SmartAudio/lichee/linux-4.9/drivers/media/platform/sunxi-vfe/device/imx219.c

1400 lines
33 KiB
C

/*
* A V4L2 driver for IMX219 cameras.
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/videodev2.h>
#include <linux/clk.h>
#include <media/v4l2-device.h>
#include <media/v4l2-mediabus.h>
#include <linux/io.h>
#include "camera.h"
#include "sensor_helper.h"
MODULE_AUTHOR("Chomoly");
MODULE_DESCRIPTION("A low-level driver for IMX219 sensors");
MODULE_LICENSE("GPL");
/* for internal driver debug */
#define DEV_DBG_EN 0
#if (DEV_DBG_EN == 1)
#define vfe_dev_dbg(x, arg...) pr_debug("[IMX219]"x, ##arg)
#else
#define vfe_dev_dbg(x, arg...)
#endif
#define vfe_dev_err(x, arg...) pr_err("[IMX219]"x, ##arg)
#define vfe_dev_print(x, arg...) pr_info("[IMX219]"x, ##arg)
/*
*#define LOG_ERR_RET(x) { \
* int ret; \
* ret = x; \
* if (ret < 0) { \
* vfe_dev_err("error at %s\n", __func__); \
* return ret; \
* } \
* }
*/
/* define module timing */
#define MCLK (24*1000*1000)
#define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_LOW
#define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH
#define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING
#define V4L2_IDENT_SENSOR 0x0219
/*
* Our nominal (default) frame rate.
*/
#ifdef FPGA
#define SENSOR_FRAME_RATE 15
#else
#define SENSOR_FRAME_RATE 30
#endif
/*
* The IMX219 sits on i2c with ID 0x6c
*/
#define I2C_ADDR 0x20
#define SENSOR_NAME "imx219"
int imx219_sensor_vts;
#define ES_GAIN(a, b, c) ((unsigned short)(a*160) < (c*10) && (c*10) <= (unsigned short)(b*160))
/* static struct delayed_work sensor_s_ae_ratio_work; */
static struct v4l2_subdev *glb_sd;
/*
* Information we maintain about a known sensor.
*/
struct sensor_format_struct; /* coming later */
struct cfg_array { /* coming later */
struct regval_list *regs;
int size;
};
static int LOG_ERR_RET(int x)
{
int ret;
ret = x;
if (ret < 0)
vfe_dev_err("error at %s\n", __func__);
return ret;
}
static inline struct sensor_info *to_state(struct v4l2_subdev *sd)
{
return container_of(sd, struct sensor_info, sd);
}
/*
* The default register settings
*
*/
/*3280 x 2464_20fps 4lanes 720Mbps/lane*/
static struct regval_list sensor_default_regs[] = {
};
/* for capture */
static struct regval_list sensor_hxga_regs[] = { /* 3280 * 2464 20fps 4lane */
{0x30EB, 0x05},
{0x30EB, 0x0C},
{0x300A, 0xFF},
{0x300B, 0xFF},
{0x30EB, 0x05},
{0x30EB, 0x09},
{0x0114, 0x03},
{0x0128, 0x00},
{0x012A, 0x18},
{0x012B, 0x00},
{0x0160, 0x0F},
{0x0161, 0xC5},
{0x0162, 0x0D},
{0x0163, 0x78},
{0x0164, 0x00},
{0x0165, 0x00},
{0x0166, 0x0C},
{0x0167, 0xCF},
{0x0168, 0x00},
{0x0169, 0x00},
{0x016A, 0x09},
{0x016B, 0x9F},
{0x016C, 0x0C},
{0x016D, 0xD0},
{0x016E, 0x09},
{0x016F, 0xA0},
{0x0170, 0x01},
{0x0171, 0x01},
{0x0174, 0x00},
{0x0175, 0x00},
{0x018C, 0x0A},
{0x018D, 0x0A},
{0x0301, 0x05},
{0x0303, 0x01},
{0x0304, 0x03},
{0x0305, 0x03},
{0x0306, 0x00},
{0x0307, 0x57},
{0x0309, 0x0A},
{0x030B, 0x01},
{0x030C, 0x00},
{0x030D, 0x5A},
{0x4767, 0x0F},
{0x4750, 0x14},
{0x47B4, 0x14},
{0x0100, 0x01},
};
static struct regval_list sensor_sxga_regs[] = { /* SXGA: 1280*960@30fps */
/* 720Mbps 4lane 20fps */
{0x30EB, 0x05},
{0x30EB, 0x0C},
{0x300A, 0xFF},
{0x300B, 0xFF},
{0x30EB, 0x05},
{0x30EB, 0x09},
{0x0114, 0x03},
{0x0128, 0x00},
{0x012A, 0x18},
{0x012B, 0x00},
{0x0160, 0x0a},
{0x0161, 0x2f},
{0x0162, 0x0d},
{0x0163, 0xe8},
{0x0164, 0x03},
{0x0165, 0xe8},
{0x0166, 0x08},
{0x0167, 0xe7},
{0x0168, 0x02},
{0x0169, 0xf0},
{0x016A, 0x06},
{0x016B, 0xaF},
{0x016C, 0x05},
{0x016D, 0x00},
{0x016E, 0x03},
{0x016F, 0xc0},
/* {0x016C, 0x0c}, */
/* {0x016D, 0xd0}, */
/* {0x016E, 0x09}, */
/* {0x016F, 0xa0}, */
{0x0170, 0x01},
{0x0171, 0x01},
{0x0174, 0x00},
{0x0175, 0x00},
{0x018C, 0x0A},
{0x018D, 0x0A},
{0x0301, 0x05},
{0x0303, 0x01},
{0x0304, 0x03},
{0x0305, 0x03},
{0x0306, 0x00},
{0x0307, 0x57},
{0x0309, 0x0A},
{0x030B, 0x01},
{0x030C, 0x00},
{0x030D, 0x5A},
{0x4767, 0x0F},
{0x4750, 0x14},
{0x47B4, 0x14},
{0x0100, 0x01},
};
/* for video */
static struct regval_list sensor_1080p_regs[] = { /* 1080: 1920*1080@30fps */
/* MIPI=720Mbps */
/* 1920x1080 30fps */
{0x30EB, 0x05},
{0x30EB, 0x0C},
{0x300A, 0xFF},
{0x300B, 0xFF},
{0x30EB, 0x05},
{0x30EB, 0x09},
/* {0x , 0x }, */
{0x0114, 0x03},
{0x0128, 0x00},
{0x012A, 0x18},
{0x012B, 0x00},
/* {0x0157, 0x }, */
/* {0x015A, 0x }, */
/* {0x015B, 0x }, */
{0x0160, 0x0A},
{0x0161, 0x2F},
{0x0162, 0x0D},
{0x0163, 0xE8},
{0x0164, 0x02},
{0x0165, 0xA8},
{0x0166, 0x0A},
{0x0167, 0x27},
{0x0168, 0x02},
{0x0169, 0xB4},
{0x016A, 0x06},
{0x016B, 0xEB},
{0x016C, 0x07},
{0x016D, 0x80},
{0x016E, 0x04},
{0x016F, 0x38},
{0x0170, 0x01},
{0x0171, 0x01},
{0x0174, 0x00},
{0x0175, 0x00},
{0x018C, 0x0A},
{0x018D, 0x0A},
{0x0301, 0x05},
{0x0303, 0x01},
{0x0304, 0x03},
{0x0305, 0x03},
{0x0306, 0x00},
{0x0307, 0x57},
{0x0309, 0x0A},
{0x030B, 0x01},
{0x030C, 0x00},
{0x030D, 0x5A},
{0x4767, 0x0F},
{0x4750, 0x14},
{0x47B4, 0x14},
{0x0100, 0x01},
};
static struct regval_list sensor_720p_regs[] = { /* 720: 1280*720@30fps */
/* MIPI=720Mbps, */
/* 1280x720 60fps //perhaps reach to 100~120fps */
{0x30EB, 0x05},
{0x30EB, 0x0C},
{0x300A, 0xFF},
{0x300B, 0xFF},
{0x30EB, 0x05},
{0x30EB, 0x09},
{0x0114, 0x03},
{0x0128, 0x00},
{0x012A, 0x18},
{0x012B, 0x00},
{0x0160, 0x02}, /* 0x05 for 60fps */
{0x0161, 0x00}, /* 0x17 for 60fps */
{0x0162, 0x0d}, /*0D*/
{0x0163, 0xE8},
{0x0164, 0x03},
{0x0165, 0xE8},
{0x0166, 0x08},
{0x0167, 0xE7},
{0x0168, 0x03},
{0x0169, 0x68},
{0x016A, 0x06},
{0x016B, 0x37},
{0x016C, 0x05},
{0x016D, 0x00},
{0x016E, 0x02},
{0x016F, 0xD0},
{0x0170, 0x01},
{0x0171, 0x01},
{0x0174, 0x00},
{0x0175, 0x00},
{0x018C, 0x0A},
{0x018D, 0x0A},
{0x0301, 0x05},
{0x0303, 0x01},
{0x0304, 0x03},
{0x0305, 0x03},
{0x0306, 0x00},
{0x0307, 0x57},
{0x0309, 0x05}, /* 0A */
{0x030B, 0x01},
{0x030C, 0x00},
{0x030D, 0x5A},
{0x4767, 0x0F},
{0x4750, 0x14},
{0x47B4, 0x14},
{0x0100, 0x01},
};
/*
*static struct regval_list sensor_vga_regs[] = { //VGA: 640*480
*};
*/
/* misc */
/*
*static struct regval_list sensor_oe_disable_regs[] = {
*};
*/
/*
*static struct regval_list sensor_oe_enable_regs[] = {
*};
*/
/*
* Here we'll try to encapsulate the changes for just the output
* video format.
*
*/
static struct regval_list sensor_fmt_raw[] = {
};
static int sensor_s_exp_gain(struct v4l2_subdev *sd,
struct sensor_exp_gain *exp_gain)
{ /* return -1; */
int exp_val, gain_val, frame_length, shutter;
unsigned char explow = 0, exphigh = 0; /* expmid = 0; */
/* unsigned char gainlow = 0, gainhigh = 0; */
struct sensor_info *info = to_state(sd);
exp_val = exp_gain->exp_val;
gain_val = exp_gain->gain_val;
/* if((info->exp == exp_val)&&(info->gain == gain_val)) */
/* return 0; */
if (gain_val < 1*16)
gain_val = 16;
if (gain_val > 10*16-1)
gain_val = 10*16-1;
if (exp_val > 0xfffff)
exp_val = 0xfffff;
exp_val >>= 4;
exphigh = (unsigned char) ((0x00ff00&exp_val)>>8);
explow = (unsigned char) ((0x0000ff&exp_val));
sensor_write(sd, 0x015b, explow);
sensor_write(sd, 0x015a, exphigh);
shutter = exp_val;
if (shutter > imx219_sensor_vts - 4)
frame_length = shutter + 4;
else
frame_length = imx219_sensor_vts;
sensor_write(sd, 0x0161, frame_length & 0xff);
sensor_write(sd, 0x0160, frame_length >> 8);
if (gain_val == 16)
sensor_write(sd, 0x0157, 0x01);
if (ES_GAIN(1.0, 1.1, gain_val))
sensor_write(sd, 0x0157, 24);
else if (ES_GAIN(1.1, 1.2, gain_val))
sensor_write(sd, 0x0157, 42);
else if (ES_GAIN(1.2, 1.3, gain_val))
sensor_write(sd, 0x0157, 60);
else if (ES_GAIN(1.3, 1.4, gain_val))
sensor_write(sd, 0x0157, 73);
else if (ES_GAIN(1.4, 1.5, gain_val))
sensor_write(sd, 0x0157, 85);
else if (ES_GAIN(1.5, 1.6, gain_val))
sensor_write(sd, 0x0157, 96);
else if (ES_GAIN(1.6, 1.7, gain_val))
sensor_write(sd, 0x0157, 105);
else if (ES_GAIN(1.7, 1.8, gain_val))
sensor_write(sd, 0x0157, 114);
else if (ES_GAIN(1.8, 1.9, gain_val))
sensor_write(sd, 0x0157, 122);
else if (ES_GAIN(1.9, 2.0, gain_val))
sensor_write(sd, 0x0157, 0x80);
else if (ES_GAIN(2.0, 2.1, gain_val))
sensor_write(sd, 0x0157, 134);
else if (ES_GAIN(2.1, 2.2, gain_val))
sensor_write(sd, 0x0157, 140);
else if (ES_GAIN(2.2, 2.3, gain_val))
sensor_write(sd, 0x0157, 145);
else if (ES_GAIN(2.3, 2.4, gain_val))
sensor_write(sd, 0x0157, 150);
else if (ES_GAIN(2.4, 2.5, gain_val))
sensor_write(sd, 0x0157, 154);
else if (ES_GAIN(2.5, 2.6, gain_val))
sensor_write(sd, 0x0157, 158);
else if (ES_GAIN(2.6, 2.7, gain_val))
sensor_write(sd, 0x0157, 162);
else if (ES_GAIN(2.7, 2.8, gain_val))
sensor_write(sd, 0x0157, 165);
else if (ES_GAIN(2.8, 2.9, gain_val))
sensor_write(sd, 0x0157, 168);
else if (ES_GAIN(2.9, 3.0, gain_val))
sensor_write(sd, 0x0157, 0xab);
else if (ES_GAIN(3.0, 3.1, gain_val))
sensor_write(sd, 0x0157, 174);
else if (ES_GAIN(3.1, 3.2, gain_val))
sensor_write(sd, 0x0157, 176);
else if (ES_GAIN(3.2, 3.3, gain_val))
sensor_write(sd, 0x0157, 179);
else if (ES_GAIN(3.3, 3.4, gain_val))
sensor_write(sd, 0x0157, 181);
else if (ES_GAIN(3.4, 3.5, gain_val))
sensor_write(sd, 0x0157, 183);
else if (ES_GAIN(3.5, 3.6, gain_val))
sensor_write(sd, 0x0157, 185);
else if (ES_GAIN(3.6, 3.7, gain_val))
sensor_write(sd, 0x0157, 187);
else if (ES_GAIN(3.7, 3.8, gain_val))
sensor_write(sd, 0x0157, 189);
else if (ES_GAIN(3.8, 3.9, gain_val))
sensor_write(sd, 0x0157, 191);
else if (ES_GAIN(3.9, 4.0, gain_val))
sensor_write(sd, 0x0157, 192);
else if (ES_GAIN(4.0, 4.1, gain_val))
sensor_write(sd, 0x0157, 194);
else if (ES_GAIN(4.1, 4.2, gain_val))
sensor_write(sd, 0x0157, 195);
else if (ES_GAIN(4.2, 4.3, gain_val))
sensor_write(sd, 0x0157, 197);
else if (ES_GAIN(4.3, 4.4, gain_val))
sensor_write(sd, 0x0157, 198);
else if (ES_GAIN(4.4, 4.5, gain_val))
sensor_write(sd, 0x0157, 200);
else if (ES_GAIN(4.5, 4.6, gain_val))
sensor_write(sd, 0x0157, 201);
else if (ES_GAIN(4.6, 4.7, gain_val))
sensor_write(sd, 0x0157, 202);
else if (ES_GAIN(4.7, 4.8, gain_val))
sensor_write(sd, 0x0157, 203);
else if (ES_GAIN(4.8, 4.9, gain_val))
sensor_write(sd, 0x0157, 204);
else if (ES_GAIN(4.9, 5.0, gain_val))
sensor_write(sd, 0x0157, 205);
else if (ES_GAIN(5.0, 5.1, gain_val))
sensor_write(sd, 0x0157, 206);
else if (ES_GAIN(5.1, 5.2, gain_val))
sensor_write(sd, 0x0157, 207);
else if (ES_GAIN(5.2, 5.3, gain_val))
sensor_write(sd, 0x0157, 208);
else if (ES_GAIN(5.3, 5.4, gain_val))
sensor_write(sd, 0x0157, 209);
else if (ES_GAIN(5.4, 5.5, gain_val))
sensor_write(sd, 0x0157, 210);
else if (ES_GAIN(5.5, 5.7, gain_val))
sensor_write(sd, 0x0157, 211);
else if (ES_GAIN(5.7, 5.8, gain_val))
sensor_write(sd, 0x0157, 212);
else if (ES_GAIN(5.8, 5.9, gain_val))
sensor_write(sd, 0x0157, 213);
else if (ES_GAIN(5.9, 6.2, gain_val))
sensor_write(sd, 0x0157, 215);
else if (ES_GAIN(6.2, 6.4, gain_val))
sensor_write(sd, 0x0157, 216);
else if (ES_GAIN(6.4, 6.5, gain_val))
sensor_write(sd, 0x0157, 217);
else if (ES_GAIN(6.5, 6.7, gain_val))
sensor_write(sd, 0x0157, 218);
else if (ES_GAIN(6.7, 6.9, gain_val))
sensor_write(sd, 0x0157, 219);
else if (ES_GAIN(6.9, 7.1, gain_val))
sensor_write(sd, 0x0157, 220);
else if (ES_GAIN(7.1, 7.3, gain_val))
sensor_write(sd, 0x0157, 221);
else if (ES_GAIN(7.3, 7.5, gain_val))
sensor_write(sd, 0x0157, 222);
else if (ES_GAIN(7.5, 7.7, gain_val))
sensor_write(sd, 0x0157, 223);
else if (ES_GAIN(7.7, 8.0, gain_val))
sensor_write(sd, 0x0157, 224);
else if (ES_GAIN(8.0, 8.3, gain_val))
sensor_write(sd, 0x0157, 225);
else if (ES_GAIN(8.3, 8.5, gain_val))
sensor_write(sd, 0x0157, 226);
else if (ES_GAIN(8.5, 8.8, gain_val))
sensor_write(sd, 0x0157, 227);
else if (ES_GAIN(8.8, 9.1, gain_val))
sensor_write(sd, 0x0157, 228);
else if (ES_GAIN(9.1, 9.4, gain_val))
sensor_write(sd, 0x0157, 228);
else if (ES_GAIN(9.4, 9.8, gain_val))
sensor_write(sd, 0x0157, 230);
else if (ES_GAIN(9.8, 10.2, gain_val))
sensor_write(sd, 0x0157, 231);
else if (ES_GAIN(10.0, 10.6, gain_val))
sensor_write(sd, 0x0157, 232);
info->exp = exp_val;
info->gain = gain_val;
return 0;
}
static int sensor_g_exp(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->exp;
vfe_dev_dbg("sensor_get_exposure = %d\n", info->exp);
return 0;
}
static int sensor_s_exp(struct v4l2_subdev *sd, unsigned int exp_val)
{
unsigned char explow, exphigh;
struct sensor_info *info = to_state(sd);
if (exp_val > 0xfffff)
exp_val = 0xfffff;
exp_val >>= 4;
exphigh = (unsigned char) ((0x00ff00&exp_val)>>8);
explow = (unsigned char) ((0x0000ff&exp_val));
sensor_write(sd, 0x015b, explow);
sensor_write(sd, 0x015a, exphigh);
info->exp = exp_val;
return 0;
}
static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->gain;
vfe_dev_dbg("sensor_get_gain = %d\n", info->gain);
return 0;
}
static int sensor_s_gain(struct v4l2_subdev *sd, int gain_val)
{
struct sensor_info *info = to_state(sd);
if (gain_val < 1*16)
gain_val = 16;
if (gain_val > 0x1ff)
gain_val = 0x1ff;
if (gain_val == 16)
sensor_write(sd, 0x0157, 0x01);
if (ES_GAIN(1.0, 1.1, gain_val))
sensor_write(sd, 0x0157, 24);
else if (ES_GAIN(1.1, 1.2, gain_val))
sensor_write(sd, 0x0157, 42);
else if (ES_GAIN(1.2, 1.3, gain_val))
sensor_write(sd, 0x0157, 60);
else if (ES_GAIN(1.3, 1.4, gain_val))
sensor_write(sd, 0x0157, 73);
else if (ES_GAIN(1.4, 1.5, gain_val))
sensor_write(sd, 0x0157, 85);
else if (ES_GAIN(1.5, 1.6, gain_val))
sensor_write(sd, 0x0157, 96);
else if (ES_GAIN(1.6, 1.7, gain_val))
sensor_write(sd, 0x0157, 105);
else if (ES_GAIN(1.7, 1.8, gain_val))
sensor_write(sd, 0x0157, 114);
else if (ES_GAIN(1.8, 1.9, gain_val))
sensor_write(sd, 0x0157, 122);
else if (ES_GAIN(1.9, 2.0, gain_val))
sensor_write(sd, 0x0157, 0x80);
else if (ES_GAIN(2.0, 2.1, gain_val))
sensor_write(sd, 0x0157, 134);
else if (ES_GAIN(2.1, 2.2, gain_val))
sensor_write(sd, 0x0157, 140);
else if (ES_GAIN(2.2, 2.3, gain_val))
sensor_write(sd, 0x0157, 145);
else if (ES_GAIN(2.3, 2.4, gain_val))
sensor_write(sd, 0x0157, 150);
else if (ES_GAIN(2.4, 2.5, gain_val))
sensor_write(sd, 0x0157, 154);
else if (ES_GAIN(2.5, 2.6, gain_val))
sensor_write(sd, 0x0157, 158);
else if (ES_GAIN(2.6, 2.7, gain_val))
sensor_write(sd, 0x0157, 162);
else if (ES_GAIN(2.7, 2.8, gain_val))
sensor_write(sd, 0x0157, 165);
else if (ES_GAIN(2.8, 2.9, gain_val))
sensor_write(sd, 0x0157, 168);
else if (ES_GAIN(2.9, 3.0, gain_val))
sensor_write(sd, 0x0157, 0xab);
else if (ES_GAIN(3.0, 3.1, gain_val))
sensor_write(sd, 0x0157, 174);
else if (ES_GAIN(3.1, 3.2, gain_val))
sensor_write(sd, 0x0157, 176);
else if (ES_GAIN(3.2, 3.3, gain_val))
sensor_write(sd, 0x0157, 179);
else if (ES_GAIN(3.3, 3.4, gain_val))
sensor_write(sd, 0x0157, 181);
else if (ES_GAIN(3.4, 3.5, gain_val))
sensor_write(sd, 0x0157, 183);
else if (ES_GAIN(3.5, 3.6, gain_val))
sensor_write(sd, 0x0157, 185);
else if (ES_GAIN(3.6, 3.7, gain_val))
sensor_write(sd, 0x0157, 187);
else if (ES_GAIN(3.7, 3.8, gain_val))
sensor_write(sd, 0x0157, 189);
else if (ES_GAIN(3.8, 3.9, gain_val))
sensor_write(sd, 0x0157, 191);
else if (ES_GAIN(3.9, 4.0, gain_val))
sensor_write(sd, 0x0157, 192);
else if (ES_GAIN(4.0, 4.1, gain_val))
sensor_write(sd, 0x0157, 194);
else if (ES_GAIN(4.1, 4.2, gain_val))
sensor_write(sd, 0x0157, 195);
else if (ES_GAIN(4.2, 4.3, gain_val))
sensor_write(sd, 0x0157, 197);
else if (ES_GAIN(4.3, 4.4, gain_val))
sensor_write(sd, 0x0157, 198);
else if (ES_GAIN(4.4, 4.5, gain_val))
sensor_write(sd, 0x0157, 200);
else if (ES_GAIN(4.5, 4.6, gain_val))
sensor_write(sd, 0x0157, 201);
else if (ES_GAIN(4.6, 4.7, gain_val))
sensor_write(sd, 0x0157, 202);
else if (ES_GAIN(4.7, 4.8, gain_val))
sensor_write(sd, 0x0157, 203);
else if (ES_GAIN(4.8, 4.9, gain_val))
sensor_write(sd, 0x0157, 204);
else if (ES_GAIN(4.9, 5.0, gain_val))
sensor_write(sd, 0x0157, 205);
else if (ES_GAIN(5.0, 5.1, gain_val))
sensor_write(sd, 0x0157, 206);
else if (ES_GAIN(5.1, 5.2, gain_val))
sensor_write(sd, 0x0157, 207);
else if (ES_GAIN(5.2, 5.3, gain_val))
sensor_write(sd, 0x0157, 208);
else if (ES_GAIN(5.3, 5.4, gain_val))
sensor_write(sd, 0x0157, 209);
else if (ES_GAIN(5.4, 5.5, gain_val))
sensor_write(sd, 0x0157, 210);
else if (ES_GAIN(5.5, 5.7, gain_val))
sensor_write(sd, 0x0157, 211);
else if (ES_GAIN(5.7, 5.8, gain_val))
sensor_write(sd, 0x0157, 212);
else if (ES_GAIN(5.8, 5.9, gain_val))
sensor_write(sd, 0x0157, 213);
else if (ES_GAIN(5.9, 6.2, gain_val))
sensor_write(sd, 0x0157, 215);
else if (ES_GAIN(6.2, 6.4, gain_val))
sensor_write(sd, 0x0157, 216);
else if (ES_GAIN(6.4, 6.5, gain_val))
sensor_write(sd, 0x0157, 217);
else if (ES_GAIN(6.5, 6.7, gain_val))
sensor_write(sd, 0x0157, 218);
else if (ES_GAIN(6.7, 6.9, gain_val))
sensor_write(sd, 0x0157, 219);
else if (ES_GAIN(6.9, 7.1, gain_val))
sensor_write(sd, 0x0157, 220);
else if (ES_GAIN(7.1, 7.3, gain_val))
sensor_write(sd, 0x0157, 221);
else if (ES_GAIN(7.3, 7.5, gain_val))
sensor_write(sd, 0x0157, 222);
else if (ES_GAIN(7.5, 7.7, gain_val))
sensor_write(sd, 0x0157, 223);
else if (ES_GAIN(7.7, 8.0, gain_val))
sensor_write(sd, 0x0157, 224);
else if (ES_GAIN(8.0, 8.3, gain_val))
sensor_write(sd, 0x0157, 225);
else if (ES_GAIN(8.3, 8.5, gain_val))
sensor_write(sd, 0x0157, 226);
else if (ES_GAIN(8.5, 8.8, gain_val))
sensor_write(sd, 0x0157, 227);
else if (ES_GAIN(8.8, 9.1, gain_val))
sensor_write(sd, 0x0157, 228);
else if (ES_GAIN(9.1, 9.4, gain_val))
sensor_write(sd, 0x0157, 228);
else if (ES_GAIN(9.4, 9.8, gain_val))
sensor_write(sd, 0x0157, 230);
else if (ES_GAIN(9.8, 10.2, gain_val))
sensor_write(sd, 0x0157, 231);
else if (ES_GAIN(10.0, 10.6, gain_val))
sensor_write(sd, 0x0157, 232);
info->gain = gain_val;
return 0;
}
/*
*static int sensor_s_sw_stby(struct v4l2_subdev *sd, int on_off)
*{
* int ret;
* data_type rdval;
*
* ret = sensor_read(sd, 0x0100, &rdval);
* if (ret != 0)
* return ret;
*
* if (on_off == CSI_GPIO_LOW) //sw stby on
* ret = sensor_write(sd, 0x0100, rdval&0xfe);
* else //sw stby off
* ret = sensor_write(sd, 0x0100, rdval|0x01);
* return ret;
*}
*/
/*
* Stuff that knows about the sensor.
*/
static int sensor_power(struct v4l2_subdev *sd, int on)
{
int ret;
ret = 0;
switch (on) {
case CSI_SUBDEV_STBY_ON:
vfe_dev_dbg("CSI_SUBDEV_STBY_ON!\n");
cci_lock(sd);
vfe_gpio_write(sd, RESET, CSI_GPIO_LOW);
cci_unlock(sd);
vfe_set_mclk(sd, OFF);
break;
case CSI_SUBDEV_STBY_OFF:
vfe_dev_dbg("CSI_SUBDEV_STBY_OFF!\n");
cci_lock(sd);
vfe_set_mclk_freq(sd, MCLK);
vfe_set_mclk(sd, ON);
msleep(20);
cci_unlock(sd);
vfe_gpio_write(sd, RESET, CSI_GPIO_HIGH);
break;
case CSI_SUBDEV_PWR_ON:
vfe_dev_dbg("CSI_SUBDEV_PWR_ON!\n");
cci_lock(sd);
vfe_gpio_set_status(sd, PWDN, 1); /* set the gpio to output */
vfe_gpio_set_status(sd, RESET, 1); /* set the gpio to output */
vfe_gpio_write(sd, PWDN, CSI_GPIO_LOW);
vfe_gpio_write(sd, RESET, CSI_GPIO_LOW);
usleep_range(1000, 1200);
vfe_set_mclk_freq(sd, MCLK);
vfe_set_mclk(sd, ON);
usleep_range(10000, 12000);
vfe_gpio_write(sd, POWER_EN, CSI_GPIO_HIGH);
vfe_set_pmu_channel(sd, IOVDD, ON);
vfe_set_pmu_channel(sd, AVDD, ON);
vfe_set_pmu_channel(sd, DVDD, ON);
vfe_set_pmu_channel(sd, AFVDD, ON);
usleep_range(10000, 12000);
vfe_gpio_write(sd, PWDN, CSI_GPIO_HIGH);
vfe_gpio_write(sd, RESET, CSI_GPIO_HIGH);
usleep_range(30000, 31000);
cci_unlock(sd);
break;
case CSI_SUBDEV_PWR_OFF:
vfe_dev_dbg("CSI_SUBDEV_PWR_OFF!\n");
cci_lock(sd);
vfe_set_mclk(sd, OFF);
vfe_gpio_write(sd, POWER_EN, CSI_GPIO_LOW);
vfe_set_pmu_channel(sd, AFVDD, OFF);
vfe_set_pmu_channel(sd, DVDD, OFF);
vfe_set_pmu_channel(sd, AVDD, OFF);
vfe_set_pmu_channel(sd, IOVDD, OFF);
usleep_range(10000, 12000);
vfe_gpio_write(sd, PWDN, CSI_GPIO_LOW);
vfe_gpio_write(sd, RESET, CSI_GPIO_LOW);
vfe_gpio_set_status(sd, RESET, 0); /* set the gpio to input */
vfe_gpio_set_status(sd, PWDN, 0); /* set the gpio to input */
cci_unlock(sd);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_reset(struct v4l2_subdev *sd, u32 val)
{
switch (val) {
case 0:
vfe_gpio_write(sd, RESET, CSI_GPIO_HIGH);
usleep_range(10000, 12000);
break;
case 1:
vfe_gpio_write(sd, RESET, CSI_GPIO_LOW);
usleep_range(10000, 12000);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_detect(struct v4l2_subdev *sd)
{
data_type rdval;
LOG_ERR_RET(sensor_read(sd, 0x0000, &rdval));
if ((rdval&0x0f) != 0x02)
return -ENODEV;
LOG_ERR_RET(sensor_read(sd, 0x0001, &rdval));
if (rdval != 0x19)
return -ENODEV;
vfe_dev_print("find the sony IMX219 ***********\n");
return 0;
}
static int sensor_init(struct v4l2_subdev *sd, u32 val)
{
int ret;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_init\n");
/*Make sure it is a target sensor*/
ret = sensor_detect(sd);
if (ret) {
vfe_dev_err("chip found is not an target chip.\n");
return ret;
}
vfe_get_standby_mode(sd, &info->stby_mode);
if ((info->stby_mode == HW_STBY || info->stby_mode == SW_STBY)
&& info->init_first_flag == 0) {
vfe_dev_print("stby_mode and init_first_flag = 0\n");
return 0;
}
info->focus_status = 0;
info->low_speed = 0;
info->width = HXGA_WIDTH;
info->height = HXGA_HEIGHT;
info->hflip = 0;
info->vflip = 0;
info->gain = 0;
info->tpf.numerator = 1;
info->tpf.denominator = 30; /* 30fps */
ret = sensor_write_array(sd, sensor_default_regs,
ARRAY_SIZE(sensor_default_regs));
if (ret < 0) {
vfe_dev_err("write sensor_default_regs error\n");
return ret;
}
if (info->stby_mode == 0)
info->init_first_flag = 0;
info->preview_first_flag = 1;
return 0;
}
static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
int ret = 0;
struct sensor_info *info = to_state(sd);
switch (cmd) {
case GET_CURRENT_WIN_CFG:
if (info->current_wins != NULL) {
memcpy(arg,
info->current_wins,
sizeof(struct sensor_win_size));
ret = 0;
} else {
vfe_dev_err("empty wins!\n");
ret = -1;
}
break;
case SET_FPS:
break;
case ISP_SET_EXP_GAIN:
sensor_s_exp_gain(sd, (struct sensor_exp_gain *)arg);
break;
default:
return -EINVAL;
}
return ret;
}
/*
* Store information about the video data format.
*/
static struct sensor_format_struct {
__u8 *desc;
/* __u32 pixelformat; */
u32 mbus_code;
struct regval_list *regs;
int regs_size;
int bpp; /* Bytes per pixel */
} sensor_formats[] = {
{
.desc = "Raw RGB Bayer",
.mbus_code = MEDIA_BUS_FMT_SRGGB10_1X10,
.regs = sensor_fmt_raw,
.regs_size = ARRAY_SIZE(sensor_fmt_raw),
.bpp = 1
},
};
#define N_FMTS ARRAY_SIZE(sensor_formats)
/*
* Then there is the issue of window sizes. Try to capture the info here.
*/
static struct sensor_win_size sensor_win_sizes[] = {
/* 3280*2464 */
{
.width = 3264, /* 3280, */
.height = 2448, /* 2464, */
.hoffset = (3280-3264)/2, /* 0, */
.voffset = (2464-2448)/2, /* 0, */
.hts = 3448, /* //4352,//3448,//4037, */
.vts = 4037, /* //2757,//4037, */
.pclk = (278*1000*1000), /* 252*1000*1000, */
.mipi_bps = 720*1000*1000,
.fps_fixed = 1,
.bin_factor = 1,
.intg_min = 1<<4,
.intg_max = (4037-4)<<4,
.gain_min = 1<<4,
.gain_max = 10<<4,
.regs = sensor_hxga_regs,
.regs_size = ARRAY_SIZE(sensor_hxga_regs),
.set_size = NULL,
},
/* 1080P */
{
.width = HD1080_WIDTH,
.height = HD1080_HEIGHT,
.hoffset = 0,
.voffset = 0,
.hts = 3560,
.vts = 2607,
.pclk = (278*1000*1000),
.mipi_bps = 720*1000*1000,
.fps_fixed = 1,
.bin_factor = 2,
.intg_min = 1<<4,
.intg_max = (2607-4)<<4,
.gain_min = 1<<4,
.gain_max = 10<<4,
.regs = sensor_1080p_regs,
.regs_size = ARRAY_SIZE(sensor_1080p_regs),
.set_size = NULL,
},
/* SXGA */
{
.width = SXGA_WIDTH,
.height = SXGA_HEIGHT,
.hoffset = 0,
.voffset = 0,
.hts = 3560,
.vts = 2607,
.pclk = (278*1000*1000),
.mipi_bps = 720*1000*1000,
.fps_fixed = 1,
.bin_factor = 2,
.intg_min = 1<<4,
.intg_max = 2607<<4,
.gain_min = 1<<4,
.gain_max = 10<<4,
.regs = sensor_sxga_regs,
.regs_size = ARRAY_SIZE(sensor_sxga_regs),
.set_size = NULL,
},
/* 720p */
{
.width = HD720_WIDTH,
.height = HD720_HEIGHT,
.hoffset = 0,
.voffset = 0,
.hts = 2560,
.vts = 1303, /* 735 106fps */
.pclk = (200*1000*1000),
.mipi_bps = 720*1000*1000,
.fps_fixed = 1,
.bin_factor = 2,
.intg_min = 1<<4,
.intg_max = (1303-4)<<4,
.gain_min = 1<<4,
.gain_max = 10<<4,
.regs = sensor_720p_regs,
.regs_size = ARRAY_SIZE(sensor_720p_regs),
.set_size = NULL,
},
};
#define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes))
static int sensor_enum_code(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->index >= N_FMTS)
return -EINVAL;
code->code = sensor_formats[code->index].mbus_code;
return 0;
}
static int sensor_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_size_enum *fse)
{
if (fse->index > N_WIN_SIZES-1)
return -EINVAL;
fse->min_width = sensor_win_sizes[fse->index].width;
fse->max_width = fse->min_width;
fse->min_height = sensor_win_sizes[fse->index].height;
fse->max_height = fse->min_height;
return 0;
}
static int sensor_try_fmt_internal(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt,
struct sensor_format_struct **ret_fmt,
struct sensor_win_size **ret_wsize)
{
int index;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
for (index = 0; index < N_FMTS; index++)
if (sensor_formats[index].mbus_code == fmt->code)
break;
if (index >= N_FMTS)
return -EINVAL;
if (ret_fmt != NULL)
*ret_fmt = sensor_formats + index;
/*
* Fields: the sensor devices claim to be progressive.
*/
fmt->field = V4L2_FIELD_NONE;
/*
* Round requested image size down to the nearest
* we support, but not below the smallest.
*/
for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++)
if (fmt->width >= wsize->width && fmt->height >= wsize->height)
break;
if (wsize >= sensor_win_sizes + N_WIN_SIZES)
wsize--; /* Take the smallest one */
if (ret_wsize != NULL)
*ret_wsize = wsize;
/*
* Note the size we'll actually handle.
*/
fmt->width = wsize->width;
fmt->height = wsize->height;
info->current_wins = wsize;
return 0;
}
static int sensor_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmat)
{
struct v4l2_mbus_framefmt *fmt = &fmat->format;
return sensor_try_fmt_internal(sd, fmt, NULL, NULL);
}
static int sensor_g_mbus_config(struct v4l2_subdev *sd,
struct v4l2_mbus_config *cfg)
{
cfg->type = V4L2_MBUS_CSI2;
cfg->flags = 0 | V4L2_MBUS_CSI2_4_LANE | V4L2_MBUS_CSI2_CHANNEL_0;
return 0;
}
/*
* Set a format.
*/
static int sensor_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmat)
{
int ret;
struct v4l2_mbus_framefmt *fmt = &fmat->format;
struct sensor_format_struct *sensor_fmt;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_fmt\n");
ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize);
if (ret)
return ret;
/*
*if(info->capture_mode == V4L2_MODE_VIDEO)
*{
* //video
*}
*else if(info->capture_mode == V4L2_MODE_IMAGE)
*{
* //image
*}
*/
sensor_write_array(sd, sensor_fmt->regs, sensor_fmt->regs_size);
ret = 0;
if (wsize->regs)
LOG_ERR_RET(sensor_write_array(sd,
wsize->regs, wsize->regs_size));
if (wsize->set_size)
LOG_ERR_RET(wsize->set_size(sd));
info->fmt = sensor_fmt;
info->width = wsize->width;
info->height = wsize->height;
imx219_sensor_vts = wsize->vts;
vfe_dev_print("s_fmt set width = %d, height = %d\n",
wsize->width, wsize->height);
/*
*if(info->capture_mode == V4L2_MODE_VIDEO)
*{
* //video
*} else {
* //capture image
*}
*/
return 0;
}
/*
* Implement G/S_PARM. There is a "high quality" mode we could try
* to do someday; for now, we just do the frame rate tweak.
*/
static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct sensor_info *info = to_state(sd);
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
memset(cp, 0, sizeof(struct v4l2_captureparm));
cp->capability = V4L2_CAP_TIMEPERFRAME;
cp->capturemode = info->capture_mode;
return 0;
}
static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_parm\n");
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
if (info->tpf.numerator == 0)
return -EINVAL;
info->capture_mode = cp->capturemode;
return 0;
}
static int sensor_g_ctrl(struct v4l2_ctrl *ctrl)
{
struct sensor_info *info =
container_of(ctrl->handler, struct sensor_info, handler);
struct v4l2_subdev *sd = &info->sd;
switch (ctrl->id) {
case V4L2_CID_GAIN:
return sensor_g_gain(sd, &ctrl->val);
case V4L2_CID_EXPOSURE:
return sensor_g_exp(sd, &ctrl->val);
}
return -EINVAL;
}
static int sensor_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct sensor_info *info =
container_of(ctrl->handler, struct sensor_info, handler);
struct v4l2_subdev *sd = &info->sd;
switch (ctrl->id) {
case V4L2_CID_GAIN:
return sensor_s_gain(sd, ctrl->val);
case V4L2_CID_EXPOSURE:
return sensor_s_exp(sd, ctrl->val);
}
return -EINVAL;
}
/* ----------------------------------------------------------------------- */
static const struct v4l2_ctrl_ops sensor_ctrl_ops = {
.g_volatile_ctrl = sensor_g_ctrl,
.s_ctrl = sensor_s_ctrl,
};
static const struct v4l2_subdev_core_ops sensor_core_ops = {
.reset = sensor_reset,
.init = sensor_init,
.s_power = sensor_power,
.ioctl = sensor_ioctl,
};
static const struct v4l2_subdev_video_ops sensor_video_ops = {
.s_parm = sensor_s_parm,
.g_parm = sensor_g_parm,
.g_mbus_config = sensor_g_mbus_config,
};
static const struct v4l2_subdev_pad_ops sensor_pad_ops = {
.enum_mbus_code = sensor_enum_code,
.enum_frame_size = sensor_enum_frame_size,
.get_fmt = sensor_get_fmt,
.set_fmt = sensor_set_fmt,
};
static const struct v4l2_subdev_ops sensor_ops = {
.core = &sensor_core_ops,
.video = &sensor_video_ops,
.pad = &sensor_pad_ops,
};
/* ----------------------------------------------------------------------- */
static struct cci_driver cci_drv = {
.name = SENSOR_NAME,
.addr_width = CCI_BITS_16,
.data_width = CCI_BITS_8,
};
static const struct v4l2_ctrl_config sensor_custom_ctrls[] = {
{
.ops = &sensor_ctrl_ops,
.id = V4L2_CID_FRAME_RATE,
.name = "frame rate",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = 15,
.max = 120,
.step = 1,
.def = 120,
},
};
static int sensor_init_controls(struct v4l2_subdev *sd, const struct v4l2_ctrl_ops *ops)
{
struct sensor_info *info = to_state(sd);
struct v4l2_ctrl_handler *handler = &info->handler;
struct v4l2_ctrl *ctrl;
int ret = 0;
int i;
v4l2_ctrl_handler_init(handler, 2 + ARRAY_SIZE(sensor_custom_ctrls));
ctrl = v4l2_ctrl_new_std(handler, ops, V4L2_CID_GAIN, 1*16, 64*16-1, 1, 1*16);
if (ctrl != NULL)
ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
ctrl = v4l2_ctrl_new_std(handler, ops, V4L2_CID_EXPOSURE, 0, 65536*16, 1, 0);
if (ctrl != NULL)
ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
for (i = 0; i < ARRAY_SIZE(sensor_custom_ctrls); i++)
v4l2_ctrl_new_custom(handler, &sensor_custom_ctrls[i], NULL);
if (handler->error) {
ret = handler->error;
v4l2_ctrl_handler_free(handler);
}
sd->ctrl_handler = handler;
return ret;
}
static int sensor_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct v4l2_subdev *sd;
struct sensor_info *info;
info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL);
if (info == NULL)
return -ENOMEM;
sd = &info->sd;
glb_sd = sd;
sensor_init_controls(sd, &sensor_ctrl_ops);
cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv);
info->fmt = &sensor_formats[0];
info->af_first_flag = 1;
info->init_first_flag = 1;
return 0;
}
static int sensor_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd;
sd = cci_dev_remove_helper(client, &cci_drv);
kfree(to_state(sd));
return 0;
}
static const struct i2c_device_id sensor_id[] = {
{SENSOR_NAME, 0},
{ }
};
MODULE_DEVICE_TABLE(i2c, sensor_id);
static struct i2c_driver sensor_driver = {
.driver = {
.owner = THIS_MODULE,
.name = SENSOR_NAME,
},
.probe = sensor_probe,
.remove = sensor_remove,
.id_table = sensor_id,
};
static __init int init_sensor(void)
{
return cci_dev_init_helper(&sensor_driver);
}
static __exit void exit_sensor(void)
{
cci_dev_exit_helper(&sensor_driver);
}
module_init(init_sensor);
module_exit(exit_sensor);