/* * Freescale General-purpose Timers Module * * Copyright (c) Freescale Semicondutor, Inc. 2006. * Shlomi Gridish * Jerry Huang * Copyright (c) MontaVista Software, Inc. 2008. * Anton Vorontsov * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include #include #include #include #include #include #include #include #include #define GTCFR_STP(x) ((x) & 1 ? 1 << 5 : 1 << 1) #define GTCFR_RST(x) ((x) & 1 ? 1 << 4 : 1 << 0) #define GTMDR_ICLK_MASK (3 << 1) #define GTMDR_ICLK_ICAS (0 << 1) #define GTMDR_ICLK_ICLK (1 << 1) #define GTMDR_ICLK_SLGO (2 << 1) #define GTMDR_FRR (1 << 3) #define GTMDR_ORI (1 << 4) #define GTMDR_SPS(x) ((x) << 8) struct gtm_timers_regs { u8 gtcfr1; /* Timer 1, Timer 2 global config register */ u8 res0[0x3]; u8 gtcfr2; /* Timer 3, timer 4 global config register */ u8 res1[0xB]; __be16 gtmdr1; /* Timer 1 mode register */ __be16 gtmdr2; /* Timer 2 mode register */ __be16 gtrfr1; /* Timer 1 reference register */ __be16 gtrfr2; /* Timer 2 reference register */ __be16 gtcpr1; /* Timer 1 capture register */ __be16 gtcpr2; /* Timer 2 capture register */ __be16 gtcnr1; /* Timer 1 counter */ __be16 gtcnr2; /* Timer 2 counter */ __be16 gtmdr3; /* Timer 3 mode register */ __be16 gtmdr4; /* Timer 4 mode register */ __be16 gtrfr3; /* Timer 3 reference register */ __be16 gtrfr4; /* Timer 4 reference register */ __be16 gtcpr3; /* Timer 3 capture register */ __be16 gtcpr4; /* Timer 4 capture register */ __be16 gtcnr3; /* Timer 3 counter */ __be16 gtcnr4; /* Timer 4 counter */ __be16 gtevr1; /* Timer 1 event register */ __be16 gtevr2; /* Timer 2 event register */ __be16 gtevr3; /* Timer 3 event register */ __be16 gtevr4; /* Timer 4 event register */ __be16 gtpsr1; /* Timer 1 prescale register */ __be16 gtpsr2; /* Timer 2 prescale register */ __be16 gtpsr3; /* Timer 3 prescale register */ __be16 gtpsr4; /* Timer 4 prescale register */ u8 res2[0x40]; } __attribute__((packed)); struct gtm { unsigned int clock; struct gtm_timers_regs __iomem* regs; struct gtm_timer timers[4]; spinlock_t lock; struct list_head list_node; }; static LIST_HEAD(gtms); /** * gtm_get_timer - request GTM timer to use it with the rest of GTM API * Context: non-IRQ * * This function reserves GTM timer for later use. It returns gtm_timer * structure to use with the rest of GTM API, you should use timer->irq * to manage timer interrupt. */ struct gtm_timer* gtm_get_timer16(void) { struct gtm* gtm = NULL; int i; list_for_each_entry(gtm, >ms, list_node) { spin_lock_irq(>m->lock); for(i = 0; i < ARRAY_SIZE(gtm->timers); i++) { if(!gtm->timers[i].requested) { gtm->timers[i].requested = true; spin_unlock_irq(>m->lock); return >m->timers[i]; } } spin_unlock_irq(>m->lock); } if(gtm) { return ERR_PTR(-EBUSY); } return ERR_PTR(-ENODEV); } EXPORT_SYMBOL(gtm_get_timer16); /** * gtm_get_specific_timer - request specific GTM timer * @gtm: specific GTM, pass here GTM's device_node->data * @timer: specific timer number, Timer1 is 0. * Context: non-IRQ * * This function reserves GTM timer for later use. It returns gtm_timer * structure to use with the rest of GTM API, you should use timer->irq * to manage timer interrupt. */ struct gtm_timer* gtm_get_specific_timer16(struct gtm* gtm, unsigned int timer) { struct gtm_timer* ret = ERR_PTR(-EBUSY); if(timer > 3) { return ERR_PTR(-EINVAL); } spin_lock_irq(>m->lock); if(gtm->timers[timer].requested) { goto out; } ret = >m->timers[timer]; ret->requested = true; out: spin_unlock_irq(>m->lock); return ret; } EXPORT_SYMBOL(gtm_get_specific_timer16); struct gtm_timer* gtm_get_timer16_by_id(unsigned int timer) { struct gtm_timer* ret = ERR_PTR(-EBUSY); struct gtm* gtm = NULL; if(timer > 3) { return ERR_PTR(-EINVAL); } list_for_each_entry(gtm, >ms, list_node) { spin_lock_irq(>m->lock); if(!gtm->timers[timer].requested) { ret = >m->timers[timer]; ret->requested = true; } spin_unlock_irq(>m->lock); } return ret; } EXPORT_SYMBOL(gtm_get_timer16_by_id); /** * gtm_put_timer16 - release 16 bits GTM timer * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer * Context: any * * This function releases GTM timer so others may request it. */ void gtm_put_timer16(struct gtm_timer* tmr) { gtm_stop_timer16(tmr); spin_lock_irq(&tmr->gtm->lock); tmr->requested = false; spin_unlock_irq(&tmr->gtm->lock); } EXPORT_SYMBOL(gtm_put_timer16); /* * This is back-end for the exported functions, it's used to reset single * timer in reference mode. */ static int gtm_set_ref_timer16(struct gtm_timer* tmr, int frequency, int reference_value, bool free_run) { struct gtm* gtm = tmr->gtm; int num = tmr - >m->timers[0]; unsigned int prescaler; u8 iclk = GTMDR_ICLK_ICLK; u8 psr; u8 sps; unsigned long flags; int max_prescaler = 256 * 256 * 16; /* CPM2 doesn't have primary prescaler */ if(!tmr->gtpsr) { max_prescaler /= 256; } prescaler = gtm->clock / frequency; /* * We have two 8 bit prescalers -- primary and secondary (psr, sps), * plus "slow go" mode (clk / 16). So, total prescale value is * 16 * (psr + 1) * (sps + 1). Though, for CPM2 GTMs we losing psr. */ if(prescaler > max_prescaler) { return -EINVAL; } if(prescaler > max_prescaler / 16) { iclk = GTMDR_ICLK_SLGO; prescaler /= 16; } if(prescaler <= 256) { psr = 0; sps = prescaler - 1; } else { psr = 256 - 1; sps = prescaler / 256 - 1; } spin_lock_irqsave(>m->lock, flags); /* * Properly reset timers: stop, reset, set up prescalers, reference * value and clear event register. */ clrsetbits_8(tmr->gtcfr, ~(GTCFR_STP(num) | GTCFR_RST(num)), GTCFR_STP(num) | GTCFR_RST(num)); setbits8(tmr->gtcfr, GTCFR_STP(num)); if(tmr->gtpsr) { out_be16(tmr->gtpsr, psr); } clrsetbits_be16(tmr->gtmdr, 0xFFFF, iclk | GTMDR_SPS(sps) | GTMDR_ORI | (free_run ? GTMDR_FRR : 0)); out_be16(tmr->gtcnr, 0); out_be16(tmr->gtrfr, reference_value); out_be16(tmr->gtevr, 0xFFFF); /* Let it be. */ clrbits8(tmr->gtcfr, GTCFR_STP(num)); spin_unlock_irqrestore(>m->lock, flags); return 0; } /** * gtm_set_timer16 - (re)set 16 bit timer with arbitrary precision * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer * @usec: timer interval in microseconds * @reload: if set, the timer will reset upon expiry rather than * continue running free. * Context: any * * This function (re)sets the GTM timer so that it counts up to the requested * interval value, and fires the interrupt when the value is reached. This * function will reduce the precision of the timer as needed in order for the * requested timeout to fit in a 16-bit register. */ int gtm_set_timer16(struct gtm_timer* tmr, unsigned long usec, bool reload) { /* quite obvious, frequency which is enough for µSec precision */ int freq = 1000000; unsigned int bit; bit = fls_long(usec); if(bit > 15) { freq >>= bit - 15; usec >>= bit - 15; } if(!freq) { return -EINVAL; } return gtm_set_ref_timer16(tmr, freq, usec, reload); } EXPORT_SYMBOL(gtm_set_timer16); /** * gtm_set_exact_utimer16 - (re)set 16 bits timer * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer * @usec: timer interval in microseconds * @reload: if set, the timer will reset upon expiry rather than * continue running free. * Context: any * * This function (re)sets GTM timer so that it counts up to the requested * interval value, and fires the interrupt when the value is reached. If reload * flag was set, timer will also reset itself upon reference value, otherwise * it continues to increment. * * The _exact_ bit in the function name states that this function will not * crop precision of the "usec" argument, thus usec is limited to 16 bits * (single timer width). */ int gtm_set_exact_timer16(struct gtm_timer* tmr, u16 usec, bool reload) { /* quite obvious, frequency which is enough for µSec precision */ const int freq = 1000000; /* * We can lower the frequency (and probably power consumption) by * dividing both frequency and usec by 2 until there is no remainder. * But we won't bother with this unless savings are measured, so just * run the timer as is. */ return gtm_set_ref_timer16(tmr, freq, usec, reload); } EXPORT_SYMBOL(gtm_set_exact_timer16); /** * gtm_stop_timer16 - stop single timer * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer * Context: any * * This function simply stops the GTM timer. */ void gtm_stop_timer16(struct gtm_timer* tmr) { struct gtm* gtm = tmr->gtm; int num = tmr - >m->timers[0]; unsigned long flags; spin_lock_irqsave(>m->lock, flags); setbits8(tmr->gtcfr, GTCFR_STP(num)); out_be16(tmr->gtevr, 0xFFFF); spin_unlock_irqrestore(>m->lock, flags); } EXPORT_SYMBOL(gtm_stop_timer16); /** * gtm_ack_timer16 - acknowledge timer event (free-run timers only) * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer * @events: events mask to ack * Context: any * * Thus function used to acknowledge timer interrupt event, use it inside the * interrupt handler. */ void gtm_ack_timer16(struct gtm_timer* tmr, u16 events) { out_be16(tmr->gtevr, events); } EXPORT_SYMBOL(gtm_ack_timer16); static void __init gtm_set_shortcuts(struct device_node* np, struct gtm_timer* timers, struct gtm_timers_regs __iomem* regs) { /* * Yeah, I don't like this either, but timers' registers a bit messed, * so we have to provide shortcuts to write timer independent code. * Alternative option is to create gt*() accessors, but that will be * even uglier and cryptic. */ timers[0].gtcfr = ®s->gtcfr1; timers[0].gtmdr = ®s->gtmdr1; timers[0].gtcnr = ®s->gtcnr1; timers[0].gtrfr = ®s->gtrfr1; timers[0].gtevr = ®s->gtevr1; timers[1].gtcfr = ®s->gtcfr1; timers[1].gtmdr = ®s->gtmdr2; timers[1].gtcnr = ®s->gtcnr2; timers[1].gtrfr = ®s->gtrfr2; timers[1].gtevr = ®s->gtevr2; timers[2].gtcfr = ®s->gtcfr2; timers[2].gtmdr = ®s->gtmdr3; timers[2].gtcnr = ®s->gtcnr3; timers[2].gtrfr = ®s->gtrfr3; timers[2].gtevr = ®s->gtevr3; timers[3].gtcfr = ®s->gtcfr2; timers[3].gtmdr = ®s->gtmdr4; timers[3].gtcnr = ®s->gtcnr4; timers[3].gtrfr = ®s->gtrfr4; timers[3].gtevr = ®s->gtevr4; /* CPM2 doesn't have primary prescaler */ if(!of_device_is_compatible(np, "fsl,cpm2-gtm")) { timers[0].gtpsr = ®s->gtpsr1; timers[1].gtpsr = ®s->gtpsr2; timers[2].gtpsr = ®s->gtpsr3; timers[3].gtpsr = ®s->gtpsr4; } } static int __init fsl_gtm_init(void) { struct device_node* np; for_each_compatible_node(np, NULL, "fsl,gtm") { int i; struct gtm* gtm; const u32* clock; int size; gtm = kzalloc(sizeof(*gtm), GFP_KERNEL); printk(KERN_DEBUG "gtm init %p\n", gtm); if(!gtm) { pr_err("%s: unable to allocate memory\n", np->full_name); continue; } spin_lock_init(>m->lock); clock = of_get_property(np, "clock-frequency", &size); if(!clock || size != sizeof(*clock)) { pr_err("%s: no clock-frequency\n", np->full_name); goto err; } gtm->clock = *clock; for(i = 0; i < ARRAY_SIZE(gtm->timers); i++) { int ret; struct resource irq; ret = of_irq_to_resource(np, i, &irq); if(ret == NO_IRQ) { pr_err("%s: not enough interrupts specified\n", np->full_name); goto err; } gtm->timers[i].irq = irq.start; gtm->timers[i].gtm = gtm; } gtm->regs = of_iomap(np, 0); if(!gtm->regs) { pr_err("%s: unable to iomap registers\n", np->full_name); goto err; } gtm_set_shortcuts(np, gtm->timers, gtm->regs); list_add(>m->list_node, >ms); /* We don't want to lose the node and its ->data */ np->data = gtm; of_node_get(np); continue; err: kfree(gtm); } return 0; } module_init(fsl_gtm_init); static void __exit fsl_gtm_exit(void) { return ; } module_exit(fsl_gtm_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("K.Prasad"); MODULE_DESCRIPTION("ksym breakpoint");