SmartAudio/lichee/linux-4.9/drivers/input/misc/ltr_553als.c

1160 lines
30 KiB
C
Executable File

/* linux/driver/input/misc/ltr.c
* Copyright (C) 2010 Samsung Electronics. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*/
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/i2c.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/leds.h>
#include <linux/gpio.h>
#include <linux/wakelock.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/input.h>
#include <linux/workqueue.h>
#include <linux/uaccess.h>
#include <linux/module.h>
#include <linux/timer.h>
#include <linux/suspend.h>
//#include <mach/sys_config.h>
#ifdef CONFIG_SCENELOCK
#include <linux/power/scenelock.h>
#endif
#ifdef CONFIG_PM
#include <linux/pm.h>
#endif
#include <linux/gfp.h>
#include "../init-input.h"
#include "ltr_553als.h"
/* Note about power vs enable/disable:
* The chip has two functions, proximity and ambient light sensing.
* There is no separate power enablement to the two functions (unlike
* the Capella CM3602/3623).
* This module implements two drivers: /dev/proximity and /dev/light.
* When either driver is enabled (via sysfs attributes), we give power
* to the chip. When both are disabled, we remove power from the chip.
* In suspend, we remove power if light is disabled but not if proximity is
* enabled (proximity is allowed to wakeup from suspend).
*
* There are no ioctls for either driver interfaces. Output is via
* input device framework and control via sysfs attributes.
*/
enum {
LIGHT_ENABLED = BIT(0),
PROXIMITY_ENABLED = BIT(1),
};
static const int chip_id_value[] = {0x05,0};
static struct sensor_config_info ls_sensor_info = {
.input_type = LS_TYPE,
.int_number = 0,
.ldo = NULL,
.dev = NULL,
};
/* Addresses to scan */
static const unsigned short normal_i2c[2] = {LTR553_SLAVE_ADDR,I2C_CLIENT_END};
static int i2c_num = 0;
static const unsigned short i2c_address[] = {LTR553_SLAVE_ADDR};
static u32 debug_mask = DEBUG_INIT|DEBUG_REPORT_ALS_DATA|DEBUG_REPORT_PS_DATA;//|DEBUG_REPORT_ALS_DATA|DEBUG_REPORT_PS_DATA|DEBUG_SUSPEND|DEBUG_CONTROL_INFO|DEBUG_INT;
/* driver data */
struct ltr_data {
struct input_dev *proximity_input_dev;
struct input_dev *light_input_dev;
struct delayed_work ps_delay_work;
struct work_struct irq_workqueue;
struct i2c_client *i2c_client;
int irq;
unsigned char report_ps_val;
struct work_struct work_light;
struct hrtimer timer;
ktime_t light_poll_delay;
bool on;
u8 power_state;
unsigned long ps_poll_delay;
struct mutex power_lock;
struct wake_lock prx_wake_lock;
struct workqueue_struct *wq;
atomic_t ltr553_init;
atomic_t ltr553_suspend;
};
static void ltr553_resume_events(struct work_struct *work);
static void ltr553_init_events(struct work_struct *work);
static struct workqueue_struct *ltr553_resume_wq;
static struct workqueue_struct *ltr553_init_wq;
static DECLARE_WORK(ltr553_resume_work, ltr553_resume_events);
static DECLARE_WORK(ltr553_init_work, ltr553_init_events);
static struct ltr_data *ltr553_data;
int ltr553_als_read(void)
{
int div_tmp = 0;
int alsval_ch0_lo = 0, alsval_ch0_hi = 0;
int alsval_ch1_lo = 0, alsval_ch1_hi = 0;
int luxdata_int = 0;
int ratio = 0;
int alsval_ch0 = 0, alsval_ch1 = 0;
int ch0_coeff = 0, ch1_coeff = 0;
alsval_ch1_lo = ltr553_i2c_read_reg(LTR553_ALS_DATA_CH1_0);
alsval_ch1_hi = ltr553_i2c_read_reg(LTR553_ALS_DATA_CH1_1);
alsval_ch0_lo = ltr553_i2c_read_reg(LTR553_ALS_DATA_CH0_0);
alsval_ch0_hi = ltr553_i2c_read_reg(LTR553_ALS_DATA_CH0_1);
alsval_ch0 = (alsval_ch0_hi << 8) + alsval_ch0_lo;
alsval_ch1 = (alsval_ch1_hi << 8) + alsval_ch1_lo;
dprintk(DEBUG_REPORT_ALS_DATA, "light alsval_ch1=%d alsval_ch0=%d\n", alsval_ch1, alsval_ch0);
div_tmp = ( (alsval_ch1 + alsval_ch0) != 0)?(alsval_ch1 + alsval_ch0):1;
ratio = (100 * alsval_ch1)/div_tmp;
dprintk(DEBUG_REPORT_ALS_DATA, "light alsval_ch1=%d alsval_ch0=%d radio=%d\n", alsval_ch1, alsval_ch0,ratio);
if (ratio < 45)
{
ch0_coeff = 17743;
ch1_coeff = -11059;
}
else if ((ratio >= 45) && (ratio < 64))
{
ch0_coeff = 42785;
ch1_coeff = 19548;
}
else if ((ratio >= 64) && (ratio < 85))
{
ch0_coeff = 5926;
ch1_coeff = -1185;
}
else if (ratio >= 85)
{
ch0_coeff = 0;
ch1_coeff = 0;
}
luxdata_int = ((alsval_ch0 * ch0_coeff) - (alsval_ch1 * ch1_coeff))/10000;
return luxdata_int;
}
int ltr553_ps_read(void)
{
int psval_lo, psval_hi, psdata;
psval_lo = ltr553_i2c_read_reg(LTR553_PS_DATA_0);
if (psval_lo < 0){
psdata = psval_lo;
goto out;
}
psval_hi = ltr553_i2c_read_reg(LTR553_PS_DATA_1);
if (psval_hi < 0){
psdata = psval_hi;
goto out;
}
psdata = ((psval_hi&0x7) << 8)|psval_lo;
out:
return psdata;
}
#if 0
int ltr553_i2c_read_reg(u8 regnum)
{
info("xdafsdf\n");
}
#endif
struct ltr553_data {
struct i2c_client *client;
};
static struct ltr553_data the_data;
// I2C Read
int ltr553_i2c_read_reg(unsigned char regnum)
{
int readdata;
/*
* i2c_smbus_read_byte_data - SMBus "read byte" protocol
* @client: Handle to slave device
* @command: Byte interpreted by slave
*
* This executes the SMBus "read byte" protocol, returning negative errno
* else a data byte received from the device.
*/
readdata = i2c_smbus_read_byte_data(the_data.client, regnum);
return readdata;
}
// I2C Write
static int ltr553_i2c_write_reg(unsigned char regnum, unsigned char value)
{
int writeerror;
/*
* i2c_smbus_write_byte_data - SMBus "write byte" protocol
* @client: Handle to slave device
* @command: Byte interpreted by slave
* @value: Byte being written
*
* This executes the SMBus "write byte" protocol, returning negative errno
* else zero on success.
*/
writeerror = i2c_smbus_write_byte_data(the_data.client, regnum, value);
if (writeerror < 0)
return writeerror;
else
return 0;
}
static int ltr553_ps_enable(void)
{
int error;
int setgain;
int gainrange = PS_RANGE16;
switch (gainrange) {
case PS_RANGE16:
setgain = MODE_PS_ON_Gain16;
break;
case PS_RANGE32:
setgain = MODE_PS_ON_Gain32;
break;
case PS_RANGE64:
setgain = MODE_PS_ON_Gain64;
break;
default:
setgain = MODE_PS_ON_Gain16;
break;
}
error = ltr553_i2c_write_reg(LTR553_PS_CONTR, setgain|(1<<5));
msleep(WAKEUP_DELAY);
/* ===============
* ** IMPORTANT **
* ===============
* Other settings like timing and threshold to be set here, if required.
* Not set and kept as device default for now.
*/
return error;
}
// Put PS into Standby mode
static int ltr553_ps_disable(void)
{
int error;
error = ltr553_i2c_write_reg(LTR553_PS_CONTR, MODE_PS_StdBy);
return error;
}
static int ltr553_als_enable(void)
{
int error;
int gainrange = 1;//default dynamic Range 1(1 lux to 64k lux)
if (gainrange == 1)
error = ltr553_i2c_write_reg(LTR553_ALS_CONTR, MODE_ALS_ON_Range1);
else if (gainrange == 2)
error = ltr553_i2c_write_reg(LTR553_ALS_CONTR, MODE_ALS_ON_Range2);
else if (gainrange == 4)
error = ltr553_i2c_write_reg(LTR553_ALS_CONTR, MODE_ALS_ON_Range4);
else if (gainrange == 8)
error = ltr553_i2c_write_reg(LTR553_ALS_CONTR, MODE_ALS_ON_Range8);
else if (gainrange == 48)
error = ltr553_i2c_write_reg(LTR553_ALS_CONTR, MODE_ALS_ON_Range48);
else if (gainrange == 96)
error = ltr553_i2c_write_reg(LTR553_ALS_CONTR, MODE_ALS_ON_Range96);
else
error = -1;
msleep(WAKEUP_DELAY);
/* ===============
* ** IMPORTANT **
* ===============
* Other settings like timing and threshold to be set here, if required.
* Not set and kept as device default for now.
*/
return error;
}
// Put ALS into Standby mode
static int ltr553_als_disable(void)
{
int error;
error = ltr553_i2c_write_reg(LTR553_ALS_CONTR, MODE_ALS_StdBy);
return error;
}
int ltr553_als_power(bool enable)
{
int ret;
if (enable)
ret=ltr553_als_enable();
else
ret=ltr553_als_disable();
return ret;
}
int ltr553_ps_power(bool enable)
{
int ret;
if (enable)
ret = ltr553_ps_enable();
else
ret = ltr553_ps_disable();
return ret;
}
int ltr553_devinit(void)
{
int error=0;
msleep(PON_DELAY);
mutex_lock(&ltr553_data->power_lock);
/*error = ltr553_i2c_write_reg(LTR553_INTERRUPT, 0x1); // 0 active, ps interrupt, latched until read
if (error < 0)
goto out;*/
ltr553_i2c_write_reg(LTR553_PS_LED, 0x7f );
ltr553_i2c_write_reg(LTR553_PS_N_PULSES, 0x01);
ltr553_i2c_write_reg(LTR553_INTERRUPT_PERSIST, 0x20);
/* 200 ~ 400 */
ltr553_i2c_write_reg(LTR553_PS_THRES_LOW_0, 0xc8);
ltr553_i2c_write_reg(LTR553_PS_THRES_LOW_1, 0x0);
ltr553_i2c_write_reg(LTR553_PS_THRES_UP_0, 0x90);
ltr553_i2c_write_reg(LTR553_PS_THRES_UP_1, 0x01);
// Enable PS to Gain16 at startup
/*error = ltr553_ps_enable();
if (error < 0)
goto out;*/
// Enable ALS to Full Range at startup
/*error = ltr553_als_enable();
if (error < 0)
goto out;*/
mutex_unlock(&ltr553_data->power_lock);
//out:
return error;
}
void ltr553_set_client(struct i2c_client *client)
{
the_data.client = client;
}
static void ltr_ps_enable(struct ltr_data *ltr)
{
dprintk(DEBUG_CONTROL_INFO, "starting ps work,poll delay %ld ms",ltr->ps_poll_delay);
queue_delayed_work(ltr->wq, &ltr->ps_delay_work, 0);
}
static void ltr_ps_disable(struct ltr_data *ltr)
{
dprintk(DEBUG_CONTROL_INFO, "cancelling ps work\n");
cancel_delayed_work_sync(&ltr->ps_delay_work);
}
static void ltr_light_enable(struct ltr_data *ltr)
{
dprintk(DEBUG_CONTROL_INFO, "starting poll timer, delay %lldns\n", ktime_to_ns(ltr->light_poll_delay));
hrtimer_start(&ltr->timer, ltr->light_poll_delay, HRTIMER_MODE_REL);
}
static void ltr_light_disable(struct ltr_data *ltr)
{
dprintk(DEBUG_CONTROL_INFO, "cancelling poll timer\n");
hrtimer_cancel(&ltr->timer);
cancel_work_sync(&ltr->work_light);
}
static ssize_t ls_poll_delay_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ltr_data *ltr = dev_get_drvdata(dev);
return sprintf(buf, "%lld\n", ktime_to_ns(ltr->light_poll_delay));
}
static ssize_t ls_poll_delay_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct ltr_data *ltr = dev_get_drvdata(dev);
int64_t new_delay;
int err;
err = sscanf(buf, "%lld ", &new_delay);
if (err != 1)
return err;
dprintk(DEBUG_CONTROL_INFO, "ls new delay = %lldns, old delay = %lldns\n",
new_delay, ktime_to_ns(ltr->light_poll_delay));
mutex_lock(&ltr->power_lock);
if (new_delay != ktime_to_ns(ltr->light_poll_delay)) {
ltr->light_poll_delay = ns_to_ktime(new_delay);
if (ltr->power_state & LIGHT_ENABLED) {
ltr_light_disable(ltr);
ltr_light_enable(ltr);
}
}
mutex_unlock(&ltr->power_lock);
return size;
}
static ssize_t ps_poll_delay_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ltr_data *ltr = dev_get_drvdata(dev);
return sprintf(buf, "%lu\n", ltr->ps_poll_delay);
}
static ssize_t ps_poll_delay_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct ltr_data *ltr = dev_get_drvdata(dev);
int64_t new_delay;
int err;
err = sscanf(buf, "%lld ", &new_delay);
if (err != 1)
return err;
dprintk(DEBUG_CONTROL_INFO, "ps new delay = %lldms, old delay = %ldms\n",
new_delay,ltr->ps_poll_delay);
ltr->ps_poll_delay = new_delay;
return size;
}
static ssize_t light_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ltr_data *ltr = dev_get_drvdata(dev);
return sprintf(buf, "%d\n",
(ltr->power_state & LIGHT_ENABLED) ? 1 : 0);
}
static ssize_t proximity_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ltr_data *ltr = dev_get_drvdata(dev);
return sprintf(buf, "%d\n",
(ltr->power_state & PROXIMITY_ENABLED) ? 1 : 0);
}
static ssize_t light_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct ltr_data *ltr = dev_get_drvdata(dev);
bool new_value;
if (sysfs_streq(buf, "1"))
new_value = true;
else if (sysfs_streq(buf, "0"))
new_value = false;
else {
printk("%s: invalid value %d\n", __func__, *buf);
return -EINVAL;
}
if ((atomic_read(&ltr->ltr553_init) == 0) || (atomic_read(&ltr->ltr553_suspend) == 1)) {
mutex_lock(&ltr->power_lock);
ltr->power_state |= LIGHT_ENABLED;
mutex_unlock(&ltr->power_lock);
return size;
}
dprintk(DEBUG_CONTROL_INFO, "new_value = %d, old state = %d\n",
new_value, (ltr->power_state & LIGHT_ENABLED) ? 1 : 0);
mutex_lock(&ltr->power_lock);
if (new_value && !(ltr->power_state & LIGHT_ENABLED)) {
ltr553_als_power(true);
ltr->power_state |= LIGHT_ENABLED;
ltr_light_enable(ltr);
} else if (!new_value && (ltr->power_state & LIGHT_ENABLED)) {
ltr_light_disable(ltr);
ltr->power_state &= ~LIGHT_ENABLED;
ltr553_als_power(false);
}
mutex_unlock(&ltr->power_lock);
return size;
}
static ssize_t proximity_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct ltr_data *ltr = dev_get_drvdata(dev);
bool new_value;
if (sysfs_streq(buf, "1"))
new_value = true;
else if (sysfs_streq(buf, "0"))
new_value = false;
else {
printk("%s: invalid value %d\n", __func__, *buf);
return -EINVAL;
}
if ((atomic_read(&ltr->ltr553_init) == 0) || (atomic_read(&ltr->ltr553_suspend) == 1)) {
mutex_lock(&ltr->power_lock);
ltr->power_state |= PROXIMITY_ENABLED;
mutex_unlock(&ltr->power_lock);
return size;
}
mutex_lock(&ltr->power_lock);
dprintk(DEBUG_CONTROL_INFO, "new_value = %d, old state = %d\n", new_value, (ltr->power_state & PROXIMITY_ENABLED) ? 1 : 0);
if (new_value && !(ltr->power_state & PROXIMITY_ENABLED)) {
ltr553_ps_power(true);
ltr->power_state |= PROXIMITY_ENABLED;
ltr_ps_enable(ltr);
} else if (!new_value && (ltr->power_state & PROXIMITY_ENABLED)) {
ltr_ps_disable(ltr);
ltr553_ps_power(false);
ltr->power_state &= ~PROXIMITY_ENABLED;
}
#if 0
//printf reg
unsigned char upper_low,upper_high;
unsigned char lower_low,lower_high;
int error;
upper_low = ltr553_i2c_read_reg(LTR553_PS_THRES_UP_0);
upper_high = ltr553_i2c_read_reg(LTR553_PS_THRES_UP_1);
lower_low = ltr553_i2c_read_reg(LTR553_PS_THRES_LOW_0);
lower_high = ltr553_i2c_read_reg(LTR553_PS_THRES_LOW_1);
printk(" read PS thres upper =%d\n", ((upper_high & 0x7) << 8) | upper_low );
printk(" read PS thres lower =%d\n", ((lower_high & 0x7) << 8) | lower_low );
// error = ltr553_i2c_write_reg(LTR553_PS_LED, 0x6b & 0xf8);
error = ltr553_i2c_read_reg(LTR553_PS_CONTR);
printk(" LTR553_PS_CONTR =0x%0x\n", error );
error = ltr553_i2c_read_reg(LTR553_PS_LED);
printk(" LTR553_PS_LED =0x%0x\n", error );
error = ltr553_i2c_read_reg(LTR553_PS_N_PULSES);
printk(" LTR553_PS_N_PULSES =0x%0x\n", error );
error = ltr553_i2c_read_reg(LTR553_PS_MEAS_RATE);
printk(" LTR553_PS_MEAS_RATE =0x%0x\n", error );
error = ltr553_i2c_read_reg(LTR553_INTERRUPT);
printk(" LTR553_INTERRUPT =0x%0x\n", error );
error = ltr553_i2c_read_reg(LTR553_INTERRUPT_PERSIST);
printk(" LTR553_INTERRUPT_PERSIST =0x%0x\n", error );
#endif
mutex_unlock(&ltr->power_lock);
return size;
}
static DEVICE_ATTR(ls_poll_delay, S_IRUGO | S_IWUSR | S_IWGRP,
ls_poll_delay_show, ls_poll_delay_store);
static DEVICE_ATTR(ps_poll_delay, S_IRUGO | S_IWUSR | S_IWGRP,
ps_poll_delay_show, ps_poll_delay_store);
static struct device_attribute dev_attr_light_enable =
__ATTR(enable, S_IRUGO | S_IWUSR | S_IWGRP,
light_enable_show, light_enable_store);
static struct device_attribute dev_attr_proximity_enable =
__ATTR(enable, S_IRUGO | S_IWUSR | S_IWGRP,
proximity_enable_show, proximity_enable_store);
static struct attribute *light_sysfs_attrs[] = {
&dev_attr_light_enable.attr,
&dev_attr_ls_poll_delay.attr,
NULL
};
static struct attribute_group light_attribute_group = {
.attrs = light_sysfs_attrs,
};
static struct attribute *proximity_sysfs_attrs[] = {
&dev_attr_proximity_enable.attr,
&dev_attr_ps_poll_delay.attr,
NULL
};
static struct attribute_group proximity_attribute_group = {
.attrs = proximity_sysfs_attrs,
};
static void ltr_work_func_light(struct work_struct *work)
{
struct ltr_data *ltr = container_of(work, struct ltr_data,
work_light);
int adc = ltr553_als_read();
if (adc < 0)
{
printk("light val err");
adc = 0; // no light
}
dprintk(DEBUG_REPORT_ALS_DATA, "light val=%d\n", adc);
input_report_abs(ltr->light_input_dev, ABS_MISC, adc);
input_sync(ltr->light_input_dev);
}
/* This function is for light sensor. It operates every a few seconds.
* It asks for work to be done on a thread because i2c needs a thread
* context (slow and blocking) and then reschedules the timer to run again.
*/
static enum hrtimer_restart ltr_timer_func(struct hrtimer *timer)
{
struct ltr_data *ltr = container_of(timer, struct ltr_data, timer);
queue_work(ltr->wq, &ltr->work_light);
hrtimer_forward_now(&ltr->timer, ltr->light_poll_delay);
return HRTIMER_RESTART;
}
#if 0
/* interrupt happened due to transition/change of near/far proximity state */
static irqreturn_t ltr_irq_handler(int irq, void *dev_id)
{
// struct ltr_data *ltr =(struct ltr_data *)data;
// schedule_work(&ltr->irq_workqueue);
dprintk(DEBUG_CONTROL_INFO, "in irq\n");
return 0;
}
#endif
static void ltr553_schedwork(struct work_struct *work)
{
unsigned int upper_low,upper_high;
unsigned int lower_low,lower_high;
unsigned int upper_threshold,lower_threshold;
struct ltr_data *ltr = container_of((struct delayed_work *)work, struct ltr_data,ps_delay_work);
int val=-1;
#if 0
int als_ps_status;
int interrupt, newdata, val=-1;
als_ps_status = ltr553_i2c_read_reg(LTR553_ALS_PS_STATUS);
interrupt = als_ps_status & 10;
newdata = als_ps_status & 5;
switch (interrupt){
case 2:
// PS interrupt
if ((newdata == 1) | (newdata == 5)){
val = ltr553_ps_read();
}
break;
case 8:
info("!!!!!!!!!impossible irq als insterrupt!!!!!!!!");
// ALS interrupt
if ((newdata == 4) | (newdata == 5)){
; //als_data_changed = 1;
}
break;
case 10:
info("!!!!!!!!!impossible irq ps and als insterrupt!!!!!!!!");
// Both interrupt
if ((newdata == 1) | (newdata == 5)){
val = ltr553_ps_read();
; //ps_data_changed = 1;
}
if ((newdata == 4) | (newdata == 5)){
;//als_data_changed = 1;
}
break;
}
#endif
upper_low = ltr553_i2c_read_reg(LTR553_PS_THRES_UP_0);
upper_high = ltr553_i2c_read_reg(LTR553_PS_THRES_UP_1);
lower_low = ltr553_i2c_read_reg(LTR553_PS_THRES_LOW_0);
lower_high = ltr553_i2c_read_reg(LTR553_PS_THRES_LOW_1);
upper_threshold = ((upper_high & 0x7) << 8) | upper_low;
lower_threshold = ((lower_high & 0x7) << 8) | lower_low;
dprintk(DEBUG_REPORT_PS_DATA," read PS thres upper =%d\n", upper_threshold );
dprintk(DEBUG_REPORT_PS_DATA," read PS thres lower =%d\n", lower_threshold );
val = ltr553_ps_read();
dprintk(DEBUG_REPORT_PS_DATA, " ps val =%d\n", val);
/* 0 is close, 1 is far */
if(val > upper_threshold){
ltr->report_ps_val = 0;
}else if(val < lower_threshold){
ltr->report_ps_val = 1;
}
dprintk(DEBUG_REPORT_PS_DATA, " report val =%d\n", ltr->report_ps_val);
input_report_abs(ltr->proximity_input_dev, ABS_DISTANCE, ltr->report_ps_val);
input_sync(ltr->proximity_input_dev);
queue_delayed_work(ltr->wq, &ltr->ps_delay_work, msecs_to_jiffies(ltr->ps_poll_delay));
//wake_lock_timeout(&ip->prx_wake_lock, 3*HZ);
}
#if 0
static int ltr_setup_irq(struct ltr_data *ltr)
{
int ret = -EIO;
dprintk(DEBUG_INT, "%s:light sensor irq_number= %d\n", __func__,
ls_sensor_info.int_number);
ls_sensor_info.dev = &(ltr->proximity_input_dev->dev);
if (0 != ls_sensor_info.int_number) {
ret = input_request_int(&(ls_sensor_info.input_type), ltr_irq_handler,
IRQF_TRIGGER_FALLING, ltr);
if (ret) {
printk("Failed to request gpio irq \n");
return ret;
}
}
ret = 0;
return ret;
}
#endif
static void ltr553_init_events (struct work_struct *work)
{
ltr553_devinit();
mutex_lock(&ltr553_data->power_lock);
if (ltr553_data->power_state &= LIGHT_ENABLED) {
ltr553_als_power(true);
ltr_light_enable(ltr553_data);
}
if (ltr553_data->power_state &= PROXIMITY_ENABLED) {
ltr553_ps_power(true);
ltr_ps_enable(ltr553_data);
}
mutex_unlock(&ltr553_data->power_lock);
atomic_set(&ltr553_data->ltr553_init, 1);
}
static int ltr_i2c_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct input_dev *input_dev;
struct ltr_data *ltr;
int ret = -ENODEV;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE | I2C_FUNC_SMBUS_READ_BYTE_DATA))
{
printk("%s,LTR-553ALS functionality check failed.\n", __func__);
return -EIO;
}
ltr = kzalloc(sizeof(struct ltr_data), GFP_KERNEL);
if (!ltr) {
printk("%s: failed to alloc memory for module data\n", __func__);
return -ENOMEM;
}
ltr->i2c_client = client;
i2c_set_clientdata(client, ltr);
ltr->ps_poll_delay = 100;
/* the timer just fires off a work queue request. we need a thread
to read the i2c (can be slow and blocking). */
ltr->wq = create_singlethread_workqueue("ltr_wq");
if (!ltr->wq) {
ret = -ENOMEM;
printk("%s: could not create workqueue\n", __func__);
goto err_create_workqueue;
}
/* ==================proximity sensor====================== */
mutex_init(&ltr->power_lock);
INIT_DELAYED_WORK(&ltr->ps_delay_work, ltr553_schedwork);
/* allocate proximity input_device */
input_dev = input_allocate_device();
if (!input_dev) {
printk("%s: could not allocate input device\n", __func__);
goto err_input_allocate_device_proximity;
}
ltr->proximity_input_dev = input_dev;
input_set_drvdata(input_dev, ltr);
input_dev->name = "proximity";
input_set_capability(input_dev, EV_ABS, ABS_DISTANCE);
/* 0,close ,1 far */
input_set_abs_params(input_dev, ABS_DISTANCE, 0, 1, 0, 0);
dprintk(DEBUG_INIT,"registering proximity input device\n");
ret = input_register_device(input_dev);
if (ret < 0) {
printk("%s: could not register input device\n", __func__);
input_free_device(input_dev);
goto err_input_register_device_proximity;
}
ret = sysfs_create_group(&input_dev->dev.kobj,
&proximity_attribute_group);
if (ret) {
printk("%s: could not create sysfs group\n", __func__);
goto err_sysfs_create_group_proximity;
}
/* ==================light sensor====================== */
/* hrtimer settings. we poll for light values using a timer. */
hrtimer_init(&ltr->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
ltr->light_poll_delay = ns_to_ktime(200 * NSEC_PER_MSEC);
ltr->timer.function = ltr_timer_func;
/* this is the thread function we run on the work queue */
INIT_WORK(&ltr->work_light, ltr_work_func_light);
/* allocate lightsensor-level input_device */
input_dev = input_allocate_device();
if (!input_dev) {
printk("%s: could not allocate input device\n", __func__);
ret = -ENOMEM;
goto err_input_allocate_device_light;
}
input_set_drvdata(input_dev, ltr);
input_dev->name = "lightsensor";
input_set_capability(input_dev, EV_ABS, ABS_MISC);
//max 16bit
input_set_abs_params(input_dev, ABS_MISC, 0, 65535, 0, 0);
dprintk(DEBUG_INIT, "registering lightsensor-level input device\n");
ret = input_register_device(input_dev);
if (ret < 0) {
printk("%s: could not register input device\n", __func__);
input_free_device(input_dev);
goto err_input_register_device_light;
}
ltr->light_input_dev = input_dev;
ret = sysfs_create_group(&input_dev->dev.kobj,
&light_attribute_group);
if (ret) {
printk("%s: could not create sysfs group\n", __func__);
goto err_sysfs_create_group_light;
}
ltr553_set_client(ltr->i2c_client);
atomic_set(&ltr->ltr553_init, 0);
atomic_set(&ltr->ltr553_suspend, 0);
ltr553_data = ltr;
ltr553_resume_wq = create_singlethread_workqueue("ltr553_resume");
if (ltr553_resume_wq == NULL) {
printk("create ltr553_resume_wq fail!\n");
return -ENOMEM;
}
ltr553_init_wq = create_singlethread_workqueue("ltr553_init");
if (ltr553_init_wq == NULL) {
printk("create ltr553_init_wq fail!\n");
return -ENOMEM;
}
/* Initialize the ltr553 chip */
queue_work(ltr553_init_wq, &ltr553_init_work);
// ret = ltr_setup_irq(ltr);
// if (ret) {
// printk("%s: could not setup irq\n", __func__);
// goto err_sysfs_create_group_light;
// }
dprintk(DEBUG_INIT, "LTR probe OK!");
return 0;
/* error, unwind it all */
err_sysfs_create_group_light:
input_unregister_device(ltr->light_input_dev);
err_input_register_device_light:
err_input_allocate_device_light:
sysfs_remove_group(&ltr->proximity_input_dev->dev.kobj,
&proximity_attribute_group);
err_sysfs_create_group_proximity:
input_unregister_device(ltr->proximity_input_dev);
err_input_register_device_proximity:
err_input_allocate_device_proximity:
mutex_destroy(&ltr->power_lock);
destroy_workqueue(ltr->wq);
err_create_workqueue:
kfree(ltr);
return ret;
}
static int ltr_i2c_remove(struct i2c_client *client)
{
struct ltr_data *ltr = i2c_get_clientdata(client);
cancel_work_sync(&ltr553_init_work);
destroy_workqueue(ltr553_init_wq);
cancel_work_sync(&ltr553_resume_work);
destroy_workqueue(ltr553_resume_wq);
sysfs_remove_group(&ltr->light_input_dev->dev.kobj,
&light_attribute_group);
input_unregister_device(ltr->light_input_dev);
sysfs_remove_group(&ltr->proximity_input_dev->dev.kobj,
&proximity_attribute_group);
input_unregister_device(ltr->proximity_input_dev);
//if (0 != ls_sensor_info.int_number)
//input_free_int(&(ls_sensor_info.input_type), ltr);
if (ltr->power_state) {
if (ltr->power_state & LIGHT_ENABLED)
ltr_light_disable(ltr);
ltr553_als_power(false);
ltr553_ps_power(false);
ltr->power_state = 0;
}
cancel_delayed_work_sync(&ltr->ps_delay_work);
destroy_workqueue(ltr->wq);
mutex_destroy(&ltr->power_lock);
kfree(ltr);
return 0;
}
static void ltr553_resume_events (struct work_struct *work)
{
ltr553_devinit();
mutex_lock(&ltr553_data->power_lock);
if (ltr553_data->power_state & LIGHT_ENABLED) {
ltr553_als_power(true);
ltr_light_enable(ltr553_data);
}
if (ltr553_data->power_state & PROXIMITY_ENABLED) {
ltr553_ps_power(true);
ltr_ps_enable(ltr553_data);
}
mutex_unlock(&ltr553_data->power_lock);
atomic_set(&ltr553_data->ltr553_suspend, 0);
}
#ifdef CONFIG_PM
/*static int ltr_suspend(struct i2c_client *client, pm_message_t mesg)
{
// We disable power only if proximity is disabled. If proximity
//is enabled, we leave power on because proximity is allowed
//to wake up device. We remove power without changing
//ltr->power_state because we use that state in resume.
struct ltr_data *ltr = i2c_get_clientdata(client);
dprintk(DEBUG_SUSPEND, "==suspend=\n");
atomic_set(&ltr->ltr553_suspend, 1);
if (ltr->power_state & LIGHT_ENABLED){
ltr_light_disable(ltr);
ltr553_als_power(false);
}
if (ltr->power_state & PROXIMITY_ENABLED){
ltr_ps_disable(ltr);
#ifdef CONFIG_SCENELOCK
if (check_scene_locked(SCENE_TALKING_STANDBY) != 0)
#endif
ltr553_ps_power(false);
}
return 0;
}
static int ltr_resume(struct i2c_client *client)
{
// Turn power back on if we were before suspend.
struct ltr_data *ltr = i2c_get_clientdata(client);
dprintk(DEBUG_SUSPEND, "==resume=\n");
if (NORMAL_STANDBY == standby_type) {
if (ltr->power_state & LIGHT_ENABLED){
ltr553_als_power(true);
ltr_light_enable(ltr);
}
if (ltr->power_state & PROXIMITY_ENABLED){
#ifdef CONFIG_SCENELOCK
if (check_scene_locked(SCENE_TALKING_STANDBY) != 0)
#endif
ltr553_ps_power(true);
ltr_ps_enable(ltr);
}
atomic_set(&ltr->ltr553_suspend, 0);
} else if (SUPER_STANDBY == standby_type)
queue_work(ltr553_resume_wq, &ltr553_resume_work);
return 0;
}*/
#endif
/**
* ls_detect - Device detection callback for automatic device creation
* return value:
* = 0; success;
* < 0; err
*/
static int ls_detect(struct i2c_client *client, struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
int ret;
dprintk(DEBUG_INIT, "ls_detect,adapter->nr=%d\n",adapter->nr);
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
if (ls_sensor_info.twi_id == adapter->nr) {
for (i2c_num = 0; i2c_num < (sizeof(i2c_address)/sizeof(i2c_address[0]));i2c_num++) {
client->addr = i2c_address[i2c_num];
dprintk(DEBUG_INIT, "%s:addr= 0x%x,i2c_num:%d\n",__func__,client->addr,i2c_num);
ret = i2c_smbus_read_byte_data(client,LTR553_MANUFACTURER_ID);
dprintk(DEBUG_INIT, "Read MID value is :0x%x\n",ret);
if ((ret &0x00FF) == LTR553_MID) {
ret = i2c_smbus_read_byte_data(client,LTR553_REG_PART_ID);
dprintk(DEBUG_INIT, "Read PID value is :0x%x\n",ret);
if ((ret &0x00FF) == LTR553_PID) {
dprintk(DEBUG_INIT, "LS Device detected!\n" );
strlcpy(info->type, LTR553_NAME, I2C_NAME_SIZE);
return 0;
}
}
}
pr_info("%s:LS Device not found, \
maybe the other gsensor equipment! \n",__func__);
return -ENODEV;
} else {
return -ENODEV;
}
}
static const struct i2c_device_id ltr_device_id[] = {
{LTR553_NAME, 0},
{}
};
MODULE_DEVICE_TABLE(i2c, ltr_device_id);
static struct i2c_driver ltr_i2c_driver = {
.class = I2C_CLASS_HWMON,
.probe = ltr_i2c_probe,
.remove = ltr_i2c_remove,
.id_table = ltr_device_id,
.detect = ls_detect,
.address_list = normal_i2c,
#ifdef CONFIG_PM
//.suspend = ltr_suspend,
//.resume = ltr_resume,
#endif
.driver = {
.name = LTR553_NAME,
.owner = THIS_MODULE,
},
};
static int ltr_init(void)
{
int ret = 0;
dprintk(DEBUG_INIT, "%s:light sensor driver init\n", __func__ );
if (input_sensor_startup(&(ls_sensor_info.input_type))) {
printk("%s: input_sensor_startup err.\n", __func__);
return 0;
} else {
ret = input_sensor_init(&(ls_sensor_info.input_type));
if (0 != ret) {
printk("%s:input_sensor_init err. \n", __func__);
}
}
if (ls_sensor_info.sensor_used == 0) {
printk("*** ls_used set to 0 !\n");
printk("*** if use light_sensor,please put the sys_config.fex ls_used set to 1. \n");
return 0;
}
return i2c_add_driver(&ltr_i2c_driver);
}
static void ltr_exit(void)
{
i2c_del_driver(&ltr_i2c_driver);
input_sensor_free(&(ls_sensor_info.input_type));
}
module_init(ltr_init);
module_exit(ltr_exit);
module_param_named(debug_mask, debug_mask, int, 0644);
MODULE_AUTHOR("guoguo@allwinnertech.com");
MODULE_DESCRIPTION("Optical Sensor driver for ltr553als");
MODULE_LICENSE("GPL");