spbx/roms/srcs/images/ethernet/gianfar_eth/gianfar.c

3820 lines
102 KiB
C

/*
* drivers/net/gianfar.c
*
* Gianfar Ethernet Driver
* This driver is designed for the non-CPM ethernet controllers
* on the 85xx and 83xx family of integrated processors
* Based on 8260_io/fcc_enet.c
*
* Author: Andy Fleming
* Maintainer: Kumar Gala
* Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
*
* Copyright 2002-2011 Freescale Semiconductor, Inc.
* Copyright 2007 MontaVista Software, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* Gianfar: AKA Lambda Draconis, "Dragon"
* RA 11 31 24.2
* Dec +69 19 52
* V 3.84
* B-V +1.62
*
* Theory of operation
*
* The driver is initialized through of_device. Configuration information
* is therefore conveyed through an OF-style device tree.
*
* The Gianfar Ethernet Controller uses a ring of buffer
* descriptors. The beginning is indicated by a register
* pointing to the physical address of the start of the ring.
* The end is determined by a "wrap" bit being set in the
* last descriptor of the ring.
*
* When a packet is received, the RXF bit in the
* IEVENT register is set, triggering an interrupt when the
* corresponding bit in the IMASK register is also set (if
* interrupt coalescing is active, then the interrupt may not
* happen immediately, but will wait until either a set number
* of frames or amount of time have passed). In NAPI, the
* interrupt handler will signal there is work to be done, and
* exit. This method will start at the last known empty
* descriptor, and process every subsequent descriptor until there
* are none left with data (NAPI will stop after a set number of
* packets to give time to other tasks, but will eventually
* process all the packets). The data arrives inside a
* pre-allocated skb, and so after the skb is passed up to the
* stack, a new skb must be allocated, and the address field in
* the buffer descriptor must be updated to indicate this new
* skb.
*
* When the kernel requests that a packet be transmitted, the
* driver starts where it left off last time, and points the
* descriptor at the buffer which was passed in. The driver
* then informs the DMA engine that there are packets ready to
* be transmitted. Once the controller is finished transmitting
* the packet, an interrupt may be triggered (under the same
* conditions as for reception, but depending on the TXF bit).
* The driver then cleans up the buffer.
*/
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/unistd.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/if_vlan.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/of_mdio.h>
#include <linux/of_platform.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/in.h>
#include <linux/inetdevice.h>
#include <sysdev/fsl_soc.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/phy_fixed.h>
#include <linux/of.h>
#include <net/xfrm.h>
#include <net/tcp.h>
#include "gianfar.h"
#include "hook.h"
//#include "fsl_pq_mdio.h"
#define TX_TIMEOUT (1*HZ)
#undef BRIEF_GFAR_ERRORS
#undef VERBOSE_GFAR_ERRORS
extern void tcp_v4_send_reset(struct sock* sk, struct sk_buff* skb);
const char gfar_driver_name[] = "Gianfar Ethernet";
const char gfar_driver_version[] = "1.4-skbr1.1.5";
static int gfar_enet_open(struct net_device* dev);
static int gfar_start_xmit(struct sk_buff* skb, struct net_device* dev);
static void gfar_reset_task(struct work_struct* work);
static void gfar_timeout(struct net_device* dev);
static int gfar_close(struct net_device* dev);
struct sk_buff* gfar_new_skb(struct net_device* dev);
static void gfar_new_rxbdp(struct gfar_priv_rx_q* rx_queue, struct rxbd8* bdp,
struct sk_buff* skb);
static int gfar_set_mac_address(struct net_device* dev);
static int gfar_change_mtu(struct net_device* dev, int new_mtu);
static void adjust_link(struct net_device* dev);
static void init_registers(struct net_device* dev);
static int init_phy(struct net_device* dev);
static int gfar_probe(struct of_device* ofdev,
const struct of_device_id* match);
static int gfar_remove(struct of_device* ofdev);
static void free_skb_resources(struct gfar_private* priv);
static void gfar_set_multi(struct net_device* dev);
static void gfar_set_hash_for_addr(struct net_device* dev, u8* addr);
static void gfar_configure_serdes(struct net_device* dev);
static int gfar_poll_tx(struct napi_struct* napi, int budget);
static int gfar_poll_rx(struct napi_struct* napi, int budget);
int gfar_clean_rx_ring(struct gfar_priv_rx_q* rx_queue, int rx_work_limit);
static int gfar_clean_tx_ring(struct gfar_priv_tx_q* tx_queue,
int tx_work_limit);
static int gfar_process_frame(struct net_device* dev, struct sk_buff* skb,
int amount_pull);
void gfar_halt(struct net_device* dev);
static void gfar_halt_nodisable(struct net_device* dev);
void gfar_start(struct net_device* dev);
static void gfar_clear_exact_match(struct net_device* dev);
static void gfar_set_mac_for_addr(struct net_device* dev, int num, u8* addr);
static int gfar_ioctl(struct net_device* dev, struct ifreq* rq, int cmd);
MODULE_AUTHOR("Freescale Semiconductor, Inc");
MODULE_DESCRIPTION("Gianfar Ethernet Driver");
MODULE_LICENSE("GPL");
static void gfar_init_rxbdp(struct gfar_priv_rx_q* rx_queue, struct rxbd8* bdp,
dma_addr_t buf)
{
u32 lstatus;
bdp->bufPtr = buf;
lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
if(bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
{
lstatus |= BD_LFLAG(RXBD_WRAP);
}
eieio();
bdp->lstatus = lstatus;
}
static int gfar_init_bds(struct net_device* ndev)
{
struct gfar_private* priv = netdev_priv(ndev);
struct gfar_priv_tx_q* tx_queue = NULL;
struct gfar_priv_rx_q* rx_queue = NULL;
struct txbd8* txbdp;
struct rxbd8* rxbdp;
int i, j, num;
for(i = 0; i < priv->num_tx_queues; i++)
{
tx_queue = priv->tx_queue[i];
/* Initialize some variables in our dev structure */
tx_queue->num_txbdfree = tx_queue->tx_ring_size;
tx_queue->dirty_tx = tx_queue->tx_bd_base;
tx_queue->cur_tx = tx_queue->tx_bd_base;
tx_queue->skb_curtx = 0;
tx_queue->skb_dirtytx = 0;
/* Initialize Transmit Descriptor Ring */
txbdp = tx_queue->tx_bd_base;
for(j = 0; j < tx_queue->tx_ring_size; j++)
{
txbdp->lstatus = 0;
txbdp->bufPtr = 0;
txbdp++;
}
/* Set the last descriptor in the ring to indicate wrap */
txbdp--;
txbdp->status |= TXBD_WRAP;
}
if((priv->device_flags & FSL_GIANFAR_DEV_HAS_ARP_PACKET))
{
num = priv->num_rx_queues - 1;
}
else
{
num = priv->num_rx_queues;
}
for(i = 0; i < num; i++)
{
rx_queue = priv->rx_queue[i];
rx_queue->cur_rx = rx_queue->rx_bd_base;
rx_queue->skb_currx = 0;
rxbdp = rx_queue->rx_bd_base;
for(j = 0; j < rx_queue->rx_ring_size; j++)
{
struct sk_buff* skb = rx_queue->rx_skbuff[j];
if(skb)
{
gfar_init_rxbdp(rx_queue, rxbdp,
rxbdp->bufPtr);
}
else
{
skb = gfar_new_skb(ndev);
if(!skb)
{
pr_err("%s: Can't allocate RX buffers\n",
ndev->name);
goto err_rxalloc_fail;
}
rx_queue->rx_skbuff[j] = skb;
gfar_new_rxbdp(rx_queue, rxbdp, skb);
}
rxbdp++;
}
}
return 0;
err_rxalloc_fail:
free_skb_resources(priv);
return -ENOMEM;
}
unsigned long alloc_bds(struct gfar_private* priv, dma_addr_t* addr)
{
unsigned long vaddr;
unsigned long region_size;
region_size = (sizeof(struct txbd8) + sizeof(struct sk_buff*)) *
priv->total_tx_ring_size +
(sizeof(struct rxbd8) + sizeof(struct sk_buff*)) *
priv->total_rx_ring_size;
vaddr = (unsigned long) dma_alloc_coherent(&priv->ofdev->dev,
region_size, addr, GFP_KERNEL);
return vaddr;
}
static inline void gfar_rx_checksum(struct sk_buff* skb, struct rxfcb* fcb)
{
/* If valid headers were found, and valid sums
* were verified, then we tell the kernel that no
* checksumming is necessary. Otherwise, it is */
if((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
{
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
else
{
skb->ip_summed = CHECKSUM_NONE;
}
}
static int gfar_alloc_skb_resources(struct net_device* ndev)
{
void* vaddr;
dma_addr_t addr;
int i, j, k;
struct gfar_private* priv = netdev_priv(ndev);
struct gfar_priv_tx_q* tx_queue = NULL;
struct gfar_priv_rx_q* rx_queue = NULL;
struct rxbd8* wkbdp;
unsigned long wk_buf_paddr;
unsigned long wk_buf_vaddr;
int err = 0;
priv->total_tx_ring_size = 0;
for(i = 0; i < priv->num_tx_queues; i++)
{
priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
}
priv->total_rx_ring_size = 0;
for(i = 0; i < priv->num_rx_queues; i++)
{
priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
}
/* Allocate memory for the buffer descriptors */
vaddr = (void*)alloc_bds(priv, &addr);
if(!vaddr)
{
if(netif_msg_ifup(priv))
pr_err("%s: Could not allocate buffer descriptors!\n",
ndev->name);
return -ENOMEM;
}
for(i = 0; i < priv->num_tx_queues; i++)
{
tx_queue = priv->tx_queue[i];
tx_queue->tx_bd_base = (struct txbd8*) vaddr;
tx_queue->tx_bd_dma_base = addr;
tx_queue->dev = ndev;
/* enet DMA only understands physical addresses */
addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
}
/* Start the rx descriptor ring where the tx ring leaves off */
for(i = 0; i < priv->num_rx_queues; i++)
{
rx_queue = priv->rx_queue[i];
rx_queue->rx_bd_base = (struct rxbd8*) vaddr;
rx_queue->rx_bd_dma_base = addr;
rx_queue->dev = ndev;
addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
}
/* Setup the skbuff rings */
for(i = 0; i < priv->num_tx_queues; i++)
{
tx_queue = priv->tx_queue[i];
tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
tx_queue->tx_ring_size, GFP_KERNEL);
if(!tx_queue->tx_skbuff)
{
if(netif_msg_ifup(priv))
pr_err("%s: Could not allocate tx_skbuff\n",
ndev->name);
goto cleanup;
}
for(k = 0; k < tx_queue->tx_ring_size; k++)
{
tx_queue->tx_skbuff[k] = NULL;
}
}
for(i = 0; i < priv->num_rx_queues; i++)
{
rx_queue = priv->rx_queue[i];
rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
rx_queue->rx_ring_size, GFP_KERNEL);
if(!rx_queue->rx_skbuff)
{
if(netif_msg_ifup(priv))
pr_err("%s: Could not allocate rx_skbuff\n",
ndev->name);
goto cleanup;
}
for(j = 0; j < rx_queue->rx_ring_size; j++)
{
rx_queue->rx_skbuff[j] = NULL;
}
}
if(gfar_init_bds(ndev))
{
goto cleanup;
}
if((priv->device_flags & FSL_GIANFAR_DEV_HAS_ARP_PACKET))
{
/* Alloc wake up rx buffer, wake up buffer need 64 bytes aligned */
rx_queue = priv->rx_queue[priv->num_rx_queues - 1];
rx_queue->cur_rx = rx_queue->rx_bd_base;
vaddr = (void*) dma_alloc_coherent(&priv->ofdev->dev,
priv->wk_buffer_size * rx_queue->rx_ring_size \
+ RXBUF_ALIGNMENT, &addr, GFP_KERNEL);
if(vaddr == 0)
{
if(netif_msg_ifup(priv))
printk(KERN_ERR
"%s:Could not allocate wakeup buffer!\n" , ndev->name);
err = -ENOMEM;
goto wk_buf_fail;
}
priv->wk_buf_vaddr = (unsigned long)vaddr;
priv->wk_buf_paddr = addr;
wk_buf_vaddr = (unsigned long)(vaddr + RXBUF_ALIGNMENT) \
& ~(RXBUF_ALIGNMENT - 1);
wk_buf_paddr = (unsigned long)(addr + RXBUF_ALIGNMENT) \
& ~(RXBUF_ALIGNMENT - 1);
priv->wk_buf_align_vaddr = wk_buf_vaddr;
priv->wk_buf_align_paddr = wk_buf_paddr;
/* Setup wake up rx ring and buffer */
wkbdp = rx_queue->rx_bd_base;
for(i = 0; i < rx_queue->rx_ring_size; i++)
{
wkbdp->status = RXBD_EMPTY | RXBD_INTERRUPT;
wkbdp->length = 0;
wkbdp->bufPtr = wk_buf_paddr + priv->wk_buffer_size * i;
wkbdp++;
}
/* Set the last descriptor in the ring to wrap */
wkbdp--;
wkbdp->status |= RXBD_WRAP;
}
return 0;
wk_buf_fail:
dma_free_coherent(&priv->ofdev->dev,
priv->wk_buffer_size * rx_queue->rx_ring_size \
+ RXBUF_ALIGNMENT, (void*)priv->wk_buf_vaddr,
priv->wk_buf_paddr);
cleanup:
free_skb_resources(priv);
return -ENOMEM;
}
static void gfar_init_tx_rx_base(struct gfar_private* priv)
{
struct gfar __iomem* regs = priv->gfargrp[0].regs;
u32 __iomem* baddr;
int i;
baddr = &regs->tbase0;
for(i = 0; i < priv->num_tx_queues; i++)
{
gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
baddr += 2;
}
baddr = &regs->rbase0;
for(i = 0; i < priv->num_rx_queues; i++)
{
gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
baddr += 2;
}
}
static void gfar_init_mac(struct net_device* ndev)
{
struct gfar_private* priv = netdev_priv(ndev);
struct gfar __iomem* regs = priv->gfargrp[0].regs;
u32 rctrl = 0;
u32 tctrl = 0;
u32 attrs = 0;
/* write the tx/rx base registers */
gfar_init_tx_rx_base(priv);
/* Configure the coalescing support */
gfar_configure_tx_coalescing(priv, 0xFF);
gfar_configure_rx_coalescing(priv, 0xFF);
if(priv->rx_filer_enable)
{
rctrl |= RCTRL_FILREN;
/* Program the RIR0 reg with the required distribution */
gfar_write(&regs->rir0, DEFAULT_RIR0);
}
if(priv->rx_csum_enable)
{
rctrl |= RCTRL_CHECKSUMMING;
}
if(priv->extended_hash)
{
rctrl |= RCTRL_EXTHASH;
gfar_clear_exact_match(ndev);
rctrl |= RCTRL_EMEN;
}
if(priv->padding)
{
rctrl &= ~RCTRL_PAL_MASK;
rctrl |= RCTRL_PADDING(priv->padding);
}
/* Init rctrl based on our settings */
gfar_write(&regs->rctrl, rctrl);
if(ndev->features & NETIF_F_IP_CSUM)
{
tctrl |= TCTRL_INIT_CSUM;
}
tctrl |= TCTRL_TXSCHED_WRRS;
gfar_write(&regs->tr03wt, WRRS_TR03WT);
gfar_write(&regs->tr47wt, WRRS_TR47WT);
gfar_write(&regs->tctrl, tctrl);
/* Set the extraction length and index */
attrs = ATTRELI_EL(priv->rx_stash_size) |
ATTRELI_EI(priv->rx_stash_index);
gfar_write(&regs->attreli, attrs);
/* Start with defaults, and add stashing or locking
* depending on the approprate variables */
attrs = ATTR_INIT_SETTINGS;
if(priv->bd_stash_en)
{
attrs |= ATTR_BDSTASH;
}
if(priv->rx_stash_size != 0)
{
attrs |= ATTR_BUFSTASH;
}
gfar_write(&regs->attr, attrs);
}
static struct net_device_stats* gfar_get_stats(struct net_device* dev)
{
struct gfar_private* priv = netdev_priv(dev);
struct netdev_queue* txq;
unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
unsigned long tx_packets = 0, tx_bytes = 0;
int i = 0;
for(i = 0; i < priv->num_rx_queues; i++)
{
rx_packets += priv->rx_queue[i]->stats.rx_packets;
rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
}
dev->stats.rx_packets = rx_packets;
dev->stats.rx_bytes = rx_bytes;
dev->stats.rx_dropped = rx_dropped;
for(i = 0; i < priv->num_tx_queues; i++)
{
txq = netdev_get_tx_queue(dev, i);
tx_bytes += txq->tx_bytes;
tx_packets += txq->tx_packets;
}
dev->stats.tx_bytes = tx_bytes;
dev->stats.tx_packets = tx_packets;
return &dev->stats;
}
static const struct net_device_ops gfar_netdev_ops =
{
.ndo_open = gfar_enet_open,
.ndo_start_xmit = gfar_start_xmit,
.ndo_stop = gfar_close,
.ndo_change_mtu = gfar_change_mtu,
.ndo_set_multicast_list = gfar_set_multi,
.ndo_tx_timeout = gfar_timeout,
.ndo_do_ioctl = gfar_ioctl,
.ndo_get_stats = gfar_get_stats,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
};
void lock_rx_qs(struct gfar_private* priv)
{
int i = 0x0;
for(i = 0; i < priv->num_rx_queues; i++)
{
spin_lock(&priv->rx_queue[i]->rxlock);
}
}
void lock_tx_qs(struct gfar_private* priv)
{
int i = 0x0;
for(i = 0; i < priv->num_tx_queues; i++)
{
spin_lock(&priv->tx_queue[i]->txlock);
}
}
void unlock_rx_qs(struct gfar_private* priv)
{
int i = 0x0;
for(i = 0; i < priv->num_rx_queues; i++)
{
spin_unlock(&priv->rx_queue[i]->rxlock);
}
}
void unlock_tx_qs(struct gfar_private* priv)
{
int i = 0x0;
for(i = 0; i < priv->num_tx_queues; i++)
{
spin_unlock(&priv->tx_queue[i]->txlock);
}
}
/* Returns 1 if incoming frames use an FCB */
static inline int gfar_uses_fcb(struct gfar_private* priv)
{
return priv->rx_csum_enable;
}
static void free_tx_pointers(struct gfar_private* priv)
{
int i = 0;
for(i = 0; i < priv->num_tx_queues; i++)
{
kfree(priv->tx_queue[i]);
}
}
static void free_rx_pointers(struct gfar_private* priv)
{
int i = 0;
for(i = 0; i < priv->num_rx_queues; i++)
{
kfree(priv->rx_queue[i]);
}
}
static void unmap_group_regs(struct gfar_private* priv)
{
int i = 0;
for(i = 0; i < MAXGROUPS; i++)
if(priv->gfargrp[i].regs)
{
iounmap(priv->gfargrp[i].regs);
}
}
static void disable_napi(struct gfar_private* priv)
{
int i = 0;
for(i = 0; i < priv->num_grps; i++)
{
napi_disable(&priv->gfargrp[i].napi_tx);
napi_disable(&priv->gfargrp[i].napi_rx);
}
}
static void enable_napi(struct gfar_private* priv)
{
int i = 0;
for(i = 0; i < priv->num_grps; i++)
{
napi_enable(&priv->gfargrp[i].napi_tx);
napi_enable(&priv->gfargrp[i].napi_rx);
}
}
static int gfar_parse_group(struct device_node* np,
struct gfar_private* priv, const char* model)
{
u32* queue_mask;
priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
if(!priv->gfargrp[priv->num_grps].regs)
{
return -ENOMEM;
}
priv->gfargrp[priv->num_grps].interruptTransmit =
irq_of_parse_and_map(np, 0);
/* If we aren't the FEC we have multiple interrupts */
if(model && strcasecmp(model, "FEC"))
{
priv->gfargrp[priv->num_grps].interruptReceive =
irq_of_parse_and_map(np, 1);
priv->gfargrp[priv->num_grps].interruptError =
irq_of_parse_and_map(np, 2);
if(priv->gfargrp[priv->num_grps].interruptTransmit < 0 ||
priv->gfargrp[priv->num_grps].interruptReceive < 0 ||
priv->gfargrp[priv->num_grps].interruptError < 0)
{
return -EINVAL;
}
}
priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
priv->gfargrp[priv->num_grps].priv = priv;
spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
if(priv->mode == MQ_MG_MODE)
{
queue_mask = (u32*)of_get_property(np,
"rx-bit-map", NULL);
priv->gfargrp[priv->num_grps].rx_bit_map =
queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
queue_mask = (u32*)of_get_property(np,
"tx-bit-map", NULL);
priv->gfargrp[priv->num_grps].tx_bit_map =
queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
}
else
{
priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
}
priv->num_grps++;
return 0;
}
static int gfar_of_init(struct of_device* ofdev, struct net_device** pdev)
{
const char* model;
const char* ctype;
const void* mac_addr;
int err = 0, i;
struct net_device* dev = NULL;
struct gfar_private* priv = NULL;
struct device_node* np = ofdev->dev.of_node;
struct device_node* child = NULL;
const u32* stash;
const u32* stash_len;
const u32* stash_idx;
unsigned int num_tx_qs, num_rx_qs;
u32* tx_queues, *rx_queues;
u32* busFreq;
u32 etsec_clk;
int* ucc_num_addr = NULL;
int ucc_num = -1;
u32 max_filer_rules;
if(!np || !of_device_is_available(np))
{
return -ENODEV;
}
ucc_num_addr = (int*)of_get_property(np, "fsl,index", NULL);
ucc_num = ucc_num_addr ? *ucc_num_addr : 0;
/* parse the num of tx and rx queues */
tx_queues = (u32*)of_get_property(np, "fsl,num_tx_queues", NULL);
num_tx_qs = tx_queues ? *tx_queues : 1;
if(num_tx_qs > MAX_TX_QS)
{
printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
num_tx_qs, MAX_TX_QS);
printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
return -EINVAL;
}
rx_queues = (u32*)of_get_property(np, "fsl,num_rx_queues", NULL);
num_rx_qs = rx_queues ? *rx_queues : 1;
if(num_rx_qs > MAX_RX_QS)
{
printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
num_tx_qs, MAX_TX_QS);
printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
return -EINVAL;
}
*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
dev = *pdev;
if(NULL == dev)
{
return -ENOMEM;
}
priv = netdev_priv(dev);
priv->node = ofdev->dev.of_node;
priv->ndev = dev;
priv->ucc_num = ucc_num;
busFreq = (u32*)of_get_property
(of_get_parent(np), "bus-frequency", NULL);
if(busFreq)
{
/* etsec_clk is CCB/2 */
etsec_clk = *busFreq / 2;
/* Divide by 1000000 to get freq in MHz */
etsec_clk /= 1000000;
/*
* eTSEC searches the table at a rate of two entries every
* eTSEC clock cycle, so for the worst case all 256 entries
* can be searched in the time taken to receive a 64-byte
* Ethernet frame which comes out to be 672 ns at 1Gbps rate
* including inter frame gap and preamble.
* Hence max_filer_rules = etsec_clk * reception time for one
* packet * 2. Divide by 1000 to match the units.
*/
max_filer_rules = etsec_clk * 672 * 2 / 1000;
if(max_filer_rules > MAX_FILER_IDX)
{
priv->max_filer_rules = MAX_FILER_IDX;
}
else
{
priv->max_filer_rules = max_filer_rules;
}
}
else
{
printk(KERN_INFO "Bus Frequency not found in DTS, "
"setting max_filer_rules to %d\n",
MAX_FILER_IDX);
priv->max_filer_rules = MAX_FILER_IDX;
}
dev->num_tx_queues = num_tx_qs;
dev->real_num_tx_queues = num_tx_qs;
priv->num_tx_queues = num_tx_qs;
priv->num_rx_queues = num_rx_qs;
priv->num_grps = 0x0;
model = of_get_property(np, "model", NULL);
for(i = 0; i < MAXGROUPS; i++)
{
priv->gfargrp[i].regs = NULL;
}
/* Parse and initialize group specific information */
if(of_device_is_compatible(np, "fsl,etsec2"))
{
priv->mode = MQ_MG_MODE;
for_each_child_of_node(np, child)
{
if(of_device_is_compatible
(child, "fsl,etsec2-mdio") ||
of_device_is_compatible
(child, "fsl,etsec2-tbi"))
{
continue;
}
err = gfar_parse_group(child, priv, model);
if(err)
{
goto err_grp_init;
}
}
}
else
{
priv->mode = SQ_SG_MODE;
err = gfar_parse_group(np, priv, model);
if(err)
{
goto err_grp_init;
}
}
for(i = 0; i < priv->num_tx_queues; i++)
{
priv->tx_queue[i] = NULL;
}
for(i = 0; i < priv->num_rx_queues; i++)
{
priv->rx_queue[i] = NULL;
}
for(i = 0; i < priv->num_tx_queues; i++)
{
priv->tx_queue[i] = (struct gfar_priv_tx_q*)kzalloc(
sizeof(struct gfar_priv_tx_q), GFP_KERNEL);
if(!priv->tx_queue[i])
{
err = -ENOMEM;
goto tx_alloc_failed;
}
priv->tx_queue[i]->tx_skbuff = NULL;
priv->tx_queue[i]->qindex = i;
priv->tx_queue[i]->dev = dev;
spin_lock_init(&(priv->tx_queue[i]->txlock));
}
for(i = 0; i < priv->num_rx_queues; i++)
{
priv->rx_queue[i] = (struct gfar_priv_rx_q*)kzalloc(
sizeof(struct gfar_priv_rx_q), GFP_KERNEL);
if(!priv->rx_queue[i])
{
err = -ENOMEM;
goto rx_alloc_failed;
}
priv->rx_queue[i]->rx_skbuff = NULL;
priv->rx_queue[i]->qindex = i;
priv->rx_queue[i]->dev = dev;
spin_lock_init(&(priv->rx_queue[i]->rxlock));
}
stash = of_get_property(np, "bd-stash", NULL);
if(stash)
{
priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
priv->bd_stash_en = 1;
}
stash_len = of_get_property(np, "rx-stash-len", NULL);
if(stash_len)
{
priv->rx_stash_size = *stash_len;
}
stash_idx = of_get_property(np, "rx-stash-idx", NULL);
if(stash_idx)
{
priv->rx_stash_index = *stash_idx;
}
if(stash_len || stash_idx)
{
priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
}
/* Handle IEEE1588 node */
printk(KERN_INFO "IEEE1588: disable on the system.\n");
mac_addr = of_get_mac_address(np);
if(mac_addr)
{
memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
}
if(model && !strcasecmp(model, "TSEC"))
priv->device_flags =
FSL_GIANFAR_DEV_HAS_GIGABIT |
FSL_GIANFAR_DEV_HAS_COALESCE |
FSL_GIANFAR_DEV_HAS_RMON |
FSL_GIANFAR_DEV_HAS_MULTI_INTR;
if(model && !strcasecmp(model, "eTSEC"))
{
priv->device_flags =
FSL_GIANFAR_DEV_HAS_GIGABIT |
FSL_GIANFAR_DEV_HAS_COALESCE |
FSL_GIANFAR_DEV_HAS_RMON |
FSL_GIANFAR_DEV_HAS_MULTI_INTR |
FSL_GIANFAR_DEV_HAS_PADDING |
FSL_GIANFAR_DEV_HAS_CSUM |
FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
}
ctype = of_get_property(np, "phy-connection-type", NULL);
/* We only care about rgmii-id. The rest are autodetected */
if(ctype && !strcmp(ctype, "rgmii-id"))
{
priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
}
else
{
priv->interface = PHY_INTERFACE_MODE_MII;
}
if(of_get_property(np, "fsl,magic-packet", NULL))
{
priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
}
if(of_get_property(np, "fsl,wake-on-filer", NULL))
{
priv->device_flags |= FSL_GIANFAR_DEV_HAS_ARP_PACKET;
}
priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
/* Find the TBI PHY. If it's not there, we don't support SGMII */
priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
return 0;
rx_alloc_failed:
free_rx_pointers(priv);
tx_alloc_failed:
free_tx_pointers(priv);
err_grp_init:
unmap_group_regs(priv);
free_netdev(dev);
return err;
}
/* Ioctl MII Interface */
static int gfar_ioctl(struct net_device* dev, struct ifreq* rq, int cmd)
{
struct gfar_private* priv = netdev_priv(dev);
int retVal = 0;
if(!netif_running(dev))
{
return -EINVAL;
}
if(!priv->phydev)
{
return -ENODEV;
}
if((cmd >= PTP_GET_RX_TIMESTAMP_SYNC) &&
(cmd <= PTP_CLEANUP_TIMESTAMP_BUFFERS))
{
retVal = -ENODEV;
}
else
{
retVal = phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
}
return retVal;
}
static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
{
unsigned int new_bit_map = 0x0;
int mask = 0x1 << (max_qs - 1), i;
for(i = 0; i < max_qs; i++)
{
if(bit_map & mask)
{
new_bit_map = new_bit_map + (1 << i);
}
mask = mask >> 0x1;
}
return new_bit_map;
}
static u32 cluster_entry_per_class(struct gfar_private* priv, u32 rqfar,
u32 class)
{
u32 rqfpr = FPR_FILER_MASK;
u32 rqfcr = 0x0;
rqfar--;
rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
priv->ftp_rqfpr[rqfar] = rqfpr;
priv->ftp_rqfcr[rqfar] = rqfcr;
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
rqfar--;
rqfcr = RQFCR_CMP_NOMATCH;
priv->ftp_rqfpr[rqfar] = rqfpr;
priv->ftp_rqfcr[rqfar] = rqfcr;
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
rqfar--;
rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
rqfpr = class;
priv->ftp_rqfcr[rqfar] = rqfcr;
priv->ftp_rqfpr[rqfar] = rqfpr;
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
rqfar--;
rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
rqfpr = class;
priv->ftp_rqfcr[rqfar] = rqfcr;
priv->ftp_rqfpr[rqfar] = rqfpr;
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
return rqfar;
}
static void gfar_init_filer_table(struct gfar_private* priv)
{
int i = 0x0;
u32 rqfar = priv->max_filer_rules;
u32 rqfcr = 0x0;
u32 rqfpr = FPR_FILER_MASK;
if(!priv->ftp_rqfpr)
{
priv->ftp_rqfpr = kmalloc((priv->max_filer_rules + 1) * sizeof
(u32), GFP_KERNEL);
if(!priv->ftp_rqfpr)
{
pr_err("Could not allocate ftp_rqfpr\n");
goto out;
}
}
if(!priv->ftp_rqfcr)
{
priv->ftp_rqfcr = kmalloc((priv->max_filer_rules + 1) * sizeof
(u32), GFP_KERNEL);
if(!priv->ftp_rqfcr)
{
pr_err("Could not allocate ftp_rqfcr\n");
goto out;
}
}
/* Default rule */
rqfcr = RQFCR_CMP_MATCH;
priv->ftp_rqfcr[rqfar] = rqfcr;
priv->ftp_rqfpr[rqfar] = rqfpr;
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
/* cur_filer_idx indicated the fisrt non-masked rule */
priv->cur_filer_idx = rqfar;
/* Program the RIR0 reg with the required distribution */
priv->gfargrp[0].regs->rir0 = DEFAULT_RIR0;
/* Rest are masked rules */
rqfcr = RQFCR_CMP_NOMATCH;
for(i = 0; i < rqfar; i++)
{
priv->ftp_rqfcr[i] = rqfcr;
priv->ftp_rqfpr[i] = rqfpr;
gfar_write_filer(priv, i, rqfcr, rqfpr);
}
return;
out:
kfree(priv->ftp_rqfcr);
kfree(priv->ftp_rqfpr);
priv->ftp_rqfpr = priv->ftp_rqfcr = NULL;
}
/* Set up the ethernet device structure, private data,
* and anything else we need before we start */
static int gfar_probe(struct of_device* ofdev,
const struct of_device_id* match)
{
u32 tempval;
struct net_device* dev = NULL;
struct gfar_private* priv = NULL;
struct gfar __iomem* regs = NULL;
int err = 0, i, grp_idx = 0;
int len_devname;
u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
u32 isrg = 0;
u32 __iomem* baddr;
err = gfar_of_init(ofdev, &dev);
if(err)
{
return err;
}
priv = netdev_priv(dev);
priv->ndev = dev;
priv->ofdev = ofdev;
priv->node = ofdev->dev.of_node;
SET_NETDEV_DEV(dev, &ofdev->dev);
spin_lock_init(&priv->bflock);
INIT_WORK(&priv->reset_task, gfar_reset_task);
dev_set_drvdata(&ofdev->dev, priv);
regs = priv->gfargrp[0].regs;
/* Stop the DMA engine now, in case it was running before */
/* (The firmware could have used it, and left it running). */
gfar_halt(dev);
/* Reset MAC layer */
gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
/* We need to delay at least 3 TX clocks */
udelay(2);
tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
gfar_write(&regs->maccfg1, tempval);
/* Initialize MACCFG2. */
gfar_write(&regs->maccfg2, MACCFG2_INIT_SETTINGS);
/* Initialize ECNTRL */
gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
/* Set the dev->base_addr to the gfar reg region */
dev->base_addr = (unsigned long) regs;
SET_NETDEV_DEV(dev, &ofdev->dev);
/* Fill in the dev structure */
dev->watchdog_timeo = TX_TIMEOUT;
dev->mtu = 1500;
dev->netdev_ops = &gfar_netdev_ops;
dev->ethtool_ops = &gfar_ethtool_ops;
/* Seperate napi for tx and rx for each group */
for(i = 0; i < priv->num_grps; i++)
{
netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
gfar_poll_tx, GFAR_DEV_WEIGHT);
netif_napi_add(dev, &priv->gfargrp[i].napi_rx, gfar_poll_rx,
GFAR_DEV_WEIGHT);
}
if(priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM)
{
priv->rx_csum_enable = 1;
dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
}
else
{
priv->rx_csum_enable = 0;
}
priv->vlgrp = NULL;
if(priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
{
dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
}
if(priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH)
{
priv->extended_hash = 1;
priv->hash_width = 9;
priv->hash_regs[0] = &regs->igaddr0;
priv->hash_regs[1] = &regs->igaddr1;
priv->hash_regs[2] = &regs->igaddr2;
priv->hash_regs[3] = &regs->igaddr3;
priv->hash_regs[4] = &regs->igaddr4;
priv->hash_regs[5] = &regs->igaddr5;
priv->hash_regs[6] = &regs->igaddr6;
priv->hash_regs[7] = &regs->igaddr7;
priv->hash_regs[8] = &regs->gaddr0;
priv->hash_regs[9] = &regs->gaddr1;
priv->hash_regs[10] = &regs->gaddr2;
priv->hash_regs[11] = &regs->gaddr3;
priv->hash_regs[12] = &regs->gaddr4;
priv->hash_regs[13] = &regs->gaddr5;
priv->hash_regs[14] = &regs->gaddr6;
priv->hash_regs[15] = &regs->gaddr7;
}
else
{
priv->extended_hash = 0;
priv->hash_width = 8;
priv->hash_regs[0] = &regs->gaddr0;
priv->hash_regs[1] = &regs->gaddr1;
priv->hash_regs[2] = &regs->gaddr2;
priv->hash_regs[3] = &regs->gaddr3;
priv->hash_regs[4] = &regs->gaddr4;
priv->hash_regs[5] = &regs->gaddr5;
priv->hash_regs[6] = &regs->gaddr6;
priv->hash_regs[7] = &regs->gaddr7;
}
if(priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
{
priv->padding = DEFAULT_PADDING;
}
else
{
priv->padding = 0;
}
if(dev->features & NETIF_F_IP_CSUM)
{
priv->padding = 0x8;
dev->hard_header_len += GMAC_FCB_LEN;
}
/* Program the isrg regs only if number of grps > 1 */
if(priv->num_grps > 1)
{
baddr = &regs->isrg0;
for(i = 0; i < priv->num_grps; i++)
{
isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
gfar_write(baddr, isrg);
baddr++;
isrg = 0x0;
}
}
/* Need to reverse the bit maps as bit_map's MSB is q0
* but, for_each_set_bit parses from right to left, which
* basically reverses the queue numbers */
for(i = 0; i < priv->num_grps; i++)
{
priv->gfargrp[i].tx_bit_map = reverse_bitmap(
priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
priv->gfargrp[i].rx_bit_map = reverse_bitmap(
priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
}
/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
* also assign queues to groups */
for(grp_idx = 0; grp_idx < priv->num_grps; grp_idx++)
{
priv->gfargrp[grp_idx].num_rx_queues = 0x0;
for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
priv->num_rx_queues)
{
priv->gfargrp[grp_idx].num_rx_queues++;
priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
}
priv->gfargrp[grp_idx].num_tx_queues = 0x0;
for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
priv->num_tx_queues)
{
priv->gfargrp[grp_idx].num_tx_queues++;
priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
tstat = tstat | (TSTAT_CLEAR_THALT >> i);
tqueue = tqueue | (TQUEUE_EN0 >> i);
}
priv->gfargrp[grp_idx].rstat = rstat;
priv->gfargrp[grp_idx].tstat = tstat;
rstat = tstat = 0;
}
gfar_write(&regs->rqueue, rqueue);
gfar_write(&regs->tqueue, tqueue);
priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
priv->wk_buffer_size = DEFAULT_WK_BUFFER_SIZE;
/* Initializing some of the rx/tx queue level parameters */
for(i = 0; i < priv->num_tx_queues; i++)
{
if(i == 0)
{
priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE * 16;
}
else
{
priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
}
priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
priv->tx_queue[i]->txic = DEFAULT_TXIC;
}
priv->rx_queue[priv->num_rx_queues - 1]->rx_ring_size = DEFAULT_WK_RING_SIZE;
/* enable filer if using multiple RX queues*/
if(priv->num_rx_queues > 1)
{
priv->rx_filer_enable = 1;
}
for(i = 0; i < priv->num_rx_queues; i++)
{
if(i == 0)
{
priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE * 16;
}
else
{
priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
}
priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
priv->rx_queue[i]->rxic = DEFAULT_RXIC;
}
/* Enable most messages by default */
priv->msg_enable = (NETIF_MSG_IFUP << 1) - 1;
/* Carrier starts down, phylib will bring it up */
netif_carrier_off(dev);
err = register_netdev(dev);
if(err)
{
printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
dev->name);
goto register_fail;
}
if((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) ||
(priv->device_flags & FSL_GIANFAR_DEV_HAS_ARP_PACKET))
{
device_set_wakeup_capable(&ofdev->dev, true);
device_set_wakeup_enable(&ofdev->dev, false);
}
/* fill out IRQ number and name fields */
len_devname = strlen(dev->name);
for(i = 0; i < priv->num_grps; i++)
{
strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
len_devname);
if(priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR)
{
strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
"_g", sizeof("_g"));
priv->gfargrp[i].int_name_tx[
strlen(priv->gfargrp[i].int_name_tx)] = i + 48;
strncpy(&priv->gfargrp[i].int_name_tx[strlen(
priv->gfargrp[i].int_name_tx)],
"_tx", sizeof("_tx") + 1);
strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
len_devname);
strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
"_g", sizeof("_g"));
priv->gfargrp[i].int_name_rx[
strlen(priv->gfargrp[i].int_name_rx)] = i + 48;
strncpy(&priv->gfargrp[i].int_name_rx[strlen(
priv->gfargrp[i].int_name_rx)],
"_rx", sizeof("_rx") + 1);
strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
len_devname);
strncpy(&priv->gfargrp[i].int_name_er[len_devname],
"_g", sizeof("_g"));
priv->gfargrp[i].int_name_er[strlen(
priv->gfargrp[i].int_name_er)] = i + 48;
strncpy(&priv->gfargrp[i].int_name_er[strlen(\
priv->gfargrp[i].int_name_er)],
"_er", sizeof("_er") + 1);
}
else
{
priv->gfargrp[i].int_name_tx[len_devname] = '\0';
}
}
/* Initialize the filer table */
gfar_init_filer_table(priv);
/* Create all the sysfs files */
gfar_init_sysfs(dev);
/* Print out the device info */
printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
/* Even more device info helps when determining which kernel */
/* provided which set of benchmarks. */
printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
for(i = 0; i < priv->num_rx_queues; i++)
printk(KERN_INFO "%s: RX BD ring size for Q[%d]: %d\n",
dev->name, i, priv->rx_queue[i]->rx_ring_size);
for(i = 0; i < priv->num_tx_queues; i++)
printk(KERN_INFO "%s: TX BD ring size for Q[%d]: %d\n",
dev->name, i, priv->tx_queue[i]->tx_ring_size);
return 0;
register_fail:
unmap_group_regs(priv);
free_tx_pointers(priv);
free_rx_pointers(priv);
if(priv->phy_node)
{
of_node_put(priv->phy_node);
}
if(priv->tbi_node)
{
of_node_put(priv->tbi_node);
}
free_netdev(dev);
return err;
}
static int gfar_remove(struct of_device* ofdev)
{
struct gfar_private* priv = dev_get_drvdata(&ofdev->dev);
if(priv->phy_node)
{
of_node_put(priv->phy_node);
}
if(priv->tbi_node)
{
of_node_put(priv->tbi_node);
}
dev_set_drvdata(&ofdev->dev, NULL);
unregister_netdev(priv->ndev);
unmap_group_regs(priv);
kfree(priv->ftp_rqfpr);
kfree(priv->ftp_rqfcr);
free_netdev(priv->ndev);
return 0;
}
#define GFAR_PM_OPS NULL
/* Reads the controller's registers to determine what interface
* connects it to the PHY.
*/
static phy_interface_t gfar_get_interface(struct net_device* dev)
{
struct gfar_private* priv = netdev_priv(dev);
struct gfar __iomem* regs = priv->gfargrp[0].regs;
u32 ecntrl;
ecntrl = gfar_read(&regs->ecntrl);
if(ecntrl & ECNTRL_SGMII_MODE)
{
return PHY_INTERFACE_MODE_SGMII;
}
if(ecntrl & ECNTRL_TBI_MODE)
{
if(ecntrl & ECNTRL_REDUCED_MODE)
{
return PHY_INTERFACE_MODE_RTBI;
}
else
{
return PHY_INTERFACE_MODE_TBI;
}
}
if(ecntrl & ECNTRL_REDUCED_MODE)
{
if(ecntrl & ECNTRL_REDUCED_MII_MODE)
{
return PHY_INTERFACE_MODE_RMII;
}
else
{
phy_interface_t interface = priv->interface;
/*
* This isn't autodetected right now, so it must
* be set by the device tree or platform code.
*/
if(interface == PHY_INTERFACE_MODE_RGMII_ID)
{
return PHY_INTERFACE_MODE_RGMII_ID;
}
return PHY_INTERFACE_MODE_RGMII;
}
}
if(priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
{
return PHY_INTERFACE_MODE_GMII;
}
return PHY_INTERFACE_MODE_MII;
}
/* Initializes driver's PHY state, and attaches to the PHY.
* Returns 0 on success.
*/
static int mdio_phy_config(struct net_device* dev)
{
struct phy_device* mdio_phy;
struct gfar_private* priv = NULL;
// printk(" ************ %s run ***********\n",__func__);
priv = netdev_priv(dev);
if(!priv->phy_node)
{
dev_warn(&dev->dev, "error: SGMII mode requires that the "
"device tree specify a mdio-handle\n");
return -1;
}
mdio_phy = of_phy_find_device(priv->phy_node);
if(!mdio_phy)
{
dev_err(&dev->dev, "error: Could not get TBI device\n");
return -1;
}
phy_write(mdio_phy, 0x16, 0x12);
phy_write(mdio_phy, 0x14, 0x1);
phy_write(mdio_phy, 0x14, 0x8001);
phy_write(mdio_phy, 0x16, 0x0);
return 0 ;
}
/* Initializes driver's PHY state, and attaches to the PHY.
* Returns 0 on success.
*/
static int init_phy(struct net_device* dev)
{
struct gfar_private* priv = netdev_priv(dev);
uint gigabit_support =
priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
SUPPORTED_1000baseT_Full : 0;
phy_interface_t interface;
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
interface = gfar_get_interface(dev);
priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
interface);
if(!priv->phydev)
priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
interface);
if(!priv->phydev)
{
dev_err(&dev->dev, "could not attach to PHY\n");
return -ENODEV;
}
if(interface == PHY_INTERFACE_MODE_SGMII)
{
gfar_configure_serdes(dev);
mdio_phy_config(dev);
}
/* Remove any features not supported by the controller */
priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
priv->phydev->advertising = priv->phydev->supported;
return 0;
}
/*
* Initialize TBI PHY interface for communicating with the
* SERDES lynx PHY on the chip. We communicate with this PHY
* through the MDIO bus on each controller, treating it as a
* "normal" PHY at the address found in the TBIPA register. We assume
* that the TBIPA register is valid. Either the MDIO bus code will set
* it to a value that doesn't conflict with other PHYs on the bus, or the
* value doesn't matter, as there are no other PHYs on the bus.
*/
static void gfar_configure_serdes(struct net_device* dev)
{
struct gfar_private* priv = netdev_priv(dev);
struct phy_device* tbiphy;
if(!priv->tbi_node)
{
dev_warn(&dev->dev, "error: SGMII mode requires that the "
"device tree specify a tbi-handle\n");
return;
}
tbiphy = of_phy_find_device(priv->tbi_node);
if(!tbiphy)
{
dev_err(&dev->dev, "error: Could not get TBI device\n");
return;
}
/*
* If the link is already up, we must already be ok, and don't need to
* configure and reset the TBI<->SerDes link. Maybe U-Boot configured
* everything for us? Resetting it takes the link down and requires
* several seconds for it to come back.
*/
if(phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
{
return;
}
/* Single clk mode, mii mode off(for serdes communication) */
phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
phy_write(tbiphy, MII_ADVERTISE,
ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
ADVERTISE_1000XPSE_ASYM);
phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
}
static void init_registers(struct net_device* dev)
{
struct gfar_private* priv = netdev_priv(dev);
struct gfar __iomem* regs = NULL;
int i = 0;
for(i = 0; i < priv->num_grps; i++)
{
regs = priv->gfargrp[i].regs;
/* Clear IEVENT */
gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
/* Initialize IMASK */
gfar_write(&regs->imask, IMASK_INIT_CLEAR);
}
regs = priv->gfargrp[0].regs;
/* Init hash registers to zero */
gfar_write(&regs->igaddr0, 0);
gfar_write(&regs->igaddr1, 0);
gfar_write(&regs->igaddr2, 0);
gfar_write(&regs->igaddr3, 0);
gfar_write(&regs->igaddr4, 0);
gfar_write(&regs->igaddr5, 0);
gfar_write(&regs->igaddr6, 0);
gfar_write(&regs->igaddr7, 0);
gfar_write(&regs->gaddr0, 0);
gfar_write(&regs->gaddr1, 0);
gfar_write(&regs->gaddr2, 0);
gfar_write(&regs->gaddr3, 0);
gfar_write(&regs->gaddr4, 0);
gfar_write(&regs->gaddr5, 0);
gfar_write(&regs->gaddr6, 0);
gfar_write(&regs->gaddr7, 0);
/* Zero out the rmon mib registers if it has them */
if(priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON)
{
memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
/* Mask off the CAM interrupts */
gfar_write(&regs->rmon.cam1, 0xffffffff);
gfar_write(&regs->rmon.cam2, 0xffffffff);
}
/* Initialize the max receive buffer length */
gfar_write(&regs->mrblr, priv->rx_buffer_size);
/* Initialize the Minimum Frame Length Register */
gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
}
/* Halt the receive and transmit queues */
static void gfar_halt_nodisable(struct net_device* dev)
{
struct gfar_private* priv = netdev_priv(dev);
struct gfar __iomem* regs = NULL;
u32 tempval;
int i = 0;
for(i = 0; i < priv->num_grps; i++)
{
regs = priv->gfargrp[i].regs;
/* Mask all interrupts */
gfar_write(&regs->imask, IMASK_INIT_CLEAR);
/* Clear all interrupts */
gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
}
regs = priv->gfargrp[0].regs;
/* Stop the DMA, and wait for it to stop */
tempval = gfar_read(&regs->dmactrl);
if((tempval & (DMACTRL_GRS | DMACTRL_GTS))
!= (DMACTRL_GRS | DMACTRL_GTS))
{
tempval |= (DMACTRL_GRS | DMACTRL_GTS);
gfar_write(&regs->dmactrl, tempval);
spin_event_timeout(((gfar_read(&regs->ievent) &
(IEVENT_GRSC | IEVENT_GTSC)) ==
(IEVENT_GRSC | IEVENT_GTSC)), -1, 0);
}
}
/* Halt the receive and transmit queues */
void gfar_halt(struct net_device* dev)
{
struct gfar_private* priv = netdev_priv(dev);
struct gfar __iomem* regs = priv->gfargrp[0].regs;
u32 tempval;
gfar_halt_nodisable(dev);
/* Disable Rx and Tx */
tempval = gfar_read(&regs->maccfg1);
tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
gfar_write(&regs->maccfg1, tempval);
}
void free_bds(struct gfar_private* priv)
{
unsigned long region_size = 0;
region_size = (sizeof(struct txbd8) + sizeof(struct sk_buff*)) *
priv->total_tx_ring_size +
(sizeof(struct rxbd8) + sizeof(struct sk_buff*)) *
priv->total_rx_ring_size;
dma_free_coherent(&priv->ofdev->dev,
region_size,
priv->tx_queue[0]->tx_bd_base,
priv->tx_queue[0]->tx_bd_dma_base);
}
void stop_gfar(struct net_device* dev)
{
struct gfar_private* priv = netdev_priv(dev);
unsigned long flags;
phy_stop(priv->phydev);
/* Lock it down */
local_irq_save(flags);
lock_tx_qs(priv);
lock_rx_qs(priv);
gfar_halt(dev);
unlock_rx_qs(priv);
unlock_tx_qs(priv);
local_irq_restore(flags);
free_skb_resources(priv);
}
static void free_skb_tx_queue(struct gfar_priv_tx_q* tx_queue)
{
struct txbd8* txbdp;
struct gfar_private* priv = netdev_priv(tx_queue->dev);
int i, j;
txbdp = tx_queue->tx_bd_base;
for(i = 0; i < tx_queue->tx_ring_size; i++)
{
if(!tx_queue->tx_skbuff[i])
{
continue;
}
dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
txbdp->length, DMA_TO_DEVICE);
txbdp->lstatus = 0;
for(j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
j++)
{
txbdp++;
dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
txbdp->length, DMA_TO_DEVICE);
}
txbdp++;
dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
tx_queue->tx_skbuff[i] = NULL;
}
kfree(tx_queue->tx_skbuff);
}
static void free_skb_rx_queue(struct gfar_priv_rx_q* rx_queue)
{
struct rxbd8* rxbdp;
struct gfar_private* priv = netdev_priv(rx_queue->dev);
int i;
rxbdp = rx_queue->rx_bd_base;
for(i = 0; i < rx_queue->rx_ring_size; i++)
{
if(rx_queue->rx_skbuff[i])
{
dma_unmap_single(&priv->ofdev->dev,
rxbdp->bufPtr, priv->rx_buffer_size,
DMA_FROM_DEVICE);
dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
rx_queue->rx_skbuff[i] = NULL;
}
rxbdp->lstatus = 0;
rxbdp->bufPtr = 0;
rxbdp++;
}
kfree(rx_queue->rx_skbuff);
}
/* If there are any tx skbs or rx skbs still around, free them.
* Then free tx_skbuff and rx_skbuff */
static void free_skb_resources(struct gfar_private* priv)
{
struct gfar_priv_tx_q* tx_queue = NULL;
struct gfar_priv_rx_q* rx_queue = NULL;
int i;
if((priv->device_flags & FSL_GIANFAR_DEV_HAS_ARP_PACKET))
{
rx_queue = priv->rx_queue[priv->num_rx_queues - 1];
dma_free_coherent(&priv->ofdev->dev,
priv->wk_buffer_size * rx_queue->rx_ring_size \
+ RXBUF_ALIGNMENT, (void*)priv->wk_buf_vaddr,
priv->wk_buf_paddr);
}
/* Go through all the buffer descriptors and free their data buffers */
for(i = 0; i < priv->num_tx_queues; i++)
{
tx_queue = priv->tx_queue[i];
if(tx_queue->tx_skbuff)
{
free_skb_tx_queue(tx_queue);
}
}
for(i = 0; i < priv->num_rx_queues; i++)
{
rx_queue = priv->rx_queue[i];
if(rx_queue->rx_skbuff)
{
free_skb_rx_queue(rx_queue);
}
}
free_bds(priv);
}
void gfar_start(struct net_device* dev)
{
struct gfar_private* priv = netdev_priv(dev);
struct gfar __iomem* regs = priv->gfargrp[0].regs;
u32 tempval;
int i = 0;
/* Enable Rx and Tx in MACCFG1 */
tempval = gfar_read(&regs->maccfg1);
tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
gfar_write(&regs->maccfg1, tempval);
/* Initialize DMACTRL to have WWR and WOP */
tempval = gfar_read(&regs->dmactrl);
tempval |= DMACTRL_INIT_SETTINGS;
gfar_write(&regs->dmactrl, tempval);
/* Make sure we aren't stopped */
tempval = gfar_read(&regs->dmactrl);
tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
gfar_write(&regs->dmactrl, tempval);
for(i = 0; i < priv->num_grps; i++)
{
regs = priv->gfargrp[i].regs;
/* Clear THLT/RHLT, so that the DMA starts polling now */
gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
/* Unmask the interrupts we look for */
gfar_write(&regs->imask, IMASK_DEFAULT);
}
dev->trans_start = jiffies; /* prevent tx timeout */
}
void gfar_configure_tx_coalescing(struct gfar_private* priv,
long unsigned int tx_mask)
{
struct gfar __iomem* regs = priv->gfargrp[0].regs;
u32 __iomem* baddr;
int i = 0, mask = 0x1;
/* Backward compatible case ---- even if we enable
* multiple queues, there's only single reg to program
*/
if(priv->mode == SQ_SG_MODE)
{
gfar_write(&regs->txic, 0);
if(likely(priv->tx_queue[0]->txcoalescing))
{
gfar_write(&regs->txic, priv->tx_queue[0]->txic);
}
}
if(priv->mode == MQ_MG_MODE)
{
baddr = &regs->txic0;
for(i = 0; i < priv->num_tx_queues; i++)
{
if(tx_mask & mask)
{
if(likely(priv->tx_queue[i]->txcoalescing))
{
gfar_write(baddr + i, 0);
gfar_write(baddr + i,
priv->tx_queue[i]->txic);
}
}
mask = mask << 0x1;
}
}
}
void gfar_configure_rx_coalescing(struct gfar_private* priv,
long unsigned int rx_mask)
{
struct gfar __iomem* regs = priv->gfargrp[0].regs;
u32 __iomem* baddr;
int i = 0, mask = 0x1;
/* Backward compatible case ---- even if we enable
* multiple queues, there's only single reg to program
*/
if(priv->mode == SQ_SG_MODE)
{
gfar_write(&regs->rxic, 0);
if(unlikely(priv->rx_queue[0]->rxcoalescing))
{
gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
}
}
if(priv->mode == MQ_MG_MODE)
{
baddr = &regs->rxic0;
for(i = 0; i < priv->num_rx_queues; i++)
{
if(rx_mask & mask)
{
if(likely(priv->rx_queue[i]->rxcoalescing))
{
gfar_write(baddr + i, 0);
gfar_write(baddr + i,
priv->rx_queue[i]->rxic);
}
}
mask = mask << 0x1;
}
}
}
/* Bring the controller up and running */
int startup_gfar(struct net_device* ndev)
{
struct gfar_private* priv = netdev_priv(ndev);
struct gfar __iomem* regs = NULL;
int err, i;
for(i = 0; i < priv->num_grps; i++)
{
regs = priv->gfargrp[i].regs;
gfar_write(&regs->imask, IMASK_INIT_CLEAR);
}
regs = priv->gfargrp[0].regs;
err = gfar_alloc_skb_resources(ndev);
if(err)
{
return err;
}
gfar_init_mac(ndev);
/* Start the controller */
gfar_start(ndev);
phy_start(priv->phydev);
gfar_configure_tx_coalescing(priv, 0xFF);
gfar_configure_rx_coalescing(priv, 0xFF);
return 0;
}
/* Called when something needs to use the ethernet device */
/* Returns 0 for success. */
static int gfar_enet_open(struct net_device* dev)
{
struct gfar_private* priv = netdev_priv(dev);
int err;
if(priv->ucc_num == 2)
{
return -1;
}
enable_napi(priv);
/* Initialize a bunch of registers */
init_registers(dev);
gfar_set_mac_address(dev);
err = init_phy(dev);
if(err)
{
disable_napi(priv);
return err;
}
err = startup_gfar(dev);
if(err)
{
disable_napi(priv);
return err;
}
netif_tx_start_all_queues(dev);
device_set_wakeup_enable(&priv->ofdev->dev, priv->wol_en);
priv->opened_ref = 1;
ipstack_hook_get(priv->ucc_num)->hook_init(priv);
return err;
}
static inline struct txfcb* gfar_add_fcb(struct sk_buff* skb)
{
struct txfcb* fcb = (struct txfcb*)skb_push(skb, GMAC_FCB_LEN);
memset(fcb, 0, GMAC_FCB_LEN);
return fcb;
}
static inline void gfar_tx_checksum(struct sk_buff* skb, struct txfcb* fcb)
{
u8 flags = 0;
/* If we're here, it's a IP packet with a TCP or UDP
* payload. We set it to checksum, using a pseudo-header
* we provide
*/
flags = TXFCB_DEFAULT;
/* Tell the controller what the protocol is */
/* And provide the already calculated phcs */
if(!((ip_hdr(skb)->frag_off) & htons(IP_MF | IP_OFFSET)))
{
/* If not fragmented packet */
if(ip_hdr(skb)->protocol == IPPROTO_UDP)
{
if(udp_hdr(skb)->check)
{
fcb->phcs = udp_hdr(skb)->check;
flags |= TXFCB_NPH;
}
flags |= TXFCB_UDP | TXFCB_TUP | TXFCB_CTU;
}
else if(ip_hdr(skb)->protocol == IPPROTO_TCP)
{
if(tcp_hdr(skb)->check)
{
flags |= TXFCB_NPH;
fcb->phcs = tcp_hdr(skb)->check;
}
flags |= TXFCB_TUP | TXFCB_CTU;
}
}
/* l3os is the distance between the start of the
* frame (skb->data) and the start of the IP hdr.
* l4os is the distance between the start of the
* l3 hdr and the l4 hdr */
fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
fcb->l4os = skb_network_header_len(skb);
fcb->flags = flags;
}
void inline gfar_tx_vlan(struct sk_buff* skb, struct txfcb* fcb)
{
fcb->flags |= TXFCB_VLN;
fcb->vlctl = vlan_tx_tag_get(skb);
}
static inline struct txbd8* skip_txbd(struct txbd8* bdp, int stride,
struct txbd8* base, int ring_size)
{
struct txbd8* new_bd = bdp + stride;
return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
}
static inline struct txbd8* next_txbd(struct txbd8* bdp, struct txbd8* base,
int ring_size)
{
return skip_txbd(bdp, 1, base, ring_size);
}
static int gfar_start_xmit(struct sk_buff* skb, struct net_device* dev)
{
struct gfar_private* priv = netdev_priv(dev);
return ipstack_hook_get(priv->ucc_num)->xmit_filter(skb);
}
/* This is called by the kernel when a frame is ready for transmission. */
/* It is pointed to by the dev->hard_start_xmit function pointer */
#if 0
static int gfar_start_xmit(struct sk_buff* skb, struct net_device* dev)
{
struct gfar_private* priv = netdev_priv(dev);
struct gfar_priv_tx_q* tx_queue = NULL;
struct netdev_queue* txq;
struct gfar __iomem* regs = NULL;
struct txfcb* fcb = NULL;
struct txbd8* txbdp, *txbdp_start, *base;
u32 lstatus;
int i, rq = 0;
u32 bufaddr;
unsigned long flags;
unsigned int nr_frags, length;
rq = skb->queue_mapping;
tx_queue = priv->tx_queue[rq];
txq = netdev_get_tx_queue(dev, rq);
base = tx_queue->tx_bd_base;
regs = tx_queue->grp->regs;
/* make space for additional header when fcb is needed */
if(((skb->ip_summed == CHECKSUM_PARTIAL) ||
(priv->vlgrp && vlan_tx_tag_present(skb))) &&
(skb_headroom(skb) < GMAC_FCB_LEN))
{
struct sk_buff* skb_new;
skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
if(!skb_new)
{
dev->stats.tx_errors++;
kfree_skb(skb);
return NETDEV_TX_OK;
}
kfree_skb(skb);
skb = skb_new;
}
if(skb_shinfo(skb)->gso_size)
{
return gfar_tso(skb, dev, rq);
}
/* total number of fragments in the SKB */
nr_frags = skb_shinfo(skb)->nr_frags;
/* check if there is space to queue this packet */
if((nr_frags + 1) > tx_queue->num_txbdfree)
{
/* no space, stop the queue */
netif_tx_stop_queue(txq);
dev->stats.tx_fifo_errors++;
return NETDEV_TX_BUSY;
}
/* Update transmit stats */
txq->tx_bytes += skb->len;
txq->tx_packets ++;
txbdp = txbdp_start = tx_queue->cur_tx;
if(nr_frags == 0)
{
lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
}
else
{
/* Place the fragment addresses and lengths into the TxBDs */
for(i = 0; i < nr_frags; i++)
{
/* Point at the next BD, wrapping as needed */
txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
length = skb_shinfo(skb)->frags[i].size;
lstatus = txbdp->lstatus | length |
BD_LFLAG(TXBD_READY);
/* Handle the last BD specially */
if(i == nr_frags - 1)
{
lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
}
bufaddr = dma_map_page(&priv->ofdev->dev,
skb_shinfo(skb)->frags[i].page,
skb_shinfo(skb)->frags[i].page_offset,
length,
DMA_TO_DEVICE);
/* set the TxBD length and buffer pointer */
txbdp->bufPtr = bufaddr;
txbdp->lstatus = lstatus;
}
lstatus = txbdp_start->lstatus;
}
/* Set up checksumming */
if(CHECKSUM_PARTIAL == skb->ip_summed)
{
fcb = gfar_add_fcb(skb);
lstatus |= BD_LFLAG(TXBD_TOE);
gfar_tx_checksum(skb, fcb);
}
if(priv->vlgrp && vlan_tx_tag_present(skb))
{
if(unlikely(NULL == fcb))
{
fcb = gfar_add_fcb(skb);
lstatus |= BD_LFLAG(TXBD_TOE);
}
gfar_tx_vlan(skb, fcb);
}
if(priv->ptimer_present)
{
/* Enable ptp flag so that Tx time stamping happens */
if(gfar_ptp_do_txstamp(skb))
{
if(fcb == NULL)
{
fcb = gfar_add_fcb(skb);
}
fcb->ptp = 0x01;
lstatus |= BD_LFLAG(TXBD_TOE);
}
}
/* setup the TxBD length and buffer pointer for the first BD */
txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
/*
* We can work in parallel with gfar_clean_tx_ring(), except
* when modifying num_txbdfree. Note that we didn't grab the lock
* when we were reading the num_txbdfree and checking for available
* space, that's because outside of this function it can only grow,
* and once we've got needed space, it cannot suddenly disappear.
*
* The lock also protects us from gfar_error(), which can modify
* regs->tstat and thus retrigger the transfers, which is why we
* also must grab the lock before setting ready bit for the first
* to be transmitted BD.
*/
spin_lock_irqsave(&tx_queue->txlock, flags);
/*
* The powerpc-specific eieio() is used, as wmb() has too strong
* semantics (it requires synchronization between cacheable and
* uncacheable mappings, which eieio doesn't provide and which we
* don't need), thus requiring a more expensive sync instruction. At
* some point, the set of architecture-independent barrier functions
* should be expanded to include weaker barriers.
*/
eieio();
txbdp_start->lstatus = lstatus;
eieio(); /* force lstatus write before tx_skbuff */
tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
/* Update the current skb pointer to the next entry we will use
* (wrapping if necessary) */
tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
TX_RING_MOD_MASK(tx_queue->tx_ring_size);
tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
/* reduce TxBD free count */
tx_queue->num_txbdfree -= (nr_frags + 1);
/* If the next BD still needs to be cleaned up, then the bds
are full. We need to tell the kernel to stop sending us stuff. */
if(!tx_queue->num_txbdfree)
{
netif_stop_subqueue(dev, tx_queue->qindex);
dev->stats.tx_fifo_errors++;
}
dev->trans_start = jiffies;
/* Tell the DMA to go go go */
gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
/* Unlock priv */
spin_unlock_irqrestore(&tx_queue->txlock, flags);
return NETDEV_TX_OK;
}
#endif
/* Stops the kernel queue, and halts the controller */
static int gfar_close(struct net_device* dev)
{
struct gfar_private* priv = netdev_priv(dev);
disable_napi(priv);
cancel_work_sync(&priv->reset_task);
stop_gfar(dev);
priv->opened_ref = 0;
ipstack_hook_get(priv->ucc_num)->hook_exit(priv);
/* Disconnect from the PHY */
phy_disconnect(priv->phydev);
priv->phydev = NULL;
netif_tx_stop_all_queues(dev);
return 0;
}
/* Changes the mac address if the controller is not running. */
static int gfar_set_mac_address(struct net_device* dev)
{
gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
return 0;
}
static int gfar_change_mtu(struct net_device* dev, int new_mtu)
{
int tempsize, tempval;
struct gfar_private* priv = netdev_priv(dev);
struct gfar __iomem* regs = priv->gfargrp[0].regs;
int oldsize = priv->rx_buffer_size;
int frame_size = new_mtu + ETH_HLEN;
if((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE))
{
if(netif_msg_drv(priv))
printk(KERN_ERR "%s: Invalid MTU setting\n",
dev->name);
return -EINVAL;
}
if(gfar_uses_fcb(priv))
{
frame_size += GMAC_FCB_LEN;
}
frame_size += priv->padding;
tempsize =
(frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
INCREMENTAL_BUFFER_SIZE;
/* Only stop and start the controller if it isn't already
* stopped, and we changed something */
if((oldsize != tempsize) && (dev->flags & IFF_UP))
{
stop_gfar(dev);
}
priv->rx_buffer_size = tempsize;
dev->mtu = new_mtu;
gfar_write(&regs->mrblr, priv->rx_buffer_size);
gfar_write(&regs->maxfrm, priv->rx_buffer_size);
/* If the mtu is larger than the max size for standard
* ethernet frames (ie, a jumbo frame), then set maccfg2
* to allow huge frames, and to check the length */
tempval = gfar_read(&regs->maccfg2);
if(priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
{
tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
}
else
{
tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
}
gfar_write(&regs->maccfg2, tempval);
if((oldsize != tempsize) && (dev->flags & IFF_UP))
{
startup_gfar(dev);
}
return 0;
}
/* gfar_reset_task gets scheduled when a packet has not been
* transmitted after a set amount of time.
* For now, assume that clearing out all the structures, and
* starting over will fix the problem.
*/
static void gfar_reset_task(struct work_struct* work)
{
struct gfar_private* priv = container_of(work, struct gfar_private,
reset_task);
struct net_device* dev = priv->ndev;
if(dev->flags & IFF_UP)
{
netif_tx_stop_all_queues(dev);
stop_gfar(dev);
startup_gfar(dev);
netif_tx_start_all_queues(dev);
}
netif_tx_schedule_all(dev);
}
static void gfar_timeout(struct net_device* dev)
{
struct gfar_private* priv = netdev_priv(dev);
dev->stats.tx_errors++;
schedule_work(&priv->reset_task);
}
/* Interrupt Handler for Transmit complete */
static int gfar_clean_tx_ring(struct gfar_priv_tx_q* tx_queue,
int tx_work_limit)
{
struct net_device* dev = tx_queue->dev;
struct gfar_private* priv = netdev_priv(dev);
struct gfar_priv_rx_q* rx_queue = NULL;
struct txbd8* bdp;
struct txbd8* lbdp = NULL;
struct txbd8* base = tx_queue->tx_bd_base;
struct sk_buff* skb;
int skb_dirtytx;
int tx_ring_size = tx_queue->tx_ring_size;
int frags = 0;
int i;
int howmany = 0;
u32 lstatus;
int isRtpBuf = 0;
rx_queue = priv->rx_queue[tx_queue->qindex];
bdp = tx_queue->dirty_tx;
skb_dirtytx = tx_queue->skb_dirtytx;
while((skb = tx_queue->tx_skbuff[skb_dirtytx]))
{
struct ipstack_hook_t* pHook = ipstack_hook_get(priv->ucc_num);
isRtpBuf = pHook->is_rtp_kbuf((char*)skb, priv->ucc_num);
if(isRtpBuf == 1)
{
frags = 0;
}
else
{
frags = skb_shinfo(skb)->nr_frags;
}
lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
lstatus = lbdp->lstatus;
/* Only clean completed frames */
if((lstatus & BD_LFLAG(TXBD_READY)) &&
(lstatus & BD_LENGTH_MASK))
{
break;
}
if(isRtpBuf == 0)
{
dma_unmap_single(&priv->ofdev->dev,
bdp->bufPtr,
bdp->length,
DMA_TO_DEVICE);
}
bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
bdp = next_txbd(bdp, base, tx_ring_size);
for(i = 0; i < frags; i++)
{
dma_unmap_page(&priv->ofdev->dev,
bdp->bufPtr,
bdp->length,
DMA_TO_DEVICE);
bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
bdp = next_txbd(bdp, base, tx_ring_size);
}
if(isRtpBuf == 1)
{
struct rtp_tx_buf_t* current_ktx = (struct rtp_tx_buf_t*)skb;
current_ktx->status = 0;
}
else
{
dev_kfree_skb_any(skb);
}
tx_queue->tx_skbuff[skb_dirtytx] = NULL;
skb_dirtytx = (skb_dirtytx + 1) &
TX_RING_MOD_MASK(tx_ring_size);
howmany++;
tx_queue->num_txbdfree += frags + 1;
}
/* If we freed a buffer, we can restart transmission, if necessary */
if(__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
{
netif_wake_subqueue(dev, tx_queue->qindex);
}
/* Update dirty indicators */
tx_queue->skb_dirtytx = skb_dirtytx;
tx_queue->dirty_tx = bdp;
return howmany;
}
static void gfar_schedule_cleanup_rx(struct gfar_priv_grp* gfargrp)
{
unsigned long flags;
u32 imask = 0;
if(napi_schedule_prep(&gfargrp->napi_rx))
{
spin_lock_irqsave(&gfargrp->grplock, flags);
imask = gfar_read(&gfargrp->regs->imask);
imask = imask & IMASK_RX_DISABLED;
gfar_write(&gfargrp->regs->imask, imask);
spin_unlock_irqrestore(&gfargrp->grplock, flags);
__napi_schedule(&gfargrp->napi_rx);
}
else
{
gfar_write(&gfargrp->regs->ievent, IEVENT_RX_MASK);
}
}
static void gfar_schedule_cleanup_tx(struct gfar_priv_grp* gfargrp)
{
unsigned long flags;
u32 imask = 0;
spin_lock_irqsave(&gfargrp->grplock, flags);
if(napi_schedule_prep(&gfargrp->napi_tx))
{
imask = gfar_read(&gfargrp->regs->imask);
imask = imask & IMASK_TX_DISABLED;
gfar_write(&gfargrp->regs->imask, imask);
__napi_schedule(&gfargrp->napi_tx);
}
else
{
gfar_write(&gfargrp->regs->ievent, IEVENT_TX_MASK);
}
spin_unlock_irqrestore(&gfargrp->grplock, flags);
}
static void gfar_new_rxbdp(struct gfar_priv_rx_q* rx_queue, struct rxbd8* bdp,
struct sk_buff* skb)
{
struct net_device* dev = rx_queue->dev;
struct gfar_private* priv = netdev_priv(dev);
dma_addr_t buf;
buf = dma_map_single(&priv->ofdev->dev, skb->data,
priv->rx_buffer_size, DMA_FROM_DEVICE);
gfar_init_rxbdp(rx_queue, bdp, buf);
}
/*
* normal new skb routine
*/
struct sk_buff* gfar_new_skb(struct net_device* dev)
{
unsigned int alignamount;
struct gfar_private* priv = netdev_priv(dev);
struct sk_buff* skb = NULL;
skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
if(!skb)
{
return NULL;
}
alignamount = RXBUF_ALIGNMENT -
(((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
/* We need the data buffer to be aligned properly. We will reserve
* as many bytes as needed to align the data properly
* Do only if not already aligned
*/
if(alignamount != RXBUF_ALIGNMENT)
{
skb_reserve(skb, alignamount);
}
GFAR_CB(skb)->alignamount = alignamount;
/* Keep incoming device pointer for recycling */
skb->skb_owner = dev;
return skb;
}
EXPORT_SYMBOL(gfar_new_skb);
static inline void count_errors(unsigned short status, struct net_device* dev)
{
struct gfar_private* priv = netdev_priv(dev);
struct net_device_stats* stats = &dev->stats;
struct gfar_extra_stats* estats = &priv->extra_stats;
/* If the packet was truncated, none of the other errors
* matter */
if(status & RXBD_TRUNCATED)
{
stats->rx_length_errors++;
estats->rx_trunc++;
return;
}
/* Count the errors, if there were any */
if(status & (RXBD_LARGE | RXBD_SHORT))
{
stats->rx_length_errors++;
if(status & RXBD_LARGE)
{
estats->rx_large++;
}
else
{
estats->rx_short++;
}
}
if(status & RXBD_NONOCTET)
{
stats->rx_frame_errors++;
estats->rx_nonoctet++;
}
if(status & RXBD_CRCERR)
{
estats->rx_crcerr++;
stats->rx_crc_errors++;
}
if(status & RXBD_OVERRUN)
{
estats->rx_overrun++;
stats->rx_crc_errors++;
}
}
static inline unsigned long __wk_phy_to_virt(struct net_device* dev,
unsigned long phy)
{
struct gfar_private* priv = netdev_priv(dev);
unsigned long virt, offset;
offset = phy - priv->wk_buf_align_paddr;
virt = priv->wk_buf_align_vaddr + offset;
return virt;
}
/* gfar_process_frame() -- handle one incoming packet if skb
* isn't NULL. */
static int gfar_process_frame(struct net_device* dev, struct sk_buff* skb,
int amount_pull)
{
struct gfar_private* priv = netdev_priv(dev);
struct rxfcb* fcb = NULL;
struct iphdr* iphdr = NULL;
int rtp_flags = 0;
int ret = NET_RX_SUCCESS;
/* fcb is at the beginning if exists */
fcb = (struct rxfcb*)skb->data;
/* Remove the padded bytes, if there are any */
if(amount_pull)
{
int queue_map;
/* If FCB->QT field contains a value > num_rx_queues then
a direct mapping to virtual queues using QT as index will
result in a CRASH, when we are going to free the SKB.
So, need to map the QT value to existing virtual queues only.
using modulo by num_rx_queues.
*/
queue_map = fcb->rq - (priv->num_rx_queues *
(fcb->rq / priv->num_rx_queues));
skb_record_rx_queue(skb, queue_map);
skb_pull(skb, amount_pull);
}
/* Tell the skb what kind of packet this is */
skb->protocol = eth_type_trans(skb, dev);
if(skb->protocol == ETH_P_IP)
{
skb->ip_summed = CHECKSUM_UNNECESSARY;
iphdr = (struct iphdr*)skb->data;
}
if(priv->rx_csum_enable)
{
gfar_rx_checksum(skb, fcb);
}
/* process hook udp rtp packet */
if(iphdr != NULL)
{
if(iphdr->protocol == 17) //is udp
{
struct ipstack_hook_t* pHook = ipstack_hook_get(priv->ucc_num);
if(pHook->do_sock_recv(skb) > 0)
{
/*
skb->data = skb->head + NET_SKB_PAD;
skb->tail = skb->data;
skb->len = 0;
__skb_queue_head(&ugeth->rx_recycle, skb);*/
//dev_kfree_skb_any(skb);
rtp_flags = 1;
}
}
}
/* Send the packet up the stack */
if(rtp_flags == 0)
{
ret = netif_receive_skb(skb);
}
if(NET_RX_DROP == ret)
{
priv->extra_stats.kernel_dropped++;
}
return 0;
}
/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
* until the budget/quota has been reached. Returns the number
* of frames handled
*/
int gfar_clean_rx_ring(struct gfar_priv_rx_q* rx_queue, int rx_work_limit)
{
struct net_device* dev = rx_queue->dev;
struct rxbd8* bdp, *base;
struct sk_buff* skb;
int pkt_len;
int amount_pull;
int howmany = 0;
struct gfar_private* priv = netdev_priv(dev);
/* Get the first full descriptor */
bdp = rx_queue->cur_rx;
base = rx_queue->rx_bd_base;
amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
priv->padding;
while(!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0)))
{
struct sk_buff* newskb = NULL;
rmb();
/* Add another skb for the future */
newskb = gfar_new_skb(dev);
/* rx_skbuff read skb */
skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
priv->rx_buffer_size, DMA_FROM_DEVICE);
if(unlikely(!(bdp->status & RXBD_ERR) &&
bdp->length > priv->rx_buffer_size))
{
bdp->status = RXBD_LARGE;
}
/* We drop the frame if we failed to allocate a new buffer */
if(unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
bdp->status & RXBD_ERR))
{
count_errors(bdp->status, dev);
if(unlikely(!newskb))
{
newskb = skb;
}
else if(skb)
{
dev_kfree_skb_any(skb);
}
}
else
{
/* Increment the number of packets */
rx_queue->stats.rx_packets++;
howmany++;
if(likely(skb))
{
pkt_len = bdp->length - ETH_FCS_LEN;
/* Remove the FCS from the packet length */
skb_put(skb, pkt_len);
rx_queue->stats.rx_bytes += pkt_len;
skb_record_rx_queue(skb, rx_queue->qindex);
if(in_irq() || irqs_disabled())
{
printk("Interrupt problem!\n");
}
gfar_process_frame(dev, skb, amount_pull);
}
else
{
if(netif_msg_rx_err(priv))
printk(KERN_WARNING
"%s: Missing skb!\n", dev->name);
rx_queue->stats.rx_dropped++;
priv->extra_stats.rx_skbmissing++;
}
}
rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
/* Setup the new bdp */
gfar_new_rxbdp(rx_queue, bdp, newskb);
/* Update to the next pointer */
bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
/* update to point at the next skb */
rx_queue->skb_currx =
(rx_queue->skb_currx + 1) &
RX_RING_MOD_MASK(rx_queue->rx_ring_size);
}
/* Update the current rxbd pointer to be the next one */
rx_queue->cur_rx = bdp;
return howmany;
}
static int gfar_poll_tx(struct napi_struct* napi, int budget)
{
struct gfar_priv_grp* gfargrp = container_of(napi, struct gfar_priv_grp,
napi_tx);
struct gfar_private* priv = gfargrp->priv;
struct gfar __iomem* regs = gfargrp->regs;
struct gfar_priv_tx_q* tx_queue = NULL;
int budget_per_queue = 0, tx_cleaned = 0, i = 0, num_act_qs = 0;
int tx_cleaned_per_queue = 0, mask = TSTAT_TXF0_MASK;
unsigned long flags;
u32 imask, tstat, tstat_local;
tstat = gfar_read(&regs->tstat);
tstat = tstat & TSTAT_TXF_MASK_ALL;
tstat_local = tstat;
while(tstat_local)
{
num_act_qs++;
tstat_local &= (tstat_local - 1);
}
budget_per_queue = budget / num_act_qs;
gfar_write(&regs->ievent, IEVENT_TX_MASK);
for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues)
{
mask = mask >> i;
if(tstat & mask)
{
tx_queue = priv->tx_queue[i];
spin_lock_irqsave(&tx_queue->txlock, flags);
tx_cleaned_per_queue =
gfar_clean_tx_ring(tx_queue,
budget_per_queue);
spin_unlock_irqrestore(&tx_queue->txlock,
flags);
tx_cleaned += tx_cleaned_per_queue;
tx_cleaned_per_queue = 0;
}
mask = TSTAT_TXF0_MASK;
}
budget = (num_act_qs * DEFAULT_TX_RING_SIZE) + 1;
if(tx_cleaned < budget)
{
napi_complete(napi);
spin_lock_irq(&gfargrp->grplock);
imask = gfar_read(&regs->imask);
imask |= IMASK_DEFAULT_TX;
gfar_write(&regs->ievent, IEVENT_TX_MASK);
gfar_write(&regs->imask, imask);
spin_unlock_irq(&gfargrp->grplock);
gfar_configure_tx_coalescing(priv, gfargrp->tx_bit_map);
return 1;
}
return tx_cleaned;
}
static int gfar_poll_rx(struct napi_struct* napi, int budget)
{
struct gfar_priv_grp* gfargrp = container_of(napi,
struct gfar_priv_grp, napi_rx);
struct gfar_private* priv = gfargrp->priv;
struct gfar __iomem* regs = gfargrp->regs;
struct gfar_priv_rx_q* rx_queue = NULL;
int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
int num_act_qs = 0, mask = RSTAT_RXF0_MASK, i, napi_done = 1;
u32 imask, rstat, rstat_local, rstat_rxf, rstat_rhalt;
u32 ievent;
rstat = gfar_read(&regs->rstat);
rstat_rxf = (rstat & RSTAT_RXF_ALL_MASK);
rstat_rxf |= gfargrp->rstat_prev;
rstat_local = rstat_rxf;
while(rstat_local)
{
num_act_qs++;
rstat_local &= (rstat_local - 1);
}
budget_per_queue = budget / num_act_qs;
gfar_write(&regs->rstat, rstat_rxf);
gfar_write(&gfargrp->regs->ievent, IEVENT_RX_MASK);
gfargrp->rstat_prev = rstat_rxf;
for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues)
{
mask = RSTAT_RXF0_MASK >> i;
rstat_rhalt = RSTAT_CLEAR_RHALT >> i;
if(rstat_rxf & mask)
{
rx_queue = priv->rx_queue[i];
rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
budget_per_queue);
rx_cleaned += rx_cleaned_per_queue;
if(rx_cleaned_per_queue >= budget_per_queue)
{
napi_done = 0;
}
else
{
gfargrp->rstat_prev &= ~(mask);
gfar_write(&regs->rstat, rstat_rhalt);
}
}
}
if(napi_done)
{
napi_complete(napi);
gfar_configure_rx_coalescing(priv, gfargrp->rx_bit_map);
spin_lock_irq(&gfargrp->grplock);
imask = gfar_read(&regs->imask);
imask |= IMASK_DEFAULT_RX;
gfar_write(&regs->imask, imask);
ievent = gfar_read(&regs->ievent);
ievent &= IEVENT_RX_MASK;
if(ievent)
{
imask = imask & IMASK_RX_DISABLED;
gfar_write(&gfargrp->regs->imask, imask);
gfar_write(&gfargrp->regs->ievent, IEVENT_RX_MASK);
napi_schedule(napi);
}
spin_unlock_irq(&gfargrp->grplock);
}
return rx_cleaned;
}
/* Called every time the controller might need to be made
* aware of new link state. The PHY code conveys this
* information through variables in the phydev structure, and this
* function converts those variables into the appropriate
* register values, and can bring down the device if needed.
*/
static void adjust_link(struct net_device* dev)
{
struct gfar_private* priv = netdev_priv(dev);
struct gfar __iomem* regs = priv->gfargrp[0].regs;
unsigned long flags;
struct phy_device* phydev = priv->phydev;
int new_state = 0;
local_irq_save(flags);
lock_tx_qs(priv);
if(phydev->link)
{
u32 tempval = gfar_read(&regs->maccfg2);
u32 ecntrl = gfar_read(&regs->ecntrl);
/* Now we make sure that we can be in full duplex mode.
* If not, we operate in half-duplex mode. */
if(phydev->duplex != priv->oldduplex)
{
new_state = 1;
if(!(phydev->duplex))
{
tempval &= ~(MACCFG2_FULL_DUPLEX);
}
else
{
tempval |= MACCFG2_FULL_DUPLEX;
}
priv->oldduplex = phydev->duplex;
}
if(phydev->speed != priv->oldspeed)
{
new_state = 1;
switch(phydev->speed)
{
case 1000:
tempval =
((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
ecntrl &= ~(ECNTRL_R100);
break;
case 100:
case 10:
tempval =
((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
/* Reduced mode distinguishes
* between 10 and 100 */
if(phydev->speed == SPEED_100)
{
ecntrl |= ECNTRL_R100;
}
else
{
ecntrl &= ~(ECNTRL_R100);
}
break;
default:
if(netif_msg_link(priv))
printk(KERN_WARNING
"%s: Ack! Speed (%d) is not 10/100/1000!\n",
dev->name, phydev->speed);
break;
}
priv->oldspeed = phydev->speed;
}
gfar_write(&regs->maccfg2, tempval);
gfar_write(&regs->ecntrl, ecntrl);
if(!priv->oldlink)
{
new_state = 1;
priv->oldlink = 1;
}
}
else if(priv->oldlink)
{
new_state = 1;
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
}
if(new_state && netif_msg_link(priv))
{
phy_print_status(phydev);
}
unlock_tx_qs(priv);
local_irq_restore(flags);
}
/* Update the hash table based on the current list of multicast
* addresses we subscribe to. Also, change the promiscuity of
* the device based on the flags (this function is called
* whenever dev->flags is changed */
static void gfar_set_multi(struct net_device* dev)
{
struct netdev_hw_addr* ha;
struct gfar_private* priv = netdev_priv(dev);
struct gfar __iomem* regs = priv->gfargrp[0].regs;
u32 tempval;
if(dev->flags & IFF_PROMISC)
{
/* Set RCTRL to PROM */
tempval = gfar_read(&regs->rctrl);
tempval |= RCTRL_PROM;
gfar_write(&regs->rctrl, tempval);
}
else
{
/* Set RCTRL to not PROM */
tempval = gfar_read(&regs->rctrl);
tempval &= ~(RCTRL_PROM);
gfar_write(&regs->rctrl, tempval);
}
if(dev->flags & IFF_ALLMULTI)
{
/* Set the hash to rx all multicast frames */
gfar_write(&regs->igaddr0, 0xffffffff);
gfar_write(&regs->igaddr1, 0xffffffff);
gfar_write(&regs->igaddr2, 0xffffffff);
gfar_write(&regs->igaddr3, 0xffffffff);
gfar_write(&regs->igaddr4, 0xffffffff);
gfar_write(&regs->igaddr5, 0xffffffff);
gfar_write(&regs->igaddr6, 0xffffffff);
gfar_write(&regs->igaddr7, 0xffffffff);
gfar_write(&regs->gaddr0, 0xffffffff);
gfar_write(&regs->gaddr1, 0xffffffff);
gfar_write(&regs->gaddr2, 0xffffffff);
gfar_write(&regs->gaddr3, 0xffffffff);
gfar_write(&regs->gaddr4, 0xffffffff);
gfar_write(&regs->gaddr5, 0xffffffff);
gfar_write(&regs->gaddr6, 0xffffffff);
gfar_write(&regs->gaddr7, 0xffffffff);
}
else
{
int em_num;
int idx;
/* zero out the hash */
gfar_write(&regs->igaddr0, 0x0);
gfar_write(&regs->igaddr1, 0x0);
gfar_write(&regs->igaddr2, 0x0);
gfar_write(&regs->igaddr3, 0x0);
gfar_write(&regs->igaddr4, 0x0);
gfar_write(&regs->igaddr5, 0x0);
gfar_write(&regs->igaddr6, 0x0);
gfar_write(&regs->igaddr7, 0x0);
gfar_write(&regs->gaddr0, 0x0);
gfar_write(&regs->gaddr1, 0x0);
gfar_write(&regs->gaddr2, 0x0);
gfar_write(&regs->gaddr3, 0x0);
gfar_write(&regs->gaddr4, 0x0);
gfar_write(&regs->gaddr5, 0x0);
gfar_write(&regs->gaddr6, 0x0);
gfar_write(&regs->gaddr7, 0x0);
/* If we have extended hash tables, we need to
* clear the exact match registers to prepare for
* setting them */
if(priv->extended_hash)
{
em_num = GFAR_EM_NUM + 1;
gfar_clear_exact_match(dev);
idx = 1;
}
else
{
idx = 0;
em_num = 0;
}
if(netdev_mc_empty(dev))
{
return;
}
/* Parse the list, and set the appropriate bits */
netdev_for_each_mc_addr(ha, dev)
{
if(idx < em_num)
{
gfar_set_mac_for_addr(dev, idx, ha->addr);
idx++;
}
else
{
gfar_set_hash_for_addr(dev, ha->addr);
}
}
}
}
/* Clears each of the exact match registers to zero, so they
* don't interfere with normal reception */
static void gfar_clear_exact_match(struct net_device* dev)
{
int idx;
u8 zero_arr[MAC_ADDR_LEN] = {0, 0, 0, 0, 0, 0};
for(idx = 1; idx < GFAR_EM_NUM + 1; idx++)
{
gfar_set_mac_for_addr(dev, idx, (u8*)zero_arr);
}
}
/* Set the appropriate hash bit for the given addr */
/* The algorithm works like so:
* 1) Take the Destination Address (ie the multicast address), and
* do a CRC on it (little endian), and reverse the bits of the
* result.
* 2) Use the 8 most significant bits as a hash into a 256-entry
* table. The table is controlled through 8 32-bit registers:
* gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
* gaddr7. This means that the 3 most significant bits in the
* hash index which gaddr register to use, and the 5 other bits
* indicate which bit (assuming an IBM numbering scheme, which
* for PowerPC (tm) is usually the case) in the register holds
* the entry. */
static void gfar_set_hash_for_addr(struct net_device* dev, u8* addr)
{
u32 tempval;
struct gfar_private* priv = netdev_priv(dev);
u32 result = ether_crc(MAC_ADDR_LEN, addr);
int width = priv->hash_width;
u8 whichbit = (result >> (32 - width)) & 0x1f;
u8 whichreg = result >> (32 - width + 5);
u32 value = (1 << (31 - whichbit));
tempval = gfar_read(priv->hash_regs[whichreg]);
tempval |= value;
gfar_write(priv->hash_regs[whichreg], tempval);
}
/* There are multiple MAC Address register pairs on some controllers
* This function sets the numth pair to a given address
*/
static void gfar_set_mac_for_addr(struct net_device* dev, int num, u8* addr)
{
struct gfar_private* priv = netdev_priv(dev);
struct gfar __iomem* regs = priv->gfargrp[0].regs;
int idx;
char tmpbuf[MAC_ADDR_LEN];
u32 tempval;
u32 __iomem* macptr = &regs->macstnaddr1;
macptr += num * 2;
/* Now copy it into the mac registers backwards, cuz */
/* little endian is silly */
for(idx = 0; idx < MAC_ADDR_LEN; idx++)
{
tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
}
gfar_write(macptr, *((u32*)(tmpbuf)));
tempval = *((u32*)(tmpbuf + 4));
gfar_write(macptr + 1, tempval);
}
static struct of_device_id gfar_match[] =
{
{
.type = "network",
.compatible = "gianfar",
},
{
.compatible = "fsl,etsec2",
},
{},
};
MODULE_DEVICE_TABLE(of, gfar_match);
/* Structure for a device driver */
static struct of_platform_driver gfar_driver =
{
.driver = {
.name = "fsl-gianfar",
.owner = THIS_MODULE,
.pm = GFAR_PM_OPS,
.of_match_table = gfar_match,
},
.probe = gfar_probe,
.remove = gfar_remove,
};
static int gfar_hook_xmit(void* pk_addr, int pk_type, struct net_device* dev)
{
struct gfar_private* priv = netdev_priv(dev);
struct gfar_priv_tx_q* tx_queue = NULL;
struct netdev_queue* txq;
struct gfar __iomem* regs = NULL;
struct txfcb* fcb = NULL;
struct txbd8* txbdp, *txbdp_start, *base;
u32 lstatus;
int i, rq = 0;
u32 bufaddr;
unsigned long flags;
unsigned int nr_frags = 0, length = 0;
struct sk_buff* skb = NULL;
struct rtp_tx_buf_t* current_ktx = NULL;
uint8_t* data = 0;
uint16_t len = 0;
if(pk_type == RTP_BUFF_TYPE)
{
current_ktx = (struct rtp_tx_buf_t*)pk_addr;
data = current_ktx->data;
len = current_ktx->len;
rq = 0;
}
else
{
skb = (struct sk_buff*)pk_addr;
data = skb->data;
len = skb->len;
rq = skb->queue_mapping;
}
tx_queue = priv->tx_queue[rq];
txq = netdev_get_tx_queue(dev, rq);
base = tx_queue->tx_bd_base;
regs = tx_queue->grp->regs;
if(pk_type == SKB_BUFF_TYPE)
{
/* make space for additional header when fcb is needed */
if(skb->ip_summed == CHECKSUM_PARTIAL)
{
struct sk_buff* skb_new;
skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
if(!skb_new)
{
dev->stats.tx_errors++;
kfree_skb(skb);
return NETDEV_TX_OK;
}
kfree_skb(skb);
skb = skb_new;
}
/* total number of fragments in the SKB */
nr_frags = skb_shinfo(skb)->nr_frags;
}
/* check if there is space to queue this packet */
if((nr_frags + 1) > tx_queue->num_txbdfree)
{
/* no space, stop the queue */
netif_tx_stop_queue(txq);
dev->stats.tx_fifo_errors++;
return NETDEV_TX_BUSY;
}
/* Update transmit stats */
if(pk_type == RTP_BUFF_TYPE)
{
txq->tx_bytes += len;
}
else
{
txq->tx_bytes += skb->len;
}
txq->tx_packets ++;
txbdp = txbdp_start = tx_queue->cur_tx;
if(nr_frags == 0)
{
lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
}
else
{
/* Place the fragment addresses and lengths into the TxBDs */
for(i = 0; i < nr_frags; i++)
{
/* Point at the next BD, wrapping as needed */
txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
length = skb_shinfo(skb)->frags[i].size;
lstatus = txbdp->lstatus | length |
BD_LFLAG(TXBD_READY);
/* Handle the last BD specially */
if(i == nr_frags - 1)
{
lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
}
bufaddr = dma_map_page(&priv->ofdev->dev,
skb_shinfo(skb)->frags[i].page,
skb_shinfo(skb)->frags[i].page_offset,
length,
DMA_TO_DEVICE);
/* set the TxBD length and buffer pointer */
txbdp->bufPtr = bufaddr;
txbdp->lstatus = lstatus;
}
lstatus = txbdp_start->lstatus;
}
/* Set up checksumming */
if(pk_type == SKB_BUFF_TYPE)
{
if(CHECKSUM_PARTIAL == skb->ip_summed)
{
fcb = gfar_add_fcb(skb);
lstatus |= BD_LFLAG(TXBD_TOE);
gfar_tx_checksum(skb, fcb);
}
/* setup the TxBD length and buffer pointer for the first BD */
txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
}
else
{
//fcb = (struct txfcb*)current_ktx->fcb;
lstatus |= BD_LFLAG(TXBD_TOE);
//fcb->flags = TXFCB_DEFAULT | TXFCB_UDP | TXFCB_TUP | TXFCB_CTU;
//fcb->l3os = 14;
//fcb->l4os = 20;
/* setup the TxBD length and buffer pointer for the first BD */
txbdp_start->bufPtr = virt_to_phys(current_ktx->fcb);
lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | (len + GMAC_FCB_LEN);
}
/*
* We can work in parallel with gfar_clean_tx_ring(), except
* when modifying num_txbdfree. Note that we didn't grab the lock
* when we were reading the num_txbdfree and checking for available
* space, that's because outside of this function it can only grow,
* and once we've got needed space, it cannot suddenly disappear.
*
* The lock also protects us from gfar_error(), which can modify
* regs->tstat and thus retrigger the transfers, which is why we
* also must grab the lock before setting ready bit for the first
* to be transmitted BD.
*/
spin_lock_irqsave(&tx_queue->txlock, flags);
/*
* The powerpc-specific eieio() is used, as wmb() has too strong
* semantics (it requires synchronization between cacheable and
* uncacheable mappings, which eieio doesn't provide and which we
* don't need), thus requiring a more expensive sync instruction. At
* some point, the set of architecture-independent barrier functions
* should be expanded to include weaker barriers.
*/
eieio();
txbdp_start->lstatus = lstatus;
eieio(); /* force lstatus write before tx_skbuff */
if(pk_type == SKB_BUFF_TYPE)
{
tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
}
else
{
/* mask the send rtp buf */
tx_queue->tx_skbuff[tx_queue->skb_curtx] = (struct sk_buff*)current_ktx;
}
/* Update the current skb pointer to the next entry we will use
* (wrapping if necessary) */
tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
TX_RING_MOD_MASK(tx_queue->tx_ring_size);
tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
/* reduce TxBD free count */
tx_queue->num_txbdfree -= (nr_frags + 1);
/* If the next BD still needs to be cleaned up, then the bds
are full. We need to tell the kernel to stop sending us stuff. */
if(!tx_queue->num_txbdfree)
{
netif_stop_subqueue(dev, tx_queue->qindex);
dev->stats.tx_fifo_errors++;
}
dev->trans_start = jiffies;
/* Tell the DMA to go go go */
gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
/* Unlock priv */
spin_unlock_irqrestore(&tx_queue->txlock, flags);
return NETDEV_TX_OK;
}
void ipstack_hook_register(struct ipstack_hook_t* p)
{
p->hook_xmit = gfar_hook_xmit;
}
EXPORT_SYMBOL(ipstack_hook_register);
void ipstack_hook_unregister(int i)
{
ipstack_hook_get(i)->hook_xmit = NULL;
}
EXPORT_SYMBOL(ipstack_hook_unregister);
void gfar_netpoll(struct gfar_private* priv)
{
int i = 0;
for(i = 0; i < priv->num_grps; i++)
{
gfar_schedule_cleanup_rx(&priv->gfargrp[i]);
gfar_schedule_cleanup_tx(&priv->gfargrp[i]);
}
}
EXPORT_SYMBOL(gfar_netpoll);
static int __init gfar_init(void)
{
int i = 0;
printk("Gianfar Build:%s(%s)\n", __DATE__, __TIME__);
for(i = 0; i < UMB_MAX_GETH; i++)
{
ipstack_hook_register(ipstack_hook_get(i));
}
ipstack_hook_get(0)->gptimer_init(1);
return of_register_platform_driver(&gfar_driver);
}
static void __exit gfar_exit(void)
{
int i = 0;
for(i = 0; i < UMB_MAX_GETH; i++)
{
ipstack_hook_get(i)->gptimer_exit();
ipstack_hook_unregister(i);
}
of_unregister_platform_driver(&gfar_driver);
}
module_init(gfar_init);
module_exit(gfar_exit);