spbx/roms/srcs/tools/switch_mirror/spi_mpc.c

813 lines
18 KiB
C
Raw Normal View History

2019-03-11 00:13:23 +00:00
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/bug.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/completion.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/device.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
#include <linux/platform_device.h>
#include <linux/fsl_devices.h>
#include <linux/dma-mapping.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/of_spi.h>
#include <linux/slab.h>
#include <asm/cpm.h>
#include <asm/qe.h>
#include <asm/irq.h>
#include "spi_mpc.h"
#define USB_GPIO_MASK (0x3<<18)
#define USB_GPIO_VALUE (0x2<<18)
#define USB_GPIO_37 (1<<(31-(37-32)))
#define USB_GPIO_38 (1<<(31-(38-32)))
#define USB_GPIO_39 (1<<(31-(39-32)))
static int spi_loop = 0;
module_param(spi_loop, int, S_IRUGO);
MODULE_PARM_DESC(spi_loop, "SPI LOOP MODE");
extern u32 fsl_get_sys_freq(void);
extern u32 get_brgfreq(void);
static struct spi_master* g_master;
struct gpio_struct* g_pGPIORegs = NULL;
struct spi_master* get_spi_master(void)
{
return g_master;
}
EXPORT_SYMBOL(get_spi_master);
void spi_reg_dump(void)
{
static int i = 0;
uint32_t base = (uint32_t)ioremap(0xe0007000, GFP_KERNEL);
uint32_t buf[6];
buf[0] = in_be32((u32*)(base + 0));
buf[1] = in_be32((u32*)(base + 4));
buf[2] = in_be32((u32*)(base + 8));
buf[3] = in_be32((u32*)(base + 12));
buf[4] = in_be32((u32*)(base + 16));
buf[5] = in_be32((u32*)(base + 20));
printk("spi->base = 0x%x,num:%d\n", base, i++);
printk("spi->mode = 0x%x\n", buf[0]);
printk("spi->event = 0x%x\n", buf[1]);
printk("spi->mask = 0x%x\n", buf[2]);
printk("spi->command = 0x%x\n", buf[3]);
printk("spi->transmit = 0x%x\n", buf[4]);
printk("spi->receive = 0x%x\n", buf[5]);
iounmap((void*)base);
}
static inline void mpc8xxx_spi_write_reg(__be32 __iomem* reg, u32 val)
{
out_be32(reg, val);
}
static inline u32 mpc8xxx_spi_read_reg(__be32 __iomem* reg)
{
return in_be32(reg);
}
MPC83XX_SPI_RX_BUF(u8)
MPC83XX_SPI_RX_BUF(u16)
MPC83XX_SPI_RX_BUF(u32)
MPC83XX_SPI_TX_BUF(u8)
MPC83XX_SPI_TX_BUF(u16)
MPC83XX_SPI_TX_BUF(u32)
static void mpc8xxx_spi_change_mode(struct spi_device* spi)
{
struct mpc8xxx_spi* mspi = spi_master_get_devdata(spi->master);
struct spi_mpc8xxx_cs* cs = spi->controller_state;
__be32 __iomem* mode = &mspi->base->mode;
unsigned long flags;
if(cs->hw_mode == mpc8xxx_spi_read_reg(mode))
{
return;
}
/* Turn off IRQs locally to minimize time that SPI is disabled. */
local_irq_save(flags);
/* Turn off SPI unit prior changing mode */
mpc8xxx_spi_write_reg(mode, cs->hw_mode & ~SPMODE_ENABLE);
mpc8xxx_spi_write_reg(mode, cs->hw_mode);
local_irq_restore(flags);
}
static
int mpc8xxx_spi_setup_transfer(struct spi_device* spi, struct spi_transfer* t)
{
struct mpc8xxx_spi* mpc8xxx_spi;
u8 bits_per_word, pm;
u32 hz;
struct spi_mpc8xxx_cs* cs = spi->controller_state;
mpc8xxx_spi = spi_master_get_devdata(spi->master);
if(t)
{
bits_per_word = t->bits_per_word;
hz = t->speed_hz;
}
else
{
bits_per_word = 0;
hz = 0;
}
/* spi_transfer level calls that work per-word */
if(!bits_per_word)
{
bits_per_word = spi->bits_per_word;
}
/* Make sure its a bit width we support [4..16, 32] */
if((bits_per_word < 4)
|| ((bits_per_word > 16) && (bits_per_word != 32)))
{
return -EINVAL;
}
if(!hz)
{
hz = spi->max_speed_hz;
}
cs->rx_shift = 0;
cs->tx_shift = 0;
if(bits_per_word <= 8)
{
cs->get_rx = mpc8xxx_spi_rx_buf_u8;
cs->get_tx = mpc8xxx_spi_tx_buf_u8;
}
else if(bits_per_word <= 16)
{
cs->get_rx = mpc8xxx_spi_rx_buf_u16;
cs->get_tx = mpc8xxx_spi_tx_buf_u16;
}
else if(bits_per_word <= 32)
{
cs->get_rx = mpc8xxx_spi_rx_buf_u32;
cs->get_tx = mpc8xxx_spi_tx_buf_u32;
}
else
{
return -EINVAL;
}
mpc8xxx_spi->rx_shift = cs->rx_shift;
mpc8xxx_spi->tx_shift = cs->tx_shift;
mpc8xxx_spi->get_rx = cs->get_rx;
mpc8xxx_spi->get_tx = cs->get_tx;
if(bits_per_word == 32)
{
bits_per_word = 0;
}
else
{
bits_per_word = bits_per_word - 1;
}
/* mask out bits we are going to set */
cs->hw_mode &= ~(SPMODE_LEN(0xF) | SPMODE_DIV16
| SPMODE_PM(0xF));
cs->hw_mode |= SPMODE_LEN(bits_per_word);
if((mpc8xxx_spi->spibrg / hz) > 64)
{
cs->hw_mode |= SPMODE_DIV16;
pm = (mpc8xxx_spi->spibrg - 1) / (hz * 64) + 1;
WARN_ONCE(pm > 16, "%s: Requested speed is too low: %d Hz. "
"Will use %d Hz instead.\n", dev_name(&spi->dev),
hz, mpc8xxx_spi->spibrg / 1024);
if(pm > 16)
{
pm = 16;
}
}
else
{
pm = (mpc8xxx_spi->spibrg - 1) / (hz * 4) + 1;
}
if(pm)
{
pm--;
}
cs->hw_mode |= SPMODE_PM(pm);
mpc8xxx_spi_change_mode(spi);
return 0;
}
static int mpc8xxx_spi_cpu_bufs(struct mpc8xxx_spi* mspi,
struct spi_transfer* t, unsigned int len)
{
u32 word;
mspi->count = len;
/* enable rx ints */
mpc8xxx_spi_write_reg(&mspi->base->mask, SPIM_NE);
/* transmit word */
word = mspi->get_tx(mspi);
mpc8xxx_spi_write_reg(&mspi->base->transmit, word);
return 0;
}
void spi_cs_sel(void)
{
uint32_t value;
struct gpio_struct* gpio_reg = g_pGPIORegs;
value = in_be32(&gpio_reg->dat);
value &= ~(USB_GPIO_37);
out_be32(&gpio_reg->dat, value);
}
void spi_cs_unsel(void)
{
uint32_t value;
struct gpio_struct* gpio_reg = g_pGPIORegs;
value = in_be32(&gpio_reg->dat);
value |= USB_GPIO_37;
out_be32(&gpio_reg->dat, value);
}
int spi_cs_init(void)
{
u32 value;
u32* ptr;
struct gpio_struct* gpio_reg;
ptr = (u32*)ioremap(0xe0000118, 4); // SICR_2 GPIO[32:39] is select
value = in_be32(ptr);
value = (value & (~USB_GPIO_MASK)) | (USB_GPIO_VALUE);
out_be32(ptr, value);
value = in_be32(ptr);
//printk("SICR_2 = 0x%x\n",value);
iounmap(ptr);
ptr = (u32*)ioremap(0xe0000150, 0x4); //GPR_1 GPIO[32:39] is mult with USB
value = in_be32(ptr);
value |= (1 << 5);
out_be32(ptr, value);
value = in_be32(ptr);
//printk("%s:GPR_1 = 0x%x\n",__func__,value);
iounmap(ptr);
gpio_reg = (struct gpio_struct*)ioremap(0xe0000d00, 0x14); //GR2DIR
g_pGPIORegs = gpio_reg;
value = in_be32(&gpio_reg->dir);
value |= USB_GPIO_37;
out_be32(&gpio_reg->dir, value);
value = in_be32(&gpio_reg->dat);
value |= USB_GPIO_37;
out_be32(&gpio_reg->dat, value);
return 0;
}
void spi_cs_exit(void)
{
iounmap(g_pGPIORegs);
}
static int mpc8xxx_spi_bufs(struct spi_device* spi, struct spi_transfer* t,
bool is_dma_mapped)
{
struct mpc8xxx_spi* mpc8xxx_spi = spi_master_get_devdata(spi->master);
unsigned int len = t->len;
u8 bits_per_word;
int ret;
bits_per_word = spi->bits_per_word;
mpc8xxx_spi->tx = t->tx_buf;
mpc8xxx_spi->rx = t->rx_buf;
INIT_COMPLETION(mpc8xxx_spi->done);
spi_cs_sel();
ret = mpc8xxx_spi_cpu_bufs(mpc8xxx_spi, t, len);
if(ret)
{
return ret;
}
wait_for_completion(&mpc8xxx_spi->done);
spi_cs_unsel();
/* disable rx ints */
mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mask, 0);
return mpc8xxx_spi->count;
}
static void mpc8xxx_spi_do_one_msg(struct spi_message* m)
{
struct spi_device* spi = m->spi;
struct spi_transfer* t;
unsigned int cs_change;
int status;
cs_change = 1;
status = 0;
list_for_each_entry(t, &m->transfers, transfer_list)
{
if(t->len)
{
status = mpc8xxx_spi_bufs(spi, t, m->is_dma_mapped);
}
if(status)
{
status = -EMSGSIZE;
break;
}
m->actual_length += t->len;
}
m->status = status;
m->complete(m->context);
// FIXED @SJM20130226
mpc8xxx_spi_setup_transfer(spi, NULL);
}
static void mpc8xxx_spi_work(struct work_struct* work)
{
struct mpc8xxx_spi* mpc8xxx_spi = container_of(work, struct mpc8xxx_spi,
work);
spin_lock_irq(&mpc8xxx_spi->lock);
while(!list_empty(&mpc8xxx_spi->queue))
{
struct spi_message* m = container_of(mpc8xxx_spi->queue.next,
struct spi_message, queue);
list_del_init(&m->queue);
spin_unlock_irq(&mpc8xxx_spi->lock);
mpc8xxx_spi_do_one_msg(m);
spin_lock_irq(&mpc8xxx_spi->lock);
}
spin_unlock_irq(&mpc8xxx_spi->lock);
}
static int mpc8xxx_spi_setup(struct spi_device* spi)
{
struct mpc8xxx_spi* mpc8xxx_spi;
int retval;
u32 hw_mode;
struct spi_mpc8xxx_cs* cs = spi->controller_state;
if(!spi->max_speed_hz)
{
return -EINVAL;
}
if(!cs)
{
cs = kzalloc(sizeof * cs, GFP_KERNEL);
if(!cs)
{
return -ENOMEM;
}
spi->controller_state = cs;
}
mpc8xxx_spi = spi_master_get_devdata(spi->master);
hw_mode = cs->hw_mode; /* Save orginal settings */
cs->hw_mode = mpc8xxx_spi_read_reg(&mpc8xxx_spi->base->mode);
/* mask out bits we are going to set */
cs->hw_mode &= ~(SPMODE_CP_BEGIN_EDGECLK | SPMODE_CI_INACTIVEHIGH
| SPMODE_REV | SPMODE_LOOP);
/* cs->hw_mode |= SPMODE_CI_INACTIVEHIGH;
cs->hw_mode |= SPMODE_CP_BEGIN_EDGECLK;*/
cs->hw_mode |= SPMODE_REV;
if(spi_loop == 1)
{
cs->hw_mode |= SPMODE_LOOP;
}
retval = mpc8xxx_spi_setup_transfer(spi, NULL);
if(retval < 0)
{
cs->hw_mode = hw_mode; /* Restore settings */
printk("%s:spi setup transfer err\n", __func__);
return retval;
}
return 0;
}
static void mpc8xxx_spi_cpu_irq(struct mpc8xxx_spi* mspi, u32 events)
{
/* We need handle RX first */
if(events & SPIE_NE)
{
u32 rx_data = mpc8xxx_spi_read_reg(&mspi->base->receive);
if(mspi->rx)
{
mspi->get_rx(rx_data, mspi);
}
}
if((events & SPIE_NF) == 0)
/* spin until TX is done */
while(((events =
mpc8xxx_spi_read_reg(&mspi->base->event)) &
SPIE_NF) == 0)
{
cpu_relax();
}
/* Clear the events */
mpc8xxx_spi_write_reg(&mspi->base->event, events);
mspi->count -= 1;
if(mspi->count)
{
u32 word = mspi->get_tx(mspi);
mpc8xxx_spi_write_reg(&mspi->base->transmit, word);
}
else
{
complete(&mspi->done);
}
}
static irqreturn_t mpc8xxx_spi_irq(s32 irq, void* context_data)
{
struct mpc8xxx_spi* mspi = context_data;
irqreturn_t ret = IRQ_NONE;
u32 events;
/* Get interrupt events(tx/rx) */
events = mpc8xxx_spi_read_reg(&mspi->base->event);
if(events)
{
ret = IRQ_HANDLED;
}
mpc8xxx_spi_cpu_irq(mspi, events);
return ret;
}
static int mpc8xxx_spi_transfer(struct spi_device* spi, struct spi_message* m)
{
struct mpc8xxx_spi* mpc8xxx_spi = spi_master_get_devdata(spi->master);
unsigned long flags;
m->actual_length = 0;
m->status = -EINPROGRESS;
spin_lock_irqsave(&mpc8xxx_spi->lock, flags);
list_add_tail(&m->queue, &mpc8xxx_spi->queue);
queue_work(mpc8xxx_spi->workqueue, &mpc8xxx_spi->work);
spin_unlock_irqrestore(&mpc8xxx_spi->lock, flags);
return 0;
}
static void mpc8xxx_spi_cleanup(struct spi_device* spi)
{
kfree(spi->controller_state);
}
static const char* mpc8xxx_spi_strmode(unsigned int flags)
{
if(flags & SPI_QE_CPU_MODE)
{
return "QE CPU";
}
else if(flags & SPI_CPM_MODE)
{
if(flags & SPI_QE)
{
return "QE";
}
else if(flags & SPI_CPM2)
{
return "CPM2";
}
else
{
return "CPM1";
}
}
return "CPU";
}
static struct spi_master* __devinit
mpc8xxx_spi_probe(struct device* dev, struct resource* mem, unsigned int irq)
{
struct fsl_spi_platform_data* pdata = dev->platform_data;
struct spi_master* master;
struct mpc8xxx_spi* mpc8xxx_spi;
u32 regval;
int ret = 0;
master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi));
if(master == NULL)
{
ret = -ENOMEM;
goto err;
}
dev_set_drvdata(dev, master);
master->setup = mpc8xxx_spi_setup;
master->transfer = mpc8xxx_spi_transfer;
master->cleanup = mpc8xxx_spi_cleanup;
mpc8xxx_spi = spi_master_get_devdata(master);
mpc8xxx_spi->dev = dev;
mpc8xxx_spi->get_rx = mpc8xxx_spi_rx_buf_u8;
mpc8xxx_spi->get_tx = mpc8xxx_spi_tx_buf_u8;
mpc8xxx_spi->flags = pdata->flags;
mpc8xxx_spi->spibrg = pdata->sysclk;
mpc8xxx_spi->rx_shift = 0;
mpc8xxx_spi->tx_shift = 0;
init_completion(&mpc8xxx_spi->done);
mpc8xxx_spi->base = ioremap(mem->start, resource_size(mem));
if(mpc8xxx_spi->base == NULL)
{
ret = -ENOMEM;
goto err_ioremap;
}
mpc8xxx_spi->irq = irq;
/* Register for SPI Interrupt */
ret = request_irq(mpc8xxx_spi->irq, mpc8xxx_spi_irq,
0, "mpc8xxx_spi", mpc8xxx_spi);
if(ret != 0)
{
goto unmap_io;
}
master->bus_num = 0x7000;
master->num_chipselect = pdata->max_chipselect;
/* SPI controller initializations */
mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mode, 0);
mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mask, 0);
mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->command, 0);
mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->event, 0xffffffff);
/* Enable SPI interface */
if(spi_loop == 1)
{
regval = SPMODE_INIT_VAL | SPMODE_ENABLE | SPMODE_LOOP;
}
else
{
regval = SPMODE_INIT_VAL | SPMODE_ENABLE;
}
mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mode, regval);
spin_lock_init(&mpc8xxx_spi->lock);
init_completion(&mpc8xxx_spi->done);
INIT_WORK(&mpc8xxx_spi->work, mpc8xxx_spi_work);
INIT_LIST_HEAD(&mpc8xxx_spi->queue);
mpc8xxx_spi->workqueue = create_singlethread_workqueue(
dev_name(master->dev.parent));
if(mpc8xxx_spi->workqueue == NULL)
{
ret = -EBUSY;
goto free_irq;
}
ret = spi_register_master(master);
if(ret < 0)
{
goto unreg_master;
}
dev_info(dev, "at 0x%p (irq = %d), %s mode\n", mpc8xxx_spi->base,
mpc8xxx_spi->irq, mpc8xxx_spi_strmode(mpc8xxx_spi->flags));
g_master = master;
return master;
unreg_master:
destroy_workqueue(mpc8xxx_spi->workqueue);
free_irq:
free_irq(mpc8xxx_spi->irq, mpc8xxx_spi);
unmap_io:
iounmap(mpc8xxx_spi->base);
err_ioremap:
spi_master_put(master);
err:
return ERR_PTR(ret);
}
static int __devexit mpc8xxx_spi_remove(struct device* dev)
{
struct mpc8xxx_spi* mpc8xxx_spi;
struct spi_master* master;
master = dev_get_drvdata(dev);
mpc8xxx_spi = spi_master_get_devdata(master);
flush_workqueue(mpc8xxx_spi->workqueue);
destroy_workqueue(mpc8xxx_spi->workqueue);
spi_unregister_master(master);
free_irq(mpc8xxx_spi->irq, mpc8xxx_spi);
iounmap(mpc8xxx_spi->base);
return 0;
}
struct mpc8xxx_spi_probe_info
{
struct fsl_spi_platform_data pdata;
};
static int __devinit of_mpc8xxx_spi_probe(struct of_device* ofdev,
const struct of_device_id* ofid)
{
struct device* dev = &ofdev->dev;
struct device_node* np = ofdev->node;
struct mpc8xxx_spi_probe_info* pinfo;
struct fsl_spi_platform_data* pdata;
struct spi_master* master;
struct resource mem;
struct resource irq;
const void* prop;
int ret = -ENOMEM;
pinfo = kzalloc(sizeof(*pinfo), GFP_KERNEL);
if(!pinfo)
{
return -ENOMEM;
}
pdata = &pinfo->pdata;
dev->platform_data = pdata;
/* Allocate bus num dynamically. */
pdata->bus_num = -1;
/* SPI controller is either clocked from QE or SoC clock. */
pdata->sysclk = get_brgfreq();
if(pdata->sysclk == -1)
{
pdata->sysclk = fsl_get_sys_freq();
if(pdata->sysclk == -1)
{
ret = -ENODEV;
goto err_clk;
}
}
prop = of_get_property(np, "mode", NULL);
pdata->max_chipselect = 5;
ret = of_address_to_resource(np, 0, &mem);
if(ret)
{
goto err;
}
ret = of_irq_to_resource(np, 0, &irq);
if(!ret)
{
ret = -EINVAL;
goto err;
}
master = mpc8xxx_spi_probe(dev, &mem, irq.start);
if(IS_ERR(master))
{
ret = PTR_ERR(master);
goto err;
}
of_register_spi_devices(master, np);
return 0;
err:
err_clk:
kfree(pinfo);
return ret;
}
static int __devexit of_mpc8xxx_spi_remove(struct of_device* ofdev)
{
return mpc8xxx_spi_remove(&ofdev->dev);
}
static const struct of_device_id of_mpc8xxx_spi_match[] =
{
{ .compatible = "fsl,spi" },
{},
};
static struct of_platform_driver of_mpc8xxx_spi_driver =
{
.name = "mpc8xxx_spi",
.match_table = of_mpc8xxx_spi_match,
.probe = of_mpc8xxx_spi_probe,
.remove = __devexit_p(of_mpc8xxx_spi_remove),
};
int mpc_spi_init(void)
{
int rv = 0;
spi_cs_init();
rv = of_register_platform_driver(&of_mpc8xxx_spi_driver);
if(rv)
{
printk(" of_register_platform_driver failed (%i)\n", rv);
}
return rv;
}
void mpc_spi_exit(void)
{
of_unregister_platform_driver(&of_mpc8xxx_spi_driver);
spi_cs_exit();
}