SmartAudio/lichee/brandy/u-boot-2011.09/drivers/spi/sun8iw5p1_spi.c

505 lines
12 KiB
C
Executable File

/*
* (C) Copyright 2007-2013
* Allwinner Technology Co., Ltd. <www.allwinnertech.com>
* Jerry Wang <wangflord@allwinnertech.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <malloc.h>
#include <spi.h>
#include <asm/io.h>
#include <asm/arch/spi.h>
#include <asm/arch/ccmu.h>
//#include <asm/arch/ccmu.h>
#include <asm/arch/dma.h>
#define SUNXI_NOR_FLASH_DEBUG 1
#ifdef SUNXI_NOR_FLASH_DEBUG
#define SUNXI_DEBUG(fmt,args...) printf(fmt ,##args)
#else
#define SUNXI_DEBUG(fmt,args...) do {} while(0)
#endif
static u32 g_cfg_mclk = 0;
static sunxi_dma_setting_t *spi_tx_dma;
static sunxi_dma_setting_t *spi_rx_dma;
static uint spi_tx_dma_hd;
static uint spi_rx_dma_hd;
void ccm_module_disable_bak(u32 clk_id)
{
switch(clk_id>>8) {
case AHB1_BUS0:
clr_wbit(CCM_AHB1_RST_REG0, 0x1U<<(clk_id&0xff));
SUNXI_DEBUG("\nread CCM_AHB1_RST_REG0[0x%x]\n",readl(CCM_AHB1_RST_REG0));
break;
}
}
void ccm_module_enable_bak(u32 clk_id)
{
switch(clk_id>>8) {
case AHB1_BUS0:
set_wbit(CCM_AHB1_RST_REG0, 0x1U<<(clk_id&0xff));
SUNXI_DEBUG("\nread enable CCM_AHB1_RST_REG0[0x%x]\n",readl(CCM_AHB1_RST_REG0));
break;
}
}
void ccm_clock_enable_bak(u32 clk_id)
{
switch(clk_id>>8) {
case AXI_BUS:
set_wbit(CCM_AXI_GATE_CTRL, 0x1U<<(clk_id&0xff));
break;
case AHB1_BUS0:
set_wbit(CCM_AHB1_GATE0_CTRL, 0x1U<<(clk_id&0xff));
SUNXI_DEBUG("read s CCM_AHB1_GATE0_CTRL[0x%x]\n",readl(CCM_AHB1_GATE0_CTRL));
break;
}
}
void ccm_clock_disable_bak(u32 clk_id)
{
switch(clk_id>>8) {
case AXI_BUS:
clr_wbit(CCM_AXI_GATE_CTRL, 0x1U<<(clk_id&0xff));
break;
case AHB1_BUS0:
clr_wbit(CCM_AHB1_GATE0_CTRL, 0x1U<<(clk_id&0xff));
SUNXI_DEBUG("read dis CCM_AHB1_GATE0_CTRL[0x%x]\n",readl(CCM_AHB1_GATE0_CTRL));
break;
}
}
/*
************************************************************************************************************
*
* function
*
* name :
*
* parmeters :
*
* return :
*
* note :
*
*
************************************************************************************************************
*/
static int spi_dma_recv_start(uint spi_no, uchar* pbuf, uint byte_cnt)
{
flush_cache((uint)pbuf, byte_cnt);
sunxi_dma_start(spi_rx_dma_hd, SPI_RXD, (uint)pbuf, byte_cnt);
return 0;
}
static int spi_wait_dma_recv_over(uint spi_no)
{
//int ret = 0;
//count_recv ++;
//ret = sunxi_dma_querystatus(spi_rx_dma_hd);
//if(ret == 0)
// printf("dma recv end \n");
//return ret;
return sunxi_dma_querystatus(spi_rx_dma_hd);
}
/*
************************************************************************************************************
*
* function
*
* name :
*
* parmeters :
*
* return :
*
* note :
*
*
************************************************************************************************************
*/
static int spi_dma_send_start(uint spi_no, uchar* pbuf, uint byte_cnt)
{
flush_cache((uint)pbuf, byte_cnt);
sunxi_dma_start(spi_tx_dma_hd, (uint)pbuf, SPI_TXD, byte_cnt);
return 0;
}
static int spi_wait_dma_send_over(uint spi_no)
{
//int ret = 0;
//count_send++;
//ret = sunxi_dma_querystatus(spi_tx_dma_hd);
//if(ret == 0)
// printf("dma send end \n");
//return ret ;
return sunxi_dma_querystatus(spi_tx_dma_hd);
}
#define set_wbit(addr, v) (*((volatile unsigned long *)(addr)) |= (unsigned long)(v))
#define clr_wbit(addr, v) (*((volatile unsigned long *)(addr)) &= ~(unsigned long)(v))
void ccm_module_reset_bak(u32 clk_id)
{
ccm_module_disable_bak(clk_id);
ccm_module_disable_bak(clk_id);
ccm_module_enable_bak(clk_id);
}
u32 ccm_get_pll_periph_clk(void)
{
u32 rval = 0;
u32 n, k;
rval = readl(CCM_PLL6_MOD_CTRL);
n = (0x1f & (rval >> 8)) + 1;
k = (0x3 & (rval >> 4)) + 1;
return (24000000 * n * k)>>1;
}
void pattern_goto(int pos)
{
//SUNXI_DEBUG("pos =%d\n",pos);
}
u32 spi_cfg_mclk(u32 spi_no, u32 src, u32 mclk)
{
#ifdef CONFIG_FPGA
g_cfg_mclk = 24000000;
return g_cfg_mclk;
#else
u32 mclk_base = CCM_SPI0_SCLK_CTRL;
u32 source_clk;
u32 rval;
u32 m, n, div;
src = 1;
switch (src) {
case 0:
source_clk = 24000000;
break;
case 1:
source_clk = ccm_get_pll_periph_clk();
break;
default :
SUNXI_DEBUG("Wrong SPI clock source :%x\n", src);
}
SUNXI_DEBUG("SPI clock source :0x%x\n", source_clk);
div = (source_clk + mclk - 1) / mclk;
div = div==0 ? 1 : div;
if (div > 128) {
m = 1;
n = 0;
SUNXI_DEBUG("Source clock is too high\n");
} else if (div > 64) {
n = 3;
m = div >> 3;
} else if (div > 32) {
n = 2;
m = div >> 2;
} else if (div > 16) {
n = 1;
m = div >> 1;
} else {
n = 0;
m = div;
}
rval = (1U << 31) | (src << 24) | (n << 16) | (m - 1);
writel(rval, mclk_base);
g_cfg_mclk = source_clk / (1 << n) / (m - 1);
SUNXI_DEBUG("spi spic->sclk =0x%x\n",g_cfg_mclk );
return g_cfg_mclk;
#endif
}
u32 spi_get_mlk(u32 spi_no)
{
return g_cfg_mclk ;//spicinfo[spi_no].sclk;
}
void spi_gpio_cfg(int spi_no)
{
uint reg_val = 0;
writel(0x3333, (0x1c20800 + 0x48)); // PIO SETTING,PortC SPI0
reg_val = readl(0x1c20800 + 0x64); // PIO SETTING,PortC SPI0 pull reg
reg_val &= ~(0x03 << 4);
reg_val |= (0x01 << 4);
writel(reg_val, (0x1c20800 + 0x64));
SUNXI_DEBUG("Reg pull reg_val=0x%x,read=0x%x\n",reg_val,readl((0x1c20800 + 0x64)));
}
void spi_onoff(u32 spi_no, u32 onoff)
{
u32 clkid[] = {SPI0_CKID, SPI1_CKID};
//u32 reg_val = 0;
spi_no = 0;
switch (spi_no) {
case 0:
spi_gpio_cfg(0);
break;
}
ccm_module_reset_bak(clkid[spi_no]);
if (onoff)
ccm_clock_enable_bak(clkid[spi_no]);
else
ccm_clock_disable_bak(clkid[spi_no]);
}
void spic_set_clk(u32 spi_no, u32 clk)
{
u32 mclk = spi_get_mlk(spi_no);
u32 div;
u32 cdr1 = 0;
u32 cdr2 = 0;
u32 cdr_sel = 0;
div = mclk/(clk<<1);
if (div==0) {
cdr1 = 0;
cdr2 = 0;
cdr_sel = 0;
} else if (div<=0x100) {
cdr1 = 0;
cdr2 = div-1;
cdr_sel = 1;
} else {
div = 0;
while (mclk > clk) {
div++;
mclk >>= 1;
}
cdr1 = div;
cdr2 = 0;
cdr_sel = 0;
}
writel((cdr_sel<<12)|(cdr1<<8)|cdr2, SPI_CCR);
SUNXI_DEBUG("spic_set_clk:mclk=0x%x\n",mclk);
}
int spic_init(u32 spi_no)
{
u32 rval;
//uint reg_val, div;
spi_rx_dma = malloc_noncache(sizeof(sunxi_dma_setting_t));
spi_tx_dma = malloc_noncache(sizeof(sunxi_dma_setting_t));
if(!(spi_rx_dma) || !(spi_tx_dma))
{
printf("no enough memory to malloc \n");
return -1;
}
memset(spi_tx_dma , 0 , sizeof(sunxi_dma_setting_t));
memset(spi_rx_dma , 0 , sizeof(sunxi_dma_setting_t));
spi_rx_dma_hd = sunxi_dma_request(DMAC_DMATYPE_NORMAL);
spi_tx_dma_hd = sunxi_dma_request(DMAC_DMATYPE_NORMAL);
if((spi_tx_dma_hd == 0) || (spi_rx_dma_hd == 0))
{
printf("spi request dma failed\n");
return -1;
}
//配置spi rx dma资源
//spi_rx_dma->pgsz = 0;
//spi_rx_dma->pgstp = 0;
//spi_rx_dma->cmt_blk_cnt = 0;
//config recv(from spi fifo to dram)
spi_rx_dma->cfg.src_drq_type = DMAC_CFG_TYPE_SPI0; //SPI0
spi_rx_dma->cfg.src_addr_mode = DMAC_CFG_SRC_ADDR_TYPE_IO_MODE;
spi_rx_dma->cfg.src_burst_length = DMAC_CFG_SRC_1_BURST;
spi_rx_dma->cfg.src_data_width = DMAC_CFG_SRC_DATA_WIDTH_8BIT;
spi_rx_dma->cfg.dst_drq_type = DMAC_CFG_TYPE_DRAM; //DRAM
spi_rx_dma->cfg.dst_addr_mode = DMAC_CFG_DEST_ADDR_TYPE_LINEAR_MODE;
spi_rx_dma->cfg.dst_burst_length = DMAC_CFG_DEST_1_BURST;
spi_rx_dma->cfg.dst_data_width = DMAC_CFG_DEST_DATA_WIDTH_8BIT;
//spi_rx_dma->cfg.wait_state = 4;
//spi_rx_dma->cfg.continuous_mode = 0;
//配置spi tx dma资源
//spi_tx_dma->pgsz = 0;
//spi_tx_dma->pgstp = 0;
//spi_tx_dma->cmt_blk_cnt = 0;
//spi_tx_dma.
//config send(from dram to spi fifo)
spi_tx_dma->cfg.src_drq_type = DMAC_CFG_TYPE_SRAM; //
spi_tx_dma->cfg.src_addr_mode = DMAC_CFG_SRC_ADDR_TYPE_LINEAR_MODE;
spi_tx_dma->cfg.src_burst_length = DMAC_CFG_SRC_1_BURST;
spi_tx_dma->cfg.src_data_width = DMAC_CFG_SRC_DATA_WIDTH_8BIT;
spi_tx_dma->cfg.dst_drq_type = DMAC_CFG_TYPE_SPI0; //SPI0
spi_tx_dma->cfg.dst_addr_mode = DMAC_CFG_DEST_ADDR_TYPE_IO_MODE;
spi_tx_dma->cfg.dst_burst_length = DMAC_CFG_DEST_1_BURST;
spi_tx_dma->cfg.dst_data_width = DMAC_CFG_DEST_DATA_WIDTH_8BIT;
spi_tx_dma->wait_cyc = 0x10;
//spi_tx_dma->cfg.wait_state = 4;
//spi_tx_dma->cfg.continuous_mode = 0;
sunxi_dma_setting(spi_rx_dma_hd, (void *)spi_rx_dma);
sunxi_dma_setting(spi_tx_dma_hd, (void *)spi_tx_dma);
spi_no = 0;
spi_onoff(spi_no, 1);
spi_cfg_mclk(spi_no, SPI_CLK_SRC, SPI_MCLK);
spic_set_clk(spi_no, SPI_DEFAULT_CLK);
rval = SPI_SOFT_RST|SPI_TXPAUSE_EN|SPI_MASTER|SPI_ENABLE;
writel(rval, SPI_GCR);
rval = SPI_SET_SS_1|SPI_DHB|SPI_SS_ACTIVE0; //set ss to high,discard unused burst,SPI select signal polarity(low,1=idle)
writel(rval, SPI_TCR);
writel(SPI_TXFIFO_RST|(SPI_TX_WL<<16)|(SPI_RX_WL), SPI_FCR);
return 0;
}
int spic_rw( u32 tcnt, void* txbuf, u32 rcnt, void* rxbuf)
{
u32 i = 0,fcr;
int timeout = 0xfffff;
//uint ret = 0;
u8 *tx_buffer = txbuf ;
u8 *rx_buffer = rxbuf;
writel(SPI_IER, 0);
writel(SPI_ISR, 0xffffffff);//clear status register
writel(tcnt, SPI_MTC);
writel(tcnt+rcnt, SPI_MBC);
writel(readl(SPI_TCR)|SPI_EXCHANGE, SPI_TCR);
if(tcnt)
{
if(tcnt < 64 )
{
i = 0;
while (i < tcnt)
{
//send data
while(((readl(SPI_FSR)>>16)==SPI_FIFO_SIZE) );
writeb(*(tx_buffer+i),SPI_TXD);
i++;
}
}
else
{
//spi_no = 0;
writel((readl(SPI_FCR)|SPI_TXDMAREQ_EN), SPI_FCR);
spi_dma_send_start(0, txbuf, tcnt);
/* wait DMA finish */
while ((timeout-- > 0) && spi_wait_dma_send_over(0));
if (timeout <= 0)
{
printf("tx wait_dma_send_over fail\n");
return -1;
}
// printf("timeout %d,count_send %d \n",timeout,count_send);
}
}
timeout = 0xfffff;
/* start transmit */
//writel(readl(SPI_TCR)|SPI_EXCHANGE, SPI_TCR);
if(rcnt)
{
if(rcnt < 64)
{
i = 0;
while(i < rcnt)
{
//receive valid data
while(((readl(SPI_FSR))&0x7f)==0);
*(rx_buffer+i)=readb(SPI_RXD);
i++;
}
}
else
{
pattern_goto(115);
timeout = 0xfffff;
writel((readl(SPI_FCR)|SPI_RXDMAREQ_EN), SPI_FCR);
spi_dma_recv_start(0, rxbuf, rcnt);
/* wait DMA finish */
while ((timeout-- > 0) && spi_wait_dma_recv_over(0));
if (timeout <= 0)
{
printf("rx wait_dma_recv_over fail\n");
return -1;
}
// printf("count_recv %d \n",count_recv);
}
}
#if 1
timeout = 0xfffff;
while(!(readl(SPI_ISR)&(0x1<<12)))//wait transfer complete
{
timeout--;
if (!timeout)
{
printf("SPI_ISR time_out \n");
break;
}
}
timeout = 0xfffff;
while(DMA_CHAN_STA_REG & 0x1)
{
timeout--;
if (!timeout)
{
printf("DMA_CHAN_STA_REG timeout\n");
break;
}
}
pattern_goto(121);
#endif
fcr = readl(SPI_FCR);
fcr &= ~(SPI_TXDMAREQ_EN|SPI_RXDMAREQ_EN);
writel(fcr, SPI_FCR);
if ((readl(SPI_ISR) & (0xf << 8))|| (timeout==0)) /* (1U << 11) | (1U << 10) | (1U << 9) | (1U << 8)) */
return RET_FAIL;
if(readl(SPI_TCR)&SPI_EXCHANGE)
{
printf("XCH Control Error!!\n");
}
writel(0xfffff,SPI_ISR); /* clear flag */
return RET_OK;
}
int spic_exit(u32 spi_no)
{
if(spi_tx_dma)
free(spi_tx_dma);
if(spi_rx_dma)
free(spi_rx_dma);
sunxi_dma_release(spi_tx_dma_hd);
sunxi_dma_release(spi_rx_dma_hd);
return 0;
}