SmartAudio/lichee/linux-4.9/drivers/media/platform/sunxi-vfe/device/gc0328c.c

2291 lines
47 KiB
C
Executable File

/*
* A V4L2 driver for GalaxyCore GC0328 cameras.
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/videodev2.h>
#include <linux/clk.h>
#include <media/v4l2-device.h>
#include <media/v4l2-mediabus.h>
#include <linux/io.h>
#include "camera.h"
#include "sensor_helper.h"
MODULE_AUTHOR("raymonxiu");
MODULE_DESCRIPTION("A low-level driver for GalaxyCore GC0328 sensors");
MODULE_LICENSE("GPL");
/* for internal driver debug */
#define DEV_DBG_EN 0
#if (DEV_DBG_EN == 1)
#define vfe_dev_dbg(x, arg...) pr_debug("[CSI_DEBUG][GC0328]"x, ##arg)
#else
#define vfe_dev_dbg(x, arg...)
#endif
#define vfe_dev_err(x, arg...) pr_err("[CSI_ERR][GC0328]"x, ##arg)
#define vfe_dev_print(x, arg...) pr_info("[CSI][GC0328]"x, ##arg)
/*
*#define LOG_ERR_RET(x) { \
* int ret; \
* ret = x; \
* if (ret < 0) { \
* vfe_dev_err("error at %s\n", __func__); \
* return ret; \
* } \
* }
*/
/* define module timing */
#define MCLK (24*1000*1000)
#define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_HIGH
#define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH
#define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING
#define V4L2_IDENT_SENSOR 0x0328
/*
* Our nominal (default) frame rate.
*/
#define SENSOR_FRAME_RATE 10
/*
* The GC0328 sits on i2c with ID 0x42
*/
#define I2C_ADDR 0x42
#define SENSOR_NAME "gc0328c"
/*
* Information we maintain about a known sensor.
*/
struct sensor_format_struct; /* coming later */
struct cfg_array { /* coming later */
struct regval_list *regs;
int size;
};
static int LOG_ERR_RET(int x)
{
int ret;
ret = x;
if (ret < 0)
vfe_dev_err("error at %s\n", __func__);
return ret;
}
static inline struct sensor_info *to_state(struct v4l2_subdev *sd)
{
return container_of(sd, struct sensor_info, sd);
}
static struct regval_list sensor_default_regs[] = {
{0xfe, 0x80},
{0xfe, 0x80},
{0xfc, 0x16},
{0xfc, 0x16},
{0xfc, 0x16},
{0xfc, 0x16},
{0xf1, 0x00},
{0xf2, 0x00},
{0xfe, 0x00},
{0x4f, 0x00},
{0x42, 0x00},
{0x03, 0x00},
{0x04, 0xc0},
{0x77, 0x62},
{0x78, 0x40},
{0x79, 0x4d},
{0xfe, 0x00},
{0x0d, 0x01},
{0x0e, 0xe8},
{0x0f, 0x02},
{0x10, 0x88},
{0x09, 0x00},
{0x0a, 0x00},
{0x0b, 0x00},
{0x0c, 0x00},
{0x16, 0x00},
{0x17, 0x14},
{0x18, 0x0e},
{0x19, 0x06},
{0x1b, 0x48},
{0x1f, 0xC8},
{0x20, 0x01},
{0x21, 0x78},
{0x22, 0xb0},
{0x23, 0x04}, /* 0x06 20140519 GC0328C */
{0x24, 0x11},
{0x26, 0x00},
{0x50, 0x01}, /* crop mode */
/* global gain for range */
{0x70, 0x85},
/* ///////////banding///////////// */
{0x05, 0x02}, /* hb */
{0x06, 0x2c},
{0x07, 0x00}, /* vb */
{0x08, 0xb8},
{0xfe, 0x01},
{0x29, 0x00}, /* anti-flicker step [11:8] */
{0x2a, 0x60}, /* anti-flicker step [7:0] */
{0x2b, 0x00}, /* exp level 0 14.28fps */
{0x2c, 0xa0},
{0x2d, 0x00}, /* exp level 1 12.50fps */
{0x2e, 0x00},
{0x2f, 0x00}, /* exp level 2 10.00fps */
{0x30, 0xc0},
{0x31, 0x00}, /* exp level 3 7.14fps */
{0x32, 0x40},
{0xfe, 0x00},
/* /////////////AWB////////////// */
{0xfe, 0x01},
{0x50, 0x00},
{0x4f, 0x00},
{0x4c, 0x01},
{0x4f, 0x00},
{0x4f, 0x00},
{0x4f, 0x00},
{0x4f, 0x00},
{0x4f, 0x00},
{0x4d, 0x30},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4d, 0x40},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4d, 0x50},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4d, 0x60},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4d, 0x70},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4f, 0x01},
{0x50, 0x88},
{0xfe, 0x00},
/* ////////// BLK////////////////////// */
{0xfe, 0x00},
{0x27, 0xb7},
{0x28, 0x7F},
{0x29, 0x20},
{0x33, 0x20},
{0x34, 0x20},
{0x35, 0x20},
{0x36, 0x20},
{0x32, 0x08},
{0x3b, 0x00},
{0x3c, 0x00},
{0x3d, 0x00},
{0x3e, 0x00},
{0x47, 0x00},
{0x48, 0x00},
/* ////////// block enable///////////// */
{0x40, 0x7f},
{0x41, 0x26},
{0x42, 0xfb},
{0x44, 0x02}, /* yuv */
{0x45, 0x00},
{0x46, 0x03},
{0x4f, 0x01},
{0x4b, 0x01},
{0x50, 0x01},
/* /////////////DN & EEINTP/////////// */
{0x7e, 0x0a},
{0x7f, 0x03},
{0x81, 0x15},
{0x82, 0x85},
{0x83, 0x03},
{0x84, 0xe5},
{0x90, 0xac},
{0x92, 0x02},
{0x94, 0x02},
{0x95, 0x32},
/* ///////////////YCP/////////////// */
{0xd1, 0x28},
{0xd2, 0x28},
{0xd3, 0x40},
{0xdd, 0x58},
{0xde, 0x36},
{0xe4, 0x88},
{0xe5, 0x40},
{0xd7, 0x0e},
/* //////////rgb gamma //////////// */
{0xfe, 0x00},
{0xbf, 0x0e},
{0xc0, 0x1c},
{0xc1, 0x34},
{0xc2, 0x48},
{0xc3, 0x5a},
{0xc4, 0x6e},
{0xc5, 0x80},
{0xc6, 0x9c},
{0xc7, 0xb4},
{0xc8, 0xc7},
{0xc9, 0xd7},
{0xca, 0xe3},
{0xcb, 0xed},
{0xcc, 0xf2},
{0xcd, 0xf8},
{0xce, 0xfd},
{0xcf, 0xff},
/* ///////////Y gamma////////// */
{0xfe, 0x00},
{0x63, 0x00},
{0x64, 0x05},
{0x65, 0x0b},
{0x66, 0x19},
{0x67, 0x2e},
{0x68, 0x40},
{0x69, 0x54},
{0x6a, 0x66},
{0x6b, 0x86},
{0x6c, 0xa7},
{0x6d, 0xc6},
{0x6e, 0xe4},
{0x6f, 0xff},
/* ////////////ASDE///////////// */
{0xfe, 0x01},
{0x18, 0x02},
{0xfe, 0x00},
{0x98, 0x00},
{0x9b, 0x20},
{0x9c, 0x80},
{0xa4, 0x10},
{0xa8, 0xB0},
{0xaa, 0x40},
{0xa2, 0x23},
{0xad, 0x01},
/* ////////////abs/////////// */
{0xfe, 0x01},
{0x9c, 0x02},
{0x9e, 0xc0},
{0x9f, 0x40},
/* //////////// AEC//////////// */
{0x08, 0xa0},
{0x09, 0xe8},
{0x10, 0x00},
{0x11, 0x11},
{0x12, 0x10},
{0x13, 0x98},
{0x15, 0xfc},
{0x18, 0x03},
{0x21, 0xc0},
{0x22, 0x60},
{0x23, 0x30},
{0x25, 0x00},
{0x24, 0x14},
{0x3d, 0x80},
{0x3e, 0x40},
/* //////////////AWB/////////// */
{0xfe, 0x01},
{0x51, 0x88},
{0x52, 0x12},
{0x53, 0x80},
{0x54, 0x60},
{0x55, 0x01},
{0x56, 0x02},
{0x58, 0x00},
{0x5b, 0x02},
{0x5e, 0xa4},
{0x5f, 0x8a},
{0x61, 0xdc},
{0x62, 0xdc},
{0x70, 0xfc},
{0x71, 0x10},
{0x72, 0x30},
{0x73, 0x0b},
{0x74, 0x0b},
{0x75, 0x01},
{0x76, 0x00},
{0x77, 0x40},
{0x78, 0x70},
{0x79, 0x00},
{0x7b, 0x00},
{0x7c, 0x71},
{0x7d, 0x00},
{0x80, 0x70},
{0x81, 0x58},
{0x82, 0x98},
{0x83, 0x60},
{0x84, 0x58},
{0x85, 0x50},
{0xfe, 0x00},
/* //////////////LSC//////////////// */
{0xfe, 0x01},
{0xc0, 0x10},
{0xc1, 0x0c},
{0xc2, 0x0a},
{0xc6, 0x0e},
{0xc7, 0x0b},
{0xc8, 0x0a},
{0xba, 0x26},
{0xbb, 0x1c},
{0xbc, 0x1d},
{0xb4, 0x23},
{0xb5, 0x1c},
{0xb6, 0x1a},
{0xc3, 0x00},
{0xc4, 0x00},
{0xc5, 0x00},
{0xc9, 0x00},
{0xca, 0x00},
{0xcb, 0x00},
{0xbd, 0x00},
{0xbe, 0x00},
{0xbf, 0x00},
{0xb7, 0x07},
{0xb8, 0x05},
{0xb9, 0x05},
{0xa8, 0x07},
{0xa9, 0x06},
{0xaa, 0x00},
{0xab, 0x04},
{0xac, 0x00},
{0xad, 0x02},
{0xae, 0x0d},
{0xaf, 0x05},
{0xb0, 0x00},
{0xb1, 0x07},
{0xb2, 0x03},
{0xb3, 0x00},
{0xa4, 0x00},
{0xa5, 0x00},
{0xa6, 0x00},
{0xa7, 0x00},
{0xa1, 0x3c},
{0xa2, 0x50},
{0xfe, 0x00},
/* /////////////CCT /////////// */
{0xb1, 0x12},
{0xb2, 0xf5},
{0xb3, 0xfe},
{0xb4, 0xe0},
{0xb5, 0x15},
{0xb6, 0xc8},
/* /////////skin CC for front //////// */
{0xb1, 0x00},
{0xb2, 0x00},
{0xb3, 0x05},
{0xb4, 0xf0},
{0xb5, 0x00},
{0xb6, 0x00},
/* ///////////////AWB//////////////// */
{0xfe, 0x01},
{0x50, 0x00},
{0xfe, 0x01},
{0x4f, 0x00},
{0x4c, 0x01},
{0x4f, 0x00},
{0x4f, 0x00},
{0x4f, 0x00},
{0x4d, 0x34},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x02},
{0x4e, 0x02},
{0x4d, 0x44},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4d, 0x53},
{0x4e, 0x00},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4e, 0x04},
{0x4d, 0x65},
{0x4e, 0x04},
{0x4d, 0x73},
{0x4e, 0x20},
{0x4d, 0x83},
{0x4e, 0x20},
{0x4f, 0x01},
{0x50, 0x88},
/* ///////////output////////// */
{0xfe, 0x00},
{0xf1, 0x07},
{0xf2, 0x01},
};
/*
* The white balance settings
* Here only tune the R G B channel gain.
* The white balance enalbe bit is modified in sensor_s_autowb and sensor_s_wb
*/
static struct regval_list sensor_wb_manual[] = {
{0xfe, 0x00},
};
static struct regval_list sensor_wb_auto_regs[] = {
{0xfe, 0x00},
{0x42, 0xfe}
};
static struct regval_list sensor_wb_incandescence_regs[] = {
{0xfe, 0x00},
{0x42, 0xfd},
{0x77, 0x48},
{0x78, 0x40},
{0x79, 0x5c},
};
static struct regval_list sensor_wb_fluorescent_regs[] = {
{0xfe, 0x00},
{0x42, 0xfd},
{0x77, 0x40},
{0x78, 0x42},
{0x79, 0x50},
};
static struct regval_list sensor_wb_tungsten_regs[] = {
{0xfe, 0x00},
{0x42, 0xfd},
{0x77, 0x40},
{0x78, 0x54},
{0x79, 0x70},
};
static struct regval_list sensor_wb_horizon[] = {
/* null */
};
static struct regval_list sensor_wb_daylight_regs[] = {
{0xfe, 0x00},
{0x42, 0xfd},
{0x77, 0x74},
{0x78, 0x52},
{0x79, 0x40},
};
static struct regval_list sensor_wb_flash[] = {
/* null */
};
static struct regval_list sensor_wb_cloud_regs[] = {
{0xfe, 0x00},
{0x42, 0xfd},
{0x77, 0x8c}, /* WB_manual_gain */
{0x78, 0x50},
{0x79, 0x40},
};
static struct regval_list sensor_wb_shade[] = {
/* null */
};
static struct cfg_array sensor_wb[] = {
{
/* V4L2_WHITE_BALANCE_MANUAL */
.regs = sensor_wb_manual,
.size = ARRAY_SIZE(sensor_wb_manual),
},
{
/* V4L2_WHITE_BALANCE_AUTO */
.regs = sensor_wb_auto_regs,
.size = ARRAY_SIZE(sensor_wb_auto_regs),
},
{
/* V4L2_WHITE_BALANCE_INCANDESCENT */
.regs = sensor_wb_incandescence_regs,
.size = ARRAY_SIZE(sensor_wb_incandescence_regs),
},
{
/* V4L2_WHITE_BALANCE_FLUORESCENT */
.regs = sensor_wb_fluorescent_regs,
.size = ARRAY_SIZE(sensor_wb_fluorescent_regs),
},
{
/* V4L2_WHITE_BALANCE_FLUORESCENT_H */
.regs = sensor_wb_tungsten_regs,
.size = ARRAY_SIZE(sensor_wb_tungsten_regs),
},
{
/* V4L2_WHITE_BALANCE_HORIZON */
.regs = sensor_wb_horizon,
.size = ARRAY_SIZE(sensor_wb_horizon),
},
{
/* V4L2_WHITE_BALANCE_DAYLIGHT */
.regs = sensor_wb_daylight_regs,
.size = ARRAY_SIZE(sensor_wb_daylight_regs),
},
{
/* V4L2_WHITE_BALANCE_FLASH */
.regs = sensor_wb_flash,
.size = ARRAY_SIZE(sensor_wb_flash),
},
{
/* V4L2_WHITE_BALANCE_CLOUDY */
.regs = sensor_wb_cloud_regs,
.size = ARRAY_SIZE(sensor_wb_cloud_regs),
},
{
/* V4L2_WHITE_BALANCE_SHADE */
.regs = sensor_wb_shade,
.size = ARRAY_SIZE(sensor_wb_shade),
},
};
/*
* The color effect settings
*/
static struct regval_list sensor_colorfx_none_regs[] = {
{0x43, 0x00}
};
static struct regval_list sensor_colorfx_bw_regs[] = {
{0x43, 0x02},
{0xda, 0x00},
{0xdb, 0x00}
};
static struct regval_list sensor_colorfx_sepia_regs[] = {
{0x43, 0x02},
{0xda, 0xd0},
{0xdb, 0x28}
};
static struct regval_list sensor_colorfx_negative_regs[] = {
{0x43, 0x01}
};
static struct regval_list sensor_colorfx_emboss_regs[] = {
};
static struct regval_list sensor_colorfx_sketch_regs[] = {
};
static struct regval_list sensor_colorfx_sky_blue_regs[] = {
{0x43, 0x02},
{0xda, 0x50},
{0xdb, 0xe0},
};
static struct regval_list sensor_colorfx_grass_green_regs[] = {
{0x43, 0x02},
{0xda, 0xc0},
{0xdb, 0xc0},
};
static struct regval_list sensor_colorfx_skin_whiten_regs[] = {
/* NULL */
};
static struct regval_list sensor_colorfx_vivid_regs[] = {
/* NULL */
};
static struct regval_list sensor_colorfx_aqua_regs[] = {
/* null */
};
static struct regval_list sensor_colorfx_art_freeze_regs[] = {
/* null */
};
static struct regval_list sensor_colorfx_silhouette_regs[] = {
/* null */
};
static struct regval_list sensor_colorfx_solarization_regs[] = {
/* null */
};
static struct regval_list sensor_colorfx_antique_regs[] = {
/* null */
};
static struct regval_list sensor_colorfx_set_cbcr_regs[] = {
/* null */
};
static struct cfg_array sensor_colorfx[] = {
{
/* V4L2_COLORFX_NONE = 0, */
.regs = sensor_colorfx_none_regs,
.size = ARRAY_SIZE(sensor_colorfx_none_regs),
},
{
/* V4L2_COLORFX_BW = 1, */
.regs = sensor_colorfx_bw_regs,
.size = ARRAY_SIZE(sensor_colorfx_bw_regs),
},
{
/* V4L2_COLORFX_SEPIA = 2, */
.regs = sensor_colorfx_sepia_regs,
.size = ARRAY_SIZE(sensor_colorfx_sepia_regs),
},
{
/* V4L2_COLORFX_NEGATIVE = 3, */
.regs = sensor_colorfx_negative_regs,
.size = ARRAY_SIZE(sensor_colorfx_negative_regs),
},
{
/* V4L2_COLORFX_EMBOSS = 4, */
.regs = sensor_colorfx_emboss_regs,
.size = ARRAY_SIZE(sensor_colorfx_emboss_regs),
},
{
/* V4L2_COLORFX_SKETCH = 5, */
.regs = sensor_colorfx_sketch_regs,
.size = ARRAY_SIZE(sensor_colorfx_sketch_regs),
},
{
/* V4L2_COLORFX_SKY_BLUE = 6, */
.regs = sensor_colorfx_sky_blue_regs,
.size = ARRAY_SIZE(sensor_colorfx_sky_blue_regs),
},
{
/* V4L2_COLORFX_GRASS_GREEN = 7, */
.regs = sensor_colorfx_grass_green_regs,
.size = ARRAY_SIZE(sensor_colorfx_grass_green_regs),
},
{
/* V4L2_COLORFX_SKIN_WHITEN = 8, */
.regs = sensor_colorfx_skin_whiten_regs,
.size = ARRAY_SIZE(sensor_colorfx_skin_whiten_regs),
},
{
/* V4L2_COLORFX_VIVID = 9, */
.regs = sensor_colorfx_vivid_regs,
.size = ARRAY_SIZE(sensor_colorfx_vivid_regs),
},
{
/* V4L2_COLORFX_AQUA = 10, */
.regs = sensor_colorfx_aqua_regs,
.size = ARRAY_SIZE(sensor_colorfx_aqua_regs),
},
{
/* V4L2_COLORFX_ART_FREEZE = 11, */
.regs = sensor_colorfx_art_freeze_regs,
.size = ARRAY_SIZE(sensor_colorfx_art_freeze_regs),
},
{
/* V4L2_COLORFX_SILHOUETTE = 12, */
.regs = sensor_colorfx_silhouette_regs,
.size = ARRAY_SIZE(sensor_colorfx_silhouette_regs),
},
{
/* V4L2_COLORFX_SOLARIZATION = 13, */
.regs = sensor_colorfx_solarization_regs,
.size = ARRAY_SIZE(sensor_colorfx_solarization_regs),
},
{
/* V4L2_COLORFX_ANTIQUE = 14, */
.regs = sensor_colorfx_antique_regs,
.size = ARRAY_SIZE(sensor_colorfx_antique_regs),
},
{
/* V4L2_COLORFX_SET_CBCR = 15, */
.regs = sensor_colorfx_set_cbcr_regs,
.size = ARRAY_SIZE(sensor_colorfx_set_cbcr_regs),
},
};
/*
* The brightness setttings
*/
static struct regval_list sensor_brightness_neg4_regs[] = {
/* NULL */
};
static struct regval_list sensor_brightness_neg3_regs[] = {
/* NULL */
};
static struct regval_list sensor_brightness_neg2_regs[] = {
/* NULL */
};
static struct regval_list sensor_brightness_neg1_regs[] = {
/* NULL */
};
static struct regval_list sensor_brightness_zero_regs[] = {
/* NULL */
};
static struct regval_list sensor_brightness_pos1_regs[] = {
/* NULL */
};
static struct regval_list sensor_brightness_pos2_regs[] = {
/* NULL */
};
static struct regval_list sensor_brightness_pos3_regs[] = {
/* NULL */
};
static struct regval_list sensor_brightness_pos4_regs[] = {
/* NULL */
};
static struct cfg_array sensor_brightness[] = {
{
.regs = sensor_brightness_neg4_regs,
.size = ARRAY_SIZE(sensor_brightness_neg4_regs),
},
{
.regs = sensor_brightness_neg3_regs,
.size = ARRAY_SIZE(sensor_brightness_neg3_regs),
},
{
.regs = sensor_brightness_neg2_regs,
.size = ARRAY_SIZE(sensor_brightness_neg2_regs),
},
{
.regs = sensor_brightness_neg1_regs,
.size = ARRAY_SIZE(sensor_brightness_neg1_regs),
},
{
.regs = sensor_brightness_zero_regs,
.size = ARRAY_SIZE(sensor_brightness_zero_regs),
},
{
.regs = sensor_brightness_pos1_regs,
.size = ARRAY_SIZE(sensor_brightness_pos1_regs),
},
{
.regs = sensor_brightness_pos2_regs,
.size = ARRAY_SIZE(sensor_brightness_pos2_regs),
},
{
.regs = sensor_brightness_pos3_regs,
.size = ARRAY_SIZE(sensor_brightness_pos3_regs),
},
{
.regs = sensor_brightness_pos4_regs,
.size = ARRAY_SIZE(sensor_brightness_pos4_regs),
},
};
/*
* The contrast setttings
*/
static struct regval_list sensor_contrast_neg4_regs[] = {
/* NULL */
};
static struct regval_list sensor_contrast_neg3_regs[] = {
/* NULL */
};
static struct regval_list sensor_contrast_neg2_regs[] = {
/* NULL */
};
static struct regval_list sensor_contrast_neg1_regs[] = {
/* NULL */
};
static struct regval_list sensor_contrast_zero_regs[] = {
/* NULL */
};
static struct regval_list sensor_contrast_pos1_regs[] = {
/* NULL */
};
static struct regval_list sensor_contrast_pos2_regs[] = {
/* NULL */
};
static struct regval_list sensor_contrast_pos3_regs[] = {
/* NULL */
};
static struct regval_list sensor_contrast_pos4_regs[] = {
};
static struct cfg_array sensor_contrast[] = {
{
.regs = sensor_contrast_neg4_regs,
.size = ARRAY_SIZE(sensor_contrast_neg4_regs),
},
{
.regs = sensor_contrast_neg3_regs,
.size = ARRAY_SIZE(sensor_contrast_neg3_regs),
},
{
.regs = sensor_contrast_neg2_regs,
.size = ARRAY_SIZE(sensor_contrast_neg2_regs),
},
{
.regs = sensor_contrast_neg1_regs,
.size = ARRAY_SIZE(sensor_contrast_neg1_regs),
},
{
.regs = sensor_contrast_zero_regs,
.size = ARRAY_SIZE(sensor_contrast_zero_regs),
},
{
.regs = sensor_contrast_pos1_regs,
.size = ARRAY_SIZE(sensor_contrast_pos1_regs),
},
{
.regs = sensor_contrast_pos2_regs,
.size = ARRAY_SIZE(sensor_contrast_pos2_regs),
},
{
.regs = sensor_contrast_pos3_regs,
.size = ARRAY_SIZE(sensor_contrast_pos3_regs),
},
{
.regs = sensor_contrast_pos4_regs,
.size = ARRAY_SIZE(sensor_contrast_pos4_regs),
},
};
/*
* The saturation setttings
*/
static struct regval_list sensor_saturation_neg4_regs[] = {
/* NULL */
};
static struct regval_list sensor_saturation_neg3_regs[] = {
/* NULL */
};
static struct regval_list sensor_saturation_neg2_regs[] = {
/* NULL */
};
static struct regval_list sensor_saturation_neg1_regs[] = {
/* NULL */
};
static struct regval_list sensor_saturation_zero_regs[] = {
/* NULL */
};
static struct regval_list sensor_saturation_pos1_regs[] = {
/* NULL */
};
static struct regval_list sensor_saturation_pos2_regs[] = {
/* NULL */
};
static struct regval_list sensor_saturation_pos3_regs[] = {
/* NULL */
};
static struct regval_list sensor_saturation_pos4_regs[] = {
/* NULL */
};
static struct cfg_array sensor_saturation[] = {
{
.regs = sensor_saturation_neg4_regs,
.size = ARRAY_SIZE(sensor_saturation_neg4_regs),
},
{
.regs = sensor_saturation_neg3_regs,
.size = ARRAY_SIZE(sensor_saturation_neg3_regs),
},
{
.regs = sensor_saturation_neg2_regs,
.size = ARRAY_SIZE(sensor_saturation_neg2_regs),
},
{
.regs = sensor_saturation_neg1_regs,
.size = ARRAY_SIZE(sensor_saturation_neg1_regs),
},
{
.regs = sensor_saturation_zero_regs,
.size = ARRAY_SIZE(sensor_saturation_zero_regs),
},
{
.regs = sensor_saturation_pos1_regs,
.size = ARRAY_SIZE(sensor_saturation_pos1_regs),
},
{
.regs = sensor_saturation_pos2_regs,
.size = ARRAY_SIZE(sensor_saturation_pos2_regs),
},
{
.regs = sensor_saturation_pos3_regs,
.size = ARRAY_SIZE(sensor_saturation_pos3_regs),
},
{
.regs = sensor_saturation_pos4_regs,
.size = ARRAY_SIZE(sensor_saturation_pos4_regs),
},
};
/*
* The exposure target setttings
*/
static struct regval_list sensor_ev_neg4_regs[] = {
{0xfe, 0x00},
{0xd5, 0xb8},
{0xfe, 0x01},
{0x13, 0x28},
{0xfe, 0x00}
};
static struct regval_list sensor_ev_neg3_regs[] = {
{0xfe, 0x00},
{0xd5, 0xd0},
{0xfe, 0x01},
{0x13, 0x30},
{0xfe, 0x00}
};
static struct regval_list sensor_ev_neg2_regs[] = {
{0xfe, 0x00},
{0xd5, 0xe0},
{0xfe, 0x01},
{0x13, 0x38},
{0xfe, 0x00}
};
static struct regval_list sensor_ev_neg1_regs[] = {
{0xfe, 0x00},
{0xd5, 0xf0},
{0xfe, 0x01},
{0x13, 0x40},
{0xfe, 0x00}
};
static struct regval_list sensor_ev_zero_regs[] = {
{0xfe, 0x00},
{0xd5, 0x00},
{0xfe, 0x01},
{0x13, 0x45},
{0xfe, 0x00}
};
static struct regval_list sensor_ev_pos1_regs[] = {
{0xfe, 0x00},
{0xd5, 0x10},
{0xfe, 0x01},
{0x13, 0x58},
{0xfe, 0x00}
};
static struct regval_list sensor_ev_pos2_regs[] = {
{0xfe, 0x00},
{0xd5, 0x20},
{0xfe, 0x01},
{0x13, 0x60},
{0xfe, 0x00}
};
static struct regval_list sensor_ev_pos3_regs[] = {
{0xfe, 0x00},
{0xd5, 0x30},
{0xfe, 0x01},
{0x13, 0x68},
{0xfe, 0x00}
};
static struct regval_list sensor_ev_pos4_regs[] = {
{0xfe, 0x00},
{0xd5, 0x48},
{0xfe, 0x01},
{0x13, 0x70},
{0xfe, 0x00}
};
static struct cfg_array sensor_ev[] = {
{
.regs = sensor_ev_neg4_regs,
.size = ARRAY_SIZE(sensor_ev_neg4_regs),
},
{
.regs = sensor_ev_neg3_regs,
.size = ARRAY_SIZE(sensor_ev_neg3_regs),
},
{
.regs = sensor_ev_neg2_regs,
.size = ARRAY_SIZE(sensor_ev_neg2_regs),
},
{
.regs = sensor_ev_neg1_regs,
.size = ARRAY_SIZE(sensor_ev_neg1_regs),
},
{
.regs = sensor_ev_zero_regs,
.size = ARRAY_SIZE(sensor_ev_zero_regs),
},
{
.regs = sensor_ev_pos1_regs,
.size = ARRAY_SIZE(sensor_ev_pos1_regs),
},
{
.regs = sensor_ev_pos2_regs,
.size = ARRAY_SIZE(sensor_ev_pos2_regs),
},
{
.regs = sensor_ev_pos3_regs,
.size = ARRAY_SIZE(sensor_ev_pos3_regs),
},
{
.regs = sensor_ev_pos4_regs,
.size = ARRAY_SIZE(sensor_ev_pos4_regs),
},
};
/*
* Here we'll try to encapsulate the changes for just the output
* video format.
*
*/
static struct regval_list sensor_fmt_yuv422_yuyv[] = {
{0x44, 0x02} /* YCbYCr */
};
static struct regval_list sensor_fmt_yuv422_yvyu[] = {
{0x44, 0x03} /* YCrYCb */
};
static struct regval_list sensor_fmt_yuv422_vyuy[] = {
{0x44, 0x01} /* CrYCbY */
};
static struct regval_list sensor_fmt_yuv422_uyvy[] = {
{0x44, 0x00} /* CbYCrY */
};
static struct regval_list sensor_fmt_raw[] = {
{0x44, 0x17} /* raw */
};
static int sensor_g_hflip(struct v4l2_subdev *sd, __s32 *value)
{
int ret;
struct sensor_info *info = to_state(sd);
data_type val;
ret = sensor_write(sd, 0xfe, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_g_hflip!\n");
return ret;
}
ret = sensor_read(sd, 0x17, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_g_hflip!\n");
return ret;
}
val &= (1<<0);
val = val>>0; /* 0x14 bit0 is mirror */
*value = val;
info->hflip = *value;
return 0;
}
static int sensor_s_hflip(struct v4l2_subdev *sd, int value)
{
int ret;
struct sensor_info *info = to_state(sd);
data_type val;
ret = sensor_write(sd, 0xfe, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_hflip!\n");
return ret;
}
ret = sensor_read(sd, 0x17, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_s_hflip!\n");
return ret;
}
switch (value) {
case 0:
val &= 0xfc;
break;
case 1:
val |= (0x01|(info->vflip<<1));
break;
default:
return -EINVAL;
}
ret = sensor_write(sd, 0x17, val);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_hflip!\n");
return ret;
}
usleep_range(10000, 12000);
info->hflip = value;
return 0;
}
static int sensor_g_vflip(struct v4l2_subdev *sd, __s32 *value)
{
int ret;
struct sensor_info *info = to_state(sd);
data_type val;
ret = sensor_write(sd, 0xfe, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_g_vflip!\n");
return ret;
}
ret = sensor_read(sd, 0x17, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_g_vflip!\n");
return ret;
}
val &= (1<<1);
val = val>>1; /* 0x14 bit1 is upsidedown */
*value = val;
info->vflip = *value;
return 0;
}
static int sensor_s_vflip(struct v4l2_subdev *sd, int value)
{
int ret;
struct sensor_info *info = to_state(sd);
data_type val;
ret = sensor_write(sd, 0xfe, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_vflip!\n");
return ret;
}
ret = sensor_read(sd, 0x17, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_s_vflip!\n");
return ret;
}
switch (value) {
case 0:
val &= 0xfc;
break;
case 1:
val |= (0x02|info->hflip);
break;
default:
return -EINVAL;
}
ret = sensor_write(sd, 0x17, val);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_vflip!\n");
return ret;
}
usleep_range(10000, 12000);
info->vflip = value;
return 0;
}
static int sensor_g_autogain(struct v4l2_subdev *sd, __s32 *value)
{
return -EINVAL;
}
static int sensor_s_autogain(struct v4l2_subdev *sd, int value)
{
return -EINVAL;
}
static int sensor_g_autoexp(struct v4l2_subdev *sd, __s32 *value)
{
int ret;
struct sensor_info *info = to_state(sd);
data_type val;
ret = sensor_write(sd, 0xfe, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_g_autoexp!\n");
return ret;
}
ret = sensor_read(sd, 0x4f, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_g_autoexp!\n");
return ret;
}
val &= 0x01;
if (val == 0x01)
*value = V4L2_EXPOSURE_AUTO;
else
*value = V4L2_EXPOSURE_MANUAL;
info->autoexp = *value;
return 0;
}
static int sensor_s_autoexp(struct v4l2_subdev *sd,
enum v4l2_exposure_auto_type value)
{
int ret;
struct sensor_info *info = to_state(sd);
data_type val;
ret = sensor_write(sd, 0xfe, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_autoexp!\n");
return ret;
}
ret = sensor_read(sd, 0x4f, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_s_autoexp!\n");
return ret;
}
switch (value) {
case V4L2_EXPOSURE_AUTO:
val |= 0x01;
break;
case V4L2_EXPOSURE_MANUAL:
val &= 0xfe;
break;
case V4L2_EXPOSURE_SHUTTER_PRIORITY:
return -EINVAL;
case V4L2_EXPOSURE_APERTURE_PRIORITY:
return -EINVAL;
default:
return -EINVAL;
}
ret = sensor_write(sd, 0x4f, val);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_autoexp!\n");
return ret;
}
usleep_range(10000, 12000);
info->autoexp = value;
return 0;
}
static int sensor_g_autowb(struct v4l2_subdev *sd, int *value)
{
int ret;
struct sensor_info *info = to_state(sd);
data_type val;
ret = sensor_write(sd, 0xfe, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_g_autowb!\n");
return ret;
}
ret = sensor_read(sd, 0x42, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_g_autowb!\n");
return ret;
}
val &= (1<<1);
val = val>>1; /* 0x22 bit1 is awb enable */
*value = val;
info->autowb = *value;
return 0;
}
static int sensor_s_autowb(struct v4l2_subdev *sd, int value)
{
int ret;
struct sensor_info *info = to_state(sd);
data_type val;
ret = sensor_write_array(sd, sensor_wb_auto_regs,
ARRAY_SIZE(sensor_wb_auto_regs));
if (ret < 0) {
vfe_dev_err("sensor_write_array err at sensor_s_autowb!\n");
return ret;
}
ret = sensor_write(sd, 0xfe, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_autowb!\n");
return ret;
}
ret = sensor_read(sd, 0x42, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_s_autowb!\n");
return ret;
}
switch (value) {
case 0:
val &= 0xfd;
break;
case 1:
val |= 0x02;
break;
default:
break;
}
ret = sensor_write(sd, 0x42, val);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_s_autowb!\n");
return ret;
}
usleep_range(10000, 12000);
info->autowb = value;
return 0;
}
static int sensor_g_hue(struct v4l2_subdev *sd, __s32 *value)
{
return -EINVAL;
}
static int sensor_s_hue(struct v4l2_subdev *sd, int value)
{
return -EINVAL;
}
static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value)
{
return -EINVAL;
}
static int sensor_s_gain(struct v4l2_subdev *sd, int value)
{
return -EINVAL;
}
/* ****************************end of **************************** */
static int sensor_g_brightness(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->brightness;
return 0;
}
static int sensor_s_brightness(struct v4l2_subdev *sd, int value)
{
struct sensor_info *info = to_state(sd);
if (info->brightness == value)
return 0;
if (value < 0 || value > 8)
return -ERANGE;
LOG_ERR_RET(sensor_write_array(sd, sensor_brightness[value].regs,
sensor_brightness[value].size));
info->brightness = value;
return 0;
}
static int sensor_g_contrast(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->contrast;
return 0;
}
static int sensor_s_contrast(struct v4l2_subdev *sd, int value)
{
struct sensor_info *info = to_state(sd);
if (info->contrast == value)
return 0;
if (value < 0 || value > 8)
return -ERANGE;
LOG_ERR_RET(sensor_write_array(sd, sensor_contrast[value].regs,
sensor_contrast[value].size));
info->contrast = value;
return 0;
}
static int sensor_g_saturation(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->saturation;
return 0;
}
static int sensor_s_saturation(struct v4l2_subdev *sd, int value)
{
struct sensor_info *info = to_state(sd);
if (info->saturation == value)
return 0;
if (value < 0 || value > 8)
return -ERANGE;
LOG_ERR_RET(sensor_write_array(sd, sensor_saturation[value].regs,
sensor_saturation[value].size));
info->saturation = value;
return 0;
}
static int sensor_g_exp_bias(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->exp_bias;
return 0;
}
static int sensor_s_exp_bias(struct v4l2_subdev *sd, int value)
{
struct sensor_info *info = to_state(sd);
if (info->exp_bias == value)
return 0;
if (value < 0 || value > 8)
return -ERANGE;
LOG_ERR_RET(sensor_write_array(sd, sensor_ev[value].regs,
sensor_ev[value].size));
info->exp_bias = value;
return 0;
}
static int sensor_g_wb(struct v4l2_subdev *sd, int *value)
{
struct sensor_info *info = to_state(sd);
enum v4l2_auto_n_preset_white_balance *wb_type =
(enum v4l2_auto_n_preset_white_balance *)value;
*wb_type = info->wb;
return 0;
}
static int sensor_s_wb(struct v4l2_subdev *sd,
enum v4l2_auto_n_preset_white_balance value)
{
struct sensor_info *info = to_state(sd);
if (info->capture_mode == V4L2_MODE_IMAGE)
return 0;
LOG_ERR_RET(sensor_write_array(sd, sensor_wb[value].regs,
sensor_wb[value].size));
if (value == V4L2_WHITE_BALANCE_AUTO)
info->autowb = 1;
else
info->autowb = 0;
info->wb = value;
return 0;
}
static int sensor_g_colorfx(struct v4l2_subdev *sd,
__s32 *value)
{
struct sensor_info *info = to_state(sd);
enum v4l2_colorfx *clrfx_type = (enum v4l2_colorfx *)value;
*clrfx_type = info->clrfx;
return 0;
}
static int sensor_s_colorfx(struct v4l2_subdev *sd,
enum v4l2_colorfx value)
{
struct sensor_info *info = to_state(sd);
if (info->clrfx == value)
return 0;
LOG_ERR_RET(sensor_write_array(sd, sensor_colorfx[value].regs,
sensor_colorfx[value].size));
info->clrfx = value;
return 0;
}
static int sensor_g_flash_mode(struct v4l2_subdev *sd,
__s32 *value)
{
struct sensor_info *info = to_state(sd);
enum v4l2_flash_led_mode *flash_mode =
(enum v4l2_flash_led_mode *)value;
*flash_mode = info->flash_mode;
return 0;
}
static int sensor_s_flash_mode(struct v4l2_subdev *sd,
enum v4l2_flash_led_mode value)
{
struct sensor_info *info = to_state(sd);
info->flash_mode = value;
return 0;
}
/*
* Stuff that knows about the sensor.
*/
static int sensor_power(struct v4l2_subdev *sd, int on)
{
cci_lock(sd);
switch (on) {
case CSI_SUBDEV_STBY_ON:
vfe_dev_dbg("CSI_SUBDEV_STBY_ON\n");
vfe_gpio_write(sd, PWDN, CSI_GPIO_HIGH);
usleep_range(5000, 12000);
vfe_set_mclk(sd, OFF);
break;
case CSI_SUBDEV_STBY_OFF:
vfe_dev_dbg("CSI_SUBDEV_STBY_OFF\n");
vfe_set_mclk_freq(sd, MCLK);
vfe_set_mclk(sd, ON);
usleep_range(5000, 12000);
vfe_gpio_write(sd, PWDN, CSI_GPIO_LOW);
usleep_range(5000, 12000);
break;
case CSI_SUBDEV_PWR_ON:
vfe_dev_dbg("CSI_SUBDEV_PWR_ON\n");
vfe_gpio_set_status(sd, PWDN, 1); /* set the gpio to output */
vfe_gpio_set_status(sd, RESET, 1); /* set the gpio to output */
vfe_gpio_write(sd, PWDN, CSI_GPIO_HIGH);
vfe_gpio_write(sd, RESET, CSI_GPIO_LOW);
vfe_gpio_write(sd, POWER_EN, CSI_GPIO_HIGH);
usleep_range(10000, 12000);
vfe_set_mclk_freq(sd, MCLK);
vfe_set_mclk(sd, ON);
usleep_range(10000, 12000);
vfe_set_pmu_channel(sd, IOVDD, ON);
vfe_set_pmu_channel(sd, AVDD, ON);
vfe_set_pmu_channel(sd, DVDD, ON);
vfe_set_pmu_channel(sd, AFVDD, ON);
usleep_range(10000, 12000);
vfe_gpio_write(sd, PWDN, CSI_GPIO_LOW);
usleep_range(10000, 12000);
vfe_gpio_write(sd, RESET, CSI_GPIO_HIGH);
usleep_range(10000, 12000);
break;
case CSI_SUBDEV_PWR_OFF:
vfe_dev_dbg("CSI_SUBDEV_PWR_OFF\n");
vfe_gpio_write(sd, PWDN, CSI_GPIO_HIGH);
usleep_range(10000, 12000);
vfe_gpio_write(sd, RESET, CSI_GPIO_LOW);
usleep_range(10000, 12000);
vfe_gpio_write(sd, POWER_EN, CSI_GPIO_LOW);
vfe_set_pmu_channel(sd, AFVDD, OFF);
vfe_set_pmu_channel(sd, DVDD, OFF);
vfe_set_pmu_channel(sd, AVDD, OFF);
vfe_set_pmu_channel(sd, IOVDD, OFF);
usleep_range(5000, 12000);
vfe_set_mclk(sd, OFF);
usleep_range(5000, 12000);
vfe_gpio_set_status(sd, RESET, 0); /* set the gpio to input */
vfe_gpio_set_status(sd, PWDN, 0); /* set the gpio to input */
break;
default:
return -EINVAL;
}
cci_unlock(sd);
return 0;
}
static int sensor_reset(struct v4l2_subdev *sd, u32 val)
{
switch (val) {
case 0:
vfe_gpio_write(sd, RESET, CSI_GPIO_HIGH);
usleep_range(10000, 12000);
break;
case 1:
vfe_gpio_write(sd, RESET, CSI_GPIO_LOW);
usleep_range(10000, 12000);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_detect(struct v4l2_subdev *sd)
{
int ret;
data_type val;
ret = sensor_write(sd, 0xfe, 0x00);
if (ret < 0) {
vfe_dev_err("sensor_write err at sensor_detect!\n");
return ret;
}
ret = sensor_read(sd, 0xf0, &val);
if (ret < 0) {
vfe_dev_err("sensor_read err at sensor_detect!\n");
return ret;
}
if (val != 0x9D)
return -ENODEV;
return 0;
}
static int sensor_init(struct v4l2_subdev *sd, u32 val)
{
int ret;
vfe_dev_dbg("sensor_init\n");
/*Make sure it is a target sensor*/
ret = sensor_detect(sd);
if (ret) {
vfe_dev_err("chip found is not an target chip.\n");
return ret;
}
sensor_write_array(sd, sensor_default_regs,
ARRAY_SIZE(sensor_default_regs));
msleep(500);
return 0;
}
static int sensor_g_exif(struct v4l2_subdev *sd,
struct sensor_exif_attribute *exif)
{
int ret = 0; /* gain_val, exp_val; */
unsigned int temp = 0, shutter = 0, gain = 0;
data_type val;
sensor_write(sd, 0xfe, 0x00);
/* sensor_write(sd, 0xb6, 0x02); */
/*read shutter */
sensor_read(sd, 0x03, &val);
temp |= (val << 8);
sensor_read(sd, 0x04, &val);
temp |= (val & 0xff);
shutter = temp;
sensor_read(sd, 0x71, &val);
gain = val;
exif->fnumber = 280;
exif->focal_length = 425;
exif->brightness = 125;
exif->flash_fire = 0;
exif->iso_speed = 50*((50 + CLIP(gain-0x40, 0, 0xff)*5)/50);
exif->exposure_time_num = 1;
exif->exposure_time_den = 8000/shutter;
return ret;
}
static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
int ret = 0;
/* struct sensor_info *info = to_state(sd); */
switch (cmd) {
case GET_SENSOR_EXIF:
sensor_g_exif(sd, (struct sensor_exif_attribute *)arg);
break;
default:
return -EINVAL;
}
return ret;
}
/*
* Store information about the video data format.
*/
static struct sensor_format_struct {
__u8 *desc;
/* __u32 pixelformat; */
u32 mbus_code; /* linux-4.4 */
struct regval_list *regs;
int regs_size;
int bpp; /* Bytes per pixel */
} sensor_formats[] = {
{
.desc = "YUYV 4:2:2",
.mbus_code = MEDIA_BUS_FMT_YUYV8_2X8, /* linux-4.4 */
.regs = sensor_fmt_yuv422_yuyv,
.regs_size = ARRAY_SIZE(sensor_fmt_yuv422_yuyv),
.bpp = 2,
},
{
.desc = "YVYU 4:2:2",
.mbus_code = MEDIA_BUS_FMT_YVYU8_2X8, /* linux-4.4 */
.regs = sensor_fmt_yuv422_yvyu,
.regs_size = ARRAY_SIZE(sensor_fmt_yuv422_yvyu),
.bpp = 2,
},
{
.desc = "UYVY 4:2:2",
.mbus_code = MEDIA_BUS_FMT_UYVY8_2X8, /* linux-4.4 */
.regs = sensor_fmt_yuv422_uyvy,
.regs_size = ARRAY_SIZE(sensor_fmt_yuv422_uyvy),
.bpp = 2,
},
{
.desc = "VYUY 4:2:2",
.mbus_code = MEDIA_BUS_FMT_VYUY8_2X8, /* linux-4.4 */
.regs = sensor_fmt_yuv422_vyuy,
.regs_size = ARRAY_SIZE(sensor_fmt_yuv422_vyuy),
.bpp = 2,
},
{
.desc = "Raw RGB Bayer",
.mbus_code = MEDIA_BUS_FMT_SBGGR8_1X8, /* linux-4.4 */
.regs = sensor_fmt_raw,
.regs_size = ARRAY_SIZE(sensor_fmt_raw),
.bpp = 1
},
};
#define N_FMTS ARRAY_SIZE(sensor_formats)
/*
* Then there is the issue of window sizes. Try to capture the info here.
*/
static struct sensor_win_size
sensor_win_sizes[] = {
/* VGA */
{
.width = VGA_WIDTH,
.height = VGA_HEIGHT,
.hoffset = 0,
.voffset = 0,
.regs = NULL,
.regs_size = 0,
.set_size = NULL,
},
};
#define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes))
static int sensor_enum_code(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->index >= N_FMTS)
return -EINVAL;
code->code = sensor_formats[code->index].mbus_code;
return 0;
}
static int sensor_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_size_enum *fse)
{
if (fse->index > N_WIN_SIZES-1)
return -EINVAL;
fse->min_width = sensor_win_sizes[fse->index].width;
fse->max_width = fse->min_width;
fse->min_height = sensor_win_sizes[fse->index].height;
fse->max_height = fse->min_height;
return 0;
}
static int sensor_try_fmt_internal(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt,
struct sensor_format_struct **ret_fmt,
struct sensor_win_size **ret_wsize)
{
int index;
struct sensor_win_size *wsize;
for (index = 0; index < N_FMTS; index++)
if (sensor_formats[index].mbus_code == fmt->code)
break;
if (index >= N_FMTS)
return -EINVAL;
if (ret_fmt != NULL)
*ret_fmt = sensor_formats + index;
/*
* Fields: the sensor devices claim to be progressive.
*/
fmt->field = V4L2_FIELD_NONE;
/*
* Round requested image size down to the nearest
* we support, but not below the smallest.
*/
for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++)
if (fmt->width >= wsize->width && fmt->height >= wsize->height)
break;
if (wsize >= sensor_win_sizes + N_WIN_SIZES)
wsize--; /* Take the smallest one */
if (ret_wsize != NULL)
*ret_wsize = wsize;
/*
* Note the size we'll actually handle.
*/
fmt->width = wsize->width;
fmt->height = wsize->height;
return 0;
}
static int sensor_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmat) /* linux-4.4 */
{
struct v4l2_mbus_framefmt *fmt = &fmat->format;
return sensor_try_fmt_internal(sd, fmt, NULL, NULL);
}
static int sensor_g_mbus_config(struct v4l2_subdev *sd,
struct v4l2_mbus_config *cfg)
{
cfg->type = V4L2_MBUS_PARALLEL;
cfg->flags = V4L2_MBUS_MASTER | VREF_POL | HREF_POL | CLK_POL;
return 0;
}
/*
* Set a format.
*/
static int sensor_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmat) /* linux-4.4 */
{
int ret;
struct v4l2_mbus_framefmt *fmt = &fmat->format;
struct sensor_format_struct *sensor_fmt;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_fmt\n");
ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize);
if (ret)
return ret;
sensor_write_array(sd, sensor_fmt->regs, sensor_fmt->regs_size);
ret = 0;
if (wsize->regs) {
ret = sensor_write_array(sd, wsize->regs, wsize->regs_size);
if (ret < 0)
return ret;
}
if (wsize->set_size) {
ret = wsize->set_size(sd);
if (ret < 0)
return ret;
}
info->fmt = sensor_fmt;
info->width = wsize->width;
info->height = wsize->height;
return 0;
}
/*
* Implement G/S_PARM. There is a "high quality" mode we could try
* to do someday; for now, we just do the frame rate tweak.
*/
static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
/* struct sensor_info *info = to_state(sd); */
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
memset(cp, 0, sizeof(struct v4l2_captureparm));
cp->capability = V4L2_CAP_TIMEPERFRAME;
cp->timeperframe.numerator = 1;
cp->timeperframe.denominator = SENSOR_FRAME_RATE;
return 0;
}
static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
return 0;
}
/*
* Code for dealing with controls.
* fill with different sensor module
* different sensor module has different settings here
* if not support the follow function ,retrun -EINVAL
*/
/* ******************************begin of ***************************** */
static int sensor_g_ctrl(struct v4l2_ctrl *ctrl)
{
struct sensor_info *info =
container_of(ctrl->handler, struct sensor_info, handler);
struct v4l2_subdev *sd = &info->sd;
switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:
return sensor_g_brightness(sd, &ctrl->val);
case V4L2_CID_CONTRAST:
return sensor_g_contrast(sd, &ctrl->val);
case V4L2_CID_SATURATION:
return sensor_g_saturation(sd, &ctrl->val);
case V4L2_CID_HUE:
return sensor_g_hue(sd, &ctrl->val);
case V4L2_CID_VFLIP:
return sensor_g_vflip(sd, &ctrl->val);
case V4L2_CID_HFLIP:
return sensor_g_hflip(sd, &ctrl->val);
case V4L2_CID_GAIN:
return sensor_g_gain(sd, &ctrl->val);
case V4L2_CID_AUTOGAIN:
return sensor_g_autogain(sd, &ctrl->val);
case V4L2_CID_EXPOSURE:
case V4L2_CID_AUTO_EXPOSURE_BIAS:
return sensor_g_exp_bias(sd, &ctrl->val);
case V4L2_CID_EXPOSURE_AUTO:
return sensor_g_autoexp(sd, &ctrl->val);
case V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE:
return sensor_g_wb(sd, &ctrl->val);
case V4L2_CID_AUTO_WHITE_BALANCE:
return sensor_g_autowb(sd, &ctrl->val);
case V4L2_CID_COLORFX:
return sensor_g_colorfx(sd, &ctrl->val);
case V4L2_CID_FLASH_LED_MODE:
return sensor_g_flash_mode(sd, &ctrl->val);
}
return -EINVAL;
}
static int sensor_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct sensor_info *info =
container_of(ctrl->handler, struct sensor_info, handler);
struct v4l2_subdev *sd = &info->sd;
switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:
return sensor_s_brightness(sd, ctrl->val);
case V4L2_CID_CONTRAST:
return sensor_s_contrast(sd, ctrl->val);
case V4L2_CID_SATURATION:
return sensor_s_saturation(sd, ctrl->val);
case V4L2_CID_HUE:
return sensor_s_hue(sd, ctrl->val);
case V4L2_CID_VFLIP:
return sensor_s_vflip(sd, ctrl->val);
case V4L2_CID_HFLIP:
return sensor_s_hflip(sd, ctrl->val);
case V4L2_CID_GAIN:
return sensor_s_gain(sd, ctrl->val);
case V4L2_CID_AUTOGAIN:
return sensor_s_autogain(sd, ctrl->val);
case V4L2_CID_EXPOSURE:
case V4L2_CID_AUTO_EXPOSURE_BIAS:
return sensor_s_exp_bias(sd, ctrl->val);
case V4L2_CID_EXPOSURE_AUTO:
return sensor_s_autoexp(sd,
(enum v4l2_exposure_auto_type) ctrl->val);
case V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE:
return sensor_s_wb(sd,
(enum v4l2_auto_n_preset_white_balance) ctrl->val);
case V4L2_CID_AUTO_WHITE_BALANCE:
return sensor_s_autowb(sd, ctrl->val);
case V4L2_CID_COLORFX:
return sensor_s_colorfx(sd, (enum v4l2_colorfx) ctrl->val);
case V4L2_CID_FLASH_LED_MODE:
return sensor_s_flash_mode(sd,
(enum v4l2_flash_led_mode) ctrl->val);
}
return -EINVAL;
}
/* ----------------------------------------------------------------------- */
static const struct v4l2_ctrl_ops sensor_ctrl_ops = {
.g_volatile_ctrl = sensor_g_ctrl,
.s_ctrl = sensor_s_ctrl,
};
static const struct v4l2_subdev_core_ops sensor_core_ops = {
.reset = sensor_reset,
.init = sensor_init,
.s_power = sensor_power,
.ioctl = sensor_ioctl,
};
static const struct v4l2_subdev_video_ops sensor_video_ops = {
.s_parm = sensor_s_parm,
.g_parm = sensor_g_parm,
.g_mbus_config = sensor_g_mbus_config,
};
static const struct v4l2_subdev_pad_ops sensor_pad_ops = {
.enum_mbus_code = sensor_enum_code,
.enum_frame_size = sensor_enum_frame_size,
.get_fmt = sensor_get_fmt,
.set_fmt = sensor_set_fmt,
};
static const struct v4l2_subdev_ops sensor_ops = {
.core = &sensor_core_ops,
.video = &sensor_video_ops,
.pad = &sensor_pad_ops,
};
/* ----------------------------------------------------------------------- */
static struct cci_driver cci_drv = {
.name = SENSOR_NAME,
.addr_width = CCI_BITS_8,
.data_width = CCI_BITS_8,
};
static const s64 exp_bias_qmenu[] = {
-4, -3, -2, -1, 0, 1, 2, 3, 4,
};
static int sensor_init_controls(struct v4l2_subdev *sd, const struct v4l2_ctrl_ops *ops)
{
struct sensor_info *info = to_state(sd);
struct v4l2_ctrl_handler *handler = &info->handler;
struct v4l2_ctrl *ctrl;
int ret = 0;
v4l2_ctrl_handler_init(handler, 15);
v4l2_ctrl_new_std(handler, ops, V4L2_CID_BRIGHTNESS, 0, 255, 1, 128);
v4l2_ctrl_new_std(handler, ops, V4L2_CID_CONTRAST, 0, 128, 1, 0);
v4l2_ctrl_new_std(handler, ops, V4L2_CID_SATURATION, -4, 4, 1, 1);
v4l2_ctrl_new_std(handler, ops, V4L2_CID_HUE, -180, 180, 1, 0);
v4l2_ctrl_new_std(handler, ops, V4L2_CID_VFLIP, 0, 1, 1, 0);
v4l2_ctrl_new_std(handler, ops, V4L2_CID_HFLIP, 0, 1, 1, 0);
ctrl = v4l2_ctrl_new_std(handler, ops, V4L2_CID_GAIN, 1*16, 64*16-1, 1, 1*16);
if (ctrl != NULL)
ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
v4l2_ctrl_new_std(handler, ops, V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
ctrl = v4l2_ctrl_new_std(handler, ops, V4L2_CID_EXPOSURE, 0, 65536*16, 1, 0);
if (ctrl != NULL)
ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
v4l2_ctrl_new_int_menu(handler, ops, V4L2_CID_AUTO_EXPOSURE_BIAS,
ARRAY_SIZE(exp_bias_qmenu) - 1,
ARRAY_SIZE(exp_bias_qmenu)/2, exp_bias_qmenu);
v4l2_ctrl_new_std_menu(handler, ops, V4L2_CID_EXPOSURE_AUTO,
V4L2_EXPOSURE_APERTURE_PRIORITY, 0, V4L2_EXPOSURE_AUTO);
v4l2_ctrl_new_std_menu(handler, ops, V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE,
V4L2_WHITE_BALANCE_SHADE, 0, V4L2_WHITE_BALANCE_AUTO);
v4l2_ctrl_new_std(handler, ops, V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1);
v4l2_ctrl_new_std_menu(handler, ops, V4L2_CID_COLORFX,
V4L2_COLORFX_SET_CBCR, 0, V4L2_COLORFX_NONE);
v4l2_ctrl_new_std_menu(handler, ops, V4L2_CID_FLASH_LED_MODE,
V4L2_FLASH_LED_MODE_RED_EYE, 0, V4L2_FLASH_LED_MODE_NONE);
if (handler->error) {
ret = handler->error;
v4l2_ctrl_handler_free(handler);
}
sd->ctrl_handler = handler;
return ret;
}
static int sensor_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct v4l2_subdev *sd;
struct sensor_info *info;
info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL);
if (info == NULL)
return -ENOMEM;
sd = &info->sd;
sensor_init_controls(sd, &sensor_ctrl_ops);
cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv);
info->fmt = &sensor_formats[0];
info->brightness = 0;
info->contrast = 0;
info->saturation = 0;
info->hue = 0;
info->hflip = 0;
info->vflip = 0;
info->gain = 0;
info->autogain = 1;
info->exp = 0;
info->autoexp = 0;
info->autowb = 1;
info->wb = 0;
info->clrfx = 0;
return 0;
}
static int sensor_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd;
sd = cci_dev_remove_helper(client, &cci_drv);
kfree(to_state(sd));
return 0;
}
static const struct i2c_device_id sensor_id[] = {
{ SENSOR_NAME, 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, sensor_id);
static struct i2c_driver sensor_driver = {
.driver = {
.owner = THIS_MODULE,
.name = SENSOR_NAME,
},
.probe = sensor_probe,
.remove = sensor_remove,
.id_table = sensor_id,
};
static __init int init_sensor(void)
{
return cci_dev_init_helper(&sensor_driver);
}
static __exit void exit_sensor(void)
{
cci_dev_exit_helper(&sensor_driver);
}
module_init(init_sensor);
module_exit(exit_sensor);