi_tx);
|
|
|
|
}
|
|
else
|
|
{
|
|
gfar_write(&gfargrp->regs->ievent, IEVENT_TX_MASK);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&gfargrp->grplock, flags);
|
|
}
|
|
|
|
static void gfar_new_rxbdp(struct gfar_priv_rx_q* rx_queue, struct rxbd8* bdp,
|
|
struct sk_buff* skb)
|
|
{
|
|
struct net_device* dev = rx_queue->dev;
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
dma_addr_t buf;
|
|
|
|
buf = dma_map_single(&priv->ofdev->dev, skb->data,
|
|
priv->rx_buffer_size, DMA_FROM_DEVICE);
|
|
gfar_init_rxbdp(rx_queue, bdp, buf);
|
|
}
|
|
|
|
/*
|
|
* normal new skb routine
|
|
*/
|
|
struct sk_buff* gfar_new_skb(struct net_device* dev)
|
|
{
|
|
unsigned int alignamount;
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
struct sk_buff* skb = NULL;
|
|
|
|
skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
|
|
|
|
if(!skb)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
alignamount = RXBUF_ALIGNMENT -
|
|
(((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
|
|
|
|
/* We need the data buffer to be aligned properly. We will reserve
|
|
* as many bytes as needed to align the data properly
|
|
* Do only if not already aligned
|
|
*/
|
|
if(alignamount != RXBUF_ALIGNMENT)
|
|
{
|
|
skb_reserve(skb, alignamount);
|
|
}
|
|
|
|
GFAR_CB(skb)->alignamount = alignamount;
|
|
|
|
/* Keep incoming device pointer for recycling */
|
|
skb->skb_owner = dev;
|
|
|
|
return skb;
|
|
}
|
|
EXPORT_SYMBOL(gfar_new_skb);
|
|
|
|
static inline void count_errors(unsigned short status, struct net_device* dev)
|
|
{
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
struct net_device_stats* stats = &dev->stats;
|
|
struct gfar_extra_stats* estats = &priv->extra_stats;
|
|
|
|
/* If the packet was truncated, none of the other errors
|
|
* matter */
|
|
if(status & RXBD_TRUNCATED)
|
|
{
|
|
stats->rx_length_errors++;
|
|
|
|
estats->rx_trunc++;
|
|
|
|
return;
|
|
}
|
|
|
|
/* Count the errors, if there were any */
|
|
if(status & (RXBD_LARGE | RXBD_SHORT))
|
|
{
|
|
stats->rx_length_errors++;
|
|
|
|
if(status & RXBD_LARGE)
|
|
{
|
|
estats->rx_large++;
|
|
}
|
|
else
|
|
{
|
|
estats->rx_short++;
|
|
}
|
|
}
|
|
|
|
if(status & RXBD_NONOCTET)
|
|
{
|
|
stats->rx_frame_errors++;
|
|
estats->rx_nonoctet++;
|
|
}
|
|
|
|
if(status & RXBD_CRCERR)
|
|
{
|
|
estats->rx_crcerr++;
|
|
stats->rx_crc_errors++;
|
|
}
|
|
|
|
if(status & RXBD_OVERRUN)
|
|
{
|
|
estats->rx_overrun++;
|
|
stats->rx_crc_errors++;
|
|
}
|
|
}
|
|
|
|
static inline unsigned long __wk_phy_to_virt(struct net_device* dev,
|
|
unsigned long phy)
|
|
{
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
unsigned long virt, offset;
|
|
|
|
offset = phy - priv->wk_buf_align_paddr;
|
|
virt = priv->wk_buf_align_vaddr + offset;
|
|
return virt;
|
|
}
|
|
|
|
/* gfar_process_frame() -- handle one incoming packet if skb
|
|
* isn't NULL. */
|
|
static int gfar_process_frame(struct net_device* dev, struct sk_buff* skb,
|
|
int amount_pull)
|
|
{
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
struct rxfcb* fcb = NULL;
|
|
struct iphdr* iphdr = NULL;
|
|
int rtp_flags = 0;
|
|
int ret = NET_RX_SUCCESS;
|
|
|
|
/* fcb is at the beginning if exists */
|
|
fcb = (struct rxfcb*)skb->data;
|
|
|
|
/* Remove the padded bytes, if there are any */
|
|
if(amount_pull)
|
|
{
|
|
int queue_map;
|
|
|
|
/* If FCB->QT field contains a value > num_rx_queues then
|
|
a direct mapping to virtual queues using QT as index will
|
|
result in a CRASH, when we are going to free the SKB.
|
|
So, need to map the QT value to existing virtual queues only.
|
|
using modulo by num_rx_queues.
|
|
*/
|
|
queue_map = fcb->rq - (priv->num_rx_queues *
|
|
(fcb->rq / priv->num_rx_queues));
|
|
skb_record_rx_queue(skb, queue_map);
|
|
skb_pull(skb, amount_pull);
|
|
}
|
|
|
|
/* Tell the skb what kind of packet this is */
|
|
skb->protocol = eth_type_trans(skb, dev);
|
|
|
|
if(skb->protocol == ETH_P_IP)
|
|
{
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
iphdr = (struct iphdr*)skb->data;
|
|
}
|
|
|
|
|
|
if(priv->rx_csum_enable)
|
|
{
|
|
gfar_rx_checksum(skb, fcb);
|
|
}
|
|
|
|
/* process hook udp rtp packet */
|
|
if(iphdr != NULL)
|
|
{
|
|
if(iphdr->protocol == 17) //is udp
|
|
{
|
|
struct ipstack_hook_t* pHook = ipstack_hook_get(priv->ucc_num);
|
|
|
|
if(pHook->do_sock_recv(skb) > 0)
|
|
{
|
|
/*
|
|
skb->data = skb->head + NET_SKB_PAD;
|
|
skb->tail = skb->data;
|
|
skb->len = 0;
|
|
__skb_queue_head(&ugeth->rx_recycle, skb);*/
|
|
|
|
//dev_kfree_skb_any(skb);
|
|
rtp_flags = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Send the packet up the stack */
|
|
if(rtp_flags == 0)
|
|
{
|
|
ret = netif_receive_skb(skb);
|
|
}
|
|
|
|
if(NET_RX_DROP == ret)
|
|
{
|
|
priv->extra_stats.kernel_dropped++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
|
|
* until the budget/quota has been reached. Returns the number
|
|
* of frames handled
|
|
*/
|
|
int gfar_clean_rx_ring(struct gfar_priv_rx_q* rx_queue, int rx_work_limit)
|
|
{
|
|
struct net_device* dev = rx_queue->dev;
|
|
struct rxbd8* bdp, *base;
|
|
struct sk_buff* skb;
|
|
int pkt_len;
|
|
int amount_pull;
|
|
int howmany = 0;
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
|
|
/* Get the first full descriptor */
|
|
bdp = rx_queue->cur_rx;
|
|
base = rx_queue->rx_bd_base;
|
|
|
|
amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
|
|
priv->padding;
|
|
|
|
|
|
while(!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0)))
|
|
{
|
|
struct sk_buff* newskb = NULL;
|
|
rmb();
|
|
|
|
/* Add another skb for the future */
|
|
newskb = gfar_new_skb(dev);
|
|
|
|
/* rx_skbuff read skb */
|
|
skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
|
|
|
|
dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
|
|
priv->rx_buffer_size, DMA_FROM_DEVICE);
|
|
|
|
if(unlikely(!(bdp->status & RXBD_ERR) &&
|
|
bdp->length > priv->rx_buffer_size))
|
|
{
|
|
bdp->status = RXBD_LARGE;
|
|
}
|
|
|
|
/* We drop the frame if we failed to allocate a new buffer */
|
|
if(unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
|
|
bdp->status & RXBD_ERR))
|
|
{
|
|
count_errors(bdp->status, dev);
|
|
|
|
if(unlikely(!newskb))
|
|
{
|
|
newskb = skb;
|
|
}
|
|
else if(skb)
|
|
{
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
/* Increment the number of packets */
|
|
rx_queue->stats.rx_packets++;
|
|
howmany++;
|
|
|
|
if(likely(skb))
|
|
{
|
|
pkt_len = bdp->length - ETH_FCS_LEN;
|
|
/* Remove the FCS from the packet length */
|
|
skb_put(skb, pkt_len);
|
|
rx_queue->stats.rx_bytes += pkt_len;
|
|
skb_record_rx_queue(skb, rx_queue->qindex);
|
|
|
|
if(in_irq() || irqs_disabled())
|
|
{
|
|
printk("Interrupt problem!\n");
|
|
}
|
|
|
|
gfar_process_frame(dev, skb, amount_pull);
|
|
|
|
}
|
|
else
|
|
{
|
|
if(netif_msg_rx_err(priv))
|
|
printk(KERN_WARNING
|
|
"%s: Missing skb!\n", dev->name);
|
|
|
|
rx_queue->stats.rx_dropped++;
|
|
priv->extra_stats.rx_skbmissing++;
|
|
}
|
|
}
|
|
|
|
rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
|
|
|
|
/* Setup the new bdp */
|
|
gfar_new_rxbdp(rx_queue, bdp, newskb);
|
|
|
|
/* Update to the next pointer */
|
|
bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
|
|
|
|
/* update to point at the next skb */
|
|
rx_queue->skb_currx =
|
|
(rx_queue->skb_currx + 1) &
|
|
RX_RING_MOD_MASK(rx_queue->rx_ring_size);
|
|
}
|
|
|
|
/* Update the current rxbd pointer to be the next one */
|
|
rx_queue->cur_rx = bdp;
|
|
|
|
return howmany;
|
|
}
|
|
|
|
static int gfar_poll_tx(struct napi_struct* napi, int budget)
|
|
{
|
|
struct gfar_priv_grp* gfargrp = container_of(napi, struct gfar_priv_grp,
|
|
napi_tx);
|
|
struct gfar_private* priv = gfargrp->priv;
|
|
struct gfar __iomem* regs = gfargrp->regs;
|
|
struct gfar_priv_tx_q* tx_queue = NULL;
|
|
int budget_per_queue = 0, tx_cleaned = 0, i = 0, num_act_qs = 0;
|
|
int tx_cleaned_per_queue = 0, mask = TSTAT_TXF0_MASK;
|
|
unsigned long flags;
|
|
u32 imask, tstat, tstat_local;
|
|
|
|
tstat = gfar_read(®s->tstat);
|
|
tstat = tstat & TSTAT_TXF_MASK_ALL;
|
|
tstat_local = tstat;
|
|
|
|
while(tstat_local)
|
|
{
|
|
num_act_qs++;
|
|
tstat_local &= (tstat_local - 1);
|
|
}
|
|
|
|
budget_per_queue = budget / num_act_qs;
|
|
|
|
gfar_write(®s->ievent, IEVENT_TX_MASK);
|
|
|
|
for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues)
|
|
{
|
|
mask = mask >> i;
|
|
|
|
if(tstat & mask)
|
|
{
|
|
tx_queue = priv->tx_queue[i];
|
|
spin_lock_irqsave(&tx_queue->txlock, flags);
|
|
tx_cleaned_per_queue =
|
|
gfar_clean_tx_ring(tx_queue,
|
|
budget_per_queue);
|
|
spin_unlock_irqrestore(&tx_queue->txlock,
|
|
flags);
|
|
tx_cleaned += tx_cleaned_per_queue;
|
|
tx_cleaned_per_queue = 0;
|
|
}
|
|
|
|
mask = TSTAT_TXF0_MASK;
|
|
}
|
|
|
|
budget = (num_act_qs * DEFAULT_TX_RING_SIZE) + 1;
|
|
|
|
if(tx_cleaned < budget)
|
|
{
|
|
napi_complete(napi);
|
|
|
|
spin_lock_irq(&gfargrp->grplock);
|
|
imask = gfar_read(®s->imask);
|
|
imask |= IMASK_DEFAULT_TX;
|
|
gfar_write(®s->ievent, IEVENT_TX_MASK);
|
|
gfar_write(®s->imask, imask);
|
|
spin_unlock_irq(&gfargrp->grplock);
|
|
gfar_configure_tx_coalescing(priv, gfargrp->tx_bit_map);
|
|
|
|
return 1;
|
|
}
|
|
|
|
return tx_cleaned;
|
|
}
|
|
|
|
static int gfar_poll_rx(struct napi_struct* napi, int budget)
|
|
{
|
|
struct gfar_priv_grp* gfargrp = container_of(napi,
|
|
struct gfar_priv_grp, napi_rx);
|
|
struct gfar_private* priv = gfargrp->priv;
|
|
struct gfar __iomem* regs = gfargrp->regs;
|
|
struct gfar_priv_rx_q* rx_queue = NULL;
|
|
int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
|
|
int num_act_qs = 0, mask = RSTAT_RXF0_MASK, i, napi_done = 1;
|
|
u32 imask, rstat, rstat_local, rstat_rxf, rstat_rhalt;
|
|
u32 ievent;
|
|
|
|
rstat = gfar_read(®s->rstat);
|
|
rstat_rxf = (rstat & RSTAT_RXF_ALL_MASK);
|
|
rstat_rxf |= gfargrp->rstat_prev;
|
|
rstat_local = rstat_rxf;
|
|
|
|
while(rstat_local)
|
|
{
|
|
num_act_qs++;
|
|
rstat_local &= (rstat_local - 1);
|
|
}
|
|
|
|
budget_per_queue = budget / num_act_qs;
|
|
gfar_write(®s->rstat, rstat_rxf);
|
|
gfar_write(&gfargrp->regs->ievent, IEVENT_RX_MASK);
|
|
gfargrp->rstat_prev = rstat_rxf;
|
|
for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues)
|
|
{
|
|
mask = RSTAT_RXF0_MASK >> i;
|
|
rstat_rhalt = RSTAT_CLEAR_RHALT >> i;
|
|
|
|
if(rstat_rxf & mask)
|
|
{
|
|
rx_queue = priv->rx_queue[i];
|
|
rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
|
|
budget_per_queue);
|
|
rx_cleaned += rx_cleaned_per_queue;
|
|
|
|
if(rx_cleaned_per_queue >= budget_per_queue)
|
|
{
|
|
napi_done = 0;
|
|
}
|
|
else
|
|
{
|
|
gfargrp->rstat_prev &= ~(mask);
|
|
gfar_write(®s->rstat, rstat_rhalt);
|
|
}
|
|
}
|
|
}
|
|
|
|
if(napi_done)
|
|
{
|
|
napi_complete(napi);
|
|
gfar_configure_rx_coalescing(priv, gfargrp->rx_bit_map);
|
|
spin_lock_irq(&gfargrp->grplock);
|
|
imask = gfar_read(®s->imask);
|
|
imask |= IMASK_DEFAULT_RX;
|
|
gfar_write(®s->imask, imask);
|
|
ievent = gfar_read(®s->ievent);
|
|
ievent &= IEVENT_RX_MASK;
|
|
|
|
if(ievent)
|
|
{
|
|
imask = imask & IMASK_RX_DISABLED;
|
|
gfar_write(&gfargrp->regs->imask, imask);
|
|
gfar_write(&gfargrp->regs->ievent, IEVENT_RX_MASK);
|
|
napi_schedule(napi);
|
|
}
|
|
|
|
spin_unlock_irq(&gfargrp->grplock);
|
|
}
|
|
|
|
return rx_cleaned;
|
|
}
|
|
|
|
|
|
/* Called every time the controller might need to be made
|
|
* aware of new link state. The PHY code conveys this
|
|
* information through variables in the phydev structure, and this
|
|
* function converts those variables into the appropriate
|
|
* register values, and can bring down the device if needed.
|
|
*/
|
|
static void adjust_link(struct net_device* dev)
|
|
{
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
struct gfar __iomem* regs = priv->gfargrp[0].regs;
|
|
unsigned long flags;
|
|
struct phy_device* phydev = priv->phydev;
|
|
int new_state = 0;
|
|
|
|
local_irq_save(flags);
|
|
lock_tx_qs(priv);
|
|
|
|
if(phydev->link)
|
|
{
|
|
u32 tempval = gfar_read(®s->maccfg2);
|
|
u32 ecntrl = gfar_read(®s->ecntrl);
|
|
|
|
/* Now we make sure that we can be in full duplex mode.
|
|
* If not, we operate in half-duplex mode. */
|
|
if(phydev->duplex != priv->oldduplex)
|
|
{
|
|
new_state = 1;
|
|
|
|
if(!(phydev->duplex))
|
|
{
|
|
tempval &= ~(MACCFG2_FULL_DUPLEX);
|
|
}
|
|
else
|
|
{
|
|
tempval |= MACCFG2_FULL_DUPLEX;
|
|
}
|
|
|
|
priv->oldduplex = phydev->duplex;
|
|
}
|
|
|
|
if(phydev->speed != priv->oldspeed)
|
|
{
|
|
new_state = 1;
|
|
|
|
switch(phydev->speed)
|
|
{
|
|
case 1000:
|
|
tempval =
|
|
((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
|
|
|
|
ecntrl &= ~(ECNTRL_R100);
|
|
break;
|
|
|
|
case 100:
|
|
case 10:
|
|
tempval =
|
|
((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
|
|
|
|
/* Reduced mode distinguishes
|
|
* between 10 and 100 */
|
|
if(phydev->speed == SPEED_100)
|
|
{
|
|
ecntrl |= ECNTRL_R100;
|
|
}
|
|
else
|
|
{
|
|
ecntrl &= ~(ECNTRL_R100);
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
if(netif_msg_link(priv))
|
|
printk(KERN_WARNING
|
|
"%s: Ack! Speed (%d) is not 10/100/1000!\n",
|
|
dev->name, phydev->speed);
|
|
|
|
break;
|
|
}
|
|
|
|
priv->oldspeed = phydev->speed;
|
|
}
|
|
|
|
gfar_write(®s->maccfg2, tempval);
|
|
gfar_write(®s->ecntrl, ecntrl);
|
|
|
|
if(!priv->oldlink)
|
|
{
|
|
new_state = 1;
|
|
priv->oldlink = 1;
|
|
}
|
|
}
|
|
else if(priv->oldlink)
|
|
{
|
|
new_state = 1;
|
|
priv->oldlink = 0;
|
|
priv->oldspeed = 0;
|
|
priv->oldduplex = -1;
|
|
}
|
|
|
|
if(new_state && netif_msg_link(priv))
|
|
{
|
|
phy_print_status(phydev);
|
|
}
|
|
|
|
unlock_tx_qs(priv);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/* Update the hash table based on the current list of multicast
|
|
* addresses we subscribe to. Also, change the promiscuity of
|
|
* the device based on the flags (this function is called
|
|
* whenever dev->flags is changed */
|
|
static void gfar_set_multi(struct net_device* dev)
|
|
{
|
|
struct netdev_hw_addr* ha;
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
struct gfar __iomem* regs = priv->gfargrp[0].regs;
|
|
u32 tempval;
|
|
|
|
if(dev->flags & IFF_PROMISC)
|
|
{
|
|
/* Set RCTRL to PROM */
|
|
tempval = gfar_read(®s->rctrl);
|
|
tempval |= RCTRL_PROM;
|
|
gfar_write(®s->rctrl, tempval);
|
|
}
|
|
else
|
|
{
|
|
/* Set RCTRL to not PROM */
|
|
tempval = gfar_read(®s->rctrl);
|
|
tempval &= ~(RCTRL_PROM);
|
|
gfar_write(®s->rctrl, tempval);
|
|
}
|
|
|
|
if(dev->flags & IFF_ALLMULTI)
|
|
{
|
|
/* Set the hash to rx all multicast frames */
|
|
gfar_write(®s->igaddr0, 0xffffffff);
|
|
gfar_write(®s->igaddr1, 0xffffffff);
|
|
gfar_write(®s->igaddr2, 0xffffffff);
|
|
gfar_write(®s->igaddr3, 0xffffffff);
|
|
gfar_write(®s->igaddr4, 0xffffffff);
|
|
gfar_write(®s->igaddr5, 0xffffffff);
|
|
gfar_write(®s->igaddr6, 0xffffffff);
|
|
gfar_write(®s->igaddr7, 0xffffffff);
|
|
gfar_write(®s->gaddr0, 0xffffffff);
|
|
gfar_write(®s->gaddr1, 0xffffffff);
|
|
gfar_write(®s->gaddr2, 0xffffffff);
|
|
gfar_write(®s->gaddr3, 0xffffffff);
|
|
gfar_write(®s->gaddr4, 0xffffffff);
|
|
gfar_write(®s->gaddr5, 0xffffffff);
|
|
gfar_write(®s->gaddr6, 0xffffffff);
|
|
gfar_write(®s->gaddr7, 0xffffffff);
|
|
}
|
|
else
|
|
{
|
|
int em_num;
|
|
int idx;
|
|
|
|
/* zero out the hash */
|
|
gfar_write(®s->igaddr0, 0x0);
|
|
gfar_write(®s->igaddr1, 0x0);
|
|
gfar_write(®s->igaddr2, 0x0);
|
|
gfar_write(®s->igaddr3, 0x0);
|
|
gfar_write(®s->igaddr4, 0x0);
|
|
gfar_write(®s->igaddr5, 0x0);
|
|
gfar_write(®s->igaddr6, 0x0);
|
|
gfar_write(®s->igaddr7, 0x0);
|
|
gfar_write(®s->gaddr0, 0x0);
|
|
gfar_write(®s->gaddr1, 0x0);
|
|
gfar_write(®s->gaddr2, 0x0);
|
|
gfar_write(®s->gaddr3, 0x0);
|
|
gfar_write(®s->gaddr4, 0x0);
|
|
gfar_write(®s->gaddr5, 0x0);
|
|
gfar_write(®s->gaddr6, 0x0);
|
|
gfar_write(®s->gaddr7, 0x0);
|
|
|
|
/* If we have extended hash tables, we need to
|
|
* clear the exact match registers to prepare for
|
|
* setting them */
|
|
if(priv->extended_hash)
|
|
{
|
|
em_num = GFAR_EM_NUM + 1;
|
|
gfar_clear_exact_match(dev);
|
|
idx = 1;
|
|
}
|
|
else
|
|
{
|
|
idx = 0;
|
|
em_num = 0;
|
|
}
|
|
|
|
if(netdev_mc_empty(dev))
|
|
{
|
|
return;
|
|
}
|
|
|
|
/* Parse the list, and set the appropriate bits */
|
|
netdev_for_each_mc_addr(ha, dev)
|
|
{
|
|
if(idx < em_num)
|
|
{
|
|
gfar_set_mac_for_addr(dev, idx, ha->addr);
|
|
idx++;
|
|
}
|
|
else
|
|
{
|
|
gfar_set_hash_for_addr(dev, ha->addr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Clears each of the exact match registers to zero, so they
|
|
* don't interfere with normal reception */
|
|
static void gfar_clear_exact_match(struct net_device* dev)
|
|
{
|
|
int idx;
|
|
u8 zero_arr[MAC_ADDR_LEN] = {0, 0, 0, 0, 0, 0};
|
|
|
|
for(idx = 1; idx < GFAR_EM_NUM + 1; idx++)
|
|
{
|
|
gfar_set_mac_for_addr(dev, idx, (u8*)zero_arr);
|
|
}
|
|
}
|
|
|
|
/* Set the appropriate hash bit for the given addr */
|
|
/* The algorithm works like so:
|
|
* 1) Take the Destination Address (ie the multicast address), and
|
|
* do a CRC on it (little endian), and reverse the bits of the
|
|
* result.
|
|
* 2) Use the 8 most significant bits as a hash into a 256-entry
|
|
* table. The table is controlled through 8 32-bit registers:
|
|
* gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
|
|
* gaddr7. This means that the 3 most significant bits in the
|
|
* hash index which gaddr register to use, and the 5 other bits
|
|
* indicate which bit (assuming an IBM numbering scheme, which
|
|
* for PowerPC (tm) is usually the case) in the register holds
|
|
* the entry. */
|
|
static void gfar_set_hash_for_addr(struct net_device* dev, u8* addr)
|
|
{
|
|
u32 tempval;
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
u32 result = ether_crc(MAC_ADDR_LEN, addr);
|
|
int width = priv->hash_width;
|
|
u8 whichbit = (result >> (32 - width)) & 0x1f;
|
|
u8 whichreg = result >> (32 - width + 5);
|
|
u32 value = (1 << (31 - whichbit));
|
|
|
|
tempval = gfar_read(priv->hash_regs[whichreg]);
|
|
tempval |= value;
|
|
gfar_write(priv->hash_regs[whichreg], tempval);
|
|
}
|
|
|
|
|
|
/* There are multiple MAC Address register pairs on some controllers
|
|
* This function sets the numth pair to a given address
|
|
*/
|
|
static void gfar_set_mac_for_addr(struct net_device* dev, int num, u8* addr)
|
|
{
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
struct gfar __iomem* regs = priv->gfargrp[0].regs;
|
|
int idx;
|
|
char tmpbuf[MAC_ADDR_LEN];
|
|
u32 tempval;
|
|
u32 __iomem* macptr = ®s->macstnaddr1;
|
|
|
|
macptr += num * 2;
|
|
|
|
/* Now copy it into the mac registers backwards, cuz */
|
|
/* little endian is silly */
|
|
for(idx = 0; idx < MAC_ADDR_LEN; idx++)
|
|
{
|
|
tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
|
|
}
|
|
|
|
gfar_write(macptr, *((u32*)(tmpbuf)));
|
|
|
|
tempval = *((u32*)(tmpbuf + 4));
|
|
|
|
gfar_write(macptr + 1, tempval);
|
|
}
|
|
|
|
static struct of_device_id gfar_match[] =
|
|
{
|
|
{
|
|
.type = "network",
|
|
.compatible = "gianfar",
|
|
},
|
|
{
|
|
.compatible = "fsl,etsec2",
|
|
},
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, gfar_match);
|
|
|
|
/* Structure for a device driver */
|
|
static struct of_platform_driver gfar_driver =
|
|
{
|
|
.driver = {
|
|
.name = "fsl-gianfar",
|
|
.owner = THIS_MODULE,
|
|
.pm = GFAR_PM_OPS,
|
|
.of_match_table = gfar_match,
|
|
},
|
|
.probe = gfar_probe,
|
|
.remove = gfar_remove,
|
|
};
|
|
|
|
static int gfar_hook_xmit(void* pk_addr, int pk_type, struct net_device* dev)
|
|
{
|
|
struct gfar_private* priv = netdev_priv(dev);
|
|
struct gfar_priv_tx_q* tx_queue = NULL;
|
|
struct netdev_queue* txq;
|
|
struct gfar __iomem* regs = NULL;
|
|
struct txfcb* fcb = NULL;
|
|
struct txbd8* txbdp, *txbdp_start, *base;
|
|
u32 lstatus;
|
|
int i, rq = 0;
|
|
u32 bufaddr;
|
|
unsigned long flags;
|
|
unsigned int nr_frags = 0, length = 0;
|
|
struct sk_buff* skb = NULL;
|
|
struct rtp_tx_buf_t* current_ktx = NULL;
|
|
uint8_t* data = 0;
|
|
uint16_t len = 0;
|
|
|
|
if(pk_type == RTP_BUFF_TYPE)
|
|
{
|
|
current_ktx = (struct rtp_tx_buf_t*)pk_addr;
|
|
data = current_ktx->data;
|
|
len = current_ktx->len;
|
|
rq = 0;
|
|
}
|
|
else
|
|
{
|
|
skb = (struct sk_buff*)pk_addr;
|
|
data = skb->data;
|
|
len = skb->len;
|
|
rq = skb->queue_mapping;
|
|
}
|
|
|
|
tx_queue = priv->tx_queue[rq];
|
|
txq = netdev_get_tx_queue(dev, rq);
|
|
base = tx_queue->tx_bd_base;
|
|
regs = tx_queue->grp->regs;
|
|
|
|
if(pk_type == SKB_BUFF_TYPE)
|
|
{
|
|
/* make space for additional header when fcb is needed */
|
|
if(skb->ip_summed == CHECKSUM_PARTIAL)
|
|
{
|
|
struct sk_buff* skb_new;
|
|
|
|
skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
|
|
|
|
if(!skb_new)
|
|
{
|
|
dev->stats.tx_errors++;
|
|
kfree_skb(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
kfree_skb(skb);
|
|
skb = skb_new;
|
|
}
|
|
|
|
/* total number of fragments in the SKB */
|
|
nr_frags = skb_shinfo(skb)->nr_frags;
|
|
}
|
|
|
|
/* check if there is space to queue this packet */
|
|
if((nr_frags + 1) > tx_queue->num_txbdfree)
|
|
{
|
|
/* no space, stop the queue */
|
|
netif_tx_stop_queue(txq);
|
|
dev->stats.tx_fifo_errors++;
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
/* Update transmit stats */
|
|
if(pk_type == RTP_BUFF_TYPE)
|
|
{
|
|
txq->tx_bytes += len;
|
|
}
|
|
else
|
|
{
|
|
txq->tx_bytes += skb->len;
|
|
}
|
|
|
|
txq->tx_packets ++;
|
|
|
|
txbdp = txbdp_start = tx_queue->cur_tx;
|
|
|
|
if(nr_frags == 0)
|
|
{
|
|
lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
|
|
}
|
|
else
|
|
{
|
|
/* Place the fragment addresses and lengths into the TxBDs */
|
|
for(i = 0; i < nr_frags; i++)
|
|
{
|
|
/* Point at the next BD, wrapping as needed */
|
|
txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
|
|
|
|
length = skb_shinfo(skb)->frags[i].size;
|
|
|
|
lstatus = txbdp->lstatus | length |
|
|
BD_LFLAG(TXBD_READY);
|
|
|
|
/* Handle the last BD specially */
|
|
if(i == nr_frags - 1)
|
|
{
|
|
lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
|
|
}
|
|
|
|
bufaddr = dma_map_page(&priv->ofdev->dev,
|
|
skb_shinfo(skb)->frags[i].page,
|
|
skb_shinfo(skb)->frags[i].page_offset,
|
|
length,
|
|
DMA_TO_DEVICE);
|
|
|
|
/* set the TxBD length and buffer pointer */
|
|
txbdp->bufPtr = bufaddr;
|
|
txbdp->lstatus = lstatus;
|
|
}
|
|
|
|
lstatus = txbdp_start->lstatus;
|
|
}
|
|
|
|
/* Set up checksumming */
|
|
if(pk_type == SKB_BUFF_TYPE)
|
|
{
|
|
if(CHECKSUM_PARTIAL == skb->ip_summed)
|
|
{
|
|
fcb = gfar_add_fcb(skb);
|
|
lstatus |= BD_LFLAG(TXBD_TOE);
|
|
gfar_tx_checksum(skb, fcb);
|
|
}
|
|
|
|
|
|
/* setup the TxBD length and buffer pointer for the first BD */
|
|
txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
|
|
skb_headlen(skb), DMA_TO_DEVICE);
|
|
|
|
lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
|
|
}
|
|
else
|
|
{
|
|
//fcb = (struct txfcb*)current_ktx->fcb;
|
|
lstatus |= BD_LFLAG(TXBD_TOE);
|
|
|
|
//fcb->flags = TXFCB_DEFAULT | TXFCB_UDP | TXFCB_TUP | TXFCB_CTU;
|
|
//fcb->l3os = 14;
|
|
//fcb->l4os = 20;
|
|
|
|
/* setup the TxBD length and buffer pointer for the first BD */
|
|
txbdp_start->bufPtr = virt_to_phys(current_ktx->fcb);
|
|
|
|
lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | (len + GMAC_FCB_LEN);
|
|
}
|
|
|
|
/*
|
|
* We can work in parallel with gfar_clean_tx_ring(), except
|
|
* when modifying num_txbdfree. Note that we didn't grab the lock
|
|
* when we were reading the num_txbdfree and checking for available
|
|
* space, that's because outside of this function it can only grow,
|
|
* and once we've got needed space, it cannot suddenly disappear.
|
|
*
|
|
* The lock also protects us from gfar_error(), which can modify
|
|
* regs->tstat and thus retrigger the transfers, which is why we
|
|
* also must grab the lock before setting ready bit for the first
|
|
* to be transmitted BD.
|
|
*/
|
|
spin_lock_irqsave(&tx_queue->txlock, flags);
|
|
|
|
/*
|
|
* The powerpc-specific eieio() is used, as wmb() has too strong
|
|
* semantics (it requires synchronization between cacheable and
|
|
* uncacheable mappings, which eieio doesn't provide and which we
|
|
* don't need), thus requiring a more expensive sync instruction. At
|
|
* some point, the set of architecture-independent barrier functions
|
|
* should be expanded to include weaker barriers.
|
|
*/
|
|
eieio();
|
|
|
|
txbdp_start->lstatus = lstatus;
|
|
|
|
eieio(); /* force lstatus write before tx_skbuff */
|
|
|
|
if(pk_type == SKB_BUFF_TYPE)
|
|
{
|
|
tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
|
|
}
|
|
else
|
|
{
|
|
/* mask the send rtp buf */
|
|
tx_queue->tx_skbuff[tx_queue->skb_curtx] = (struct sk_buff*)current_ktx;
|
|
}
|
|
|
|
/* Update the current skb pointer to the next entry we will use
|
|
* (wrapping if necessary) */
|
|
tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
|
|
TX_RING_MOD_MASK(tx_queue->tx_ring_size);
|
|
|
|
tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
|
|
|
|
/* reduce TxBD free count */
|
|
tx_queue->num_txbdfree -= (nr_frags + 1);
|
|
|
|
/* If the next BD still needs to be cleaned up, then the bds
|
|
are full. We need to tell the kernel to stop sending us stuff. */
|
|
if(!tx_queue->num_txbdfree)
|
|
{
|
|
netif_stop_subqueue(dev, tx_queue->qindex);
|
|
|
|
dev->stats.tx_fifo_errors++;
|
|
}
|
|
|
|
dev->trans_start = jiffies;
|
|
/* Tell the DMA to go go go */
|
|
gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
|
|
|
|
/* Unlock priv */
|
|
|
|
spin_unlock_irqrestore(&tx_queue->txlock, flags);
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
void ipstack_hook_register(struct ipstack_hook_t* p)
|
|
{
|
|
p->hook_xmit = gfar_hook_xmit;
|
|
}
|
|
EXPORT_SYMBOL(ipstack_hook_register);
|
|
|
|
void ipstack_hook_unregister(int i)
|
|
{
|
|
ipstack_hook_get(i)->hook_xmit = NULL;
|
|
}
|
|
|
|
EXPORT_SYMBOL(ipstack_hook_unregister);
|
|
|
|
void gfar_netpoll(struct gfar_private* priv)
|
|
{
|
|
int i = 0;
|
|
|
|
for(i = 0; i < priv->num_grps; i++)
|
|
{
|
|
gfar_schedule_cleanup_rx(&priv->gfargrp[i]);
|
|
gfar_schedule_cleanup_tx(&priv->gfargrp[i]);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(gfar_netpoll);
|
|
|
|
static int __init gfar_init(void)
|
|
{
|
|
int i = 0;
|
|
|
|
printk("Gianfar Build:%s(%s)\n", __DATE__, __TIME__);
|
|
|
|
for(i = 0; i < UMB_MAX_GETH; i++)
|
|
{
|
|
ipstack_hook_register(ipstack_hook_get(i));
|
|
}
|
|
|
|
ipstack_hook_get(0)->gptimer_init(1);
|
|
|
|
return of_register_platform_driver(&gfar_driver);
|
|
}
|
|
|
|
static void __exit gfar_exit(void)
|
|
{
|
|
int i = 0;
|
|
|
|
for(i = 0; i < UMB_MAX_GETH; i++)
|
|
{
|
|
ipstack_hook_get(i)->gptimer_exit();
|
|
ipstack_hook_unregister(i);
|
|
}
|
|
|
|
of_unregister_platform_driver(&gfar_driver);
|
|
}
|
|
|
|
module_init(gfar_init);
|
|
module_exit(gfar_exit);
|
|
|