SmartAudio/lichee/linux-4.9/drivers/media/rc/sunxi-ir-dev.c

721 lines
18 KiB
C

/* Copyright (C) 2014 ALLWINNERTECH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/gpio.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/of_gpio.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/irq.h>
#include <linux/of_platform.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <media/rc-core.h>
#include <linux/arisc/arisc.h>
#include <linux/delay.h>
#include <linux/proc_fs.h>
#include <linux/uaccess.h>
#include "sunxi-ir-rx.h"
#include "rc-core-priv.h"
#define SUNXI_IR_DRIVER_NAME "sunxi-rc-recv"
/*compatible*/
#ifdef CONFIG_ANDROID
#define SUNXI_IR_DEVICE_NAME "sunxi-ir"
#else
#define SUNXI_IR_DEVICE_NAME "sunxi_ir_recv"
#endif
#define RC5_UNIT 889000 /* ns */
#define NEC_UNIT 562500
#define NEC_BOOT_CODE (16 * NEC_UNIT)
#define NEC 0x0
#define RC5 0x1
#define RC5ANDNEC 0x2
DEFINE_IR_RAW_EVENT(rawir);
static u32 is_receiving;
static u32 threshold_low = RC5_UNIT + RC5_UNIT/2;
static u32 threshold_high = 2*RC5_UNIT + RC5_UNIT/2;
static bool pluse_pre;
static char protocol;
static bool boot_code;
static inline u8 ir_get_data(void __iomem *reg_base)
{
return (u8)(readl(reg_base + IR_RXDAT_REG) & 0xff);
}
static inline u32 ir_get_intsta(void __iomem *reg_base)
{
return readl(reg_base + IR_RXINTS_REG);
}
static inline void ir_clr_intsta(void __iomem *reg_base, u32 bitmap)
{
u32 tmp = readl(reg_base + IR_RXINTS_REG);
tmp &= ~0xff;
tmp |= bitmap&0xff;
writel(tmp, reg_base + IR_RXINTS_REG);
}
#ifdef CONFIG_OF
/* Translate OpenFirmware node properties into platform_data */
static struct of_device_id const sunxi_ir_recv_of_match[] = {
{ .compatible = "allwinner,s_cir", },
{ .compatible = "allwinner,ir", },
{ },
};
MODULE_DEVICE_TABLE(of, sunxi_ir_recv_of_match);
#else /* !CONFIG_OF */
#endif
static void sunxi_ir_recv(u32 reg_data, struct sunxi_ir_data *ir_data)
{
bool pluse_now = 0;
u32 ir_duration = 0;
pluse_now = reg_data >> 7; /* get the polarity */
ir_duration = reg_data & 0x7f; /* get duration, number of clocks */
if (pluse_pre == pluse_now) {
/* the signal sunperposition */
rawir.duration += ir_duration;
pr_debug("raw: polar=%d; dur=%d\n", pluse_now, ir_duration);
} else {
if (is_receiving) {
rawir.duration *= IR_SIMPLE_UNIT;
pr_debug("pusle :polar=%d, dur: %u ns\n",
rawir.pulse, rawir.duration);
if (boot_code == 0) {
boot_code = 1;
if (eq_margin(rawir.duration, NEC_BOOT_CODE,
NEC_UNIT*2)) {
protocol = NEC;
ir_raw_event_store(ir_data->rcdev,
&rawir);
} else {
protocol = RC5;
ir_raw_event_store(ir_data->rcdev,
&rawir);
}
} else {
if (((rawir.duration > threshold_low) &&
(rawir.duration < threshold_high)) &&
(protocol == RC5)) {
rawir.duration = rawir.duration/2;
ir_raw_event_store(ir_data->rcdev,
&rawir);
ir_raw_event_store(ir_data->rcdev,
&rawir);
} else
ir_raw_event_store(ir_data->rcdev,
&rawir);
}
rawir.pulse = pluse_now;
rawir.duration = ir_duration;
pr_debug("raw: polar=%d; dur=%d\n",
pluse_now, ir_duration);
} else {
/* get the first pluse signal */
rawir.pulse = pluse_now;
rawir.duration = ir_duration;
is_receiving = 1;
pr_debug("get frist pulse,add head !!\n");
pr_debug("raw: polar=%d; dur=%d\n", pluse_now,
ir_duration);
}
pluse_pre = pluse_now;
}
}
static irqreturn_t sunxi_ir_recv_irq(int irq, void *dev_id)
{
struct sunxi_ir_data *ir_data = (struct sunxi_ir_data *)dev_id;
u32 intsta, dcnt;
u32 i = 0;
u32 reg_data;
pr_debug("IR RX IRQ Serve\n");
intsta = ir_get_intsta(ir_data->reg_base);
ir_clr_intsta(ir_data->reg_base, intsta);
/* get the count of signal */
dcnt = (intsta>>8) & 0x7f;
pr_debug("receive cnt :%d\n", dcnt);
/* Read FIFO and fill the raw event */
for (i = 0; i < dcnt; i++) {
/* get the data from fifo */
reg_data = ir_get_data(ir_data->reg_base);
/* Byte in FIFO format YXXXXXXX(B)
* Y:polarity(0:low level, 1:high level)
* X:Number of clocks
*/
sunxi_ir_recv(reg_data, ir_data);
}
if (intsta & IR_RXINTS_RXPE) {
/* The last pulse can not call ir_raw_event_store() since miss
* invert level in above, manu call
*/
if (rawir.duration) {
rawir.duration *= IR_SIMPLE_UNIT;
pr_debug("pusle :polar=%d, dur: %u ns\n",
rawir.pulse, rawir.duration);
ir_raw_event_store(ir_data->rcdev, &rawir);
}
pr_debug("handle raw data.\n");
/* handle ther decoder theread */
ir_raw_event_handle(ir_data->rcdev);
is_receiving = 0;
boot_code = 0;
pluse_pre = false;
}
if (intsta & IR_RXINTS_RXOF) {
/* FIFO Overflow */
pr_err("ir_rx_irq_service: Rx FIFO Overflow!!\n");
is_receiving = 0;
boot_code = 0;
pluse_pre = false;
}
return IRQ_HANDLED;
}
static void ir_mode_set(void __iomem *reg_base, enum ir_mode set_mode)
{
u32 ctrl_reg = 0;
switch (set_mode) {
case CIR_MODE_ENABLE:
ctrl_reg = readl(reg_base + IR_CTRL_REG);
ctrl_reg |= IR_CIR_MODE;
break;
case IR_MODULE_ENABLE:
ctrl_reg = readl(reg_base + IR_CTRL_REG);
ctrl_reg |= IR_ENTIRE_ENABLE;
break;
case IR_BOTH_PULSE_MODE:
ctrl_reg = readl(reg_base + IR_CTRL_REG);
ctrl_reg |= IR_BOTH_PULSE;
break;
case IR_LOW_PULSE_MODE:
ctrl_reg = readl(reg_base + IR_CTRL_REG);
ctrl_reg |= IR_LOW_PULSE;
break;
case IR_HIGH_PULSE_MODE:
ctrl_reg = readl(reg_base + IR_CTRL_REG);
ctrl_reg |= IR_HIGH_PULSE;
break;
default:
pr_err("ir_mode_set error!!\n");
return;
}
writel(ctrl_reg, reg_base + IR_CTRL_REG);
}
static void ir_sample_config(void __iomem *reg_base,
enum ir_sample_config set_sample)
{
u32 sample_reg = 0;
sample_reg = readl(reg_base + IR_SPLCFG_REG);
switch (set_sample) {
case IR_SAMPLE_REG_CLEAR:
sample_reg = 0;
break;
case IR_CLK_SAMPLE:
sample_reg |= IR_SAMPLE_DEV;
break;
case IR_FILTER_TH_NEC:
sample_reg |= IR_RXFILT_VAL;
break;
case IR_FILTER_TH_RC5:
sample_reg |= IR_RXFILT_VAL_RC5;
break;
case IR_IDLE_TH:
sample_reg |= IR_RXIDLE_VAL;
break;
case IR_ACTIVE_TH:
sample_reg |= IR_ACTIVE_T;
sample_reg |= IR_ACTIVE_T_C;
break;
case IR_ACTIVE_TH_SAMPLE:
sample_reg |= IR_ACTIVE_T_SAMPLE;
sample_reg &= ~IR_ACTIVE_T_C;
break;
default:
return;
}
writel(sample_reg, reg_base + IR_SPLCFG_REG);
}
static void ir_signal_invert(void __iomem *reg_base)
{
u32 reg_value;
reg_value = 0x1<<2;
writel(reg_value, reg_base + IR_RXCFG_REG);
}
static void ir_irq_config(void __iomem *reg_base, enum ir_irq_config set_irq)
{
u32 irq_reg = 0;
switch (set_irq) {
case IR_IRQ_STATUS_CLEAR:
writel(0xef, reg_base + IR_RXINTS_REG);
return;
case IR_IRQ_ENABLE:
irq_reg = readl(reg_base + IR_RXINTE_REG);
irq_reg |= IR_IRQ_STATUS;
break;
case IR_IRQ_FIFO_SIZE:
irq_reg = readl(reg_base + IR_RXINTE_REG);
irq_reg |= IR_FIFO_20;
break;
default:
return;
}
writel(irq_reg, reg_base + IR_RXINTE_REG);
}
static void ir_reg_cfg(void __iomem *reg_base)
{
/* Enable IR Mode */
ir_mode_set(reg_base, CIR_MODE_ENABLE);
/* Config IR Smaple Register */
ir_sample_config(reg_base, IR_SAMPLE_REG_CLEAR);
ir_sample_config(reg_base, IR_CLK_SAMPLE);
ir_sample_config(reg_base, IR_IDLE_TH); /* Set Idle Threshold */
/* rc5 Set Active Threshold */
ir_sample_config(reg_base, IR_ACTIVE_TH_SAMPLE);
ir_sample_config(reg_base, IR_FILTER_TH_NEC); /* Set Filter Threshold */
ir_signal_invert(reg_base);
/* Clear All Rx Interrupt Status */
ir_irq_config(reg_base, IR_IRQ_STATUS_CLEAR);
/* Set Rx Interrupt Enable */
ir_irq_config(reg_base, IR_IRQ_ENABLE);
/* Rx FIFO Threshold = FIFOsz/2; */
ir_irq_config(reg_base, IR_IRQ_FIFO_SIZE);
/* for NEC decode which start with high level in the header so should
* use IR_HIGH_PULSE_MODE mode, but some ICs don't support this function
* therefor use IR_BOTH_PULSE_MODE mode as default
*/
ir_mode_set(reg_base, IR_BOTH_PULSE_MODE);
/* Enable IR Module */
ir_mode_set(reg_base, IR_MODULE_ENABLE);
}
static void ir_clk_cfg(struct sunxi_ir_data *ir_data)
{
unsigned long rate = 0;
rate = clk_get_rate(ir_data->pclk);
pr_debug("%s: get ir parent rate %dHZ\n", __func__, (__u32)rate);
if (clk_set_parent(ir_data->mclk, ir_data->pclk))
pr_err("%s: set ir_clk parent failed!\n", __func__);
if (clk_set_rate(ir_data->mclk, IR_CLK))
pr_err("set ir clock freq to %d failed!\n", IR_CLK);
rate = clk_get_rate(ir_data->mclk);
pr_debug("%s: get ir_clk rate %dHZ\n", __func__, (__u32)rate);
if (clk_prepare_enable(ir_data->mclk))
pr_err("try to enable ir_clk failed!\n");
}
static void ir_clk_uncfg(struct sunxi_ir_data *ir_data)
{
if (IS_ERR(ir_data->mclk) || ir_data->mclk == NULL)
pr_err("ir_clk handle is invalid, just return!\n");
else {
clk_disable_unprepare(ir_data->mclk);
clk_put(ir_data->mclk);
ir_data->mclk = NULL;
}
if (IS_ERR(ir_data->pclk) || ir_data->pclk == NULL)
pr_err("ir_clk_source handle is invalid, just return!\n");
else {
clk_put(ir_data->pclk);
ir_data->pclk = NULL;
}
}
static int ir_select_gpio_state(struct pinctrl *pctrl, char *name)
{
int ret = 0;
struct pinctrl_state *pctrl_state = NULL;
pctrl_state = pinctrl_lookup_state(pctrl, name);
if (IS_ERR(pctrl_state)) {
pr_err("IR pinctrl_lookup_state(%s) failed! return %p \n",
name, pctrl_state);
return -1;
}
ret = pinctrl_select_state(pctrl, pctrl_state);
if (ret < 0)
pr_err("IR pinctrl_select_state(%s) failed! return %d \n",
name, ret);
return ret;
}
static int ir_request_gpio(struct sunxi_ir_data *ir_data)
{
ir_data->pctrl = devm_pinctrl_get(&ir_data->pdev->dev);
if (IS_ERR(ir_data->pctrl)) {
pr_err("IR devm_pinctrl_get() failed!\n");
return -1;
}
return ir_select_gpio_state(ir_data->pctrl, PINCTRL_STATE_DEFAULT);
}
static int ir_setup(struct sunxi_ir_data *ir_data)
{
int ret = 0;
ret = ir_request_gpio(ir_data);
if (ret < 0) {
pr_err("ir request i2c gpio failed!\n");
return -1;
}
ir_clk_cfg(ir_data);
ir_reg_cfg(ir_data->reg_base);
return 0;
}
struct sunxi_ir_data *ir_data;
#ifdef CONFIG_ANDROID
/*export node: /proc/sunxi_ir_protocol*/
static ssize_t sunxi_ir_protocol_read(struct file *file,
char __user *buf, size_t size, loff_t *ppos)
{
if (size != sizeof(unsigned int))
return -1;
if (copy_to_user((void __user *)buf, &ir_data->ir_protocols, size))
return -1;
return size;
}
static const struct file_operations sunxi_ir_proc_fops = {
.read = sunxi_ir_protocol_read,
};
static struct proc_dir_entry *ir_protocol_dir;
static bool sunxi_get_ir_protocol(void)
{
ir_protocol_dir = proc_create(
(const char *)"sunxi_ir_protocol",
(umode_t)0400, NULL, &sunxi_ir_proc_fops);
if (!ir_protocol_dir)
return true;
return false;
}
#endif
static int sunxi_ir_startup(struct platform_device *pdev,
struct sunxi_ir_data *ir_data)
{
struct device_node *np = NULL;
int i = 0, ret = 0;
char addr_name[MAX_ADDR_NUM];
const char *name = NULL;
np = pdev->dev.of_node;
ir_data->reg_base = of_iomap(np, 0);
if (ir_data->reg_base == NULL) {
pr_err("%s:Failed to ioremap() io memory region.\n", __func__);
ret = -EBUSY;
} else
pr_debug("ir base: %p !\n", ir_data->reg_base);
ir_data->irq_num = irq_of_parse_and_map(np, 0);
if (ir_data->irq_num == 0) {
pr_err("%s:Failed to map irq.\n", __func__);
ret = -EBUSY;
} else
pr_debug("ir irq num: %d !\n", ir_data->irq_num);
ir_data->pclk = of_clk_get(np, 0);
ir_data->mclk = of_clk_get(np, 1);
if (IS_ERR(ir_data->pclk) || ir_data->pclk == NULL ||
IS_ERR(ir_data->mclk) || ir_data->mclk == NULL) {
pr_err("%s:Failed to get clk.\n", __func__);
ret = -EBUSY;
}
if (of_property_read_u32(np, "ir_protocol_used",
&ir_data->ir_protocols)) {
pr_err("%s: get ir protocol failed", __func__);
ir_data->ir_protocols = 0x0;
}
#ifdef CONFIG_ANDROID
/*get iraddr,powerkey,... from sysconfig, CHECK later*/
if (ir_data->ir_protocols == NEC) {
for (i = 0; i < MAX_ADDR_NUM; i++) {
sprintf(addr_name, "ir_addr_code%d", i);
if (of_property_read_u32(np, (const char *)&addr_name,
&ir_data->ir_addr[i])) {
break;
}
}
ir_data->ir_addr_cnt = i;
for (i = 0; i < ir_data->ir_addr_cnt; i++) {
sprintf(addr_name, "ir_power_key_code%d", i);
if (of_property_read_u32(np, (const char *)&addr_name,
&ir_data->ir_powerkey[i])) {
break;
}
}
} else if (ir_data->ir_protocols == RC5) {
for (i = 0; i < MAX_ADDR_NUM; i++) {
sprintf(addr_name, "rc5_ir_addr_code%d", i);
if (of_property_read_u32(np, (const char *)&addr_name,
&ir_data->ir_addr[i])) {
break;
}
}
ir_data->ir_addr_cnt = i;
for (i = 0; i < ir_data->ir_addr_cnt; i++) {
sprintf(addr_name, "rc5_ir_power_key_code%d", i);
if (of_property_read_u32(np, (const char *)&addr_name,
&ir_data->ir_powerkey[i])) {
break;
}
}
}
#endif
if (of_property_read_u32(np, "supply_vol", &ir_data->suply_vol))
pr_err("%s: get cir supply_vol failed", __func__);
if (of_property_read_string(np, "supply", &name)) {
pr_err("%s: cir have no power supply\n", __func__);
ir_data->suply = NULL;
} else {
ir_data->suply = regulator_get(NULL, name);
if (IS_ERR(ir_data->suply)) {
pr_err("%s: cir get supply err\n", __func__);
ir_data->suply = NULL;
}
}
#ifdef CONFIG_ANDROID
if (sunxi_get_ir_protocol())
pr_err("%s: get_ir_protocol failed.\n", __func__);
#endif
return ret;
}
static int sunxi_ir_recv_probe(struct platform_device *pdev)
{
struct rc_dev *sunxi_rcdev;
int rc;
char const ir_dev_name[] = "s_cir_rx";
pr_debug("sunxi-ir probe start !\n");
ir_data = kzalloc(sizeof(*ir_data), GFP_KERNEL);
if (IS_ERR_OR_NULL(ir_data)) {
pr_err("ir_data: not enough memory for ir data\n");
return -ENOMEM;
}
if (pdev->dev.of_node)
/* get dt and sysconfig */
rc = sunxi_ir_startup(pdev, ir_data);
else {
pr_err("sunxi ir device tree err!\n");
return -EBUSY;
}
if (rc < 0)
goto err_allocate_device;
sunxi_rcdev = rc_allocate_device();
if (!sunxi_rcdev) {
rc = -ENOMEM;
pr_err("rc dev allocate fail !\n");
goto err_allocate_device;
}
sunxi_rcdev->driver_type = RC_DRIVER_IR_RAW;
sunxi_rcdev->input_name = SUNXI_IR_DEVICE_NAME;
sunxi_rcdev->input_phys = SUNXI_IR_DEVICE_NAME "/input0";
sunxi_rcdev->input_id.bustype = BUS_HOST;
sunxi_rcdev->input_id.vendor = 0x0001;
sunxi_rcdev->input_id.product = 0x0001;
sunxi_rcdev->input_id.version = 0x0100;
sunxi_rcdev->dev.parent = &pdev->dev;
sunxi_rcdev->driver_name = SUNXI_IR_DRIVER_NAME;
if (ir_data->ir_protocols == NEC)
sunxi_rcdev->allowed_protocols = (u64)RC_BIT_NEC;
if (ir_data->ir_protocols == RC5)
sunxi_rcdev->allowed_protocols = (u64)RC_BIT_RC5;
if (ir_data->ir_protocols == RC5ANDNEC)
sunxi_rcdev->allowed_protocols = (u64)RC_BIT_RC5 |
(u64)RC_BIT_NEC;
sunxi_rcdev->map_name = RC_MAP_SUNXI;
#ifdef CONFIG_SUNXI_KEYMAPPING_SUPPORT
init_sunxi_ir_map_ext(ir_data->ir_addr, ir_data->ir_addr_cnt);
#else
init_sunxi_ir_map();
#endif
rc = rc_register_device(sunxi_rcdev);
if (rc < 0) {
dev_err(&pdev->dev, "failed to register rc device\n");
goto err_register_rc_device;
}
sunxi_rcdev->enabled_protocols = sunxi_rcdev->allowed_protocols;
sunxi_rcdev->input_dev->dev.init_name = &ir_dev_name[0];
ir_data->rcdev = sunxi_rcdev;
if (ir_data->suply) {
rc = regulator_set_voltage(ir_data->suply, ir_data->suply_vol,
ir_data->suply_vol);
rc |= regulator_enable(ir_data->suply);
}
ir_data->pdev = pdev;
if (ir_setup(ir_data)) {
pr_err("%s: ir_setup failed.\n", __func__);
return -EIO;
}
platform_set_drvdata(pdev, ir_data);
if (request_irq(ir_data->irq_num, sunxi_ir_recv_irq, 0, "RemoteIR_RX",
ir_data)) {
pr_err("%s: request irq fail.\n", __func__);
rc = -EBUSY;
goto err_request_irq;
}
/* enable here */
pr_debug("ir probe end!\n");
return 0;
err_request_irq:
platform_set_drvdata(pdev, NULL);
rc_unregister_device(sunxi_rcdev);
sunxi_rcdev = NULL;
ir_clk_uncfg(ir_data);
if (ir_data->suply) {
regulator_disable(ir_data->suply);
regulator_put(ir_data->suply);
}
err_register_rc_device:
exit_sunxi_ir_map();
rc_free_device(sunxi_rcdev);
err_allocate_device:
kfree(ir_data);
return rc;
}
static int sunxi_ir_recv_remove(struct platform_device *pdev)
{
struct sunxi_ir_data *ir_data = platform_get_drvdata(pdev);
proc_remove(ir_protocol_dir);
free_irq(ir_data->irq_num, ir_data->rcdev);
ir_clk_uncfg(ir_data);
devm_pinctrl_put(ir_data->pctrl);
platform_set_drvdata(pdev, NULL);
if (ir_data->suply) {
regulator_disable(ir_data->suply);
regulator_put(ir_data->suply);
}
exit_sunxi_ir_map();
rc_unregister_device(ir_data->rcdev);
kfree(ir_data);
return 0;
}
#ifdef CONFIG_PM
static int sunxi_ir_recv_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct sunxi_ir_data *ir_data = platform_get_drvdata(pdev);
pr_debug("enter: sunxi_ir_rx_suspend.\n");
disable_irq_nosync(ir_data->irq_num);
if (NULL == ir_data->mclk || IS_ERR(ir_data->mclk)) {
pr_err("ir_clk handle is invalid, just return!\n");
return -1;
}
clk_disable_unprepare(ir_data->mclk);
ir_select_gpio_state(ir_data->pctrl, PINCTRL_STATE_SLEEP);
return 0;
}
static int sunxi_ir_recv_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct sunxi_ir_data *ir_data = platform_get_drvdata(pdev);
pr_debug("enter: sunxi_ir_rx_resume.\n");
clk_prepare_enable(ir_data->mclk);
enable_irq(ir_data->irq_num);
if (ir_setup(ir_data))
return -1;
return 0;
}
static const struct dev_pm_ops sunxi_ir_recv_pm_ops = {
.suspend = sunxi_ir_recv_suspend,
.resume = sunxi_ir_recv_resume,
};
#endif
static struct platform_driver sunxi_ir_recv_driver = {
.probe = sunxi_ir_recv_probe,
.remove = sunxi_ir_recv_remove,
.driver = {
.name = SUNXI_IR_DRIVER_NAME,
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(sunxi_ir_recv_of_match),
#ifdef CONFIG_PM
.pm = &sunxi_ir_recv_pm_ops,
#endif
},
};
module_platform_driver(sunxi_ir_recv_driver);
MODULE_DESCRIPTION("SUNXI IR Receiver driver");
MODULE_AUTHOR("QIn");
MODULE_LICENSE("GPL v2");