SmartAudio/lichee/brandy/u-boot-2011.09/drivers/mtd/cfi_flash.c

2249 lines
58 KiB
C

/*
* (C) Copyright 2002-2004
* Brad Kemp, Seranoa Networks, Brad.Kemp@seranoa.com
*
* Copyright (C) 2003 Arabella Software Ltd.
* Yuli Barcohen <yuli@arabellasw.com>
*
* Copyright (C) 2004
* Ed Okerson
*
* Copyright (C) 2006
* Tolunay Orkun <listmember@orkun.us>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*/
/* The DEBUG define must be before common to enable debugging */
/* #define DEBUG */
#include <common.h>
#include <asm/processor.h>
#include <asm/io.h>
#include <asm/byteorder.h>
#include <environment.h>
#include <mtd/cfi_flash.h>
/*
* This file implements a Common Flash Interface (CFI) driver for
* U-Boot.
*
* The width of the port and the width of the chips are determined at
* initialization. These widths are used to calculate the address for
* access CFI data structures.
*
* References
* JEDEC Standard JESD68 - Common Flash Interface (CFI)
* JEDEC Standard JEP137-A Common Flash Interface (CFI) ID Codes
* Intel Application Note 646 Common Flash Interface (CFI) and Command Sets
* Intel 290667-008 3 Volt Intel StrataFlash Memory datasheet
* AMD CFI Specification, Release 2.0 December 1, 2001
* AMD/Spansion Application Note: Migration from Single-byte to Three-byte
* Device IDs, Publication Number 25538 Revision A, November 8, 2001
*
* Define CONFIG_SYS_WRITE_SWAPPED_DATA, if you have to swap the Bytes between
* reading and writing ... (yes there is such a Hardware).
*/
static uint flash_offset_cfi[2] = { FLASH_OFFSET_CFI, FLASH_OFFSET_CFI_ALT };
#ifdef CONFIG_FLASH_CFI_MTD
static uint flash_verbose = 1;
#else
#define flash_verbose 1
#endif
flash_info_t flash_info[CFI_MAX_FLASH_BANKS]; /* FLASH chips info */
/*
* Check if chip width is defined. If not, start detecting with 8bit.
*/
#ifndef CONFIG_SYS_FLASH_CFI_WIDTH
#define CONFIG_SYS_FLASH_CFI_WIDTH FLASH_CFI_8BIT
#endif
/*
* 0xffff is an undefined value for the configuration register. When
* this value is returned, the configuration register shall not be
* written at all (default mode).
*/
static u16 cfi_flash_config_reg(int i)
{
#ifdef CONFIG_SYS_CFI_FLASH_CONFIG_REGS
return ((u16 [])CONFIG_SYS_CFI_FLASH_CONFIG_REGS)[i];
#else
return 0xffff;
#endif
}
#if defined(CONFIG_SYS_MAX_FLASH_BANKS_DETECT)
int cfi_flash_num_flash_banks = CONFIG_SYS_MAX_FLASH_BANKS_DETECT;
#endif
static phys_addr_t __cfi_flash_bank_addr(int i)
{
return ((phys_addr_t [])CONFIG_SYS_FLASH_BANKS_LIST)[i];
}
phys_addr_t cfi_flash_bank_addr(int i)
__attribute__((weak, alias("__cfi_flash_bank_addr")));
static unsigned long __cfi_flash_bank_size(int i)
{
#ifdef CONFIG_SYS_FLASH_BANKS_SIZES
return ((unsigned long [])CONFIG_SYS_FLASH_BANKS_SIZES)[i];
#else
return 0;
#endif
}
unsigned long cfi_flash_bank_size(int i)
__attribute__((weak, alias("__cfi_flash_bank_size")));
static void __flash_write8(u8 value, void *addr)
{
__raw_writeb(value, addr);
}
static void __flash_write16(u16 value, void *addr)
{
__raw_writew(value, addr);
}
static void __flash_write32(u32 value, void *addr)
{
__raw_writel(value, addr);
}
static void __flash_write64(u64 value, void *addr)
{
/* No architectures currently implement __raw_writeq() */
*(volatile u64 *)addr = value;
}
static u8 __flash_read8(void *addr)
{
return __raw_readb(addr);
}
static u16 __flash_read16(void *addr)
{
return __raw_readw(addr);
}
static u32 __flash_read32(void *addr)
{
return __raw_readl(addr);
}
static u64 __flash_read64(void *addr)
{
/* No architectures currently implement __raw_readq() */
return *(volatile u64 *)addr;
}
#ifdef CONFIG_CFI_FLASH_USE_WEAK_ACCESSORS
void flash_write8(u8 value, void *addr)__attribute__((weak, alias("__flash_write8")));
void flash_write16(u16 value, void *addr)__attribute__((weak, alias("__flash_write16")));
void flash_write32(u32 value, void *addr)__attribute__((weak, alias("__flash_write32")));
void flash_write64(u64 value, void *addr)__attribute__((weak, alias("__flash_write64")));
u8 flash_read8(void *addr)__attribute__((weak, alias("__flash_read8")));
u16 flash_read16(void *addr)__attribute__((weak, alias("__flash_read16")));
u32 flash_read32(void *addr)__attribute__((weak, alias("__flash_read32")));
u64 flash_read64(void *addr)__attribute__((weak, alias("__flash_read64")));
#else
#define flash_write8 __flash_write8
#define flash_write16 __flash_write16
#define flash_write32 __flash_write32
#define flash_write64 __flash_write64
#define flash_read8 __flash_read8
#define flash_read16 __flash_read16
#define flash_read32 __flash_read32
#define flash_read64 __flash_read64
#endif
/*-----------------------------------------------------------------------
*/
#if defined(CONFIG_ENV_IS_IN_FLASH) || defined(CONFIG_ENV_ADDR_REDUND) || (CONFIG_SYS_MONITOR_BASE >= CONFIG_SYS_FLASH_BASE)
flash_info_t *flash_get_info(ulong base)
{
int i;
flash_info_t *info = NULL;
for (i = 0; i < CONFIG_SYS_MAX_FLASH_BANKS; i++) {
info = & flash_info[i];
if (info->size && info->start[0] <= base &&
base <= info->start[0] + info->size - 1)
break;
}
return info;
}
#endif
unsigned long flash_sector_size(flash_info_t *info, flash_sect_t sect)
{
if (sect != (info->sector_count - 1))
return info->start[sect + 1] - info->start[sect];
else
return info->start[0] + info->size - info->start[sect];
}
/*-----------------------------------------------------------------------
* create an address based on the offset and the port width
*/
static inline void *
flash_map (flash_info_t * info, flash_sect_t sect, uint offset)
{
unsigned int byte_offset = offset * info->portwidth;
return (void *)(info->start[sect] + byte_offset);
}
static inline void flash_unmap(flash_info_t *info, flash_sect_t sect,
unsigned int offset, void *addr)
{
}
/*-----------------------------------------------------------------------
* make a proper sized command based on the port and chip widths
*/
static void flash_make_cmd(flash_info_t *info, u32 cmd, void *cmdbuf)
{
int i;
int cword_offset;
int cp_offset;
#if defined(__LITTLE_ENDIAN) || defined(CONFIG_SYS_WRITE_SWAPPED_DATA)
u32 cmd_le = cpu_to_le32(cmd);
#endif
uchar val;
uchar *cp = (uchar *) cmdbuf;
for (i = info->portwidth; i > 0; i--){
cword_offset = (info->portwidth-i)%info->chipwidth;
#if defined(__LITTLE_ENDIAN) || defined(CONFIG_SYS_WRITE_SWAPPED_DATA)
cp_offset = info->portwidth - i;
val = *((uchar*)&cmd_le + cword_offset);
#else
cp_offset = i - 1;
val = *((uchar*)&cmd + sizeof(u32) - cword_offset - 1);
#endif
cp[cp_offset] = (cword_offset >= sizeof(u32)) ? 0x00 : val;
}
}
#ifdef DEBUG
/*-----------------------------------------------------------------------
* Debug support
*/
static void print_longlong (char *str, unsigned long long data)
{
int i;
char *cp;
cp = (char *) &data;
for (i = 0; i < 8; i++)
sprintf (&str[i * 2], "%2.2x", *cp++);
}
static void flash_printqry (struct cfi_qry *qry)
{
u8 *p = (u8 *)qry;
int x, y;
for (x = 0; x < sizeof(struct cfi_qry); x += 16) {
debug("%02x : ", x);
for (y = 0; y < 16; y++)
debug("%2.2x ", p[x + y]);
debug(" ");
for (y = 0; y < 16; y++) {
unsigned char c = p[x + y];
if (c >= 0x20 && c <= 0x7e)
debug("%c", c);
else
debug(".");
}
debug("\n");
}
}
#endif
/*-----------------------------------------------------------------------
* read a character at a port width address
*/
static inline uchar flash_read_uchar (flash_info_t * info, uint offset)
{
uchar *cp;
uchar retval;
cp = flash_map (info, 0, offset);
#if defined(__LITTLE_ENDIAN) || defined(CONFIG_SYS_WRITE_SWAPPED_DATA)
retval = flash_read8(cp);
#else
retval = flash_read8(cp + info->portwidth - 1);
#endif
flash_unmap (info, 0, offset, cp);
return retval;
}
/*-----------------------------------------------------------------------
* read a word at a port width address, assume 16bit bus
*/
static inline ushort flash_read_word (flash_info_t * info, uint offset)
{
ushort *addr, retval;
addr = flash_map (info, 0, offset);
retval = flash_read16 (addr);
flash_unmap (info, 0, offset, addr);
return retval;
}
/*-----------------------------------------------------------------------
* read a long word by picking the least significant byte of each maximum
* port size word. Swap for ppc format.
*/
static ulong flash_read_long (flash_info_t * info, flash_sect_t sect,
uint offset)
{
uchar *addr;
ulong retval;
#ifdef DEBUG
int x;
#endif
addr = flash_map (info, sect, offset);
#ifdef DEBUG
debug ("long addr is at %p info->portwidth = %d\n", addr,
info->portwidth);
for (x = 0; x < 4 * info->portwidth; x++) {
debug ("addr[%x] = 0x%x\n", x, flash_read8(addr + x));
}
#endif
#if defined(__LITTLE_ENDIAN) || defined(CONFIG_SYS_WRITE_SWAPPED_DATA)
retval = ((flash_read8(addr) << 16) |
(flash_read8(addr + info->portwidth) << 24) |
(flash_read8(addr + 2 * info->portwidth)) |
(flash_read8(addr + 3 * info->portwidth) << 8));
#else
retval = ((flash_read8(addr + 2 * info->portwidth - 1) << 24) |
(flash_read8(addr + info->portwidth - 1) << 16) |
(flash_read8(addr + 4 * info->portwidth - 1) << 8) |
(flash_read8(addr + 3 * info->portwidth - 1)));
#endif
flash_unmap(info, sect, offset, addr);
return retval;
}
/*
* Write a proper sized command to the correct address
*/
void flash_write_cmd (flash_info_t * info, flash_sect_t sect,
uint offset, u32 cmd)
{
void *addr;
cfiword_t cword;
addr = flash_map (info, sect, offset);
flash_make_cmd (info, cmd, &cword);
switch (info->portwidth) {
case FLASH_CFI_8BIT:
debug ("fwc addr %p cmd %x %x 8bit x %d bit\n", addr, cmd,
cword.c, info->chipwidth << CFI_FLASH_SHIFT_WIDTH);
flash_write8(cword.c, addr);
break;
case FLASH_CFI_16BIT:
debug ("fwc addr %p cmd %x %4.4x 16bit x %d bit\n", addr,
cmd, cword.w,
info->chipwidth << CFI_FLASH_SHIFT_WIDTH);
flash_write16(cword.w, addr);
break;
case FLASH_CFI_32BIT:
debug ("fwc addr %p cmd %x %8.8lx 32bit x %d bit\n", addr,
cmd, cword.l,
info->chipwidth << CFI_FLASH_SHIFT_WIDTH);
flash_write32(cword.l, addr);
break;
case FLASH_CFI_64BIT:
#ifdef DEBUG
{
char str[20];
print_longlong (str, cword.ll);
debug ("fwrite addr %p cmd %x %s 64 bit x %d bit\n",
addr, cmd, str,
info->chipwidth << CFI_FLASH_SHIFT_WIDTH);
}
#endif
flash_write64(cword.ll, addr);
break;
}
/* Ensure all the instructions are fully finished */
sync();
flash_unmap(info, sect, offset, addr);
}
static void flash_unlock_seq (flash_info_t * info, flash_sect_t sect)
{
flash_write_cmd (info, sect, info->addr_unlock1, AMD_CMD_UNLOCK_START);
flash_write_cmd (info, sect, info->addr_unlock2, AMD_CMD_UNLOCK_ACK);
}
/*-----------------------------------------------------------------------
*/
static int flash_isequal (flash_info_t * info, flash_sect_t sect,
uint offset, uchar cmd)
{
void *addr;
cfiword_t cword;
int retval;
addr = flash_map (info, sect, offset);
flash_make_cmd (info, cmd, &cword);
debug ("is= cmd %x(%c) addr %p ", cmd, cmd, addr);
switch (info->portwidth) {
case FLASH_CFI_8BIT:
debug ("is= %x %x\n", flash_read8(addr), cword.c);
retval = (flash_read8(addr) == cword.c);
break;
case FLASH_CFI_16BIT:
debug ("is= %4.4x %4.4x\n", flash_read16(addr), cword.w);
retval = (flash_read16(addr) == cword.w);
break;
case FLASH_CFI_32BIT:
debug ("is= %8.8x %8.8lx\n", flash_read32(addr), cword.l);
retval = (flash_read32(addr) == cword.l);
break;
case FLASH_CFI_64BIT:
#ifdef DEBUG
{
char str1[20];
char str2[20];
print_longlong (str1, flash_read64(addr));
print_longlong (str2, cword.ll);
debug ("is= %s %s\n", str1, str2);
}
#endif
retval = (flash_read64(addr) == cword.ll);
break;
default:
retval = 0;
break;
}
flash_unmap(info, sect, offset, addr);
return retval;
}
/*-----------------------------------------------------------------------
*/
static int flash_isset (flash_info_t * info, flash_sect_t sect,
uint offset, uchar cmd)
{
void *addr;
cfiword_t cword;
int retval;
addr = flash_map (info, sect, offset);
flash_make_cmd (info, cmd, &cword);
switch (info->portwidth) {
case FLASH_CFI_8BIT:
retval = ((flash_read8(addr) & cword.c) == cword.c);
break;
case FLASH_CFI_16BIT:
retval = ((flash_read16(addr) & cword.w) == cword.w);
break;
case FLASH_CFI_32BIT:
retval = ((flash_read32(addr) & cword.l) == cword.l);
break;
case FLASH_CFI_64BIT:
retval = ((flash_read64(addr) & cword.ll) == cword.ll);
break;
default:
retval = 0;
break;
}
flash_unmap(info, sect, offset, addr);
return retval;
}
/*-----------------------------------------------------------------------
*/
static int flash_toggle (flash_info_t * info, flash_sect_t sect,
uint offset, uchar cmd)
{
void *addr;
cfiword_t cword;
int retval;
addr = flash_map (info, sect, offset);
flash_make_cmd (info, cmd, &cword);
switch (info->portwidth) {
case FLASH_CFI_8BIT:
retval = flash_read8(addr) != flash_read8(addr);
break;
case FLASH_CFI_16BIT:
retval = flash_read16(addr) != flash_read16(addr);
break;
case FLASH_CFI_32BIT:
retval = flash_read32(addr) != flash_read32(addr);
break;
case FLASH_CFI_64BIT:
retval = ( (flash_read32( addr ) != flash_read32( addr )) ||
(flash_read32(addr+4) != flash_read32(addr+4)) );
break;
default:
retval = 0;
break;
}
flash_unmap(info, sect, offset, addr);
return retval;
}
/*
* flash_is_busy - check to see if the flash is busy
*
* This routine checks the status of the chip and returns true if the
* chip is busy.
*/
static int flash_is_busy (flash_info_t * info, flash_sect_t sect)
{
int retval;
switch (info->vendor) {
case CFI_CMDSET_INTEL_PROG_REGIONS:
case CFI_CMDSET_INTEL_STANDARD:
case CFI_CMDSET_INTEL_EXTENDED:
retval = !flash_isset (info, sect, 0, FLASH_STATUS_DONE);
break;
case CFI_CMDSET_AMD_STANDARD:
case CFI_CMDSET_AMD_EXTENDED:
#ifdef CONFIG_FLASH_CFI_LEGACY
case CFI_CMDSET_AMD_LEGACY:
#endif
retval = flash_toggle (info, sect, 0, AMD_STATUS_TOGGLE);
break;
default:
retval = 0;
}
debug ("flash_is_busy: %d\n", retval);
return retval;
}
/*-----------------------------------------------------------------------
* wait for XSR.7 to be set. Time out with an error if it does not.
* This routine does not set the flash to read-array mode.
*/
static int flash_status_check (flash_info_t * info, flash_sect_t sector,
ulong tout, char *prompt)
{
ulong start;
#if CONFIG_SYS_HZ != 1000
if ((ulong)CONFIG_SYS_HZ > 100000)
tout *= (ulong)CONFIG_SYS_HZ / 1000; /* for a big HZ, avoid overflow */
else
tout = DIV_ROUND_UP(tout * (ulong)CONFIG_SYS_HZ, 1000);
#endif
/* Wait for command completion */
#ifdef CONFIG_SYS_LOW_RES_TIMER
reset_timer();
#endif
start = get_timer (0);
while (flash_is_busy (info, sector)) {
if (get_timer (start) > tout) {
printf ("Flash %s timeout at address %lx data %lx\n",
prompt, info->start[sector],
flash_read_long (info, sector, 0));
flash_write_cmd (info, sector, 0, info->cmd_reset);
udelay(1);
return ERR_TIMOUT;
}
udelay (1); /* also triggers watchdog */
}
return ERR_OK;
}
/*-----------------------------------------------------------------------
* Wait for XSR.7 to be set, if it times out print an error, otherwise
* do a full status check.
*
* This routine sets the flash to read-array mode.
*/
static int flash_full_status_check (flash_info_t * info, flash_sect_t sector,
ulong tout, char *prompt)
{
int retcode;
retcode = flash_status_check (info, sector, tout, prompt);
switch (info->vendor) {
case CFI_CMDSET_INTEL_PROG_REGIONS:
case CFI_CMDSET_INTEL_EXTENDED:
case CFI_CMDSET_INTEL_STANDARD:
if ((retcode != ERR_OK)
&& !flash_isequal (info, sector, 0, FLASH_STATUS_DONE)) {
retcode = ERR_INVAL;
printf ("Flash %s error at address %lx\n", prompt,
info->start[sector]);
if (flash_isset (info, sector, 0, FLASH_STATUS_ECLBS |
FLASH_STATUS_PSLBS)) {
puts ("Command Sequence Error.\n");
} else if (flash_isset (info, sector, 0,
FLASH_STATUS_ECLBS)) {
puts ("Block Erase Error.\n");
retcode = ERR_NOT_ERASED;
} else if (flash_isset (info, sector, 0,
FLASH_STATUS_PSLBS)) {
puts ("Locking Error\n");
}
if (flash_isset (info, sector, 0, FLASH_STATUS_DPS)) {
puts ("Block locked.\n");
retcode = ERR_PROTECTED;
}
if (flash_isset (info, sector, 0, FLASH_STATUS_VPENS))
puts ("Vpp Low Error.\n");
}
flash_write_cmd (info, sector, 0, info->cmd_reset);
udelay(1);
break;
default:
break;
}
return retcode;
}
static int use_flash_status_poll(flash_info_t *info)
{
#ifdef CONFIG_SYS_CFI_FLASH_STATUS_POLL
if (info->vendor == CFI_CMDSET_AMD_EXTENDED ||
info->vendor == CFI_CMDSET_AMD_STANDARD)
return 1;
#endif
return 0;
}
static int flash_status_poll(flash_info_t *info, void *src, void *dst,
ulong tout, char *prompt)
{
#ifdef CONFIG_SYS_CFI_FLASH_STATUS_POLL
ulong start;
int ready;
#if CONFIG_SYS_HZ != 1000
if ((ulong)CONFIG_SYS_HZ > 100000)
tout *= (ulong)CONFIG_SYS_HZ / 1000; /* for a big HZ, avoid overflow */
else
tout = DIV_ROUND_UP(tout * (ulong)CONFIG_SYS_HZ, 1000);
#endif
/* Wait for command completion */
#ifdef CONFIG_SYS_LOW_RES_TIMER
reset_timer();
#endif
start = get_timer(0);
while (1) {
switch (info->portwidth) {
case FLASH_CFI_8BIT:
ready = flash_read8(dst) == flash_read8(src);
break;
case FLASH_CFI_16BIT:
ready = flash_read16(dst) == flash_read16(src);
break;
case FLASH_CFI_32BIT:
ready = flash_read32(dst) == flash_read32(src);
break;
case FLASH_CFI_64BIT:
ready = flash_read64(dst) == flash_read64(src);
break;
default:
ready = 0;
break;
}
if (ready)
break;
if (get_timer(start) > tout) {
printf("Flash %s timeout at address %lx data %lx\n",
prompt, (ulong)dst, (ulong)flash_read8(dst));
return ERR_TIMOUT;
}
udelay(1); /* also triggers watchdog */
}
#endif /* CONFIG_SYS_CFI_FLASH_STATUS_POLL */
return ERR_OK;
}
/*-----------------------------------------------------------------------
*/
static void flash_add_byte (flash_info_t * info, cfiword_t * cword, uchar c)
{
#if defined(__LITTLE_ENDIAN) && !defined(CONFIG_SYS_WRITE_SWAPPED_DATA)
unsigned short w;
unsigned int l;
unsigned long long ll;
#endif
switch (info->portwidth) {
case FLASH_CFI_8BIT:
cword->c = c;
break;
case FLASH_CFI_16BIT:
#if defined(__LITTLE_ENDIAN) && !defined(CONFIG_SYS_WRITE_SWAPPED_DATA)
w = c;
w <<= 8;
cword->w = (cword->w >> 8) | w;
#else
cword->w = (cword->w << 8) | c;
#endif
break;
case FLASH_CFI_32BIT:
#if defined(__LITTLE_ENDIAN) && !defined(CONFIG_SYS_WRITE_SWAPPED_DATA)
l = c;
l <<= 24;
cword->l = (cword->l >> 8) | l;
#else
cword->l = (cword->l << 8) | c;
#endif
break;
case FLASH_CFI_64BIT:
#if defined(__LITTLE_ENDIAN) && !defined(CONFIG_SYS_WRITE_SWAPPED_DATA)
ll = c;
ll <<= 56;
cword->ll = (cword->ll >> 8) | ll;
#else
cword->ll = (cword->ll << 8) | c;
#endif
break;
}
}
/*
* Loop through the sector table starting from the previously found sector.
* Searches forwards or backwards, dependent on the passed address.
*/
static flash_sect_t find_sector (flash_info_t * info, ulong addr)
{
static flash_sect_t saved_sector = 0; /* previously found sector */
static flash_info_t *saved_info = 0; /* previously used flash bank */
flash_sect_t sector = saved_sector;
if ((info != saved_info) || (sector >= info->sector_count))
sector = 0;
while ((info->start[sector] < addr)
&& (sector < info->sector_count - 1))
sector++;
while ((info->start[sector] > addr) && (sector > 0))
/*
* also decrements the sector in case of an overshot
* in the first loop
*/
sector--;
saved_sector = sector;
saved_info = info;
return sector;
}
/*-----------------------------------------------------------------------
*/
static int flash_write_cfiword (flash_info_t * info, ulong dest,
cfiword_t cword)
{
void *dstaddr = (void *)dest;
int flag;
flash_sect_t sect = 0;
char sect_found = 0;
/* Check if Flash is (sufficiently) erased */
switch (info->portwidth) {
case FLASH_CFI_8BIT:
flag = ((flash_read8(dstaddr) & cword.c) == cword.c);
break;
case FLASH_CFI_16BIT:
flag = ((flash_read16(dstaddr) & cword.w) == cword.w);
break;
case FLASH_CFI_32BIT:
flag = ((flash_read32(dstaddr) & cword.l) == cword.l);
break;
case FLASH_CFI_64BIT:
flag = ((flash_read64(dstaddr) & cword.ll) == cword.ll);
break;
default:
flag = 0;
break;
}
if (!flag)
return ERR_NOT_ERASED;
/* Disable interrupts which might cause a timeout here */
flag = disable_interrupts ();
switch (info->vendor) {
case CFI_CMDSET_INTEL_PROG_REGIONS:
case CFI_CMDSET_INTEL_EXTENDED:
case CFI_CMDSET_INTEL_STANDARD:
flash_write_cmd (info, 0, 0, FLASH_CMD_CLEAR_STATUS);
flash_write_cmd (info, 0, 0, FLASH_CMD_WRITE);
break;
case CFI_CMDSET_AMD_EXTENDED:
case CFI_CMDSET_AMD_STANDARD:
sect = find_sector(info, dest);
flash_unlock_seq (info, sect);
flash_write_cmd (info, sect, info->addr_unlock1, AMD_CMD_WRITE);
sect_found = 1;
break;
#ifdef CONFIG_FLASH_CFI_LEGACY
case CFI_CMDSET_AMD_LEGACY:
sect = find_sector(info, dest);
flash_unlock_seq (info, 0);
flash_write_cmd (info, 0, info->addr_unlock1, AMD_CMD_WRITE);
sect_found = 1;
break;
#endif
}
switch (info->portwidth) {
case FLASH_CFI_8BIT:
flash_write8(cword.c, dstaddr);
break;
case FLASH_CFI_16BIT:
flash_write16(cword.w, dstaddr);
break;
case FLASH_CFI_32BIT:
flash_write32(cword.l, dstaddr);
break;
case FLASH_CFI_64BIT:
flash_write64(cword.ll, dstaddr);
break;
}
/* re-enable interrupts if necessary */
if (flag)
enable_interrupts ();
if (!sect_found)
sect = find_sector (info, dest);
if (use_flash_status_poll(info))
return flash_status_poll(info, &cword, dstaddr,
info->write_tout, "write");
else
return flash_full_status_check(info, sect,
info->write_tout, "write");
}
#ifdef CONFIG_SYS_FLASH_USE_BUFFER_WRITE
static int flash_write_cfibuffer (flash_info_t * info, ulong dest, uchar * cp,
int len)
{
flash_sect_t sector;
int cnt;
int retcode;
void *src = cp;
void *dst = (void *)dest;
void *dst2 = dst;
int flag = 0;
uint offset = 0;
unsigned int shift;
uchar write_cmd;
switch (info->portwidth) {
case FLASH_CFI_8BIT:
shift = 0;
break;
case FLASH_CFI_16BIT:
shift = 1;
break;
case FLASH_CFI_32BIT:
shift = 2;
break;
case FLASH_CFI_64BIT:
shift = 3;
break;
default:
retcode = ERR_INVAL;
goto out_unmap;
}
cnt = len >> shift;
while ((cnt-- > 0) && (flag == 0)) {
switch (info->portwidth) {
case FLASH_CFI_8BIT:
flag = ((flash_read8(dst2) & flash_read8(src)) ==
flash_read8(src));
src += 1, dst2 += 1;
break;
case FLASH_CFI_16BIT:
flag = ((flash_read16(dst2) & flash_read16(src)) ==
flash_read16(src));
src += 2, dst2 += 2;
break;
case FLASH_CFI_32BIT:
flag = ((flash_read32(dst2) & flash_read32(src)) ==
flash_read32(src));
src += 4, dst2 += 4;
break;
case FLASH_CFI_64BIT:
flag = ((flash_read64(dst2) & flash_read64(src)) ==
flash_read64(src));
src += 8, dst2 += 8;
break;
}
}
if (!flag) {
retcode = ERR_NOT_ERASED;
goto out_unmap;
}
src = cp;
sector = find_sector (info, dest);
switch (info->vendor) {
case CFI_CMDSET_INTEL_PROG_REGIONS:
case CFI_CMDSET_INTEL_STANDARD:
case CFI_CMDSET_INTEL_EXTENDED:
write_cmd = (info->vendor == CFI_CMDSET_INTEL_PROG_REGIONS) ?
FLASH_CMD_WRITE_BUFFER_PROG : FLASH_CMD_WRITE_TO_BUFFER;
flash_write_cmd (info, sector, 0, FLASH_CMD_CLEAR_STATUS);
flash_write_cmd (info, sector, 0, FLASH_CMD_READ_STATUS);
flash_write_cmd (info, sector, 0, write_cmd);
retcode = flash_status_check (info, sector,
info->buffer_write_tout,
"write to buffer");
if (retcode == ERR_OK) {
/* reduce the number of loops by the width of
* the port */
cnt = len >> shift;
flash_write_cmd (info, sector, 0, cnt - 1);
while (cnt-- > 0) {
switch (info->portwidth) {
case FLASH_CFI_8BIT:
flash_write8(flash_read8(src), dst);
src += 1, dst += 1;
break;
case FLASH_CFI_16BIT:
flash_write16(flash_read16(src), dst);
src += 2, dst += 2;
break;
case FLASH_CFI_32BIT:
flash_write32(flash_read32(src), dst);
src += 4, dst += 4;
break;
case FLASH_CFI_64BIT:
flash_write64(flash_read64(src), dst);
src += 8, dst += 8;
break;
default:
retcode = ERR_INVAL;
goto out_unmap;
}
}
flash_write_cmd (info, sector, 0,
FLASH_CMD_WRITE_BUFFER_CONFIRM);
retcode = flash_full_status_check (
info, sector, info->buffer_write_tout,
"buffer write");
}
break;
case CFI_CMDSET_AMD_STANDARD:
case CFI_CMDSET_AMD_EXTENDED:
flash_unlock_seq(info,0);
#ifdef CONFIG_FLASH_SPANSION_S29WS_N
offset = ((unsigned long)dst - info->start[sector]) >> shift;
#endif
flash_write_cmd(info, sector, offset, AMD_CMD_WRITE_TO_BUFFER);
cnt = len >> shift;
flash_write_cmd(info, sector, offset, cnt - 1);
switch (info->portwidth) {
case FLASH_CFI_8BIT:
while (cnt-- > 0) {
flash_write8(flash_read8(src), dst);
src += 1, dst += 1;
}
break;
case FLASH_CFI_16BIT:
while (cnt-- > 0) {
flash_write16(flash_read16(src), dst);
src += 2, dst += 2;
}
break;
case FLASH_CFI_32BIT:
while (cnt-- > 0) {
flash_write32(flash_read32(src), dst);
src += 4, dst += 4;
}
break;
case FLASH_CFI_64BIT:
while (cnt-- > 0) {
flash_write64(flash_read64(src), dst);
src += 8, dst += 8;
}
break;
default:
retcode = ERR_INVAL;
goto out_unmap;
}
flash_write_cmd (info, sector, 0, AMD_CMD_WRITE_BUFFER_CONFIRM);
if (use_flash_status_poll(info))
retcode = flash_status_poll(info, src - (1 << shift),
dst - (1 << shift),
info->buffer_write_tout,
"buffer write");
else
retcode = flash_full_status_check(info, sector,
info->buffer_write_tout,
"buffer write");
break;
default:
debug ("Unknown Command Set\n");
retcode = ERR_INVAL;
break;
}
out_unmap:
return retcode;
}
#endif /* CONFIG_SYS_FLASH_USE_BUFFER_WRITE */
/*-----------------------------------------------------------------------
*/
int flash_erase (flash_info_t * info, int s_first, int s_last)
{
int rcode = 0;
int prot;
flash_sect_t sect;
int st;
if (info->flash_id != FLASH_MAN_CFI) {
puts ("Can't erase unknown flash type - aborted\n");
return 1;
}
if ((s_first < 0) || (s_first > s_last)) {
puts ("- no sectors to erase\n");
return 1;
}
prot = 0;
for (sect = s_first; sect <= s_last; ++sect) {
if (info->protect[sect]) {
prot++;
}
}
if (prot) {
printf ("- Warning: %d protected sectors will not be erased!\n",
prot);
} else if (flash_verbose) {
putc ('\n');
}
for (sect = s_first; sect <= s_last; sect++) {
if (info->protect[sect] == 0) { /* not protected */
switch (info->vendor) {
case CFI_CMDSET_INTEL_PROG_REGIONS:
case CFI_CMDSET_INTEL_STANDARD:
case CFI_CMDSET_INTEL_EXTENDED:
flash_write_cmd (info, sect, 0,
FLASH_CMD_CLEAR_STATUS);
flash_write_cmd (info, sect, 0,
FLASH_CMD_BLOCK_ERASE);
flash_write_cmd (info, sect, 0,
FLASH_CMD_ERASE_CONFIRM);
break;
case CFI_CMDSET_AMD_STANDARD:
case CFI_CMDSET_AMD_EXTENDED:
flash_unlock_seq (info, sect);
flash_write_cmd (info, sect,
info->addr_unlock1,
AMD_CMD_ERASE_START);
flash_unlock_seq (info, sect);
flash_write_cmd (info, sect, 0,
AMD_CMD_ERASE_SECTOR);
break;
#ifdef CONFIG_FLASH_CFI_LEGACY
case CFI_CMDSET_AMD_LEGACY:
flash_unlock_seq (info, 0);
flash_write_cmd (info, 0, info->addr_unlock1,
AMD_CMD_ERASE_START);
flash_unlock_seq (info, 0);
flash_write_cmd (info, sect, 0,
AMD_CMD_ERASE_SECTOR);
break;
#endif
default:
debug ("Unkown flash vendor %d\n",
info->vendor);
break;
}
if (use_flash_status_poll(info)) {
cfiword_t cword = (cfiword_t)0xffffffffffffffffULL;
void *dest;
dest = flash_map(info, sect, 0);
st = flash_status_poll(info, &cword, dest,
info->erase_blk_tout, "erase");
flash_unmap(info, sect, 0, dest);
} else
st = flash_full_status_check(info, sect,
info->erase_blk_tout,
"erase");
if (st)
rcode = 1;
else if (flash_verbose)
putc ('.');
}
}
if (flash_verbose)
puts (" done\n");
return rcode;
}
#ifdef CONFIG_SYS_FLASH_EMPTY_INFO
static int sector_erased(flash_info_t *info, int i)
{
int k;
int size;
u32 *flash;
/*
* Check if whole sector is erased
*/
size = flash_sector_size(info, i);
flash = (u32 *)info->start[i];
/* divide by 4 for longword access */
size = size >> 2;
for (k = 0; k < size; k++) {
if (flash_read32(flash++) != 0xffffffff)
return 0; /* not erased */
}
return 1; /* erased */
}
#endif /* CONFIG_SYS_FLASH_EMPTY_INFO */
void flash_print_info (flash_info_t * info)
{
int i;
if (info->flash_id != FLASH_MAN_CFI) {
puts ("missing or unknown FLASH type\n");
return;
}
printf ("%s flash (%d x %d)",
info->name,
(info->portwidth << 3), (info->chipwidth << 3));
if (info->size < 1024*1024)
printf (" Size: %ld kB in %d Sectors\n",
info->size >> 10, info->sector_count);
else
printf (" Size: %ld MB in %d Sectors\n",
info->size >> 20, info->sector_count);
printf (" ");
switch (info->vendor) {
case CFI_CMDSET_INTEL_PROG_REGIONS:
printf ("Intel Prog Regions");
break;
case CFI_CMDSET_INTEL_STANDARD:
printf ("Intel Standard");
break;
case CFI_CMDSET_INTEL_EXTENDED:
printf ("Intel Extended");
break;
case CFI_CMDSET_AMD_STANDARD:
printf ("AMD Standard");
break;
case CFI_CMDSET_AMD_EXTENDED:
printf ("AMD Extended");
break;
#ifdef CONFIG_FLASH_CFI_LEGACY
case CFI_CMDSET_AMD_LEGACY:
printf ("AMD Legacy");
break;
#endif
default:
printf ("Unknown (%d)", info->vendor);
break;
}
printf (" command set, Manufacturer ID: 0x%02X, Device ID: 0x",
info->manufacturer_id);
printf (info->chipwidth == FLASH_CFI_16BIT ? "%04X" : "%02X",
info->device_id);
if ((info->device_id & 0xff) == 0x7E) {
printf(info->chipwidth == FLASH_CFI_16BIT ? "%04X" : "%02X",
info->device_id2);
}
printf ("\n Erase timeout: %ld ms, write timeout: %ld ms\n",
info->erase_blk_tout,
info->write_tout);
if (info->buffer_size > 1) {
printf (" Buffer write timeout: %ld ms, "
"buffer size: %d bytes\n",
info->buffer_write_tout,
info->buffer_size);
}
puts ("\n Sector Start Addresses:");
for (i = 0; i < info->sector_count; ++i) {
if (ctrlc())
break;
if ((i % 5) == 0)
putc('\n');
#ifdef CONFIG_SYS_FLASH_EMPTY_INFO
/* print empty and read-only info */
printf (" %08lX %c %s ",
info->start[i],
sector_erased(info, i) ? 'E' : ' ',
info->protect[i] ? "RO" : " ");
#else /* ! CONFIG_SYS_FLASH_EMPTY_INFO */
printf (" %08lX %s ",
info->start[i],
info->protect[i] ? "RO" : " ");
#endif
}
putc ('\n');
return;
}
/*-----------------------------------------------------------------------
* This is used in a few places in write_buf() to show programming
* progress. Making it a function is nasty because it needs to do side
* effect updates to digit and dots. Repeated code is nasty too, so
* we define it once here.
*/
#ifdef CONFIG_FLASH_SHOW_PROGRESS
#define FLASH_SHOW_PROGRESS(scale, dots, digit, dots_sub) \
if (flash_verbose) { \
dots -= dots_sub; \
if ((scale > 0) && (dots <= 0)) { \
if ((digit % 5) == 0) \
printf ("%d", digit / 5); \
else \
putc ('.'); \
digit--; \
dots += scale; \
} \
}
#else
#define FLASH_SHOW_PROGRESS(scale, dots, digit, dots_sub)
#endif
/*-----------------------------------------------------------------------
* Copy memory to flash, returns:
* 0 - OK
* 1 - write timeout
* 2 - Flash not erased
*/
int write_buff (flash_info_t * info, uchar * src, ulong addr, ulong cnt)
{
ulong wp;
uchar *p;
int aln;
cfiword_t cword;
int i, rc;
#ifdef CONFIG_SYS_FLASH_USE_BUFFER_WRITE
int buffered_size;
#endif
#ifdef CONFIG_FLASH_SHOW_PROGRESS
int digit = CONFIG_FLASH_SHOW_PROGRESS;
int scale = 0;
int dots = 0;
/*
* Suppress if there are fewer than CONFIG_FLASH_SHOW_PROGRESS writes.
*/
if (cnt >= CONFIG_FLASH_SHOW_PROGRESS) {
scale = (int)((cnt + CONFIG_FLASH_SHOW_PROGRESS - 1) /
CONFIG_FLASH_SHOW_PROGRESS);
}
#endif
/* get lower aligned address */
wp = (addr & ~(info->portwidth - 1));
/* handle unaligned start */
if ((aln = addr - wp) != 0) {
cword.l = 0;
p = (uchar *)wp;
for (i = 0; i < aln; ++i)
flash_add_byte (info, &cword, flash_read8(p + i));
for (; (i < info->portwidth) && (cnt > 0); i++) {
flash_add_byte (info, &cword, *src++);
cnt--;
}
for (; (cnt == 0) && (i < info->portwidth); ++i)
flash_add_byte (info, &cword, flash_read8(p + i));
rc = flash_write_cfiword (info, wp, cword);
if (rc != 0)
return rc;
wp += i;
FLASH_SHOW_PROGRESS(scale, dots, digit, i);
}
/* handle the aligned part */
#ifdef CONFIG_SYS_FLASH_USE_BUFFER_WRITE
buffered_size = (info->portwidth / info->chipwidth);
buffered_size *= info->buffer_size;
while (cnt >= info->portwidth) {
/* prohibit buffer write when buffer_size is 1 */
if (info->buffer_size == 1) {
cword.l = 0;
for (i = 0; i < info->portwidth; i++)
flash_add_byte (info, &cword, *src++);
if ((rc = flash_write_cfiword (info, wp, cword)) != 0)
return rc;
wp += info->portwidth;
cnt -= info->portwidth;
continue;
}
/* write buffer until next buffered_size aligned boundary */
i = buffered_size - (wp % buffered_size);
if (i > cnt)
i = cnt;
if ((rc = flash_write_cfibuffer (info, wp, src, i)) != ERR_OK)
return rc;
i -= i & (info->portwidth - 1);
wp += i;
src += i;
cnt -= i;
FLASH_SHOW_PROGRESS(scale, dots, digit, i);
}
#else
while (cnt >= info->portwidth) {
cword.l = 0;
for (i = 0; i < info->portwidth; i++) {
flash_add_byte (info, &cword, *src++);
}
if ((rc = flash_write_cfiword (info, wp, cword)) != 0)
return rc;
wp += info->portwidth;
cnt -= info->portwidth;
FLASH_SHOW_PROGRESS(scale, dots, digit, info->portwidth);
}
#endif /* CONFIG_SYS_FLASH_USE_BUFFER_WRITE */
if (cnt == 0) {
return (0);
}
/*
* handle unaligned tail bytes
*/
cword.l = 0;
p = (uchar *)wp;
for (i = 0; (i < info->portwidth) && (cnt > 0); ++i) {
flash_add_byte (info, &cword, *src++);
--cnt;
}
for (; i < info->portwidth; ++i)
flash_add_byte (info, &cword, flash_read8(p + i));
return flash_write_cfiword (info, wp, cword);
}
/*-----------------------------------------------------------------------
*/
#ifdef CONFIG_SYS_FLASH_PROTECTION
int flash_real_protect (flash_info_t * info, long sector, int prot)
{
int retcode = 0;
switch (info->vendor) {
case CFI_CMDSET_INTEL_PROG_REGIONS:
case CFI_CMDSET_INTEL_STANDARD:
case CFI_CMDSET_INTEL_EXTENDED:
/*
* see errata called
* "Numonyx Axcell P33/P30 Specification Update" :)
*/
flash_write_cmd (info, sector, 0, FLASH_CMD_READ_ID);
if (!flash_isequal (info, sector, FLASH_OFFSET_PROTECT,
prot)) {
/*
* cmd must come before FLASH_CMD_PROTECT + 20us
* Disable interrupts which might cause a timeout here.
*/
int flag = disable_interrupts ();
unsigned short cmd;
if (prot)
cmd = FLASH_CMD_PROTECT_SET;
else
cmd = FLASH_CMD_PROTECT_CLEAR;
flash_write_cmd (info, sector, 0,
FLASH_CMD_PROTECT);
flash_write_cmd (info, sector, 0, cmd);
/* re-enable interrupts if necessary */
if (flag)
enable_interrupts ();
}
break;
case CFI_CMDSET_AMD_EXTENDED:
case CFI_CMDSET_AMD_STANDARD:
/* U-Boot only checks the first byte */
if (info->manufacturer_id == (uchar)ATM_MANUFACT) {
if (prot) {
flash_unlock_seq (info, 0);
flash_write_cmd (info, 0,
info->addr_unlock1,
ATM_CMD_SOFTLOCK_START);
flash_unlock_seq (info, 0);
flash_write_cmd (info, sector, 0,
ATM_CMD_LOCK_SECT);
} else {
flash_write_cmd (info, 0,
info->addr_unlock1,
AMD_CMD_UNLOCK_START);
if (info->device_id == ATM_ID_BV6416)
flash_write_cmd (info, sector,
0, ATM_CMD_UNLOCK_SECT);
}
}
break;
#ifdef CONFIG_FLASH_CFI_LEGACY
case CFI_CMDSET_AMD_LEGACY:
flash_write_cmd (info, sector, 0, FLASH_CMD_CLEAR_STATUS);
flash_write_cmd (info, sector, 0, FLASH_CMD_PROTECT);
if (prot)
flash_write_cmd (info, sector, 0, FLASH_CMD_PROTECT_SET);
else
flash_write_cmd (info, sector, 0, FLASH_CMD_PROTECT_CLEAR);
#endif
};
/*
* Flash needs to be in status register read mode for
* flash_full_status_check() to work correctly
*/
flash_write_cmd(info, sector, 0, FLASH_CMD_READ_STATUS);
if ((retcode =
flash_full_status_check (info, sector, info->erase_blk_tout,
prot ? "protect" : "unprotect")) == 0) {
info->protect[sector] = prot;
/*
* On some of Intel's flash chips (marked via legacy_unlock)
* unprotect unprotects all locking.
*/
if ((prot == 0) && (info->legacy_unlock)) {
flash_sect_t i;
for (i = 0; i < info->sector_count; i++) {
if (info->protect[i])
flash_real_protect (info, i, 1);
}
}
}
return retcode;
}
/*-----------------------------------------------------------------------
* flash_read_user_serial - read the OneTimeProgramming cells
*/
void flash_read_user_serial (flash_info_t * info, void *buffer, int offset,
int len)
{
uchar *src;
uchar *dst;
dst = buffer;
src = flash_map (info, 0, FLASH_OFFSET_USER_PROTECTION);
flash_write_cmd (info, 0, 0, FLASH_CMD_READ_ID);
memcpy (dst, src + offset, len);
flash_write_cmd (info, 0, 0, info->cmd_reset);
udelay(1);
flash_unmap(info, 0, FLASH_OFFSET_USER_PROTECTION, src);
}
/*
* flash_read_factory_serial - read the device Id from the protection area
*/
void flash_read_factory_serial (flash_info_t * info, void *buffer, int offset,
int len)
{
uchar *src;
src = flash_map (info, 0, FLASH_OFFSET_INTEL_PROTECTION);
flash_write_cmd (info, 0, 0, FLASH_CMD_READ_ID);
memcpy (buffer, src + offset, len);
flash_write_cmd (info, 0, 0, info->cmd_reset);
udelay(1);
flash_unmap(info, 0, FLASH_OFFSET_INTEL_PROTECTION, src);
}
#endif /* CONFIG_SYS_FLASH_PROTECTION */
/*-----------------------------------------------------------------------
* Reverse the order of the erase regions in the CFI QRY structure.
* This is needed for chips that are either a) correctly detected as
* top-boot, or b) buggy.
*/
static void cfi_reverse_geometry(struct cfi_qry *qry)
{
unsigned int i, j;
u32 tmp;
for (i = 0, j = qry->num_erase_regions - 1; i < j; i++, j--) {
tmp = qry->erase_region_info[i];
qry->erase_region_info[i] = qry->erase_region_info[j];
qry->erase_region_info[j] = tmp;
}
}
/*-----------------------------------------------------------------------
* read jedec ids from device and set corresponding fields in info struct
*
* Note: assume cfi->vendor, cfi->portwidth and cfi->chipwidth are correct
*
*/
static void cmdset_intel_read_jedec_ids(flash_info_t *info)
{
flash_write_cmd(info, 0, 0, FLASH_CMD_RESET);
udelay(1);
flash_write_cmd(info, 0, 0, FLASH_CMD_READ_ID);
udelay(1000); /* some flash are slow to respond */
info->manufacturer_id = flash_read_uchar (info,
FLASH_OFFSET_MANUFACTURER_ID);
info->device_id = (info->chipwidth == FLASH_CFI_16BIT) ?
flash_read_word (info, FLASH_OFFSET_DEVICE_ID) :
flash_read_uchar (info, FLASH_OFFSET_DEVICE_ID);
flash_write_cmd(info, 0, 0, FLASH_CMD_RESET);
}
static int cmdset_intel_init(flash_info_t *info, struct cfi_qry *qry)
{
info->cmd_reset = FLASH_CMD_RESET;
cmdset_intel_read_jedec_ids(info);
flash_write_cmd(info, 0, info->cfi_offset, FLASH_CMD_CFI);
#ifdef CONFIG_SYS_FLASH_PROTECTION
/* read legacy lock/unlock bit from intel flash */
if (info->ext_addr) {
info->legacy_unlock = flash_read_uchar (info,
info->ext_addr + 5) & 0x08;
}
#endif
return 0;
}
static void cmdset_amd_read_jedec_ids(flash_info_t *info)
{
ushort bankId = 0;
uchar manuId;
flash_write_cmd(info, 0, 0, AMD_CMD_RESET);
flash_unlock_seq(info, 0);
flash_write_cmd(info, 0, info->addr_unlock1, FLASH_CMD_READ_ID);
udelay(1000); /* some flash are slow to respond */
manuId = flash_read_uchar (info, FLASH_OFFSET_MANUFACTURER_ID);
/* JEDEC JEP106Z specifies ID codes up to bank 7 */
while (manuId == FLASH_CONTINUATION_CODE && bankId < 0x800) {
bankId += 0x100;
manuId = flash_read_uchar (info,
bankId | FLASH_OFFSET_MANUFACTURER_ID);
}
info->manufacturer_id = manuId;
switch (info->chipwidth){
case FLASH_CFI_8BIT:
info->device_id = flash_read_uchar (info,
FLASH_OFFSET_DEVICE_ID);
if (info->device_id == 0x7E) {
/* AMD 3-byte (expanded) device ids */
info->device_id2 = flash_read_uchar (info,
FLASH_OFFSET_DEVICE_ID2);
info->device_id2 <<= 8;
info->device_id2 |= flash_read_uchar (info,
FLASH_OFFSET_DEVICE_ID3);
}
break;
case FLASH_CFI_16BIT:
info->device_id = flash_read_word (info,
FLASH_OFFSET_DEVICE_ID);
if ((info->device_id & 0xff) == 0x7E) {
/* AMD 3-byte (expanded) device ids */
info->device_id2 = flash_read_uchar (info,
FLASH_OFFSET_DEVICE_ID2);
info->device_id2 <<= 8;
info->device_id2 |= flash_read_uchar (info,
FLASH_OFFSET_DEVICE_ID3);
}
break;
default:
break;
}
flash_write_cmd(info, 0, 0, AMD_CMD_RESET);
udelay(1);
}
static int cmdset_amd_init(flash_info_t *info, struct cfi_qry *qry)
{
info->cmd_reset = AMD_CMD_RESET;
cmdset_amd_read_jedec_ids(info);
flash_write_cmd(info, 0, info->cfi_offset, FLASH_CMD_CFI);
return 0;
}
#ifdef CONFIG_FLASH_CFI_LEGACY
static void flash_read_jedec_ids (flash_info_t * info)
{
info->manufacturer_id = 0;
info->device_id = 0;
info->device_id2 = 0;
switch (info->vendor) {
case CFI_CMDSET_INTEL_PROG_REGIONS:
case CFI_CMDSET_INTEL_STANDARD:
case CFI_CMDSET_INTEL_EXTENDED:
cmdset_intel_read_jedec_ids(info);
break;
case CFI_CMDSET_AMD_STANDARD:
case CFI_CMDSET_AMD_EXTENDED:
cmdset_amd_read_jedec_ids(info);
break;
default:
break;
}
}
/*-----------------------------------------------------------------------
* Call board code to request info about non-CFI flash.
* board_flash_get_legacy needs to fill in at least:
* info->portwidth, info->chipwidth and info->interface for Jedec probing.
*/
static int flash_detect_legacy(phys_addr_t base, int banknum)
{
flash_info_t *info = &flash_info[banknum];
if (board_flash_get_legacy(base, banknum, info)) {
/* board code may have filled info completely. If not, we
use JEDEC ID probing. */
if (!info->vendor) {
int modes[] = {
CFI_CMDSET_AMD_STANDARD,
CFI_CMDSET_INTEL_STANDARD
};
int i;
for (i = 0; i < sizeof(modes) / sizeof(modes[0]); i++) {
info->vendor = modes[i];
info->start[0] =
(ulong)map_physmem(base,
info->portwidth,
MAP_NOCACHE);
if (info->portwidth == FLASH_CFI_8BIT
&& info->interface == FLASH_CFI_X8X16) {
info->addr_unlock1 = 0x2AAA;
info->addr_unlock2 = 0x5555;
} else {
info->addr_unlock1 = 0x5555;
info->addr_unlock2 = 0x2AAA;
}
flash_read_jedec_ids(info);
debug("JEDEC PROBE: ID %x %x %x\n",
info->manufacturer_id,
info->device_id,
info->device_id2);
if (jedec_flash_match(info, info->start[0]))
break;
else
unmap_physmem((void *)info->start[0],
MAP_NOCACHE);
}
}
switch(info->vendor) {
case CFI_CMDSET_INTEL_PROG_REGIONS:
case CFI_CMDSET_INTEL_STANDARD:
case CFI_CMDSET_INTEL_EXTENDED:
info->cmd_reset = FLASH_CMD_RESET;
break;
case CFI_CMDSET_AMD_STANDARD:
case CFI_CMDSET_AMD_EXTENDED:
case CFI_CMDSET_AMD_LEGACY:
info->cmd_reset = AMD_CMD_RESET;
break;
}
info->flash_id = FLASH_MAN_CFI;
return 1;
}
return 0; /* use CFI */
}
#else
static inline int flash_detect_legacy(phys_addr_t base, int banknum)
{
return 0; /* use CFI */
}
#endif
/*-----------------------------------------------------------------------
* detect if flash is compatible with the Common Flash Interface (CFI)
* http://www.jedec.org/download/search/jesd68.pdf
*/
static void flash_read_cfi (flash_info_t *info, void *buf,
unsigned int start, size_t len)
{
u8 *p = buf;
unsigned int i;
for (i = 0; i < len; i++)
p[i] = flash_read_uchar(info, start + i);
}
void __flash_cmd_reset(flash_info_t *info)
{
/*
* We do not yet know what kind of commandset to use, so we issue
* the reset command in both Intel and AMD variants, in the hope
* that AMD flash roms ignore the Intel command.
*/
flash_write_cmd(info, 0, 0, AMD_CMD_RESET);
udelay(1);
flash_write_cmd(info, 0, 0, FLASH_CMD_RESET);
}
void flash_cmd_reset(flash_info_t *info)
__attribute__((weak,alias("__flash_cmd_reset")));
static int __flash_detect_cfi (flash_info_t * info, struct cfi_qry *qry)
{
int cfi_offset;
/* Issue FLASH reset command */
flash_cmd_reset(info);
for (cfi_offset=0;
cfi_offset < sizeof(flash_offset_cfi) / sizeof(uint);
cfi_offset++) {
flash_write_cmd (info, 0, flash_offset_cfi[cfi_offset],
FLASH_CMD_CFI);
if (flash_isequal (info, 0, FLASH_OFFSET_CFI_RESP, 'Q')
&& flash_isequal (info, 0, FLASH_OFFSET_CFI_RESP + 1, 'R')
&& flash_isequal (info, 0, FLASH_OFFSET_CFI_RESP + 2, 'Y')) {
flash_read_cfi(info, qry, FLASH_OFFSET_CFI_RESP,
sizeof(struct cfi_qry));
info->interface = le16_to_cpu(qry->interface_desc);
info->cfi_offset = flash_offset_cfi[cfi_offset];
debug ("device interface is %d\n",
info->interface);
debug ("found port %d chip %d ",
info->portwidth, info->chipwidth);
debug ("port %d bits chip %d bits\n",
info->portwidth << CFI_FLASH_SHIFT_WIDTH,
info->chipwidth << CFI_FLASH_SHIFT_WIDTH);
/* calculate command offsets as in the Linux driver */
info->addr_unlock1 = 0x555;
info->addr_unlock2 = 0x2aa;
/*
* modify the unlock address if we are
* in compatibility mode
*/
if ( /* x8/x16 in x8 mode */
((info->chipwidth == FLASH_CFI_BY8) &&
(info->interface == FLASH_CFI_X8X16)) ||
/* x16/x32 in x16 mode */
((info->chipwidth == FLASH_CFI_BY16) &&
(info->interface == FLASH_CFI_X16X32)))
{
info->addr_unlock1 = 0xaaa;
info->addr_unlock2 = 0x555;
}
info->name = "CFI conformant";
return 1;
}
}
return 0;
}
static int flash_detect_cfi (flash_info_t * info, struct cfi_qry *qry)
{
debug ("flash detect cfi\n");
for (info->portwidth = CONFIG_SYS_FLASH_CFI_WIDTH;
info->portwidth <= FLASH_CFI_64BIT; info->portwidth <<= 1) {
for (info->chipwidth = FLASH_CFI_BY8;
info->chipwidth <= info->portwidth;
info->chipwidth <<= 1)
if (__flash_detect_cfi(info, qry))
return 1;
}
debug ("not found\n");
return 0;
}
/*
* Manufacturer-specific quirks. Add workarounds for geometry
* reversal, etc. here.
*/
static void flash_fixup_amd(flash_info_t *info, struct cfi_qry *qry)
{
/* check if flash geometry needs reversal */
if (qry->num_erase_regions > 1) {
/* reverse geometry if top boot part */
if (info->cfi_version < 0x3131) {
/* CFI < 1.1, try to guess from device id */
if ((info->device_id & 0x80) != 0)
cfi_reverse_geometry(qry);
} else if (flash_read_uchar(info, info->ext_addr + 0xf) == 3) {
/* CFI >= 1.1, deduct from top/bottom flag */
/* note: ext_addr is valid since cfi_version > 0 */
cfi_reverse_geometry(qry);
}
}
}
static void flash_fixup_atmel(flash_info_t *info, struct cfi_qry *qry)
{
int reverse_geometry = 0;
/* Check the "top boot" bit in the PRI */
if (info->ext_addr && !(flash_read_uchar(info, info->ext_addr + 6) & 1))
reverse_geometry = 1;
/* AT49BV6416(T) list the erase regions in the wrong order.
* However, the device ID is identical with the non-broken
* AT49BV642D they differ in the high byte.
*/
if (info->device_id == 0xd6 || info->device_id == 0xd2)
reverse_geometry = !reverse_geometry;
if (reverse_geometry)
cfi_reverse_geometry(qry);
}
static void flash_fixup_stm(flash_info_t *info, struct cfi_qry *qry)
{
/* check if flash geometry needs reversal */
if (qry->num_erase_regions > 1) {
/* reverse geometry if top boot part */
if (info->cfi_version < 0x3131) {
/* CFI < 1.1, guess by device id */
if (info->device_id == 0x22CA || /* M29W320DT */
info->device_id == 0x2256 || /* M29W320ET */
info->device_id == 0x22D7) { /* M29W800DT */
cfi_reverse_geometry(qry);
}
} else if (flash_read_uchar(info, info->ext_addr + 0xf) == 3) {
/* CFI >= 1.1, deduct from top/bottom flag */
/* note: ext_addr is valid since cfi_version > 0 */
cfi_reverse_geometry(qry);
}
}
}
/*
* The following code cannot be run from FLASH!
*
*/
ulong flash_get_size (phys_addr_t base, int banknum)
{
flash_info_t *info = &flash_info[banknum];
int i, j;
flash_sect_t sect_cnt;
phys_addr_t sector;
unsigned long tmp;
int size_ratio;
uchar num_erase_regions;
int erase_region_size;
int erase_region_count;
struct cfi_qry qry;
unsigned long max_size;
memset(&qry, 0, sizeof(qry));
info->ext_addr = 0;
info->cfi_version = 0;
#ifdef CONFIG_SYS_FLASH_PROTECTION
info->legacy_unlock = 0;
#endif
info->start[0] = (ulong)map_physmem(base, info->portwidth, MAP_NOCACHE);
if (flash_detect_cfi (info, &qry)) {
info->vendor = le16_to_cpu(qry.p_id);
info->ext_addr = le16_to_cpu(qry.p_adr);
num_erase_regions = qry.num_erase_regions;
if (info->ext_addr) {
info->cfi_version = (ushort) flash_read_uchar (info,
info->ext_addr + 3) << 8;
info->cfi_version |= (ushort) flash_read_uchar (info,
info->ext_addr + 4);
}
#ifdef DEBUG
flash_printqry (&qry);
#endif
switch (info->vendor) {
case CFI_CMDSET_INTEL_PROG_REGIONS:
case CFI_CMDSET_INTEL_STANDARD:
case CFI_CMDSET_INTEL_EXTENDED:
cmdset_intel_init(info, &qry);
break;
case CFI_CMDSET_AMD_STANDARD:
case CFI_CMDSET_AMD_EXTENDED:
cmdset_amd_init(info, &qry);
break;
default:
printf("CFI: Unknown command set 0x%x\n",
info->vendor);
/*
* Unfortunately, this means we don't know how
* to get the chip back to Read mode. Might
* as well try an Intel-style reset...
*/
flash_write_cmd(info, 0, 0, FLASH_CMD_RESET);
return 0;
}
/* Do manufacturer-specific fixups */
switch (info->manufacturer_id) {
case 0x0001: /* AMD */
case 0x0037: /* AMIC */
flash_fixup_amd(info, &qry);
break;
case 0x001f:
flash_fixup_atmel(info, &qry);
break;
case 0x0020:
flash_fixup_stm(info, &qry);
break;
}
debug ("manufacturer is %d\n", info->vendor);
debug ("manufacturer id is 0x%x\n", info->manufacturer_id);
debug ("device id is 0x%x\n", info->device_id);
debug ("device id2 is 0x%x\n", info->device_id2);
debug ("cfi version is 0x%04x\n", info->cfi_version);
size_ratio = info->portwidth / info->chipwidth;
/* if the chip is x8/x16 reduce the ratio by half */
if ((info->interface == FLASH_CFI_X8X16)
&& (info->chipwidth == FLASH_CFI_BY8)) {
size_ratio >>= 1;
}
debug ("size_ratio %d port %d bits chip %d bits\n",
size_ratio, info->portwidth << CFI_FLASH_SHIFT_WIDTH,
info->chipwidth << CFI_FLASH_SHIFT_WIDTH);
info->size = 1 << qry.dev_size;
/* multiply the size by the number of chips */
info->size *= size_ratio;
max_size = cfi_flash_bank_size(banknum);
if (max_size && (info->size > max_size)) {
debug("[truncated from %ldMiB]", info->size >> 20);
info->size = max_size;
}
debug ("found %d erase regions\n", num_erase_regions);
sect_cnt = 0;
sector = base;
for (i = 0; i < num_erase_regions; i++) {
if (i > NUM_ERASE_REGIONS) {
printf ("%d erase regions found, only %d used\n",
num_erase_regions, NUM_ERASE_REGIONS);
break;
}
tmp = le32_to_cpu(qry.erase_region_info[i]);
debug("erase region %u: 0x%08lx\n", i, tmp);
erase_region_count = (tmp & 0xffff) + 1;
tmp >>= 16;
erase_region_size =
(tmp & 0xffff) ? ((tmp & 0xffff) * 256) : 128;
debug ("erase_region_count = %d erase_region_size = %d\n",
erase_region_count, erase_region_size);
for (j = 0; j < erase_region_count; j++) {
if (sector - base >= info->size)
break;
if (sect_cnt >= CONFIG_SYS_MAX_FLASH_SECT) {
printf("ERROR: too many flash sectors\n");
break;
}
info->start[sect_cnt] =
(ulong)map_physmem(sector,
info->portwidth,
MAP_NOCACHE);
sector += (erase_region_size * size_ratio);
/*
* Only read protection status from
* supported devices (intel...)
*/
switch (info->vendor) {
case CFI_CMDSET_INTEL_PROG_REGIONS:
case CFI_CMDSET_INTEL_EXTENDED:
case CFI_CMDSET_INTEL_STANDARD:
/*
* Set flash to read-id mode. Otherwise
* reading protected status is not
* guaranteed.
*/
flash_write_cmd(info, sect_cnt, 0,
FLASH_CMD_READ_ID);
info->protect[sect_cnt] =
flash_isset (info, sect_cnt,
FLASH_OFFSET_PROTECT,
FLASH_STATUS_PROTECT);
break;
default:
/* default: not protected */
info->protect[sect_cnt] = 0;
}
sect_cnt++;
}
}
info->sector_count = sect_cnt;
info->buffer_size = 1 << le16_to_cpu(qry.max_buf_write_size);
tmp = 1 << qry.block_erase_timeout_typ;
info->erase_blk_tout = tmp *
(1 << qry.block_erase_timeout_max);
tmp = (1 << qry.buf_write_timeout_typ) *
(1 << qry.buf_write_timeout_max);
/* round up when converting to ms */
info->buffer_write_tout = (tmp + 999) / 1000;
tmp = (1 << qry.word_write_timeout_typ) *
(1 << qry.word_write_timeout_max);
/* round up when converting to ms */
info->write_tout = (tmp + 999) / 1000;
info->flash_id = FLASH_MAN_CFI;
if ((info->interface == FLASH_CFI_X8X16) &&
(info->chipwidth == FLASH_CFI_BY8)) {
/* XXX - Need to test on x8/x16 in parallel. */
info->portwidth >>= 1;
}
flash_write_cmd (info, 0, 0, info->cmd_reset);
}
return (info->size);
}
#ifdef CONFIG_FLASH_CFI_MTD
void flash_set_verbose(uint v)
{
flash_verbose = v;
}
#endif
static void cfi_flash_set_config_reg(u32 base, u16 val)
{
#ifdef CONFIG_SYS_CFI_FLASH_CONFIG_REGS
/*
* Only set this config register if really defined
* to a valid value (0xffff is invalid)
*/
if (val == 0xffff)
return;
/*
* Set configuration register. Data is "encrypted" in the 16 lower
* address bits.
*/
flash_write16(FLASH_CMD_SETUP, (void *)(base + (val << 1)));
flash_write16(FLASH_CMD_SET_CR_CONFIRM, (void *)(base + (val << 1)));
/*
* Finally issue reset-command to bring device back to
* read-array mode
*/
flash_write16(FLASH_CMD_RESET, (void *)base);
#endif
}
/*-----------------------------------------------------------------------
*/
void flash_protect_default(void)
{
#if defined(CONFIG_SYS_FLASH_AUTOPROTECT_LIST)
int i;
struct apl_s {
ulong start;
ulong size;
} apl[] = CONFIG_SYS_FLASH_AUTOPROTECT_LIST;
#endif
/* Monitor protection ON by default */
#if (CONFIG_SYS_MONITOR_BASE >= CONFIG_SYS_FLASH_BASE) && \
(!defined(CONFIG_MONITOR_IS_IN_RAM))
flash_protect(FLAG_PROTECT_SET,
CONFIG_SYS_MONITOR_BASE,
CONFIG_SYS_MONITOR_BASE + monitor_flash_len - 1,
flash_get_info(CONFIG_SYS_MONITOR_BASE));
#endif
/* Environment protection ON by default */
#ifdef CONFIG_ENV_IS_IN_FLASH
flash_protect(FLAG_PROTECT_SET,
CONFIG_ENV_ADDR,
CONFIG_ENV_ADDR + CONFIG_ENV_SECT_SIZE - 1,
flash_get_info(CONFIG_ENV_ADDR));
#endif
/* Redundant environment protection ON by default */
#ifdef CONFIG_ENV_ADDR_REDUND
flash_protect(FLAG_PROTECT_SET,
CONFIG_ENV_ADDR_REDUND,
CONFIG_ENV_ADDR_REDUND + CONFIG_ENV_SECT_SIZE - 1,
flash_get_info(CONFIG_ENV_ADDR_REDUND));
#endif
#if defined(CONFIG_SYS_FLASH_AUTOPROTECT_LIST)
for (i = 0; i < (sizeof(apl) / sizeof(struct apl_s)); i++) {
debug("autoprotecting from %08x to %08x\n",
apl[i].start, apl[i].start + apl[i].size - 1);
flash_protect(FLAG_PROTECT_SET,
apl[i].start,
apl[i].start + apl[i].size - 1,
flash_get_info(apl[i].start));
}
#endif
}
unsigned long flash_init (void)
{
unsigned long size = 0;
int i;
#ifdef CONFIG_SYS_FLASH_PROTECTION
/* read environment from EEPROM */
char s[64];
getenv_f("unlock", s, sizeof(s));
#endif
/* Init: no FLASHes known */
for (i = 0; i < CONFIG_SYS_MAX_FLASH_BANKS; ++i) {
flash_info[i].flash_id = FLASH_UNKNOWN;
/* Optionally write flash configuration register */
cfi_flash_set_config_reg(cfi_flash_bank_addr(i),
cfi_flash_config_reg(i));
if (!flash_detect_legacy(cfi_flash_bank_addr(i), i))
flash_get_size(cfi_flash_bank_addr(i), i);
size += flash_info[i].size;
if (flash_info[i].flash_id == FLASH_UNKNOWN) {
#ifndef CONFIG_SYS_FLASH_QUIET_TEST
printf ("## Unknown flash on Bank %d "
"- Size = 0x%08lx = %ld MB\n",
i+1, flash_info[i].size,
flash_info[i].size >> 20);
#endif /* CONFIG_SYS_FLASH_QUIET_TEST */
}
#ifdef CONFIG_SYS_FLASH_PROTECTION
else if ((s != NULL) && (strcmp(s, "yes") == 0)) {
/*
* Only the U-Boot image and it's environment
* is protected, all other sectors are
* unprotected (unlocked) if flash hardware
* protection is used (CONFIG_SYS_FLASH_PROTECTION)
* and the environment variable "unlock" is
* set to "yes".
*/
if (flash_info[i].legacy_unlock) {
int k;
/*
* Disable legacy_unlock temporarily,
* since flash_real_protect would
* relock all other sectors again
* otherwise.
*/
flash_info[i].legacy_unlock = 0;
/*
* Legacy unlocking (e.g. Intel J3) ->
* unlock only one sector. This will
* unlock all sectors.
*/
flash_real_protect (&flash_info[i], 0, 0);
flash_info[i].legacy_unlock = 1;
/*
* Manually mark other sectors as
* unlocked (unprotected)
*/
for (k = 1; k < flash_info[i].sector_count; k++)
flash_info[i].protect[k] = 0;
} else {
/*
* No legancy unlocking -> unlock all sectors
*/
flash_protect (FLAG_PROTECT_CLEAR,
flash_info[i].start[0],
flash_info[i].start[0]
+ flash_info[i].size - 1,
&flash_info[i]);
}
}
#endif /* CONFIG_SYS_FLASH_PROTECTION */
}
flash_protect_default();
#ifdef CONFIG_FLASH_CFI_MTD
cfi_mtd_init();
#endif
return (size);
}