SmartAudio/lichee/linux-4.9/drivers/mmc/host/sunxi-mmc-sun50iw1p1-1.c

581 lines
14 KiB
C

/*
* Sunxi SD/MMC host driver
*
* Copyright (C) 2015 AllWinnertech Ltd.
* Author: lixiang <lixiang@allwinnertech>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifdef CONFIG_ARCH_SUN50IW1P1
#include <linux/clk.h>
#include <linux/clk/sunxi.h>
#include <linux/gpio.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/reset.h>
#include <linux/of_address.h>
#include <linux/of_gpio.h>
#include <linux/of_platform.h>
#include <linux/mmc/host.h>
#include <linux/mmc/sd.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/core.h>
#include <linux/mmc/card.h>
#include <linux/mmc/slot-gpio.h>
#include "sunxi-mmc.h"
#include "sunxi-mmc-sun50iw1p1-1.h"
/*reg*/
/*SMHC eMMC4.5 DDR Start Bit Detection Control Register */
/*SMHC CRC Status Detect Control Register */
/*SMHC Card Threshold Control Register */
/*SMHC Drive Delay Control Register */
/*SMHC Sample Delay Control Register */
/*SMHC Data Strobe Delay Control Register */
/*SMHC NewTiming Set Register */
#define SDXC_REG_EDSD (0x010C)
#define SDXC_REG_CSDC (0x0054)
#define SDXC_REG_THLD (0x0100)
#define SDXC_REG_DRV_DL (0x0140)
#define SDXC_REG_SAMP_DL (0x0144)
#define SDXC_REG_DS_DL (0x0148)
#define SDXC_REG_SD_NTSR (0x005C)
/*bit*/
#define SDXC_HS400_MD_EN (1U<<31)
#define SDXC_CARD_WR_THLD_ENB (1U<<2)
#define SDXC_CARD_RD_THLD_ENB (1U)
#define SDXC_DAT_DRV_PH_SEL (1U<<17)
#define SDXC_CMD_DRV_PH_SEL (1U<<16)
#define SDXC_SAMP_DL_SW_EN (1u<<7)
#define SDXC_DS_DL_SW_EN (1u<<7)
#define SDXC_2X_TIMING_MODE (1U<<31)
/*mask*/
#define SDXC_CRC_DET_PARA_MASK (0xf)
#define SDXC_CARD_RD_THLD_MASK (0x0FFF0000)
#define SDXC_TX_TL_MASK (0xff)
#define SDXC_RX_TL_MASK (0x00FF0000)
#define SDXC_SAMP_DL_SW_MASK (0x0000003F)
#define SDXC_DS_DL_SW_MASK (0x0000003F)
#define SDXC_SAM_TIMING_PH_MASK (0x00000030)
/*value*/
#define SDXC_CRC_DET_PARA_HS400 (6)
#define SDXC_CRC_DET_PARA_OTHER (3)
#define SDXC_FIFO_DETH (1024>>2)
/*size*/
#define SDXC_CARD_RD_THLD_SIZE (0x00000FFF)
/*shit*/
#define SDXC_CARD_RD_THLD_SIZE_SHIFT (16)
#define SDXC_SAM_TIMING_PH_SHIFT (4)
enum sunxi_mmc_clk_mode {
mmc_clk_400k = 0,
mmc_clk_26M,
mmc_clk_52M,
mmc_clk_52M_DDR4,
mmc_clk_52M_DDR8,
mmc_clk_104M,
mmc_clk_208M,
mmc_clk_104M_DDR,
mmc_clk_208M_DDR,
mmc_clk_mod_num,
};
struct sunxi_mmc_clk_dly {
enum sunxi_mmc_clk_mode cmod;
char *mod_str;
u32 cmd_drv_ph;
u32 dat_drv_ph;
u32 sam_dly;
u32 ds_dly;
u32 sam_ph;
};
/*sample delay and output deley setting */
static struct sunxi_mmc_clk_dly mmc_clk_dly[mmc_clk_mod_num] = {
[mmc_clk_400k] = {
.cmod = mmc_clk_400k,
.mod_str = "sunxi-dly-400k",
.cmd_drv_ph = 1,
.dat_drv_ph = 0,
.sam_dly = 0,
.ds_dly = 0,
.sam_ph = 0,
},
[mmc_clk_26M] = {
.cmod = mmc_clk_26M,
.mod_str = "sunxi-dly-26M",
.cmd_drv_ph = 1,
.dat_drv_ph = 0,
.sam_dly = 0,
.ds_dly = 0,
.sam_ph = 0,
},
[mmc_clk_52M] = {
.cmod = mmc_clk_52M,
.mod_str = "sunxi-dly-52M",
.cmd_drv_ph = 1,
.dat_drv_ph = 0,
.sam_dly = 0,
.ds_dly = 0,
.sam_ph = 0,
},
[mmc_clk_52M_DDR4] = {
.cmod = mmc_clk_52M_DDR4,
.mod_str = "sunxi-dly-52M-ddr4",
.cmd_drv_ph = 1,
.dat_drv_ph = 0,
.sam_dly = 0,
.ds_dly = 0,
.sam_ph = 0,
},
[mmc_clk_52M_DDR8] = {
.cmod = mmc_clk_52M_DDR8,
.mod_str = "sunxi-dly-52M-ddr8",
.cmd_drv_ph = 1,
.dat_drv_ph = 0,
.sam_dly = 0,
.ds_dly = 0,
.sam_ph = 0,
},
[mmc_clk_104M] = {
.cmod = mmc_clk_104M,
.mod_str = "sunxi-dly-104M",
.cmd_drv_ph = 1,
.dat_drv_ph = 0,
.sam_dly = 0,
.ds_dly = 0,
.sam_ph = 0,
},
[mmc_clk_208M] = {
.cmod = mmc_clk_208M,
.mod_str = "sunxi-dly-208M",
.cmd_drv_ph = 1,
.dat_drv_ph = 0,
.sam_dly = 0,
.ds_dly = 0,
.sam_ph = 0,
},
[mmc_clk_104M_DDR] = {
.cmod = mmc_clk_104M_DDR,
.mod_str = "sunxi-dly-104M-ddr",
.cmd_drv_ph = 1,
.dat_drv_ph = 0,
.sam_dly = 0,
.ds_dly = 0,
.sam_ph = 0,
},
[mmc_clk_208M_DDR] = {
.cmod = mmc_clk_208M_DDR,
.mod_str = "sunxi-dly-208M-ddr",
.cmd_drv_ph = 1,
.dat_drv_ph = 0,
.sam_dly = 0,
.ds_dly = 0,
.sam_ph = 0,
},
};
struct sunxi_mmc_spec_regs {
u32 drv_dl; /*REG_DRV_DL */
u32 samp_dl; /*REG_SAMP_DL */
u32 ds_dl; /*REG_DS_DL */
u32 sd_ntsr; /*REG_SD_NTSR */
};
static struct sunxi_mmc_spec_regs bak_spec_regs;
static void sunxi_mmc_set_clk_dly(struct sunxi_mmc_host *host, int clk,
int bus_width, int timing)
{
struct mmc_host *mhost = host->mmc;
u32 rval = 0;
enum sunxi_mmc_clk_mode cmod = mmc_clk_400k;
u32 in_clk_dly[5] = { 0 };
int ret = 0;
struct device_node *np = NULL;
if (!mhost->parent || !mhost->parent->of_node) {
dev_err(mmc_dev(host->mmc),
"no dts to parse clk dly,use default\n");
return;
}
np = mhost->parent->of_node;
if (clk <= 400 * 1000) {
cmod = mmc_clk_400k;
} else if (clk <= 26 * 1000 * 1000) {
cmod = mmc_clk_26M;
} else if (clk <= 52 * 1000 * 1000) {
if ((bus_width == MMC_BUS_WIDTH_4)
&& sunxi_mmc_ddr_timing(timing)) {
cmod = mmc_clk_52M_DDR4;
} else if ((bus_width == MMC_BUS_WIDTH_8)
&& (timing == MMC_TIMING_MMC_DDR52)) {
cmod = mmc_clk_52M_DDR8;
} else {
cmod = mmc_clk_52M;
}
} else if (clk <= 104 * 1000 * 1000) {
if ((bus_width == MMC_BUS_WIDTH_8)
&& (timing == MMC_TIMING_MMC_HS400)) {
cmod = mmc_clk_104M_DDR;
} else {
cmod = mmc_clk_104M;
}
} else if (clk <= 208 * 1000 * 1000) {
if ((bus_width == MMC_BUS_WIDTH_8)
&& (timing == MMC_TIMING_MMC_HS400)) {
cmod = mmc_clk_208M_DDR;
} else {
cmod = mmc_clk_208M;
}
} else {
dev_err(mmc_dev(mhost), "clk %d is out of range\n", clk);
return;
}
ret = of_property_read_u32_array(np, mmc_clk_dly[cmod].mod_str,
in_clk_dly, ARRAY_SIZE(in_clk_dly));
if (ret) {
dev_dbg(mmc_dev(host->mmc), "failded to get %s used default\n",
mmc_clk_dly[cmod].mod_str);
} else {
mmc_clk_dly[cmod].cmd_drv_ph = in_clk_dly[0];
mmc_clk_dly[cmod].dat_drv_ph = in_clk_dly[1];
/*mmc_clk_dly[cmod].sam_dly = in_clk_dly[2]; */
/*mmc_clk_dly[cmod].ds_dly = in_clk_dly[3]; */
mmc_clk_dly[cmod].sam_ph = in_clk_dly[4];
dev_dbg(mmc_dev(host->mmc), "Get %s clk dly ok\n",
mmc_clk_dly[cmod].mod_str);
}
dev_dbg(mmc_dev(host->mmc), "Try set %s clk dly ok\n",
mmc_clk_dly[cmod].mod_str);
dev_dbg(mmc_dev(host->mmc), "cmd_drv_ph %d\n",
mmc_clk_dly[cmod].cmd_drv_ph);
dev_dbg(mmc_dev(host->mmc), "dat_drv_ph %d\n",
mmc_clk_dly[cmod].dat_drv_ph);
dev_dbg(mmc_dev(host->mmc), "sam_ph %d\n",
mmc_clk_dly[cmod].sam_ph);
rval = mmc_readl(host, REG_DRV_DL);
if (mmc_clk_dly[cmod].cmd_drv_ph)
rval |= SDXC_CMD_DRV_PH_SEL; /*180 phase */
else
rval &= ~SDXC_CMD_DRV_PH_SEL; /*90 phase */
if (mmc_clk_dly[cmod].dat_drv_ph)
rval |= SDXC_DAT_DRV_PH_SEL; /*180 phase */
else
rval &= ~SDXC_DAT_DRV_PH_SEL; /*90 phase */
mmc_writel(host, REG_DRV_DL, rval);
/*
* rval = mmc_readl(host,REG_SAMP_DL);
* rval &= ~SDXC_SAMP_DL_SW_MASK;
* rval |= mmc_clk_dly[cmod].sam_dly & SDXC_SAMP_DL_SW_MASK;
* rval |= SDXC_SAMP_DL_SW_EN;
* mmc_writel(host,REG_SAMP_DL,rval);
*
* rval = mmc_readl(host,REG_DS_DL);
* rval &= ~SDXC_DS_DL_SW_MASK;
* rval |= mmc_clk_dly[cmod].ds_dly & SDXC_DS_DL_SW_MASK;
* rval |= SDXC_DS_DL_SW_EN;
* mmc_writel(host,REG_DS_DL,rval);
*/
rval = mmc_readl(host, REG_SD_NTSR);
rval &= ~SDXC_SAM_TIMING_PH_MASK;
rval |=
(mmc_clk_dly[cmod].
sam_ph << SDXC_SAM_TIMING_PH_SHIFT) & SDXC_SAM_TIMING_PH_MASK;
mmc_writel(host, REG_SD_NTSR, rval);
dev_dbg(mmc_dev(host->mmc), " REG_DRV_DL %08x\n",
mmc_readl(host, REG_DRV_DL));
dev_dbg(mmc_dev(host->mmc), " REG_SAMP_DL %08x\n",
mmc_readl(host, REG_SAMP_DL));
dev_dbg(mmc_dev(host->mmc), " REG_DS_DL %08x\n",
mmc_readl(host, REG_DS_DL));
}
static int __sunxi_mmc_do_oclk_onoff(struct sunxi_mmc_host *host, u32 oclk_en,
u32 pwr_save, u32 ignore_dat0)
{
unsigned long expire = jiffies + msecs_to_jiffies(250);
u32 rval;
rval = mmc_readl(host, REG_CLKCR);
rval &= ~(SDXC_CARD_CLOCK_ON | SDXC_LOW_POWER_ON | SDXC_MASK_DATA0);
if (oclk_en)
rval |= SDXC_CARD_CLOCK_ON;
if (pwr_save)
rval |= SDXC_LOW_POWER_ON;
if (ignore_dat0)
rval |= SDXC_MASK_DATA0;
mmc_writel(host, REG_CLKCR, rval);
dev_dbg(mmc_dev(host->mmc), "%s REG_CLKCR:%x\n", __func__,
mmc_readl(host, REG_CLKCR));
rval = SDXC_START | SDXC_UPCLK_ONLY | SDXC_WAIT_PRE_OVER;
mmc_writel(host, REG_CMDR, rval);
do {
rval = mmc_readl(host, REG_CMDR);
} while (time_before(jiffies, expire) && (rval & SDXC_START));
/* clear irq status bits set by the command */
/*? */
mmc_writel(host, REG_RINTR,
mmc_readl(host, REG_RINTR) & ~SDXC_SDIO_INTERRUPT);
if (rval & SDXC_START) {
dev_err(mmc_dev(host->mmc), "fatal err update clk timeout\n");
return -EIO;
}
/*only use mask data0 when update clk,clear it when not update clk */
if (ignore_dat0)
mmc_writel(host, REG_CLKCR,
mmc_readl(host, REG_CLKCR) & ~SDXC_MASK_DATA0);
return 0;
}
static int sunxi_mmc_oclk_onoff(struct sunxi_mmc_host *host, u32 oclk_en)
{
struct device_node *np = NULL;
struct mmc_host *mmc = host->mmc;
int pwr_save = 0;
int len = 0;
if (!mmc->parent || !mmc->parent->of_node) {
dev_err(mmc_dev(host->mmc),
"no dts to parse power save mode\n");
return -EIO;
}
np = mmc->parent->of_node;
if (of_find_property(np, "sunxi-power-save-mode", &len))
pwr_save = 1;
return __sunxi_mmc_do_oclk_onoff(host, oclk_en, pwr_save, 1);
}
int sunxi_mmc_oclk_onoff_sdmmc1(struct sunxi_mmc_host *host, u32 oclk_en)
{
return sunxi_mmc_oclk_onoff(host, oclk_en);
}
static void sunxi_mmc_2xmod_onoff(struct sunxi_mmc_host *host, u32 newmode_en)
{
u32 rval = mmc_readl(host, REG_SD_NTSR);
if (newmode_en)
rval |= SDXC_2X_TIMING_MODE;
else
rval &= ~SDXC_2X_TIMING_MODE;
mmc_writel(host, REG_SD_NTSR, rval);
dev_dbg(mmc_dev(host->mmc), "REG_SD_NTSR: 0x%08x ,val %x\n",
mmc_readl(host, REG_SD_NTSR), rval);
}
int sunxi_mmc_clk_set_rate_for_sdmmc1(struct sunxi_mmc_host *host,
struct mmc_ios *ios)
{
u32 mod_clk = 0;
u32 src_clk = 0;
u32 rval = 0;
s32 err = 0;
u32 rate = 0;
char *sclk_name = NULL;
struct clk *mclk = host->clk_mmc;
struct clk *sclk = NULL;
struct device *dev = mmc_dev(host->mmc);
int div = 0;
if (ios->clock == 0) {
__sunxi_mmc_do_oclk_onoff(host, 0, 0, 1);
return 0;
}
if (sunxi_mmc_ddr_timing(ios->timing)) {
mod_clk = ios->clock << 2;
div = 1;
} else {
mod_clk = ios->clock << 1;
div = 0;
}
if (ios->clock <= 400000) {
sclk = clk_get(dev, "osc24m");
sclk_name = "osc24m";
} else {
sclk = clk_get(dev, "pll_periph");
sclk_name = "pll_periph";
}
if (IS_ERR(sclk)) {
dev_err(mmc_dev(host->mmc), "Error to get source clock %s\n",
sclk_name);
return -1;
}
sunxi_mmc_oclk_onoff(host, 0);
err = clk_set_parent(mclk, sclk);
if (err) {
dev_err(mmc_dev(host->mmc), "set parent failed\n");
clk_put(sclk);
return -1;
}
rate = clk_round_rate(mclk, mod_clk);
dev_dbg(mmc_dev(host->mmc), "get round rate %d\n", rate);
clk_disable_unprepare(host->clk_mmc);
err = clk_set_rate(mclk, rate);
if (err) {
dev_err(mmc_dev(host->mmc), "set mclk rate error, rate %dHz\n",
rate);
clk_put(sclk);
return -1;
}
rval = clk_prepare_enable(host->clk_mmc);
if (rval) {
dev_err(mmc_dev(host->mmc), "Enable mmc clk err %d\n", rval);
return -1;
}
src_clk = clk_get_rate(sclk);
clk_put(sclk);
dev_dbg(mmc_dev(host->mmc), "set round clock %d, soure clk is %d\n",
rate, src_clk);
#ifdef MMC_FPGA
if (sunxi_mmc_ddr_timing(ios->timing)) {
/* clear internal divider */
rval = mmc_readl(host, REG_CLKCR);
rval &= ~0xff;
rval |= 1;
} else {
/* support internal divide clock under fpga environment */
rval = mmc_readl(host, REG_CLKCR);
rval &= ~0xff;
rval |= 24000000 / mod_clk / 2; /* =24M/400K/2=0x1E*/
}
mmc_writel(host, REG_CLKCR, rval);
dev_info(mmc_dev(host->mmc), "FPGA REG_CLKCR: 0x%08x\n",
mmc_readl(host, REG_CLKCR));
#else
/* clear internal divider */
rval = mmc_readl(host, REG_CLKCR);
rval &= ~0xff;
rval |= div;
mmc_writel(host, REG_CLKCR, rval);
#endif
/*sunxi_of_parse_clk_dly(host);*/
sunxi_mmc_2xmod_onoff(host, 1);
if (sunxi_mmc_ddr_timing(ios->timing))
ios->clock = rate >> 2;
else
ios->clock = rate >> 1;
sunxi_mmc_set_clk_dly(host, ios->clock, ios->bus_width, ios->timing);
return sunxi_mmc_oclk_onoff(host, 1);
}
void sunxi_mmc_thld_ctl_for_sdmmc1(struct sunxi_mmc_host *host,
struct mmc_ios *ios, struct mmc_data *data)
{
u32 bsz = data->blksz;
/*unit:byte */
u32 rdtl = ((host->dma_tl & SDXC_RX_TL_MASK) >> 16) << 2;
u32 rval = 0;
if ((data->flags & MMC_DATA_READ)
&& (bsz <= SDXC_CARD_RD_THLD_SIZE)
/*((SDXC_FIFO_DETH<<2)-bsz) >= (rdtl)*/
&& ((SDXC_FIFO_DETH << 2) >= (rdtl + bsz))
&& ((ios->timing == MMC_TIMING_MMC_HS200)
|| (ios->timing == MMC_TIMING_UHS_SDR50)
|| (ios->timing == MMC_TIMING_UHS_SDR104))) {
rval = mmc_readl(host, REG_THLD);
rval &= ~SDXC_CARD_RD_THLD_MASK;
rval |= data->blksz << SDXC_CARD_RD_THLD_SIZE_SHIFT;
rval |= SDXC_CARD_RD_THLD_ENB;
mmc_writel(host, REG_THLD, rval);
} else {
rval = mmc_readl(host, REG_THLD);
rval &= ~SDXC_CARD_RD_THLD_ENB;
mmc_writel(host, REG_THLD, rval);
}
dev_dbg(mmc_dev(host->mmc), "SDXC_REG_THLD: 0x%08x\n",
mmc_readl(host, REG_THLD));
}
void sunxi_mmc_save_spec_reg1(struct sunxi_mmc_host *host)
{
bak_spec_regs.drv_dl = mmc_readl(host, REG_DRV_DL);
bak_spec_regs.samp_dl = mmc_readl(host, REG_SAMP_DL);
bak_spec_regs.ds_dl = mmc_readl(host, REG_DS_DL);
bak_spec_regs.sd_ntsr = mmc_readl(host, REG_SD_NTSR);
}
void sunxi_mmc_restore_spec_reg1(struct sunxi_mmc_host *host)
{
mmc_writel(host, REG_DRV_DL, bak_spec_regs.drv_dl);
mmc_writel(host, REG_SAMP_DL, bak_spec_regs.samp_dl);
mmc_writel(host, REG_DS_DL, bak_spec_regs.ds_dl);
mmc_writel(host, REG_SD_NTSR, bak_spec_regs.sd_ntsr);
}
#endif