SmartAudio/lichee/linux-4.9/drivers/media/platform/sunxi-vfe/device/imx214.c

1198 lines
24 KiB
C
Executable File

/*
* A V4L2 driver for IMX214 cameras.
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/videodev2.h>
#include <linux/clk.h>
#include <media/v4l2-device.h>
#include <media/v4l2-mediabus.h>
#include <linux/io.h>
#include "camera.h"
#include "sensor_helper.h"
MODULE_AUTHOR("lwj");
MODULE_DESCRIPTION("A low-level driver for IMX214 sensors");
MODULE_LICENSE("GPL");
/* for internal driver debug */
#define DEV_DBG_EN 0
#if (DEV_DBG_EN == 1)
#define vfe_dev_dbg(x, arg...) pr_debug("[IMX214]"x, ##arg)
#else
#define vfe_dev_dbg(x, arg...)
#endif
#define vfe_dev_err(x, arg...) pr_err("[IMX214]"x, ##arg)
#define vfe_dev_print(x, arg...) pr_info("[IMX214]"x, ##arg)
/*
*#define LOG_ERR_RET(x) { \
* int ret; \
* ret = x; \
* if (ret < 0) { \
* vfe_dev_err("error at %s\n", __func__); \
* return ret; \
* } \
* }
*/
/* define module timing */
#define MCLK (24*1000*1000)
#define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_LOW
#define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH
#define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING
#define V4L2_IDENT_SENSOR 0x0214
#define DGAIN_R 0x100
#define DGAIN_G 0x100
#define DGAIN_B 0x100
/*
* Our nominal (default) frame rate.
*/
#define SENSOR_FRAME_RATE 30
/*
* The IMX214 sits on i2c with ID 0x6c
*/
#define I2C_ADDR 0x20
#define SENSOR_NAME "imx214"
int imx214_sensor_vts;
/* static struct delayed_work sensor_s_ae_ratio_work; */
static struct v4l2_subdev *glb_sd;
/*
* Information we maintain about a known sensor.
*/
struct sensor_format_struct; /* coming later */
struct cfg_array { /* coming later */
struct regval_list *regs;
int size;
};
static int LOG_ERR_RET(int x)
{
int ret;
ret = x;
if (ret < 0)
vfe_dev_err("error at %s\n", __func__);
return ret;
}
static inline struct sensor_info *to_state(struct v4l2_subdev *sd)
{
return container_of(sd, struct sensor_info, sd);
}
/*
* The default register settings
*
*/
static struct regval_list sensor_default_regs[] = {
{0x0101, 0x03},
{0x0105, 0x01},
{0x0106, 0x01},
{0x4550, 0x02},
{0x4601, 0x04},
{0x4642, 0x01},
{0x6227, 0x11},
{0x6276, 0x00},
{0x900E, 0x06},
{0xA802, 0x90},
{0xA803, 0x11},
{0xA804, 0x62},
{0xA805, 0x77},
{0xA806, 0xAE},
{0xA807, 0x34},
{0xA808, 0xAE},
{0xA809, 0x35},
{0xA80A, 0x62},
{0xA80B, 0x83},
{0xAE33, 0x00},
{0x4174, 0x00},
{0x4175, 0x11},
{0x4612, 0x29},
{0x461B, 0x2C},
{0x461F, 0x06},
{0x4635, 0x07},
{0x4637, 0x30},
{0x463F, 0x18},
{0x4641, 0x0D},
{0x465B, 0x2C},
{0x465F, 0x2B},
{0x4663, 0x2B},
{0x4667, 0x24},
{0x466F, 0x24},
{0x470E, 0x09},
{0x4909, 0xAB},
{0x490B, 0x95},
{0x4915, 0x5D},
{0x4A5F, 0xFF},
{0x4A61, 0xFF},
{0x4A73, 0x62},
{0x4A85, 0x00},
{0x4A87, 0xFF},
{0x583C, 0x04},
{0x620E, 0x04},
{0x6EB2, 0x01},
{0x6EB3, 0x00},
{0x9300, 0x02},
{0x080b, 119},
{0x080d, 55},
{0x080f, 103},
{0x0811, 55},
{0x0813, 55},
{0x0815, 55},
{0x0817, 223},
{0x0819, 47},
{0x4601, 0x04},
{0x4642, 0x01},
{0x461B, 0x2C},
{0x465B, 0x2C},
{0x465F, 0x2B},
{0x4663, 0x2B},
{0x4667, 0x24},
{0x466F, 0x24},
};
/* for capture */
static struct regval_list sensor_13mega_regs[] = {
{0x0114, 0x03},
{0x0220, 0x00},
{0x0221, 0x11},
{0x0222, 0x01},
{0x0340, 0x0C},
{0x0341, 0x7A},
{0x0342, 0x13},
{0x0343, 0x90},
{0x0344, 0x00},
{0x0345, 0x00},
{0x0346, 0x00},
{0x0347, 0x00},
{0x0348, 0x10},
{0x0349, 0x6F},
{0x034A, 0x0C},
{0x034B, 0x2F},
{0x0381, 0x01},
{0x0383, 0x01},
{0x0385, 0x01},
{0x0387, 0x01},
{0x0900, 0x00},
{0x0901, 0x00},
{0x0902, 0x00},
{0x3000, 0x35},
{0x3054, 0x01},
{0x305C, 0x11},
{0x0112, 0x0A},
{0x0113, 0x0A},
{0x034C, 0x10},
{0x034D, 0x70},
{0x034E, 0x0C},
{0x034F, 0x30},
{0x0401, 0x00},
{0x0404, 0x00},
{0x0405, 0x10},
{0x0408, 0x00},
{0x0409, 0x00},
{0x040A, 0x00},
{0x040B, 0x00},
{0x040C, 0x10},
{0x040D, 0x70},
{0x040E, 0x0C},
{0x040F, 0x30},
{0x0301, 0x05},
{0x0303, 0x02},
{0x0305, 0x03},
{0x0306, 0x00},
{0x0307, 0x64},
{0x0309, 0x0A},
{0x030B, 0x01},
{0x0310, 0x00},
{0x0820, 0x0C},
{0x0821, 0x80},
{0x0822, 0x00},
{0x0823, 0x00},
{0x3A03, 0x08},
{0x3A04, 0xD0},
{0x3A05, 0x02},
{0x0B06, 0x01},
{0x30A2, 0x00},
{0x30B4, 0x00},
{0x3A02, 0xFF},
{0x3011, 0x00},
{0x3013, 0x01},
{0x0202, 0x0C},
{0x0203, 0x70},
{0x0224, 0x01},
{0x0225, 0xF4},
{0x0204, 0x00},
{0x0205, 0x00},
{0x020E, 0x01},
{0x020F, 0x00},
{0x0210, 0x01},
{0x0211, 0x00},
{0x0212, 0x01},
{0x0213, 0x00},
{0x0214, 0x01},
{0x0215, 0x00},
{0x0216, 0x00},
{0x0217, 0x00},
{0x4170, 0x00},
{0x4171, 0x10},
{0x4176, 0x00},
{0x4177, 0x3C},
{0xAE20, 0x04},
{0xAE21, 0x5C},
{0x0138, 0x01},
{0x0100, 0x01},
};
/* for video */
static struct regval_list sensor_4k_videos[] = {
{0x0114, 0x03},
{0x0220, 0x00},
{0x0221, 0x11},
{0x0222, 0x01},
{0x0340, 0x09},
{0x0341, 0x3C},
{0x0342, 0x13},
{0x0343, 0x90},
{0x0344, 0x00},
{0x0345, 0xB8},
{0x0346, 0x01},
{0x0347, 0xE0},
{0x0348, 0x0F},
{0x0349, 0xB7},
{0x034A, 0x0A},
{0x034B, 0x4F},
{0x0381, 0x01},
{0x0383, 0x01},
{0x0385, 0x01},
{0x0387, 0x01},
{0x0900, 0x00},
{0x0901, 0x00},
{0x0902, 0x00},
{0x3000, 0x35},
{0x3054, 0x01},
{0x305C, 0x11},
{0x0112, 0x0A},
{0x0113, 0x0A},
{0x034C, 0x0F},
{0x034D, 0x00},
{0x034E, 0x08},
{0x034F, 0x70},
{0x0401, 0x00},
{0x0404, 0x00},
{0x0405, 0x10},
{0x0408, 0x00},
{0x0409, 0x00},
{0x040A, 0x00},
{0x040B, 0x00},
{0x040C, 0x0F},
{0x040D, 0x00},
{0x040E, 0x08},
{0x040F, 0x70},
{0x0301, 0x05},
{0x0303, 0x02},
{0x0305, 0x01},
{0x0306, 0x00},
{0x0307, 0x25},
{0x0309, 0x0A},
{0x030B, 0x01},
{0x0310, 0x00},
{0x0820, 0x0D},
{0x0821, 0xE0},
{0x0822, 0x00},
{0x0823, 0x00},
{0x3A03, 0x09},
{0x3A04, 0xA0},
{0x3A05, 0x04},
{0x0B06, 0x01},
{0x30A2, 0x00},
{0x30B4, 0x00},
{0x3A02, 0xFF},
{0x3011, 0x00},
{0x3013, 0x01},
{0x0202, 0x09},
{0x0203, 0x32},
{0x0224, 0x01},
{0x0225, 0xF4},
{0x0204, 0x00},
{0x0205, 0x00},
{0x020E, 0x01},
{0x020F, 0x00},
{0x0210, 0x01},
{0x0211, 0x00},
{0x0212, 0x01},
{0x0213, 0x00},
{0x0214, 0x01},
{0x0215, 0x00},
{0x0216, 0x00},
{0x0217, 0x00},
{0x4170, 0x00},
{0x4171, 0x10},
{0x4176, 0x00},
{0x4177, 0x3C},
{0xAE20, 0x04},
{0xAE21, 0x5C},
};
static struct regval_list sensor_1080p_regs[] = {
{0x0114, 0x03},
{0x0220, 0x00},
{0x0221, 0x11},
{0x0222, 0x01},
{0x0340, 0x08},
{0x0341, 0x50},
{0x0342, 0x13},
{0x0343, 0x90},
{0x0344, 0x00},
{0x0345, 0xB8},
{0x0346, 0x01},
{0x0347, 0xE0},
{0x0348, 0x0F},
{0x0349, 0xB7},
{0x034A, 0x0A},
{0x034B, 0x4F},
{0x0381, 0x01},
{0x0383, 0x01},
{0x0385, 0x01},
{0x0387, 0x01},
{0x0900, 0x01},
{0x0901, 0x22},
{0x0902, 0x02},
{0x3000, 0x35},
{0x3054, 0x01},
{0x305C, 0x11},
{0x0112, 0x0A},
{0x0113, 0x0A},
{0x034C, 0x07},
{0x034D, 0x80},
{0x034E, 0x04},
{0x034F, 0x38},
{0x0401, 0x00},
{0x0404, 0x00},
{0x0405, 0x10},
{0x0408, 0x00},
{0x0409, 0x00},
{0x040A, 0x00},
{0x040B, 0x00},
{0x040C, 0x07},
{0x040D, 0x80},
{0x040E, 0x04},
{0x040F, 0x38},
{0x0301, 0x05},
{0x0303, 0x02},
{0x0305, 0x03},
{0x0306, 0x00},
{0x0307, 0x64},
{0x0309, 0x0A},
{0x030B, 0x01},
{0x0310, 0x00},
{0x0820, 0x0C},
{0x0821, 0x80},
{0x0822, 0x00},
{0x0823, 0x00},
{0x3A03, 0x06},
{0x3A04, 0x28},
{0x3A05, 0x04},
{0x0B06, 0x01},
{0x30A2, 0x00},
{0x30B4, 0x00},
{0x3A02, 0xFF},
{0x3011, 0x00},
{0x3013, 0x01},
{0x0202, 0x08},
{0x0203, 0x46},
{0x0224, 0x01},
{0x0225, 0xF4},
{0x0204, 0x00},
{0x0205, 0x00},
{0x020E, 0x01},
{0x020F, 0x00},
{0x0210, 0x01},
{0x0211, 0x00},
{0x0212, 0x01},
{0x0213, 0x00},
{0x0214, 0x01},
{0x0215, 0x00},
{0x0216, 0x00},
{0x0217, 0x00},
{0x4170, 0x00},
{0x4171, 0x10},
{0x4176, 0x00},
{0x4177, 0x3C},
{0xAE20, 0x04},
{0xAE21, 0x5C},
{0x0138, 0x01},
{0x0100, 0x01},
};
/*
* Here we'll try to encapsulate the changes for just the output
* video format.
*
*/
static struct regval_list sensor_fmt_raw[] = {
};
static int sensor_g_exp(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->exp;
vfe_dev_dbg("sensor_get_exposure = %d\n", info->exp);
return 0;
}
static int sensor_s_exp(struct v4l2_subdev *sd, unsigned int exp_val)
{
unsigned char explow, exphigh;
struct sensor_info *info = to_state(sd);
if (exp_val > 0xffffff)
exp_val = 0xfffff0;
if (exp_val < 16)
exp_val = 16;
exp_val = (exp_val+8)>>4; /* rounding to 1 */
exphigh = (unsigned char) ((0xff00&exp_val)>>8);
explow = (unsigned char) ((0x00ff&exp_val));
sensor_write(sd, 0x0203, explow); /* coarse integration time */
sensor_write(sd, 0x0202, exphigh);
info->exp = exp_val;
return 0;
}
static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->gain;
vfe_dev_dbg("sensor_get_gain = %d\n", info->gain);
return 0;
}
static int sensor_s_gain(struct v4l2_subdev *sd, int gain_val)
{
struct sensor_info *info = to_state(sd);
unsigned char gainlow = 0;
unsigned char gainhigh = 0;
int gainana = 512 - 8192/gain_val;
gainlow = (unsigned char)(gainana&0xff);
gainhigh = (unsigned char)((gainana>>8)&0xff);
sensor_write(sd, 0x0205, gainlow);
sensor_write(sd, 0x0204, gainhigh);
info->gain = gain_val;
return 0;
}
static int sensor_s_exp_gain(struct v4l2_subdev *sd,
struct sensor_exp_gain *exp_gain)
{
int exp_val, gain_val, shutter, frame_length;
struct sensor_info *info = to_state(sd);
exp_val = exp_gain->exp_val;
gain_val = exp_gain->gain_val;
if (gain_val < 1*16)
gain_val = 16;
if (gain_val > 64*16-1)
gain_val = 64*16-1;
if (exp_val > 0xfffff)
exp_val = 0xfffff;
shutter = exp_val/16;
if (shutter > imx214_sensor_vts)
frame_length = shutter;
else
frame_length = imx214_sensor_vts;
/* sensor_write(sd, 0x0341, (frame_length & 0xff)); */
/* sensor_write(sd, 0x0340, (frame_length >> 8)); */
sensor_write(sd, 0x0104, 0x01);
sensor_s_exp(sd, exp_val);
sensor_s_gain(sd, gain_val);
sensor_write(sd, 0x0104, 0x00);
if (gain_val > 64) {
sensor_write(sd, 0x30a2, 0x03); /* enable LNR CNR */
sensor_write(sd, 0x9706, (gain_val-64)/12); /* LNR 0x00~0x10 */
sensor_write(sd, 0x9e25, (gain_val-64)); /* CNR 0x00~0x8c */
} else
sensor_write(sd, 0x30a2, 0x00);
info->exp = exp_val;
info->gain = gain_val;
return 0;
}
/*
* Stuff that knows about the sensor.
*/
static int sensor_power(struct v4l2_subdev *sd, int on)
{
int ret;
ret = 0;
switch (on) {
case CSI_SUBDEV_STBY_ON:
vfe_dev_dbg("CSI_SUBDEV_STBY_ON!\n");
cci_lock(sd);
vfe_gpio_write(sd, RESET, CSI_GPIO_LOW);
cci_unlock(sd);
vfe_set_mclk(sd, OFF);
break;
case CSI_SUBDEV_STBY_OFF:
vfe_dev_dbg("CSI_SUBDEV_STBY_OFF!\n");
cci_lock(sd);
vfe_set_mclk_freq(sd, MCLK);
vfe_set_mclk(sd, ON);
msleep(20);
cci_unlock(sd);
vfe_gpio_write(sd, RESET, CSI_GPIO_HIGH);
break;
case CSI_SUBDEV_PWR_ON:
vfe_dev_dbg("CSI_SUBDEV_PWR_ON!\n");
cci_lock(sd);
vfe_gpio_set_status(sd, PWDN, 1); /* set the gpio to output */
vfe_gpio_set_status(sd, RESET, 1); /* set the gpio to output */
vfe_gpio_write(sd, PWDN, CSI_GPIO_LOW);
vfe_gpio_write(sd, RESET, CSI_GPIO_LOW);
usleep_range(1000, 1200);
vfe_set_mclk_freq(sd, MCLK);
vfe_set_mclk(sd, ON);
usleep_range(10000, 12000);
vfe_gpio_write(sd, POWER_EN, CSI_GPIO_HIGH);
vfe_set_pmu_channel(sd, IOVDD, ON);
vfe_set_pmu_channel(sd, AVDD, ON);
vfe_set_pmu_channel(sd, DVDD, ON);
vfe_set_pmu_channel(sd, AFVDD, ON);
usleep_range(10000, 12000);
vfe_gpio_write(sd, PWDN, CSI_GPIO_HIGH);
vfe_gpio_write(sd, RESET, CSI_GPIO_HIGH);
usleep_range(30000, 31000);
cci_unlock(sd);
break;
case CSI_SUBDEV_PWR_OFF:
vfe_dev_dbg("CSI_SUBDEV_PWR_OFF!\n");
cci_lock(sd);
vfe_set_mclk(sd, OFF);
vfe_gpio_write(sd, POWER_EN, CSI_GPIO_LOW);
vfe_set_pmu_channel(sd, AFVDD, OFF);
vfe_set_pmu_channel(sd, DVDD, OFF);
vfe_set_pmu_channel(sd, AVDD, OFF);
vfe_set_pmu_channel(sd, IOVDD, OFF);
usleep_range(10000, 12000);
vfe_gpio_write(sd, PWDN, CSI_GPIO_LOW);
vfe_gpio_write(sd, RESET, CSI_GPIO_LOW);
vfe_gpio_set_status(sd, RESET, 0); /* set the gpio to input */
vfe_gpio_set_status(sd, PWDN, 0); /* set the gpio to input */
cci_unlock(sd);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_reset(struct v4l2_subdev *sd, u32 val)
{
switch (val) {
case 0:
vfe_gpio_write(sd, RESET, CSI_GPIO_HIGH);
usleep_range(10000, 12000);
break;
case 1:
vfe_gpio_write(sd, RESET, CSI_GPIO_LOW);
usleep_range(10000, 12000);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_detect(struct v4l2_subdev *sd)
{
data_type rdval;
LOG_ERR_RET(sensor_read(sd, 0x0000, &rdval));
/* if((rdval&0x0f) != 0x02) */
/* return -ENODEV; */
LOG_ERR_RET(sensor_read(sd, 0x0001, &rdval));
/* if(rdval != 0x14) */
/* return -ENODEV; */
vfe_dev_print("find the sony IMX214 ***********\n");
return 0;
}
static int sensor_init(struct v4l2_subdev *sd, u32 val)
{
int ret;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_init\n");
/* Make sure it is a target sensor */
ret = sensor_detect(sd);
if (ret) {
vfe_dev_err("chip found is not an target chip.\n");
return ret;
}
vfe_get_standby_mode(sd, &info->stby_mode);
if ((info->stby_mode == HW_STBY || info->stby_mode == SW_STBY)
&& info->init_first_flag == 0) {
vfe_dev_print("stby_mode and init_first_flag = 0\n");
return 0;
}
info->focus_status = 0;
info->low_speed = 0;
info->width = 4208;
info->height = 3120;
info->hflip = 0;
info->vflip = 0;
info->gain = 0;
info->tpf.numerator = 1;
info->tpf.denominator = 30; /* 30fps */
ret = sensor_write_array(sd, sensor_default_regs,
ARRAY_SIZE(sensor_default_regs));
if (ret < 0) {
vfe_dev_err("write sensor_default_regs error\n");
return ret;
}
if (info->stby_mode == 0)
info->init_first_flag = 0;
info->preview_first_flag = 1;
return 0;
}
static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
int ret = 0;
struct sensor_info *info = to_state(sd);
switch (cmd) {
case GET_CURRENT_WIN_CFG:
if (info->current_wins != NULL) {
memcpy(arg,
info->current_wins,
sizeof(struct sensor_win_size));
ret = 0;
} else {
vfe_dev_err("empty wins!\n");
ret = -1;
}
break;
case SET_FPS:
break;
case ISP_SET_EXP_GAIN:
ret = sensor_s_exp_gain(sd, (struct sensor_exp_gain *)arg);
break;
default:
return -EINVAL;
}
return ret;
}
/*
* Store information about the video data format.
*/
static struct sensor_format_struct {
__u8 *desc;
/* __u32 pixelformat; */
u32 mbus_code;
struct regval_list *regs;
int regs_size;
int bpp; /* Bytes per pixel */
} sensor_formats[] = {
{
.desc = "Raw RGB Bayer",
.mbus_code = MEDIA_BUS_FMT_SBGGR10_1X10,
.regs = sensor_fmt_raw,
.regs_size = ARRAY_SIZE(sensor_fmt_raw),
.bpp = 1
},
};
#define N_FMTS ARRAY_SIZE(sensor_formats)
/*
* Then there is the issue of window sizes. Try to capture the info here.
*/
static struct sensor_win_size sensor_win_sizes[] = {
#if 1
/* Fullsize: 4208*3120 */
{
.width = 4208,
.height = 3120,
.hoffset = 0,
.voffset = 0,
.hts = 5008,
.vts = 3194,
.pclk = 320*1000*1000,
.mipi_bps = 800*1000*1000,
.fps_fixed = 2,
.bin_factor = 1,
.intg_min = 16,
.intg_max = (3194-10)<<4,
.gain_min = 16,
.gain_max = (16<<4),
.regs = sensor_13mega_regs,
.regs_size = ARRAY_SIZE(sensor_13mega_regs),
.set_size = NULL,
},
#endif
#if 1
/*4k video*/
{
.width = 3840,
.height = 2160,
.hoffset = 0, /* (4096-3840)>>1, */
.voffset = 0,
.hts = 5008,
.vts = 2362, /* 2200, */
.pclk = 355*1000*1000, /* 320 */
.mipi_bps = 888*1000*1000, /* 800 */
.fps_fixed = 2,
.bin_factor = 1,
.intg_min = 16,
.intg_max = (2362-10)<<4,
.gain_min = 16,
.gain_max = (16<<4),
.regs = sensor_4k_videos,
.regs_size = ARRAY_SIZE(sensor_4k_videos),
.set_size = NULL,
},
/* 1080p */
{
.width = 1920,
.height = 1080,
.hoffset = 0,
.voffset = 0,
.hts = 5008,
.vts = 2128,
.pclk = 320*1000*1000,
.mipi_bps = 800*1000*1000,
.fps_fixed = 1,
.bin_factor = 1,
.intg_min = 16,
.intg_max = (2128-10)<<4,
.gain_min = 16,
.gain_max = (16<<4),
.regs = sensor_1080p_regs,
.regs_size = ARRAY_SIZE(sensor_1080p_regs),
.set_size = NULL,
},
#endif
};
#define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes))
static int sensor_enum_code(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->index >= N_FMTS)
return -EINVAL;
code->code = sensor_formats[code->index].mbus_code;
return 0;
}
static int sensor_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_size_enum *fse)
{
if (fse->index > N_WIN_SIZES-1)
return -EINVAL;
fse->min_width = sensor_win_sizes[fse->index].width;
fse->max_width = fse->min_width;
fse->min_height = sensor_win_sizes[fse->index].height;
fse->max_height = fse->min_height;
return 0;
}
static int sensor_try_fmt_internal(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt,
struct sensor_format_struct **ret_fmt,
struct sensor_win_size **ret_wsize)
{
int index;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
for (index = 0; index < N_FMTS; index++)
if (sensor_formats[index].mbus_code == fmt->code)
break;
if (index >= N_FMTS)
return -EINVAL;
if (ret_fmt != NULL)
*ret_fmt = sensor_formats + index;
/*
* Fields: the sensor devices claim to be progressive.
*/
fmt->field = V4L2_FIELD_NONE;
/*
* Round requested image size down to the nearest
* we support, but not below the smallest.
*/
for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++)
if (fmt->width >= wsize->width && fmt->height >= wsize->height)
break;
if (wsize >= sensor_win_sizes + N_WIN_SIZES)
wsize--; /* Take the smallest one */
if (ret_wsize != NULL)
*ret_wsize = wsize;
/*
* Note the size we'll actually handle.
*/
fmt->width = wsize->width;
fmt->height = wsize->height;
info->current_wins = wsize;
return 0;
}
static int sensor_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmat)
{
struct v4l2_mbus_framefmt *fmt = &fmat->format;
return sensor_try_fmt_internal(sd, fmt, NULL, NULL);
}
static int sensor_g_mbus_config(struct v4l2_subdev *sd,
struct v4l2_mbus_config *cfg)
{
cfg->type = V4L2_MBUS_CSI2;
cfg->flags = 0|V4L2_MBUS_CSI2_4_LANE|V4L2_MBUS_CSI2_CHANNEL_0;
return 0;
}
/*
* Set a format.
*/
static int sensor_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmat)
{
int ret;
struct v4l2_mbus_framefmt *fmt = &fmat->format;
struct sensor_format_struct *sensor_fmt;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_fmt\n");
ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize);
if (ret)
return ret;
/*
*if (info->capture_mode == V4L2_MODE_VIDEO)
*{
* //video
*} else if(info->capture_mode == V4L2_MODE_IMAGE)
*{
* //image
*}
*/
sensor_write_array(sd, sensor_fmt->regs, sensor_fmt->regs_size);
ret = 0;
if (wsize->regs)
LOG_ERR_RET(sensor_write_array(sd, wsize->regs,
wsize->regs_size));
if (wsize->set_size)
LOG_ERR_RET(wsize->set_size(sd));
info->fmt = sensor_fmt;
info->width = wsize->width;
info->height = wsize->height;
imx214_sensor_vts = wsize->vts;
vfe_dev_print("s_fmt set width = %d, height = %d\n",
wsize->width, wsize->height);
/*
*if (info->capture_mode == V4L2_MODE_VIDEO)
*{
* //video
*} else {
* //capture image
*}
*/
vfe_dev_print("s_fmt end\n");
return 0;
}
/*
* Implement G/S_PARM. There is a "high quality" mode we could try
* to do someday; for now, we just do the frame rate tweak.
*/
static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct sensor_info *info = to_state(sd);
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
memset(cp, 0, sizeof(struct v4l2_captureparm));
cp->capability = V4L2_CAP_TIMEPERFRAME;
cp->capturemode = info->capture_mode;
return 0;
}
static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_parm\n");
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
if (info->tpf.numerator == 0)
return -EINVAL;
info->capture_mode = cp->capturemode;
return 0;
}
static int sensor_g_ctrl(struct v4l2_ctrl *ctrl)
{
struct sensor_info *info =
container_of(ctrl->handler, struct sensor_info, handler);
struct v4l2_subdev *sd = &info->sd;
switch (ctrl->id) {
case V4L2_CID_GAIN:
return sensor_g_gain(sd, &ctrl->val);
case V4L2_CID_EXPOSURE:
return sensor_g_exp(sd, &ctrl->val);
}
return -EINVAL;
}
static int sensor_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct sensor_info *info =
container_of(ctrl->handler, struct sensor_info, handler);
struct v4l2_subdev *sd = &info->sd;
switch (ctrl->id) {
case V4L2_CID_GAIN:
return sensor_s_gain(sd, ctrl->val);
case V4L2_CID_EXPOSURE:
return sensor_s_exp(sd, ctrl->val);
}
return -EINVAL;
}
/* ------------------------------------------------------------------ */
static const struct v4l2_ctrl_ops sensor_ctrl_ops = {
.g_volatile_ctrl = sensor_g_ctrl,
.s_ctrl = sensor_s_ctrl,
};
static const struct v4l2_subdev_core_ops sensor_core_ops = {
.reset = sensor_reset,
.init = sensor_init,
.s_power = sensor_power,
.ioctl = sensor_ioctl,
};
static const struct v4l2_subdev_video_ops sensor_video_ops = {
.s_parm = sensor_s_parm,
.g_parm = sensor_g_parm,
.g_mbus_config = sensor_g_mbus_config,
};
static const struct v4l2_subdev_pad_ops sensor_pad_ops = {
.enum_mbus_code = sensor_enum_code,
.enum_frame_size = sensor_enum_frame_size,
.get_fmt = sensor_get_fmt,
.set_fmt = sensor_set_fmt,
};
static const struct v4l2_subdev_ops sensor_ops = {
.core = &sensor_core_ops,
.video = &sensor_video_ops,
.pad = &sensor_pad_ops,
};
/* ------------------------------------------------------------------- */
static struct cci_driver cci_drv = {
.name = SENSOR_NAME,
.addr_width = CCI_BITS_16,
.data_width = CCI_BITS_8,
};
static const struct v4l2_ctrl_config sensor_custom_ctrls[] = {
{
.ops = &sensor_ctrl_ops,
.id = V4L2_CID_FRAME_RATE,
.name = "frame rate",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = 15,
.max = 120,
.step = 1,
.def = 120,
},
};
static int sensor_init_controls(struct v4l2_subdev *sd, const struct v4l2_ctrl_ops *ops)
{
struct sensor_info *info = to_state(sd);
struct v4l2_ctrl_handler *handler = &info->handler;
struct v4l2_ctrl *ctrl;
int ret = 0;
int i;
v4l2_ctrl_handler_init(handler, 2 + ARRAY_SIZE(sensor_custom_ctrls));
ctrl = v4l2_ctrl_new_std(handler, ops, V4L2_CID_GAIN, 1*16, 64*16-1, 1, 1*16);
if (ctrl != NULL)
ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
ctrl = v4l2_ctrl_new_std(handler, ops, V4L2_CID_EXPOSURE, 0, 65536*16, 1, 0);
if (ctrl != NULL)
ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
for (i = 0; i < ARRAY_SIZE(sensor_custom_ctrls); i++)
v4l2_ctrl_new_custom(handler, &sensor_custom_ctrls[i], NULL);
if (handler->error) {
ret = handler->error;
v4l2_ctrl_handler_free(handler);
}
sd->ctrl_handler = handler;
return ret;
}
static int sensor_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct v4l2_subdev *sd;
struct sensor_info *info;
info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL);
if (info == NULL)
return -ENOMEM;
sd = &info->sd;
glb_sd = sd;
sensor_init_controls(sd, &sensor_ctrl_ops);
cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv);
info->fmt = &sensor_formats[0];
info->af_first_flag = 1;
info->init_first_flag = 1;
return 0;
}
static int sensor_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd;
sd = cci_dev_remove_helper(client, &cci_drv);
kfree(to_state(sd));
return 0;
}
static const struct i2c_device_id sensor_id[] = {
{SENSOR_NAME, 0},
{ }
};
MODULE_DEVICE_TABLE(i2c, sensor_id);
static struct i2c_driver sensor_driver = {
.driver = {
.owner = THIS_MODULE,
.name = SENSOR_NAME,
},
.probe = sensor_probe,
.remove = sensor_remove,
.id_table = sensor_id,
};
static __init int init_sensor(void)
{
return cci_dev_init_helper(&sensor_driver);
}
static __exit void exit_sensor(void)
{
cci_dev_exit_helper(&sensor_driver);
}
module_init(init_sensor);
module_exit(exit_sensor);