3728 lines
90 KiB
C
Executable File
3728 lines
90 KiB
C
Executable File
/*
|
|
* Misc utility routines for accessing chip-specific features
|
|
* of the SiliconBackplane-based Broadcom chips.
|
|
*
|
|
* Copyright (C) 1999-2017, Broadcom Corporation
|
|
*
|
|
* Unless you and Broadcom execute a separate written software license
|
|
* agreement governing use of this software, this software is licensed to you
|
|
* under the terms of the GNU General Public License version 2 (the "GPL"),
|
|
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
|
|
* following added to such license:
|
|
*
|
|
* As a special exception, the copyright holders of this software give you
|
|
* permission to link this software with independent modules, and to copy and
|
|
* distribute the resulting executable under terms of your choice, provided that
|
|
* you also meet, for each linked independent module, the terms and conditions of
|
|
* the license of that module. An independent module is a module which is not
|
|
* derived from this software. The special exception does not apply to any
|
|
* modifications of the software.
|
|
*
|
|
* Notwithstanding the above, under no circumstances may you combine this
|
|
* software in any way with any other Broadcom software provided under a license
|
|
* other than the GPL, without Broadcom's express prior written consent.
|
|
*
|
|
*
|
|
* <<Broadcom-WL-IPTag/Open:>>
|
|
*
|
|
* $Id: siutils.c 668442 2016-11-03 08:42:43Z $
|
|
*/
|
|
|
|
#include <bcm_cfg.h>
|
|
#include <typedefs.h>
|
|
#include <bcmdefs.h>
|
|
#include <osl.h>
|
|
#include <bcmutils.h>
|
|
#include <siutils.h>
|
|
#include <bcmdevs.h>
|
|
#include <hndsoc.h>
|
|
#include <sbchipc.h>
|
|
#include <sbgci.h>
|
|
#ifdef BCMPCIEDEV
|
|
#include <pciedev.h>
|
|
#endif /* BCMPCIEDEV */
|
|
#include <pcicfg.h>
|
|
#include <sbpcmcia.h>
|
|
#include <sbsysmem.h>
|
|
#include <sbsocram.h>
|
|
#ifdef BCMSDIO
|
|
#include <bcmsdh.h>
|
|
#include <sdio.h>
|
|
#include <sbsdio.h>
|
|
#include <sbhnddma.h>
|
|
#include <sbsdpcmdev.h>
|
|
#include <bcmsdpcm.h>
|
|
#endif /* BCMSDIO */
|
|
#include <hndpmu.h>
|
|
#include <dhd_config.h>
|
|
|
|
#ifdef BCM_SDRBL
|
|
#include <hndcpu.h>
|
|
#endif /* BCM_SDRBL */
|
|
#ifdef HNDGCI
|
|
#include <hndgci.h>
|
|
#endif /* HNDGCI */
|
|
#ifdef BCMULP
|
|
#include <ulp.h>
|
|
#endif /* BCMULP */
|
|
|
|
|
|
#include "siutils_priv.h"
|
|
#ifdef SECI_UART
|
|
/* Defines the set of GPIOs to be used for SECI UART if not specified in NVRAM */
|
|
#define DEFAULT_SECI_UART_PINMUX_43430 0x0102
|
|
static bool force_seci_clk = 0;
|
|
#endif /* SECI_UART */
|
|
|
|
/**
|
|
* A set of PMU registers is clocked in the ILP domain, which has an implication on register write
|
|
* behavior: if such a register is written, it takes multiple ILP clocks for the PMU block to absorb
|
|
* the write. During that time the 'SlowWritePending' bit in the PMUStatus register is set.
|
|
*/
|
|
#define PMUREGS_ILP_SENSITIVE(regoff) \
|
|
((regoff) == OFFSETOF(pmuregs_t, pmutimer) || \
|
|
(regoff) == OFFSETOF(pmuregs_t, pmuwatchdog) || \
|
|
(regoff) == OFFSETOF(pmuregs_t, res_req_timer))
|
|
|
|
#define CHIPCREGS_ILP_SENSITIVE(regoff) \
|
|
((regoff) == OFFSETOF(chipcregs_t, pmutimer) || \
|
|
(regoff) == OFFSETOF(chipcregs_t, pmuwatchdog) || \
|
|
(regoff) == OFFSETOF(chipcregs_t, res_req_timer))
|
|
|
|
#define GCI_FEM_CTRL_WAR 0x11111111
|
|
|
|
/* local prototypes */
|
|
static si_info_t *si_doattach(si_info_t *sii, uint devid, osl_t *osh, volatile void *regs,
|
|
uint bustype, void *sdh, char **vars, uint *varsz);
|
|
static bool si_buscore_prep(si_info_t *sii, uint bustype, uint devid, void *sdh);
|
|
static bool si_buscore_setup(si_info_t *sii, chipcregs_t *cc, uint bustype, uint32 savewin,
|
|
uint *origidx, volatile void *regs);
|
|
|
|
|
|
static bool si_pmu_is_ilp_sensitive(uint32 idx, uint regoff);
|
|
|
|
|
|
|
|
/* global variable to indicate reservation/release of gpio's */
|
|
static uint32 si_gpioreservation = 0;
|
|
|
|
/* global flag to prevent shared resources from being initialized multiple times in si_attach() */
|
|
static bool si_onetimeinit = FALSE;
|
|
|
|
#ifdef SR_DEBUG
|
|
static const uint32 si_power_island_test_array[] = {
|
|
0x0000, 0x0001, 0x0010, 0x0011,
|
|
0x0100, 0x0101, 0x0110, 0x0111,
|
|
0x1000, 0x1001, 0x1010, 0x1011,
|
|
0x1100, 0x1101, 0x1110, 0x1111
|
|
};
|
|
#endif /* SR_DEBUG */
|
|
|
|
int do_4360_pcie2_war = 0;
|
|
|
|
#ifdef BCMULP
|
|
/* Variable to store boot_type: warm_boot/cold_boot/etc. */
|
|
static int boot_type = 0;
|
|
#endif
|
|
|
|
/* global kernel resource */
|
|
static si_info_t ksii;
|
|
static si_cores_info_t ksii_cores_info;
|
|
|
|
static const char rstr_rmin[] = "rmin";
|
|
static const char rstr_rmax[] = "rmax";
|
|
|
|
/**
|
|
* Allocate an si handle. This function may be called multiple times.
|
|
*
|
|
* devid - pci device id (used to determine chip#)
|
|
* osh - opaque OS handle
|
|
* regs - virtual address of initial core registers
|
|
* bustype - pci/pcmcia/sb/sdio/etc
|
|
* vars - pointer to a to-be created pointer area for "environment" variables. Some callers of this
|
|
* function set 'vars' to NULL, making dereferencing of this parameter undesired.
|
|
* varsz - pointer to int to return the size of the vars
|
|
*/
|
|
si_t *
|
|
si_attach(uint devid, osl_t *osh, volatile void *regs,
|
|
uint bustype, void *sdh, char **vars, uint *varsz)
|
|
{
|
|
si_info_t *sii;
|
|
si_cores_info_t *cores_info;
|
|
/* alloc si_info_t */
|
|
if ((sii = MALLOCZ(osh, sizeof (si_info_t))) == NULL) {
|
|
SI_ERROR(("si_attach: malloc failed! malloced %d bytes\n", MALLOCED(osh)));
|
|
return (NULL);
|
|
}
|
|
|
|
/* alloc si_cores_info_t */
|
|
if ((cores_info = (si_cores_info_t *)MALLOCZ(osh, sizeof (si_cores_info_t))) == NULL) {
|
|
SI_ERROR(("si_attach: malloc failed! malloced %d bytes\n", MALLOCED(osh)));
|
|
MFREE(osh, sii, sizeof(si_info_t));
|
|
return (NULL);
|
|
}
|
|
sii->cores_info = cores_info;
|
|
|
|
if (si_doattach(sii, devid, osh, regs, bustype, sdh, vars, varsz) == NULL) {
|
|
MFREE(osh, sii, sizeof(si_info_t));
|
|
MFREE(osh, cores_info, sizeof(si_cores_info_t));
|
|
return (NULL);
|
|
}
|
|
sii->vars = vars ? *vars : NULL;
|
|
sii->varsz = varsz ? *varsz : 0;
|
|
|
|
return (si_t *)sii;
|
|
}
|
|
|
|
|
|
static uint32 wd_msticks; /**< watchdog timer ticks normalized to ms */
|
|
|
|
/** generic kernel variant of si_attach() */
|
|
si_t *
|
|
si_kattach(osl_t *osh)
|
|
{
|
|
static bool ksii_attached = FALSE;
|
|
si_cores_info_t *cores_info;
|
|
|
|
if (!ksii_attached) {
|
|
void *regs = NULL;
|
|
regs = REG_MAP(SI_ENUM_BASE, SI_CORE_SIZE);
|
|
cores_info = (si_cores_info_t *)&ksii_cores_info;
|
|
ksii.cores_info = cores_info;
|
|
|
|
ASSERT(osh);
|
|
if (si_doattach(&ksii, BCM4710_DEVICE_ID, osh, regs,
|
|
SI_BUS, NULL,
|
|
osh != SI_OSH ? &(ksii.vars) : NULL,
|
|
osh != SI_OSH ? &(ksii.varsz) : NULL) == NULL) {
|
|
SI_ERROR(("si_kattach: si_doattach failed\n"));
|
|
REG_UNMAP(regs);
|
|
return NULL;
|
|
}
|
|
REG_UNMAP(regs);
|
|
|
|
/* save ticks normalized to ms for si_watchdog_ms() */
|
|
if (PMUCTL_ENAB(&ksii.pub)) {
|
|
{
|
|
/* based on 32KHz ILP clock */
|
|
wd_msticks = 32;
|
|
}
|
|
} else {
|
|
wd_msticks = ALP_CLOCK / 1000;
|
|
}
|
|
|
|
ksii_attached = TRUE;
|
|
SI_MSG(("si_kattach done. ccrev = %d, wd_msticks = %d\n",
|
|
CCREV(ksii.pub.ccrev), wd_msticks));
|
|
}
|
|
|
|
return &ksii.pub;
|
|
}
|
|
|
|
static bool
|
|
si_buscore_prep(si_info_t *sii, uint bustype, uint devid, void *sdh)
|
|
{
|
|
BCM_REFERENCE(sdh);
|
|
BCM_REFERENCE(devid);
|
|
/* need to set memseg flag for CF card first before any sb registers access */
|
|
if (BUSTYPE(bustype) == PCMCIA_BUS)
|
|
sii->memseg = TRUE;
|
|
|
|
|
|
#if defined(BCMSDIO)
|
|
if (BUSTYPE(bustype) == SDIO_BUS) {
|
|
int err;
|
|
uint8 clkset;
|
|
|
|
/* Try forcing SDIO core to do ALPAvail request only */
|
|
clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_ALP_AVAIL_REQ;
|
|
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err);
|
|
if (!err) {
|
|
uint8 clkval;
|
|
|
|
/* If register supported, wait for ALPAvail and then force ALP */
|
|
clkval = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, NULL);
|
|
if ((clkval & ~SBSDIO_AVBITS) == clkset) {
|
|
SPINWAIT(((clkval = bcmsdh_cfg_read(sdh, SDIO_FUNC_1,
|
|
SBSDIO_FUNC1_CHIPCLKCSR, NULL)), !SBSDIO_ALPAV(clkval)),
|
|
PMU_MAX_TRANSITION_DLY);
|
|
if (!SBSDIO_ALPAV(clkval)) {
|
|
SI_ERROR(("timeout on ALPAV wait, clkval 0x%02x\n",
|
|
clkval));
|
|
return FALSE;
|
|
}
|
|
clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_FORCE_ALP;
|
|
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR,
|
|
clkset, &err);
|
|
OSL_DELAY(65);
|
|
}
|
|
}
|
|
|
|
/* Also, disable the extra SDIO pull-ups */
|
|
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SDIOPULLUP, 0, NULL);
|
|
}
|
|
|
|
#endif /* BCMSDIO && BCMDONGLEHOST */
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
uint32
|
|
si_get_pmu_reg_addr(si_t *sih, uint32 offset)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
uint32 pmuaddr = INVALID_ADDR;
|
|
uint origidx = 0;
|
|
|
|
SI_MSG(("%s: pmu access, offset: %x\n", __FUNCTION__, offset));
|
|
if (!(sii->pub.cccaps & CC_CAP_PMU)) {
|
|
goto done;
|
|
}
|
|
if (AOB_ENAB(&sii->pub)) {
|
|
uint pmucoreidx;
|
|
pmuregs_t *pmu;
|
|
SI_MSG(("%s: AOBENAB: %x\n", __FUNCTION__, offset));
|
|
origidx = sii->curidx;
|
|
pmucoreidx = si_findcoreidx(&sii->pub, PMU_CORE_ID, 0);
|
|
pmu = si_setcoreidx(&sii->pub, pmucoreidx);
|
|
pmuaddr = (uint32)(uintptr)((volatile uint8*)pmu + offset);
|
|
si_setcoreidx(sih, origidx);
|
|
} else
|
|
pmuaddr = SI_ENUM_BASE + offset;
|
|
|
|
done:
|
|
printf("%s: addrRET: %x\n", __FUNCTION__, pmuaddr);
|
|
return pmuaddr;
|
|
}
|
|
|
|
static bool
|
|
si_buscore_setup(si_info_t *sii, chipcregs_t *cc, uint bustype, uint32 savewin,
|
|
uint *origidx, volatile void *regs)
|
|
{
|
|
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
|
|
bool pci, pcie, pcie_gen2 = FALSE;
|
|
uint i;
|
|
uint pciidx, pcieidx, pcirev, pcierev;
|
|
|
|
#if defined(BCM_BACKPLANE_TIMEOUT) || defined(AXI_TIMEOUTS)
|
|
/* first, enable backplane timeouts */
|
|
si_slave_wrapper_add(&sii->pub);
|
|
#endif
|
|
sii->curidx = 0;
|
|
|
|
cc = si_setcoreidx(&sii->pub, SI_CC_IDX);
|
|
ASSERT((uintptr)cc);
|
|
|
|
/* get chipcommon rev */
|
|
sii->pub.ccrev = (int)si_corerev(&sii->pub);
|
|
|
|
/* get chipcommon chipstatus */
|
|
if (CCREV(sii->pub.ccrev) >= 11)
|
|
sii->pub.chipst = R_REG(sii->osh, &cc->chipstatus);
|
|
|
|
/* get chipcommon capabilites */
|
|
sii->pub.cccaps = R_REG(sii->osh, &cc->capabilities);
|
|
/* get chipcommon extended capabilities */
|
|
|
|
if (CCREV(sii->pub.ccrev) >= 35)
|
|
sii->pub.cccaps_ext = R_REG(sii->osh, &cc->capabilities_ext);
|
|
|
|
/* get pmu rev and caps */
|
|
if (sii->pub.cccaps & CC_CAP_PMU) {
|
|
if (AOB_ENAB(&sii->pub)) {
|
|
uint pmucoreidx;
|
|
pmuregs_t *pmu;
|
|
struct si_pub *sih = &sii->pub;
|
|
|
|
pmucoreidx = si_findcoreidx(&sii->pub, PMU_CORE_ID, 0);
|
|
if (!GOODIDX(pmucoreidx)) {
|
|
SI_ERROR(("si_buscore_setup: si_findcoreidx failed\n"));
|
|
return FALSE;
|
|
}
|
|
|
|
pmu = si_setcoreidx(&sii->pub, pmucoreidx);
|
|
sii->pub.pmucaps = R_REG(sii->osh, &pmu->pmucapabilities);
|
|
si_setcoreidx(&sii->pub, SI_CC_IDX);
|
|
|
|
sii->pub.gcirev = si_corereg(sih,
|
|
GCI_CORE_IDX(sih),
|
|
GCI_OFFSETOF(sih, gci_corecaps0), 0, 0) & GCI_CAP0_REV_MASK;
|
|
} else
|
|
sii->pub.pmucaps = R_REG(sii->osh, &cc->pmucapabilities);
|
|
|
|
sii->pub.pmurev = sii->pub.pmucaps & PCAP_REV_MASK;
|
|
}
|
|
|
|
SI_MSG(("Chipc: rev %d, caps 0x%x, chipst 0x%x pmurev %d, pmucaps 0x%x\n",
|
|
CCREV(sii->pub.ccrev), sii->pub.cccaps, sii->pub.chipst, sii->pub.pmurev,
|
|
sii->pub.pmucaps));
|
|
|
|
/* figure out bus/orignal core idx */
|
|
sii->pub.buscoretype = NODEV_CORE_ID;
|
|
sii->pub.buscorerev = (uint)NOREV;
|
|
sii->pub.buscoreidx = BADIDX;
|
|
|
|
pci = pcie = FALSE;
|
|
pcirev = pcierev = (uint)NOREV;
|
|
pciidx = pcieidx = BADIDX;
|
|
|
|
for (i = 0; i < sii->numcores; i++) {
|
|
uint cid, crev;
|
|
|
|
si_setcoreidx(&sii->pub, i);
|
|
cid = si_coreid(&sii->pub);
|
|
crev = si_corerev(&sii->pub);
|
|
|
|
/* Display cores found */
|
|
SI_VMSG(("CORE[%d]: id 0x%x rev %d base 0x%x regs 0x%p\n",
|
|
i, cid, crev, cores_info->coresba[i], cores_info->regs[i]));
|
|
|
|
if (BUSTYPE(bustype) == SI_BUS) {
|
|
/* now look at the chipstatus register to figure the pacakge */
|
|
/* for SDIO but downloaded on PCIE dev */
|
|
if (cid == PCIE2_CORE_ID) {
|
|
if (BCM43602_CHIP(sii->pub.chip) ||
|
|
(CHIPID(sii->pub.chip) == BCM4365_CHIP_ID) ||
|
|
(CHIPID(sii->pub.chip) == BCM4347_CHIP_ID) ||
|
|
(CHIPID(sii->pub.chip) == BCM4366_CHIP_ID) ||
|
|
((BCM4345_CHIP(sii->pub.chip) ||
|
|
BCM4349_CHIP(sii->pub.chip)) &&
|
|
CST4345_CHIPMODE_PCIE(sii->pub.chipst))) {
|
|
pcieidx = i;
|
|
pcierev = crev;
|
|
pcie = TRUE;
|
|
pcie_gen2 = TRUE;
|
|
}
|
|
}
|
|
|
|
} else if (BUSTYPE(bustype) == PCI_BUS) {
|
|
if (cid == PCI_CORE_ID) {
|
|
pciidx = i;
|
|
pcirev = crev;
|
|
pci = TRUE;
|
|
} else if ((cid == PCIE_CORE_ID) || (cid == PCIE2_CORE_ID)) {
|
|
pcieidx = i;
|
|
pcierev = crev;
|
|
pcie = TRUE;
|
|
if (cid == PCIE2_CORE_ID)
|
|
pcie_gen2 = TRUE;
|
|
}
|
|
} else if ((BUSTYPE(bustype) == PCMCIA_BUS) &&
|
|
(cid == PCMCIA_CORE_ID)) {
|
|
sii->pub.buscorerev = crev;
|
|
sii->pub.buscoretype = cid;
|
|
sii->pub.buscoreidx = i;
|
|
}
|
|
#ifdef BCMSDIO
|
|
else if (((BUSTYPE(bustype) == SDIO_BUS) ||
|
|
(BUSTYPE(bustype) == SPI_BUS)) &&
|
|
((cid == PCMCIA_CORE_ID) ||
|
|
(cid == SDIOD_CORE_ID))) {
|
|
sii->pub.buscorerev = crev;
|
|
sii->pub.buscoretype = cid;
|
|
sii->pub.buscoreidx = i;
|
|
}
|
|
#endif /* BCMSDIO */
|
|
|
|
/* find the core idx before entering this func. */
|
|
if ((savewin && (savewin == cores_info->coresba[i])) ||
|
|
(regs == cores_info->regs[i]))
|
|
*origidx = i;
|
|
}
|
|
|
|
|
|
#if defined(PCIE_FULL_DONGLE)
|
|
if (pcie) {
|
|
if (pcie_gen2)
|
|
sii->pub.buscoretype = PCIE2_CORE_ID;
|
|
else
|
|
sii->pub.buscoretype = PCIE_CORE_ID;
|
|
sii->pub.buscorerev = pcierev;
|
|
sii->pub.buscoreidx = pcieidx;
|
|
}
|
|
BCM_REFERENCE(pci);
|
|
BCM_REFERENCE(pcirev);
|
|
BCM_REFERENCE(pciidx);
|
|
#else
|
|
if (pci) {
|
|
sii->pub.buscoretype = PCI_CORE_ID;
|
|
sii->pub.buscorerev = pcirev;
|
|
sii->pub.buscoreidx = pciidx;
|
|
} else if (pcie) {
|
|
if (pcie_gen2)
|
|
sii->pub.buscoretype = PCIE2_CORE_ID;
|
|
else
|
|
sii->pub.buscoretype = PCIE_CORE_ID;
|
|
sii->pub.buscorerev = pcierev;
|
|
sii->pub.buscoreidx = pcieidx;
|
|
}
|
|
#endif /* defined(PCIE_FULL_DONGLE) */
|
|
|
|
SI_VMSG(("Buscore id/type/rev %d/0x%x/%d\n", sii->pub.buscoreidx, sii->pub.buscoretype,
|
|
sii->pub.buscorerev));
|
|
|
|
|
|
#if defined(BCMSDIO)
|
|
/* Make sure any on-chip ARM is off (in case strapping is wrong), or downloaded code was
|
|
* already running.
|
|
*/
|
|
if ((BUSTYPE(bustype) == SDIO_BUS) || (BUSTYPE(bustype) == SPI_BUS)) {
|
|
if (si_setcore(&sii->pub, ARM7S_CORE_ID, 0) ||
|
|
si_setcore(&sii->pub, ARMCM3_CORE_ID, 0))
|
|
si_core_disable(&sii->pub, 0);
|
|
}
|
|
#endif /* BCMSDIO && BCMDONGLEHOST */
|
|
|
|
/* return to the original core */
|
|
si_setcoreidx(&sii->pub, *origidx);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
uint16
|
|
si_chipid(si_t *sih)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
|
|
return (sii->chipnew) ? sii->chipnew : sih->chip;
|
|
}
|
|
|
|
/* CHIP_ID's being mapped here should not be used anywhere else in the code */
|
|
static void
|
|
si_chipid_fixup(si_t *sih)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
|
|
ASSERT(sii->chipnew == 0);
|
|
switch (sih->chip) {
|
|
case BCM43567_CHIP_ID:
|
|
sii->chipnew = sih->chip; /* save it */
|
|
sii->pub.chip = BCM43570_CHIP_ID; /* chip class */
|
|
break;
|
|
case BCM43562_CHIP_ID:
|
|
case BCM4358_CHIP_ID:
|
|
case BCM43566_CHIP_ID:
|
|
sii->chipnew = sih->chip; /* save it */
|
|
sii->pub.chip = BCM43569_CHIP_ID; /* chip class */
|
|
break;
|
|
case BCM4356_CHIP_ID:
|
|
case BCM4371_CHIP_ID:
|
|
sii->chipnew = sih->chip; /* save it */
|
|
sii->pub.chip = BCM4354_CHIP_ID; /* chip class */
|
|
break;
|
|
case BCM4357_CHIP_ID:
|
|
case BCM4361_CHIP_ID:
|
|
sii->chipnew = sih->chip; /* save it */
|
|
sii->pub.chip = BCM4347_CHIP_ID; /* chip class */
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifdef BCMULP
|
|
static void
|
|
si_check_boot_type(si_t *sih, osl_t *osh)
|
|
{
|
|
if (sih->pmurev >= 30) {
|
|
boot_type = PMU_REG_NEW(sih, swscratch, 0, 0);
|
|
} else {
|
|
boot_type = CHIPC_REG(sih, flashdata, 0, 0);
|
|
}
|
|
|
|
SI_ERROR(("%s: boot_type: 0x%08x\n", __func__, boot_type));
|
|
}
|
|
#endif /* BCMULP */
|
|
|
|
/**
|
|
* Allocate an si handle. This function may be called multiple times.
|
|
*
|
|
* vars - pointer to a to-be created pointer area for "environment" variables. Some callers of this
|
|
* function set 'vars' to NULL.
|
|
*/
|
|
static si_info_t *
|
|
si_doattach(si_info_t *sii, uint devid, osl_t *osh, volatile void *regs,
|
|
uint bustype, void *sdh, char **vars, uint *varsz)
|
|
{
|
|
struct si_pub *sih = &sii->pub;
|
|
uint32 w, savewin;
|
|
chipcregs_t *cc;
|
|
char *pvars = NULL;
|
|
uint origidx;
|
|
#if !defined(_CFEZ_) || defined(CFG_WL)
|
|
#endif
|
|
|
|
ASSERT(GOODREGS(regs));
|
|
|
|
savewin = 0;
|
|
|
|
sih->buscoreidx = BADIDX;
|
|
sii->device_removed = FALSE;
|
|
|
|
sii->curmap = regs;
|
|
sii->sdh = sdh;
|
|
sii->osh = osh;
|
|
sii->second_bar0win = ~0x0;
|
|
|
|
#if defined(BCM_BACKPLANE_TIMEOUT)
|
|
sih->err_info = MALLOCZ(osh, sizeof(si_axi_error_info_t));
|
|
if (sih->err_info == NULL) {
|
|
SI_ERROR(("%s: %d bytes MALLOC FAILED",
|
|
__FUNCTION__, sizeof(si_axi_error_info_t)));
|
|
return NULL;
|
|
}
|
|
#endif /* BCM_BACKPLANE_TIMEOUT */
|
|
|
|
|
|
/* check to see if we are a si core mimic'ing a pci core */
|
|
if ((bustype == PCI_BUS) &&
|
|
(OSL_PCI_READ_CONFIG(sii->osh, PCI_SPROM_CONTROL, sizeof(uint32)) == 0xffffffff)) {
|
|
SI_ERROR(("%s: incoming bus is PCI but it's a lie, switching to SI "
|
|
"devid:0x%x\n", __FUNCTION__, devid));
|
|
bustype = SI_BUS;
|
|
}
|
|
|
|
/* find Chipcommon address */
|
|
if (bustype == PCI_BUS) {
|
|
savewin = OSL_PCI_READ_CONFIG(sii->osh, PCI_BAR0_WIN, sizeof(uint32));
|
|
if (!GOODCOREADDR(savewin, SI_ENUM_BASE))
|
|
savewin = SI_ENUM_BASE;
|
|
OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, SI_ENUM_BASE);
|
|
if (!regs)
|
|
return NULL;
|
|
cc = (chipcregs_t *)regs;
|
|
#ifdef BCMSDIO
|
|
} else if ((bustype == SDIO_BUS) || (bustype == SPI_BUS)) {
|
|
cc = (chipcregs_t *)sii->curmap;
|
|
#endif
|
|
} else {
|
|
cc = (chipcregs_t *)REG_MAP(SI_ENUM_BASE, SI_CORE_SIZE);
|
|
}
|
|
|
|
sih->bustype = bustype;
|
|
#ifdef BCMBUSTYPE
|
|
if (bustype != BUSTYPE(bustype)) {
|
|
SI_ERROR(("si_doattach: bus type %d does not match configured bus type %d\n",
|
|
bustype, BUSTYPE(bustype)));
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
/* bus/core/clk setup for register access */
|
|
if (!si_buscore_prep(sii, bustype, devid, sdh)) {
|
|
SI_ERROR(("si_doattach: si_core_clk_prep failed %d\n", bustype));
|
|
return NULL;
|
|
}
|
|
|
|
/* ChipID recognition.
|
|
* We assume we can read chipid at offset 0 from the regs arg.
|
|
* If we add other chiptypes (or if we need to support old sdio hosts w/o chipcommon),
|
|
* some way of recognizing them needs to be added here.
|
|
*/
|
|
if (!cc) {
|
|
SI_ERROR(("%s: chipcommon register space is null \n", __FUNCTION__));
|
|
return NULL;
|
|
}
|
|
w = R_REG(osh, &cc->chipid);
|
|
if ((w & 0xfffff) == 148277) w -= 65532;
|
|
sih->socitype = (w & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
|
|
/* Might as wll fill in chip id rev & pkg */
|
|
sih->chip = w & CID_ID_MASK;
|
|
sih->chiprev = (w & CID_REV_MASK) >> CID_REV_SHIFT;
|
|
sih->chippkg = (w & CID_PKG_MASK) >> CID_PKG_SHIFT;
|
|
|
|
#if defined(BCMSDIO) && (defined(HW_OOB) || defined(FORCE_WOWLAN))
|
|
dhd_conf_set_hw_oob_intr(sdh, sih->chip);
|
|
#endif
|
|
|
|
si_chipid_fixup(sih);
|
|
|
|
sih->issim = IS_SIM(sih->chippkg);
|
|
|
|
/* scan for cores */
|
|
if (CHIPTYPE(sii->pub.socitype) == SOCI_SB) {
|
|
SI_MSG(("Found chip type SB (0x%08x)\n", w));
|
|
sb_scan(&sii->pub, regs, devid);
|
|
} else if ((CHIPTYPE(sii->pub.socitype) == SOCI_AI) ||
|
|
(CHIPTYPE(sii->pub.socitype) == SOCI_NAI)) {
|
|
if (CHIPTYPE(sii->pub.socitype) == SOCI_AI)
|
|
SI_MSG(("Found chip type AI (0x%08x)\n", w));
|
|
else
|
|
SI_MSG(("Found chip type NAI (0x%08x)\n", w));
|
|
/* pass chipc address instead of original core base */
|
|
|
|
sii->axi_wrapper = (axi_wrapper_t *)MALLOCZ(sii->osh,
|
|
(sizeof(axi_wrapper_t) * SI_MAX_AXI_WRAPPERS));
|
|
|
|
if (sii->axi_wrapper == NULL) {
|
|
SI_ERROR(("%s: %zu bytes MALLOC Failed", __FUNCTION__,
|
|
(sizeof(axi_wrapper_t) * SI_MAX_AXI_WRAPPERS)));
|
|
return NULL;
|
|
}
|
|
|
|
ai_scan(&sii->pub, (void *)(uintptr)cc, devid);
|
|
} else if (CHIPTYPE(sii->pub.socitype) == SOCI_UBUS) {
|
|
SI_MSG(("Found chip type UBUS (0x%08x), chip id = 0x%4x\n", w, sih->chip));
|
|
/* pass chipc address instead of original core base */
|
|
ub_scan(&sii->pub, (void *)(uintptr)cc, devid);
|
|
} else {
|
|
SI_ERROR(("Found chip of unknown type (0x%08x)\n", w));
|
|
return NULL;
|
|
}
|
|
/* no cores found, bail out */
|
|
if (sii->numcores == 0) {
|
|
SI_ERROR(("si_doattach: could not find any cores\n"));
|
|
return NULL;
|
|
}
|
|
/* bus/core/clk setup */
|
|
origidx = SI_CC_IDX;
|
|
if (!si_buscore_setup(sii, cc, bustype, savewin, &origidx, regs)) {
|
|
SI_ERROR(("si_doattach: si_buscore_setup failed\n"));
|
|
goto exit;
|
|
}
|
|
#ifdef BCMULP
|
|
si_check_boot_type(sih, osh);
|
|
|
|
if (ulp_module_init(osh, sih) != BCME_OK) {
|
|
ULP_ERR(("%s: err in ulp_module_init\n", __FUNCTION__));
|
|
goto exit;
|
|
}
|
|
#endif /* BCMULP */
|
|
|
|
#if !defined(_CFEZ_) || defined(CFG_WL)
|
|
/* assume current core is CC */
|
|
if ((CCREV(sii->pub.ccrev) == 0x25) && ((CHIPID(sih->chip) == BCM43236_CHIP_ID ||
|
|
CHIPID(sih->chip) == BCM43235_CHIP_ID ||
|
|
CHIPID(sih->chip) == BCM43234_CHIP_ID ||
|
|
CHIPID(sih->chip) == BCM43238_CHIP_ID) &&
|
|
(CHIPREV(sii->pub.chiprev) <= 2))) {
|
|
|
|
if ((cc->chipstatus & CST43236_BP_CLK) != 0) {
|
|
uint clkdiv;
|
|
clkdiv = R_REG(osh, &cc->clkdiv);
|
|
/* otp_clk_div is even number, 120/14 < 9mhz */
|
|
clkdiv = (clkdiv & ~CLKD_OTP) | (14 << CLKD_OTP_SHIFT);
|
|
W_REG(osh, &cc->clkdiv, clkdiv);
|
|
SI_ERROR(("%s: set clkdiv to %x\n", __FUNCTION__, clkdiv));
|
|
}
|
|
OSL_DELAY(10);
|
|
}
|
|
|
|
if (bustype == PCI_BUS) {
|
|
|
|
}
|
|
#endif
|
|
#ifdef BCM_SDRBL
|
|
/* 4360 rom bootloader in PCIE case, if the SDR is enabled, But preotection is
|
|
* not turned on, then we want to hold arm in reset.
|
|
* Bottomline: In sdrenable case, we allow arm to boot only when protection is
|
|
* turned on.
|
|
*/
|
|
if (CHIP_HOSTIF_PCIE(&(sii->pub))) {
|
|
uint32 sflags = si_arm_sflags(&(sii->pub));
|
|
|
|
/* If SDR is enabled but protection is not turned on
|
|
* then we want to force arm to WFI.
|
|
*/
|
|
if ((sflags & (SISF_SDRENABLE | SISF_TCMPROT)) == SISF_SDRENABLE) {
|
|
disable_arm_irq();
|
|
while (1) {
|
|
hnd_cpu_wait(sih);
|
|
}
|
|
}
|
|
}
|
|
#endif /* BCM_SDRBL */
|
|
|
|
pvars = NULL;
|
|
BCM_REFERENCE(pvars);
|
|
|
|
if (!si_onetimeinit) {
|
|
|
|
|
|
if (CCREV(sii->pub.ccrev) >= 20) {
|
|
uint32 gpiopullup = 0, gpiopulldown = 0;
|
|
cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0);
|
|
ASSERT(cc != NULL);
|
|
|
|
/* 4314/43142 has pin muxing, don't clear gpio bits */
|
|
if ((CHIPID(sih->chip) == BCM4314_CHIP_ID) ||
|
|
(CHIPID(sih->chip) == BCM43142_CHIP_ID)) {
|
|
gpiopullup |= 0x402e0;
|
|
gpiopulldown |= 0x20500;
|
|
}
|
|
|
|
|
|
W_REG(osh, &cc->gpiopullup, gpiopullup);
|
|
W_REG(osh, &cc->gpiopulldown, gpiopulldown);
|
|
si_setcoreidx(sih, origidx);
|
|
}
|
|
|
|
}
|
|
|
|
/* clear any previous epidiag-induced target abort */
|
|
ASSERT(!si_taclear(sih, FALSE));
|
|
|
|
|
|
#ifdef BOOTLOADER_CONSOLE_OUTPUT
|
|
/* Enable console prints */
|
|
si_muxenab(sii, 3);
|
|
#endif
|
|
|
|
return (sii);
|
|
|
|
exit:
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/** may be called with core in reset */
|
|
void
|
|
si_detach(si_t *sih)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
|
|
uint idx;
|
|
|
|
|
|
if (BUSTYPE(sih->bustype) == SI_BUS)
|
|
for (idx = 0; idx < SI_MAXCORES; idx++)
|
|
if (cores_info->regs[idx]) {
|
|
REG_UNMAP(cores_info->regs[idx]);
|
|
cores_info->regs[idx] = NULL;
|
|
}
|
|
|
|
|
|
#if !defined(BCMBUSTYPE) || (BCMBUSTYPE == SI_BUS)
|
|
if (cores_info != &ksii_cores_info)
|
|
#endif /* !BCMBUSTYPE || (BCMBUSTYPE == SI_BUS) */
|
|
MFREE(sii->osh, cores_info, sizeof(si_cores_info_t));
|
|
|
|
#if defined(BCM_BACKPLANE_TIMEOUT)
|
|
if (sih->err_info) {
|
|
MFREE(sii->osh, sih->err_info, sizeof(si_axi_error_info_t));
|
|
sii->pub.err_info = NULL;
|
|
}
|
|
#endif /* BCM_BACKPLANE_TIMEOUT */
|
|
|
|
if (sii->axi_wrapper) {
|
|
MFREE(sii->osh, sii->axi_wrapper,
|
|
(sizeof(axi_wrapper_t) * SI_MAX_AXI_WRAPPERS));
|
|
sii->axi_wrapper = NULL;
|
|
}
|
|
|
|
#if !defined(BCMBUSTYPE) || (BCMBUSTYPE == SI_BUS)
|
|
if (sii != &ksii)
|
|
#endif /* !BCMBUSTYPE || (BCMBUSTYPE == SI_BUS) */
|
|
MFREE(sii->osh, sii, sizeof(si_info_t));
|
|
}
|
|
|
|
void *
|
|
si_osh(si_t *sih)
|
|
{
|
|
si_info_t *sii;
|
|
|
|
sii = SI_INFO(sih);
|
|
return sii->osh;
|
|
}
|
|
|
|
void
|
|
si_setosh(si_t *sih, osl_t *osh)
|
|
{
|
|
si_info_t *sii;
|
|
|
|
sii = SI_INFO(sih);
|
|
if (sii->osh != NULL) {
|
|
SI_ERROR(("osh is already set....\n"));
|
|
ASSERT(!sii->osh);
|
|
}
|
|
sii->osh = osh;
|
|
}
|
|
|
|
/** register driver interrupt disabling and restoring callback functions */
|
|
void
|
|
si_register_intr_callback(si_t *sih, void *intrsoff_fn, void *intrsrestore_fn,
|
|
void *intrsenabled_fn, void *intr_arg)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
|
|
sii->intr_arg = intr_arg;
|
|
sii->intrsoff_fn = (si_intrsoff_t)intrsoff_fn;
|
|
sii->intrsrestore_fn = (si_intrsrestore_t)intrsrestore_fn;
|
|
sii->intrsenabled_fn = (si_intrsenabled_t)intrsenabled_fn;
|
|
/* save current core id. when this function called, the current core
|
|
* must be the core which provides driver functions(il, et, wl, etc.)
|
|
*/
|
|
sii->dev_coreid = cores_info->coreid[sii->curidx];
|
|
}
|
|
|
|
void
|
|
si_deregister_intr_callback(si_t *sih)
|
|
{
|
|
si_info_t *sii;
|
|
|
|
sii = SI_INFO(sih);
|
|
sii->intrsoff_fn = NULL;
|
|
sii->intrsrestore_fn = NULL;
|
|
sii->intrsenabled_fn = NULL;
|
|
}
|
|
|
|
uint
|
|
si_intflag(si_t *sih)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
|
|
if (CHIPTYPE(sih->socitype) == SOCI_SB)
|
|
return sb_intflag(sih);
|
|
else if ((CHIPTYPE(sih->socitype) == SOCI_AI) || (CHIPTYPE(sih->socitype) == SOCI_NAI))
|
|
return R_REG(sii->osh, ((uint32 *)(uintptr)
|
|
(sii->oob_router + OOB_STATUSA)));
|
|
else {
|
|
ASSERT(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
uint
|
|
si_flag(si_t *sih)
|
|
{
|
|
if (CHIPTYPE(sih->socitype) == SOCI_SB)
|
|
return sb_flag(sih);
|
|
else if ((CHIPTYPE(sih->socitype) == SOCI_AI) || (CHIPTYPE(sih->socitype) == SOCI_NAI))
|
|
return ai_flag(sih);
|
|
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
|
|
return ub_flag(sih);
|
|
else {
|
|
ASSERT(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
uint
|
|
si_flag_alt(si_t *sih)
|
|
{
|
|
if ((CHIPTYPE(sih->socitype) == SOCI_AI) || (CHIPTYPE(sih->socitype) == SOCI_NAI))
|
|
return ai_flag_alt(sih);
|
|
else {
|
|
ASSERT(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
si_setint(si_t *sih, int siflag)
|
|
{
|
|
if (CHIPTYPE(sih->socitype) == SOCI_SB)
|
|
sb_setint(sih, siflag);
|
|
else if ((CHIPTYPE(sih->socitype) == SOCI_AI) || (CHIPTYPE(sih->socitype) == SOCI_NAI))
|
|
ai_setint(sih, siflag);
|
|
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
|
|
ub_setint(sih, siflag);
|
|
else
|
|
ASSERT(0);
|
|
}
|
|
|
|
uint
|
|
si_coreid(si_t *sih)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
|
|
|
|
return cores_info->coreid[sii->curidx];
|
|
}
|
|
|
|
uint
|
|
si_coreidx(si_t *sih)
|
|
{
|
|
si_info_t *sii;
|
|
|
|
sii = SI_INFO(sih);
|
|
return sii->curidx;
|
|
}
|
|
|
|
volatile void *
|
|
si_d11_switch_addrbase(si_t *sih, uint coreunit)
|
|
{
|
|
return si_setcore(sih, D11_CORE_ID, coreunit);
|
|
}
|
|
|
|
/** return the core-type instantiation # of the current core */
|
|
uint
|
|
si_coreunit(si_t *sih)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
|
|
uint idx;
|
|
uint coreid;
|
|
uint coreunit;
|
|
uint i;
|
|
|
|
coreunit = 0;
|
|
|
|
idx = sii->curidx;
|
|
|
|
ASSERT(GOODREGS(sii->curmap));
|
|
coreid = si_coreid(sih);
|
|
|
|
/* count the cores of our type */
|
|
for (i = 0; i < idx; i++)
|
|
if (cores_info->coreid[i] == coreid)
|
|
coreunit++;
|
|
|
|
return (coreunit);
|
|
}
|
|
|
|
uint
|
|
si_corevendor(si_t *sih)
|
|
{
|
|
if (CHIPTYPE(sih->socitype) == SOCI_SB)
|
|
return sb_corevendor(sih);
|
|
else if ((CHIPTYPE(sih->socitype) == SOCI_AI) || (CHIPTYPE(sih->socitype) == SOCI_NAI))
|
|
return ai_corevendor(sih);
|
|
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
|
|
return ub_corevendor(sih);
|
|
else {
|
|
ASSERT(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
bool
|
|
si_backplane64(si_t *sih)
|
|
{
|
|
return ((sih->cccaps & CC_CAP_BKPLN64) != 0);
|
|
}
|
|
|
|
uint
|
|
si_corerev(si_t *sih)
|
|
{
|
|
if (CHIPTYPE(sih->socitype) == SOCI_SB)
|
|
return sb_corerev(sih);
|
|
else if ((CHIPTYPE(sih->socitype) == SOCI_AI) || (CHIPTYPE(sih->socitype) == SOCI_NAI))
|
|
return ai_corerev(sih);
|
|
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
|
|
return ub_corerev(sih);
|
|
else {
|
|
ASSERT(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* return index of coreid or BADIDX if not found */
|
|
uint
|
|
si_findcoreidx(si_t *sih, uint coreid, uint coreunit)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
|
|
uint found;
|
|
uint i;
|
|
|
|
|
|
found = 0;
|
|
|
|
for (i = 0; i < sii->numcores; i++)
|
|
if (cores_info->coreid[i] == coreid) {
|
|
if (found == coreunit)
|
|
return (i);
|
|
found++;
|
|
}
|
|
|
|
return (BADIDX);
|
|
}
|
|
|
|
/** return total coreunit of coreid or zero if not found */
|
|
uint
|
|
si_numcoreunits(si_t *sih, uint coreid)
|
|
{
|
|
if ((CHIPID(sih->chip) == BCM4347_CHIP_ID) &&
|
|
(CHIPREV(sih->chiprev) == 0)) {
|
|
/*
|
|
* 4347TC2 does not have Aux core.
|
|
* fixed to 1 here because EROM (using 4349 EROM) has two entries
|
|
*/
|
|
return 1;
|
|
} else {
|
|
si_info_t *sii = SI_INFO(sih);
|
|
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
|
|
uint found = 0;
|
|
uint i;
|
|
|
|
for (i = 0; i < sii->numcores; i++) {
|
|
if (cores_info->coreid[i] == coreid) {
|
|
found++;
|
|
}
|
|
}
|
|
|
|
return found;
|
|
}
|
|
}
|
|
|
|
/** return total D11 coreunits */
|
|
uint
|
|
BCMRAMFN(si_numd11coreunits)(si_t *sih)
|
|
{
|
|
uint found = 0;
|
|
|
|
found = si_numcoreunits(sih, D11_CORE_ID);
|
|
|
|
#if defined(WLRSDB) && defined(WLRSDB_DISABLED)
|
|
/* If RSDB functionality is compiled out,
|
|
* then ignore any D11 cores beyond the first
|
|
* Used in norsdb dongle build variants for rsdb chip.
|
|
*/
|
|
found = 1;
|
|
#endif /* defined(WLRSDB) && !defined(WLRSDB_DISABLED) */
|
|
|
|
return found;
|
|
}
|
|
|
|
/** return list of found cores */
|
|
uint
|
|
si_corelist(si_t *sih, uint coreid[])
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
|
|
|
|
bcopy((uchar*)cores_info->coreid, (uchar*)coreid, (sii->numcores * sizeof(uint)));
|
|
return (sii->numcores);
|
|
}
|
|
|
|
/** return current wrapper mapping */
|
|
void *
|
|
si_wrapperregs(si_t *sih)
|
|
{
|
|
si_info_t *sii;
|
|
|
|
sii = SI_INFO(sih);
|
|
ASSERT(GOODREGS(sii->curwrap));
|
|
|
|
return (sii->curwrap);
|
|
}
|
|
|
|
/** return current register mapping */
|
|
volatile void *
|
|
si_coreregs(si_t *sih)
|
|
{
|
|
si_info_t *sii;
|
|
|
|
sii = SI_INFO(sih);
|
|
ASSERT(GOODREGS(sii->curmap));
|
|
|
|
return (sii->curmap);
|
|
}
|
|
|
|
|
|
/**
|
|
* This function changes logical "focus" to the indicated core;
|
|
* must be called with interrupts off.
|
|
* Moreover, callers should keep interrupts off during switching out of and back to d11 core
|
|
*/
|
|
volatile void *
|
|
si_setcore(si_t *sih, uint coreid, uint coreunit)
|
|
{
|
|
uint idx;
|
|
|
|
idx = si_findcoreidx(sih, coreid, coreunit);
|
|
if (!GOODIDX(idx))
|
|
return (NULL);
|
|
|
|
if (CHIPTYPE(sih->socitype) == SOCI_SB)
|
|
return sb_setcoreidx(sih, idx);
|
|
else if ((CHIPTYPE(sih->socitype) == SOCI_AI) || (CHIPTYPE(sih->socitype) == SOCI_NAI))
|
|
return ai_setcoreidx(sih, idx);
|
|
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
|
|
return ub_setcoreidx(sih, idx);
|
|
else {
|
|
ASSERT(0);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
volatile void *
|
|
si_setcoreidx(si_t *sih, uint coreidx)
|
|
{
|
|
if (CHIPTYPE(sih->socitype) == SOCI_SB)
|
|
return sb_setcoreidx(sih, coreidx);
|
|
else if ((CHIPTYPE(sih->socitype) == SOCI_AI) || (CHIPTYPE(sih->socitype) == SOCI_NAI))
|
|
return ai_setcoreidx(sih, coreidx);
|
|
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
|
|
return ub_setcoreidx(sih, coreidx);
|
|
else {
|
|
ASSERT(0);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/** Turn off interrupt as required by sb_setcore, before switch core */
|
|
volatile void *
|
|
si_switch_core(si_t *sih, uint coreid, uint *origidx, uint *intr_val)
|
|
{
|
|
volatile void *cc;
|
|
si_info_t *sii = SI_INFO(sih);
|
|
|
|
if (SI_FAST(sii)) {
|
|
/* Overloading the origidx variable to remember the coreid,
|
|
* this works because the core ids cannot be confused with
|
|
* core indices.
|
|
*/
|
|
*origidx = coreid;
|
|
if (coreid == CC_CORE_ID)
|
|
return (volatile void *)CCREGS_FAST(sii);
|
|
else if (coreid == BUSCORETYPE(sih->buscoretype))
|
|
return (volatile void *)PCIEREGS(sii);
|
|
}
|
|
INTR_OFF(sii, *intr_val);
|
|
*origidx = sii->curidx;
|
|
cc = si_setcore(sih, coreid, 0);
|
|
ASSERT(cc != NULL);
|
|
|
|
return cc;
|
|
}
|
|
|
|
/* restore coreidx and restore interrupt */
|
|
void
|
|
si_restore_core(si_t *sih, uint coreid, uint intr_val)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
|
|
if (SI_FAST(sii) && ((coreid == CC_CORE_ID) || (coreid == BUSCORETYPE(sih->buscoretype))))
|
|
return;
|
|
|
|
si_setcoreidx(sih, coreid);
|
|
INTR_RESTORE(sii, intr_val);
|
|
}
|
|
|
|
int
|
|
si_numaddrspaces(si_t *sih)
|
|
{
|
|
if (CHIPTYPE(sih->socitype) == SOCI_SB)
|
|
return sb_numaddrspaces(sih);
|
|
else if ((CHIPTYPE(sih->socitype) == SOCI_AI) || (CHIPTYPE(sih->socitype) == SOCI_NAI))
|
|
return ai_numaddrspaces(sih);
|
|
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
|
|
return ub_numaddrspaces(sih);
|
|
else {
|
|
ASSERT(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
uint32
|
|
si_addrspace(si_t *sih, uint asidx)
|
|
{
|
|
if (CHIPTYPE(sih->socitype) == SOCI_SB)
|
|
return sb_addrspace(sih, asidx);
|
|
else if ((CHIPTYPE(sih->socitype) == SOCI_AI) || (CHIPTYPE(sih->socitype) == SOCI_NAI))
|
|
return ai_addrspace(sih, asidx);
|
|
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
|
|
return ub_addrspace(sih, asidx);
|
|
else {
|
|
ASSERT(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
uint32
|
|
si_addrspacesize(si_t *sih, uint asidx)
|
|
{
|
|
if (CHIPTYPE(sih->socitype) == SOCI_SB)
|
|
return sb_addrspacesize(sih, asidx);
|
|
else if ((CHIPTYPE(sih->socitype) == SOCI_AI) || (CHIPTYPE(sih->socitype) == SOCI_NAI))
|
|
return ai_addrspacesize(sih, asidx);
|
|
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
|
|
return ub_addrspacesize(sih, asidx);
|
|
else {
|
|
ASSERT(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
si_coreaddrspaceX(si_t *sih, uint asidx, uint32 *addr, uint32 *size)
|
|
{
|
|
/* Only supported for SOCI_AI */
|
|
if ((CHIPTYPE(sih->socitype) == SOCI_AI) || (CHIPTYPE(sih->socitype) == SOCI_NAI))
|
|
ai_coreaddrspaceX(sih, asidx, addr, size);
|
|
else
|
|
*size = 0;
|
|
}
|
|
|
|
uint32
|
|
si_core_cflags(si_t *sih, uint32 mask, uint32 val)
|
|
{
|
|
if (CHIPTYPE(sih->socitype) == SOCI_SB)
|
|
return sb_core_cflags(sih, mask, val);
|
|
else if ((CHIPTYPE(sih->socitype) == SOCI_AI) || (CHIPTYPE(sih->socitype) == SOCI_NAI))
|
|
return ai_core_cflags(sih, mask, val);
|
|
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
|
|
return ub_core_cflags(sih, mask, val);
|
|
else {
|
|
ASSERT(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
si_core_cflags_wo(si_t *sih, uint32 mask, uint32 val)
|
|
{
|
|
if (CHIPTYPE(sih->socitype) == SOCI_SB)
|
|
sb_core_cflags_wo(sih, mask, val);
|
|
else if ((CHIPTYPE(sih->socitype) == SOCI_AI) || (CHIPTYPE(sih->socitype) == SOCI_NAI))
|
|
ai_core_cflags_wo(sih, mask, val);
|
|
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
|
|
ub_core_cflags_wo(sih, mask, val);
|
|
else
|
|
ASSERT(0);
|
|
}
|
|
|
|
uint32
|
|
si_core_sflags(si_t *sih, uint32 mask, uint32 val)
|
|
{
|
|
if (CHIPTYPE(sih->socitype) == SOCI_SB)
|
|
return sb_core_sflags(sih, mask, val);
|
|
else if ((CHIPTYPE(sih->socitype) == SOCI_AI) || (CHIPTYPE(sih->socitype) == SOCI_NAI))
|
|
return ai_core_sflags(sih, mask, val);
|
|
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
|
|
return ub_core_sflags(sih, mask, val);
|
|
else {
|
|
ASSERT(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
si_commit(si_t *sih)
|
|
{
|
|
if (CHIPTYPE(sih->socitype) == SOCI_SB)
|
|
sb_commit(sih);
|
|
else if (CHIPTYPE(sih->socitype) == SOCI_AI || CHIPTYPE(sih->socitype) == SOCI_NAI)
|
|
;
|
|
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
|
|
;
|
|
else {
|
|
ASSERT(0);
|
|
}
|
|
}
|
|
|
|
bool
|
|
si_iscoreup(si_t *sih)
|
|
{
|
|
if (CHIPTYPE(sih->socitype) == SOCI_SB)
|
|
return sb_iscoreup(sih);
|
|
else if ((CHIPTYPE(sih->socitype) == SOCI_AI) || (CHIPTYPE(sih->socitype) == SOCI_NAI))
|
|
return ai_iscoreup(sih);
|
|
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
|
|
return ub_iscoreup(sih);
|
|
else {
|
|
ASSERT(0);
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
uint
|
|
si_wrapperreg(si_t *sih, uint32 offset, uint32 mask, uint32 val)
|
|
{
|
|
/* only for AI back plane chips */
|
|
if ((CHIPTYPE(sih->socitype) == SOCI_AI) || (CHIPTYPE(sih->socitype) == SOCI_NAI))
|
|
return (ai_wrap_reg(sih, offset, mask, val));
|
|
return 0;
|
|
}
|
|
/* si_backplane_access is used to read full backplane address from host for PCIE FD
|
|
* it uses secondary bar-0 window which lies at an offset of 16K from primary bar-0
|
|
* Provides support for read/write of 1/2/4 bytes of backplane address
|
|
* Can be used to read/write
|
|
* 1. core regs
|
|
* 2. Wrapper regs
|
|
* 3. memory
|
|
* 4. BT area
|
|
* For accessing any 32 bit backplane address, [31 : 12] of backplane should be given in "region"
|
|
* [11 : 0] should be the "regoff"
|
|
* for reading 4 bytes from reg 0x200 of d11 core use it like below
|
|
* : si_backplane_access(sih, 0x18001000, 0x200, 4, 0, TRUE)
|
|
*/
|
|
static int si_backplane_addr_sane(uint addr, uint size)
|
|
{
|
|
int bcmerror = BCME_OK;
|
|
|
|
/* For 2 byte access, address has to be 2 byte aligned */
|
|
if (size == 2) {
|
|
if (addr & 0x1) {
|
|
bcmerror = BCME_ERROR;
|
|
}
|
|
}
|
|
/* For 4 byte access, address has to be 4 byte aligned */
|
|
if (size == 4) {
|
|
if (addr & 0x3) {
|
|
bcmerror = BCME_ERROR;
|
|
}
|
|
}
|
|
return bcmerror;
|
|
}
|
|
|
|
void
|
|
si_invalidate_second_bar0win(si_t *sih)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
sii->second_bar0win = ~0x0;
|
|
}
|
|
|
|
uint
|
|
si_backplane_access(si_t *sih, uint addr, uint size, uint *val, bool read)
|
|
{
|
|
volatile uint32 *r = NULL;
|
|
uint32 region = 0;
|
|
si_info_t *sii = SI_INFO(sih);
|
|
|
|
/* Valid only for pcie bus */
|
|
if (BUSTYPE(sih->bustype) != PCI_BUS) {
|
|
SI_ERROR(("Valid only for pcie bus \n"));
|
|
return BCME_ERROR;
|
|
}
|
|
|
|
/* Split adrr into region and address offset */
|
|
region = (addr & (0xFFFFF << 12));
|
|
addr = addr & 0xFFF;
|
|
|
|
/* check for address and size sanity */
|
|
if (si_backplane_addr_sane(addr, size) != BCME_OK)
|
|
return BCME_ERROR;
|
|
|
|
/* Update window if required */
|
|
if (sii->second_bar0win != region) {
|
|
OSL_PCI_WRITE_CONFIG(sii->osh, PCIE2_BAR0_CORE2_WIN, 4, region);
|
|
sii->second_bar0win = region;
|
|
}
|
|
|
|
/* Estimate effective address
|
|
* sii->curmap : bar-0 virtual address
|
|
* PCI_SECOND_BAR0_OFFSET : secondar bar-0 offset
|
|
* regoff : actual reg offset
|
|
*/
|
|
r = (volatile uint32 *)((volatile char *)sii->curmap + PCI_SECOND_BAR0_OFFSET + addr);
|
|
|
|
SI_VMSG(("si curmap %p region %x regaddr %x effective addr %p READ %d\n",
|
|
(volatile char*)sii->curmap, region, addr, r, read));
|
|
|
|
switch (size) {
|
|
case sizeof(uint8) :
|
|
if (read)
|
|
*val = R_REG(sii->osh, (volatile uint8*)r);
|
|
else
|
|
W_REG(sii->osh, (volatile uint8*)r, *val);
|
|
break;
|
|
case sizeof(uint16) :
|
|
if (read)
|
|
*val = R_REG(sii->osh, (volatile uint16*)r);
|
|
else
|
|
W_REG(sii->osh, (volatile uint16*)r, *val);
|
|
break;
|
|
case sizeof(uint32) :
|
|
if (read)
|
|
*val = R_REG(sii->osh, (volatile uint32*)r);
|
|
else
|
|
W_REG(sii->osh, (volatile uint32*)r, *val);
|
|
break;
|
|
default :
|
|
SI_ERROR(("Invalid size %d \n", size));
|
|
return (BCME_ERROR);
|
|
break;
|
|
}
|
|
|
|
return (BCME_OK);
|
|
}
|
|
uint
|
|
si_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val)
|
|
{
|
|
if (CHIPTYPE(sih->socitype) == SOCI_SB)
|
|
return sb_corereg(sih, coreidx, regoff, mask, val);
|
|
else if ((CHIPTYPE(sih->socitype) == SOCI_AI) || (CHIPTYPE(sih->socitype) == SOCI_NAI))
|
|
return ai_corereg(sih, coreidx, regoff, mask, val);
|
|
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
|
|
return ub_corereg(sih, coreidx, regoff, mask, val);
|
|
else {
|
|
ASSERT(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/** ILP sensitive register access needs special treatment to avoid backplane stalls */
|
|
bool si_pmu_is_ilp_sensitive(uint32 idx, uint regoff)
|
|
{
|
|
if (idx == SI_CC_IDX) {
|
|
if (CHIPCREGS_ILP_SENSITIVE(regoff))
|
|
return TRUE;
|
|
} else if (PMUREGS_ILP_SENSITIVE(regoff)) {
|
|
return TRUE;
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/** 'idx' should refer either to the chipcommon core or the PMU core */
|
|
uint
|
|
si_pmu_corereg(si_t *sih, uint32 idx, uint regoff, uint mask, uint val)
|
|
{
|
|
int pmustatus_offset;
|
|
|
|
/* prevent backplane stall on double write to 'ILP domain' registers in the PMU */
|
|
if (mask != 0 && PMUREV(sih->pmurev) >= 22 &&
|
|
si_pmu_is_ilp_sensitive(idx, regoff)) {
|
|
pmustatus_offset = AOB_ENAB(sih) ? OFFSETOF(pmuregs_t, pmustatus) :
|
|
OFFSETOF(chipcregs_t, pmustatus);
|
|
|
|
while (si_corereg(sih, idx, pmustatus_offset, 0, 0) & PST_SLOW_WR_PENDING)
|
|
{};
|
|
}
|
|
|
|
return si_corereg(sih, idx, regoff, mask, val);
|
|
}
|
|
|
|
/*
|
|
* If there is no need for fiddling with interrupts or core switches (typically silicon
|
|
* back plane registers, pci registers and chipcommon registers), this function
|
|
* returns the register offset on this core to a mapped address. This address can
|
|
* be used for W_REG/R_REG directly.
|
|
*
|
|
* For accessing registers that would need a core switch, this function will return
|
|
* NULL.
|
|
*/
|
|
volatile uint32 *
|
|
si_corereg_addr(si_t *sih, uint coreidx, uint regoff)
|
|
{
|
|
if (CHIPTYPE(sih->socitype) == SOCI_SB)
|
|
return sb_corereg_addr(sih, coreidx, regoff);
|
|
else if ((CHIPTYPE(sih->socitype) == SOCI_AI) || (CHIPTYPE(sih->socitype) == SOCI_NAI))
|
|
return ai_corereg_addr(sih, coreidx, regoff);
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
si_core_disable(si_t *sih, uint32 bits)
|
|
{
|
|
if (CHIPTYPE(sih->socitype) == SOCI_SB)
|
|
sb_core_disable(sih, bits);
|
|
else if ((CHIPTYPE(sih->socitype) == SOCI_AI) || (CHIPTYPE(sih->socitype) == SOCI_NAI))
|
|
ai_core_disable(sih, bits);
|
|
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
|
|
ub_core_disable(sih, bits);
|
|
}
|
|
|
|
void
|
|
si_core_reset(si_t *sih, uint32 bits, uint32 resetbits)
|
|
{
|
|
if (CHIPTYPE(sih->socitype) == SOCI_SB)
|
|
sb_core_reset(sih, bits, resetbits);
|
|
else if ((CHIPTYPE(sih->socitype) == SOCI_AI) || (CHIPTYPE(sih->socitype) == SOCI_NAI))
|
|
ai_core_reset(sih, bits, resetbits);
|
|
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
|
|
ub_core_reset(sih, bits, resetbits);
|
|
}
|
|
|
|
/** Run bist on current core. Caller needs to take care of core-specific bist hazards */
|
|
int
|
|
si_corebist(si_t *sih)
|
|
{
|
|
uint32 cflags;
|
|
int result = 0;
|
|
|
|
/* Read core control flags */
|
|
cflags = si_core_cflags(sih, 0, 0);
|
|
|
|
/* Set bist & fgc */
|
|
si_core_cflags(sih, ~0, (SICF_BIST_EN | SICF_FGC));
|
|
|
|
/* Wait for bist done */
|
|
SPINWAIT(((si_core_sflags(sih, 0, 0) & SISF_BIST_DONE) == 0), 100000);
|
|
|
|
if (si_core_sflags(sih, 0, 0) & SISF_BIST_ERROR)
|
|
result = BCME_ERROR;
|
|
|
|
/* Reset core control flags */
|
|
si_core_cflags(sih, 0xffff, cflags);
|
|
|
|
return result;
|
|
}
|
|
|
|
uint
|
|
si_num_slaveports(si_t *sih, uint coreid)
|
|
{
|
|
uint idx = si_findcoreidx(sih, coreid, 0);
|
|
uint num = 0;
|
|
|
|
if ((CHIPTYPE(sih->socitype) == SOCI_AI))
|
|
num = ai_num_slaveports(sih, idx);
|
|
|
|
return num;
|
|
}
|
|
|
|
uint32
|
|
si_get_slaveport_addr(si_t *sih, uint asidx, uint core_id, uint coreunit)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
uint origidx = sii->curidx;
|
|
uint32 addr = 0x0;
|
|
|
|
if (!((CHIPTYPE(sih->socitype) == SOCI_AI) || (CHIPTYPE(sih->socitype) == SOCI_NAI)))
|
|
goto done;
|
|
|
|
si_setcore(sih, core_id, coreunit);
|
|
|
|
addr = ai_addrspace(sih, asidx);
|
|
|
|
si_setcoreidx(sih, origidx);
|
|
|
|
done:
|
|
return addr;
|
|
}
|
|
|
|
uint32
|
|
si_get_d11_slaveport_addr(si_t *sih, uint asidx, uint coreunit)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
uint origidx = sii->curidx;
|
|
uint32 addr = 0x0;
|
|
|
|
if (!((CHIPTYPE(sih->socitype) == SOCI_AI) || (CHIPTYPE(sih->socitype) == SOCI_NAI)))
|
|
goto done;
|
|
|
|
si_setcore(sih, D11_CORE_ID, coreunit);
|
|
|
|
addr = ai_addrspace(sih, asidx);
|
|
|
|
si_setcoreidx(sih, origidx);
|
|
|
|
done:
|
|
return addr;
|
|
}
|
|
|
|
static uint32
|
|
factor6(uint32 x)
|
|
{
|
|
switch (x) {
|
|
case CC_F6_2: return 2;
|
|
case CC_F6_3: return 3;
|
|
case CC_F6_4: return 4;
|
|
case CC_F6_5: return 5;
|
|
case CC_F6_6: return 6;
|
|
case CC_F6_7: return 7;
|
|
default: return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Divide the clock by the divisor with protection for
|
|
* a zero divisor.
|
|
*/
|
|
static uint32
|
|
divide_clock(uint32 clock, uint32 div)
|
|
{
|
|
return div ? clock / div : 0;
|
|
}
|
|
|
|
|
|
/** calculate the speed the SI would run at given a set of clockcontrol values */
|
|
uint32
|
|
si_clock_rate(uint32 pll_type, uint32 n, uint32 m)
|
|
{
|
|
uint32 n1, n2, clock, m1, m2, m3, mc;
|
|
|
|
n1 = n & CN_N1_MASK;
|
|
n2 = (n & CN_N2_MASK) >> CN_N2_SHIFT;
|
|
|
|
if (pll_type == PLL_TYPE6) {
|
|
if (m & CC_T6_MMASK)
|
|
return CC_T6_M1;
|
|
else
|
|
return CC_T6_M0;
|
|
} else if ((pll_type == PLL_TYPE1) ||
|
|
(pll_type == PLL_TYPE3) ||
|
|
(pll_type == PLL_TYPE4) ||
|
|
(pll_type == PLL_TYPE7)) {
|
|
n1 = factor6(n1);
|
|
n2 += CC_F5_BIAS;
|
|
} else if (pll_type == PLL_TYPE2) {
|
|
n1 += CC_T2_BIAS;
|
|
n2 += CC_T2_BIAS;
|
|
ASSERT((n1 >= 2) && (n1 <= 7));
|
|
ASSERT((n2 >= 5) && (n2 <= 23));
|
|
} else if (pll_type == PLL_TYPE5) {
|
|
return (100000000);
|
|
} else
|
|
ASSERT(0);
|
|
/* PLL types 3 and 7 use BASE2 (25Mhz) */
|
|
if ((pll_type == PLL_TYPE3) ||
|
|
(pll_type == PLL_TYPE7)) {
|
|
clock = CC_CLOCK_BASE2 * n1 * n2;
|
|
} else
|
|
clock = CC_CLOCK_BASE1 * n1 * n2;
|
|
|
|
if (clock == 0)
|
|
return 0;
|
|
|
|
m1 = m & CC_M1_MASK;
|
|
m2 = (m & CC_M2_MASK) >> CC_M2_SHIFT;
|
|
m3 = (m & CC_M3_MASK) >> CC_M3_SHIFT;
|
|
mc = (m & CC_MC_MASK) >> CC_MC_SHIFT;
|
|
|
|
if ((pll_type == PLL_TYPE1) ||
|
|
(pll_type == PLL_TYPE3) ||
|
|
(pll_type == PLL_TYPE4) ||
|
|
(pll_type == PLL_TYPE7)) {
|
|
m1 = factor6(m1);
|
|
if ((pll_type == PLL_TYPE1) || (pll_type == PLL_TYPE3))
|
|
m2 += CC_F5_BIAS;
|
|
else
|
|
m2 = factor6(m2);
|
|
m3 = factor6(m3);
|
|
|
|
switch (mc) {
|
|
case CC_MC_BYPASS: return (clock);
|
|
case CC_MC_M1: return divide_clock(clock, m1);
|
|
case CC_MC_M1M2: return divide_clock(clock, m1 * m2);
|
|
case CC_MC_M1M2M3: return divide_clock(clock, m1 * m2 * m3);
|
|
case CC_MC_M1M3: return divide_clock(clock, m1 * m3);
|
|
default: return (0);
|
|
}
|
|
} else {
|
|
ASSERT(pll_type == PLL_TYPE2);
|
|
|
|
m1 += CC_T2_BIAS;
|
|
m2 += CC_T2M2_BIAS;
|
|
m3 += CC_T2_BIAS;
|
|
ASSERT((m1 >= 2) && (m1 <= 7));
|
|
ASSERT((m2 >= 3) && (m2 <= 10));
|
|
ASSERT((m3 >= 2) && (m3 <= 7));
|
|
|
|
if ((mc & CC_T2MC_M1BYP) == 0)
|
|
clock /= m1;
|
|
if ((mc & CC_T2MC_M2BYP) == 0)
|
|
clock /= m2;
|
|
if ((mc & CC_T2MC_M3BYP) == 0)
|
|
clock /= m3;
|
|
|
|
return (clock);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Some chips could have multiple host interfaces, however only one will be active.
|
|
* For a given chip. Depending pkgopt and cc_chipst return the active host interface.
|
|
*/
|
|
uint
|
|
si_chip_hostif(si_t *sih)
|
|
{
|
|
uint hosti = 0;
|
|
|
|
switch (CHIPID(sih->chip)) {
|
|
case BCM43018_CHIP_ID:
|
|
case BCM43430_CHIP_ID:
|
|
hosti = CHIP_HOSTIF_SDIOMODE;
|
|
break;
|
|
case BCM43012_CHIP_ID:
|
|
hosti = CHIP_HOSTIF_SDIOMODE;
|
|
break;
|
|
CASE_BCM43602_CHIP:
|
|
hosti = CHIP_HOSTIF_PCIEMODE;
|
|
break;
|
|
|
|
case BCM4360_CHIP_ID:
|
|
/* chippkg bit-0 == 0 is PCIE only pkgs
|
|
* chippkg bit-0 == 1 has both PCIE and USB cores enabled
|
|
*/
|
|
if ((sih->chippkg & 0x1) && (sih->chipst & CST4360_MODE_USB))
|
|
hosti = CHIP_HOSTIF_USBMODE;
|
|
else
|
|
hosti = CHIP_HOSTIF_PCIEMODE;
|
|
|
|
break;
|
|
|
|
case BCM4335_CHIP_ID:
|
|
/* TBD: like in 4360, do we need to check pkg? */
|
|
if (CST4335_CHIPMODE_USB20D(sih->chipst))
|
|
hosti = CHIP_HOSTIF_USBMODE;
|
|
else if (CST4335_CHIPMODE_SDIOD(sih->chipst))
|
|
hosti = CHIP_HOSTIF_SDIOMODE;
|
|
else
|
|
hosti = CHIP_HOSTIF_PCIEMODE;
|
|
break;
|
|
|
|
CASE_BCM4345_CHIP:
|
|
if (CST4345_CHIPMODE_USB20D(sih->chipst) || CST4345_CHIPMODE_HSIC(sih->chipst))
|
|
hosti = CHIP_HOSTIF_USBMODE;
|
|
else if (CST4345_CHIPMODE_SDIOD(sih->chipst))
|
|
hosti = CHIP_HOSTIF_SDIOMODE;
|
|
else if (CST4345_CHIPMODE_PCIE(sih->chipst))
|
|
hosti = CHIP_HOSTIF_PCIEMODE;
|
|
break;
|
|
|
|
case BCM4349_CHIP_GRPID:
|
|
case BCM53573_CHIP_GRPID:
|
|
if (CST4349_CHIPMODE_SDIOD(sih->chipst))
|
|
hosti = CHIP_HOSTIF_SDIOMODE;
|
|
else if (CST4349_CHIPMODE_PCIE(sih->chipst))
|
|
hosti = CHIP_HOSTIF_PCIEMODE;
|
|
break;
|
|
case BCM4347_CHIP_ID:
|
|
if (CST4347_CHIPMODE_SDIOD(sih->chipst))
|
|
hosti = CHIP_HOSTIF_SDIOMODE;
|
|
else if (CST4347_CHIPMODE_PCIE(sih->chipst))
|
|
hosti = CHIP_HOSTIF_PCIEMODE;
|
|
break;
|
|
|
|
case BCM4350_CHIP_ID:
|
|
case BCM4354_CHIP_ID:
|
|
case BCM43556_CHIP_ID:
|
|
case BCM43558_CHIP_ID:
|
|
case BCM43566_CHIP_ID:
|
|
case BCM43568_CHIP_ID:
|
|
case BCM43569_CHIP_ID:
|
|
case BCM43570_CHIP_ID:
|
|
case BCM4358_CHIP_ID:
|
|
if (CST4350_CHIPMODE_USB20D(sih->chipst) ||
|
|
CST4350_CHIPMODE_HSIC20D(sih->chipst) ||
|
|
CST4350_CHIPMODE_USB30D(sih->chipst) ||
|
|
CST4350_CHIPMODE_USB30D_WL(sih->chipst) ||
|
|
CST4350_CHIPMODE_HSIC30D(sih->chipst))
|
|
hosti = CHIP_HOSTIF_USBMODE;
|
|
else if (CST4350_CHIPMODE_SDIOD(sih->chipst))
|
|
hosti = CHIP_HOSTIF_SDIOMODE;
|
|
else if (CST4350_CHIPMODE_PCIE(sih->chipst))
|
|
hosti = CHIP_HOSTIF_PCIEMODE;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return hosti;
|
|
}
|
|
|
|
|
|
/** set chip watchdog reset timer to fire in 'ticks' */
|
|
void
|
|
si_watchdog(si_t *sih, uint ticks)
|
|
{
|
|
uint nb, maxt;
|
|
uint pmu_wdt = 1;
|
|
|
|
|
|
if (PMUCTL_ENAB(sih) && pmu_wdt) {
|
|
nb = (CCREV(sih->ccrev) < 26) ? 16 : ((CCREV(sih->ccrev) >= 37) ? 32 : 24);
|
|
/* The mips compiler uses the sllv instruction,
|
|
* so we specially handle the 32-bit case.
|
|
*/
|
|
if (nb == 32)
|
|
maxt = 0xffffffff;
|
|
else
|
|
maxt = ((1 << nb) - 1);
|
|
|
|
if (ticks == 1)
|
|
ticks = 2;
|
|
else if (ticks > maxt)
|
|
ticks = maxt;
|
|
if (CHIPID(sih->chip) == BCM43012_CHIP_ID) {
|
|
PMU_REG_NEW(sih, min_res_mask, ~0, DEFAULT_43012_MIN_RES_MASK);
|
|
PMU_REG_NEW(sih, watchdog_res_mask, ~0, DEFAULT_43012_MIN_RES_MASK);
|
|
PMU_REG_NEW(sih, pmustatus, PST_WDRESET, PST_WDRESET);
|
|
PMU_REG_NEW(sih, pmucontrol_ext, PCTL_EXT_FASTLPO_SWENAB, 0);
|
|
SPINWAIT((PMU_REG(sih, pmustatus, 0, 0) & PST_ILPFASTLPO),
|
|
PMU_MAX_TRANSITION_DLY);
|
|
}
|
|
|
|
pmu_corereg(sih, SI_CC_IDX, pmuwatchdog, ~0, ticks);
|
|
} else {
|
|
maxt = (1 << 28) - 1;
|
|
if (ticks > maxt)
|
|
ticks = maxt;
|
|
|
|
si_corereg(sih, SI_CC_IDX, OFFSETOF(chipcregs_t, watchdog), ~0, ticks);
|
|
}
|
|
}
|
|
|
|
/** trigger watchdog reset after ms milliseconds */
|
|
void
|
|
si_watchdog_ms(si_t *sih, uint32 ms)
|
|
{
|
|
si_watchdog(sih, wd_msticks * ms);
|
|
}
|
|
|
|
uint32 si_watchdog_msticks(void)
|
|
{
|
|
return wd_msticks;
|
|
}
|
|
|
|
bool
|
|
si_taclear(si_t *sih, bool details)
|
|
{
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
|
|
/** return the slow clock source - LPO, XTAL, or PCI */
|
|
static uint
|
|
si_slowclk_src(si_info_t *sii)
|
|
{
|
|
chipcregs_t *cc;
|
|
|
|
ASSERT(SI_FAST(sii) || si_coreid(&sii->pub) == CC_CORE_ID);
|
|
|
|
if (CCREV(sii->pub.ccrev) < 6) {
|
|
if ((BUSTYPE(sii->pub.bustype) == PCI_BUS) &&
|
|
(OSL_PCI_READ_CONFIG(sii->osh, PCI_GPIO_OUT, sizeof(uint32)) &
|
|
PCI_CFG_GPIO_SCS))
|
|
return (SCC_SS_PCI);
|
|
else
|
|
return (SCC_SS_XTAL);
|
|
} else if (CCREV(sii->pub.ccrev) < 10) {
|
|
cc = (chipcregs_t *)si_setcoreidx(&sii->pub, sii->curidx);
|
|
ASSERT(cc);
|
|
return (R_REG(sii->osh, &cc->slow_clk_ctl) & SCC_SS_MASK);
|
|
} else /* Insta-clock */
|
|
return (SCC_SS_XTAL);
|
|
}
|
|
|
|
/** return the ILP (slowclock) min or max frequency */
|
|
static uint
|
|
si_slowclk_freq(si_info_t *sii, bool max_freq, chipcregs_t *cc)
|
|
{
|
|
uint32 slowclk;
|
|
uint div;
|
|
|
|
ASSERT(SI_FAST(sii) || si_coreid(&sii->pub) == CC_CORE_ID);
|
|
|
|
/* shouldn't be here unless we've established the chip has dynamic clk control */
|
|
ASSERT(R_REG(sii->osh, &cc->capabilities) & CC_CAP_PWR_CTL);
|
|
|
|
slowclk = si_slowclk_src(sii);
|
|
if (CCREV(sii->pub.ccrev) < 6) {
|
|
if (slowclk == SCC_SS_PCI)
|
|
return (max_freq ? (PCIMAXFREQ / 64) : (PCIMINFREQ / 64));
|
|
else
|
|
return (max_freq ? (XTALMAXFREQ / 32) : (XTALMINFREQ / 32));
|
|
} else if (CCREV(sii->pub.ccrev) < 10) {
|
|
div = 4 *
|
|
(((R_REG(sii->osh, &cc->slow_clk_ctl) & SCC_CD_MASK) >> SCC_CD_SHIFT) + 1);
|
|
if (slowclk == SCC_SS_LPO)
|
|
return (max_freq ? LPOMAXFREQ : LPOMINFREQ);
|
|
else if (slowclk == SCC_SS_XTAL)
|
|
return (max_freq ? (XTALMAXFREQ / div) : (XTALMINFREQ / div));
|
|
else if (slowclk == SCC_SS_PCI)
|
|
return (max_freq ? (PCIMAXFREQ / div) : (PCIMINFREQ / div));
|
|
else
|
|
ASSERT(0);
|
|
} else {
|
|
/* Chipc rev 10 is InstaClock */
|
|
div = R_REG(sii->osh, &cc->system_clk_ctl) >> SYCC_CD_SHIFT;
|
|
div = 4 * (div + 1);
|
|
return (max_freq ? XTALMAXFREQ : (XTALMINFREQ / div));
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
si_clkctl_setdelay(si_info_t *sii, void *chipcregs)
|
|
{
|
|
chipcregs_t *cc = (chipcregs_t *)chipcregs;
|
|
uint slowmaxfreq, pll_delay, slowclk;
|
|
uint pll_on_delay, fref_sel_delay;
|
|
|
|
pll_delay = PLL_DELAY;
|
|
|
|
/* If the slow clock is not sourced by the xtal then add the xtal_on_delay
|
|
* since the xtal will also be powered down by dynamic clk control logic.
|
|
*/
|
|
|
|
slowclk = si_slowclk_src(sii);
|
|
if (slowclk != SCC_SS_XTAL)
|
|
pll_delay += XTAL_ON_DELAY;
|
|
|
|
/* Starting with 4318 it is ILP that is used for the delays */
|
|
slowmaxfreq = si_slowclk_freq(sii, (CCREV(sii->pub.ccrev) >= 10) ? FALSE : TRUE, cc);
|
|
|
|
pll_on_delay = ((slowmaxfreq * pll_delay) + 999999) / 1000000;
|
|
fref_sel_delay = ((slowmaxfreq * FREF_DELAY) + 999999) / 1000000;
|
|
|
|
W_REG(sii->osh, &cc->pll_on_delay, pll_on_delay);
|
|
W_REG(sii->osh, &cc->fref_sel_delay, fref_sel_delay);
|
|
}
|
|
|
|
/** initialize power control delay registers */
|
|
void
|
|
si_clkctl_init(si_t *sih)
|
|
{
|
|
si_info_t *sii;
|
|
uint origidx = 0;
|
|
chipcregs_t *cc;
|
|
bool fast;
|
|
|
|
if (!CCCTL_ENAB(sih))
|
|
return;
|
|
|
|
sii = SI_INFO(sih);
|
|
fast = SI_FAST(sii);
|
|
if (!fast) {
|
|
origidx = sii->curidx;
|
|
if ((cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0)) == NULL)
|
|
return;
|
|
} else if ((cc = (chipcregs_t *)CCREGS_FAST(sii)) == NULL)
|
|
return;
|
|
ASSERT(cc != NULL);
|
|
|
|
/* set all Instaclk chip ILP to 1 MHz */
|
|
if (CCREV(sih->ccrev) >= 10)
|
|
SET_REG(sii->osh, &cc->system_clk_ctl, SYCC_CD_MASK,
|
|
(ILP_DIV_1MHZ << SYCC_CD_SHIFT));
|
|
|
|
si_clkctl_setdelay(sii, (void *)(uintptr)cc);
|
|
|
|
OSL_DELAY(20000);
|
|
|
|
if (!fast)
|
|
si_setcoreidx(sih, origidx);
|
|
}
|
|
|
|
|
|
/** change logical "focus" to the gpio core for optimized access */
|
|
volatile void *
|
|
si_gpiosetcore(si_t *sih)
|
|
{
|
|
return (si_setcoreidx(sih, SI_CC_IDX));
|
|
}
|
|
|
|
/**
|
|
* mask & set gpiocontrol bits.
|
|
* If a gpiocontrol bit is set to 0, chipcommon controls the corresponding GPIO pin.
|
|
* If a gpiocontrol bit is set to 1, the GPIO pin is no longer a GPIO and becomes dedicated
|
|
* to some chip-specific purpose.
|
|
*/
|
|
uint32
|
|
si_gpiocontrol(si_t *sih, uint32 mask, uint32 val, uint8 priority)
|
|
{
|
|
uint regoff;
|
|
|
|
regoff = 0;
|
|
|
|
/* gpios could be shared on router platforms
|
|
* ignore reservation if it's high priority (e.g., test apps)
|
|
*/
|
|
if ((priority != GPIO_HI_PRIORITY) &&
|
|
(BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
|
|
mask = priority ? (si_gpioreservation & mask) :
|
|
((si_gpioreservation | mask) & ~(si_gpioreservation));
|
|
val &= mask;
|
|
}
|
|
|
|
regoff = OFFSETOF(chipcregs_t, gpiocontrol);
|
|
return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
|
|
}
|
|
|
|
/** mask&set gpio output enable bits */
|
|
uint32
|
|
si_gpioouten(si_t *sih, uint32 mask, uint32 val, uint8 priority)
|
|
{
|
|
uint regoff;
|
|
|
|
regoff = 0;
|
|
|
|
/* gpios could be shared on router platforms
|
|
* ignore reservation if it's high priority (e.g., test apps)
|
|
*/
|
|
if ((priority != GPIO_HI_PRIORITY) &&
|
|
(BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
|
|
mask = priority ? (si_gpioreservation & mask) :
|
|
((si_gpioreservation | mask) & ~(si_gpioreservation));
|
|
val &= mask;
|
|
}
|
|
|
|
regoff = OFFSETOF(chipcregs_t, gpioouten);
|
|
return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
|
|
}
|
|
|
|
/** mask&set gpio output bits */
|
|
uint32
|
|
si_gpioout(si_t *sih, uint32 mask, uint32 val, uint8 priority)
|
|
{
|
|
uint regoff;
|
|
|
|
regoff = 0;
|
|
|
|
/* gpios could be shared on router platforms
|
|
* ignore reservation if it's high priority (e.g., test apps)
|
|
*/
|
|
if ((priority != GPIO_HI_PRIORITY) &&
|
|
(BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
|
|
mask = priority ? (si_gpioreservation & mask) :
|
|
((si_gpioreservation | mask) & ~(si_gpioreservation));
|
|
val &= mask;
|
|
}
|
|
|
|
regoff = OFFSETOF(chipcregs_t, gpioout);
|
|
return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
|
|
}
|
|
|
|
/** reserve one gpio */
|
|
uint32
|
|
si_gpioreserve(si_t *sih, uint32 gpio_bitmask, uint8 priority)
|
|
{
|
|
/* only cores on SI_BUS share GPIO's and only applcation users need to
|
|
* reserve/release GPIO
|
|
*/
|
|
if ((BUSTYPE(sih->bustype) != SI_BUS) || (!priority)) {
|
|
ASSERT((BUSTYPE(sih->bustype) == SI_BUS) && (priority));
|
|
return 0xffffffff;
|
|
}
|
|
/* make sure only one bit is set */
|
|
if ((!gpio_bitmask) || ((gpio_bitmask) & (gpio_bitmask - 1))) {
|
|
ASSERT((gpio_bitmask) && !((gpio_bitmask) & (gpio_bitmask - 1)));
|
|
return 0xffffffff;
|
|
}
|
|
|
|
/* already reserved */
|
|
if (si_gpioreservation & gpio_bitmask)
|
|
return 0xffffffff;
|
|
/* set reservation */
|
|
si_gpioreservation |= gpio_bitmask;
|
|
|
|
return si_gpioreservation;
|
|
}
|
|
|
|
/**
|
|
* release one gpio.
|
|
*
|
|
* releasing the gpio doesn't change the current value on the GPIO last write value
|
|
* persists till someone overwrites it.
|
|
*/
|
|
uint32
|
|
si_gpiorelease(si_t *sih, uint32 gpio_bitmask, uint8 priority)
|
|
{
|
|
/* only cores on SI_BUS share GPIO's and only applcation users need to
|
|
* reserve/release GPIO
|
|
*/
|
|
if ((BUSTYPE(sih->bustype) != SI_BUS) || (!priority)) {
|
|
ASSERT((BUSTYPE(sih->bustype) == SI_BUS) && (priority));
|
|
return 0xffffffff;
|
|
}
|
|
/* make sure only one bit is set */
|
|
if ((!gpio_bitmask) || ((gpio_bitmask) & (gpio_bitmask - 1))) {
|
|
ASSERT((gpio_bitmask) && !((gpio_bitmask) & (gpio_bitmask - 1)));
|
|
return 0xffffffff;
|
|
}
|
|
|
|
/* already released */
|
|
if (!(si_gpioreservation & gpio_bitmask))
|
|
return 0xffffffff;
|
|
|
|
/* clear reservation */
|
|
si_gpioreservation &= ~gpio_bitmask;
|
|
|
|
return si_gpioreservation;
|
|
}
|
|
|
|
/* return the current gpioin register value */
|
|
uint32
|
|
si_gpioin(si_t *sih)
|
|
{
|
|
uint regoff;
|
|
|
|
regoff = OFFSETOF(chipcregs_t, gpioin);
|
|
return (si_corereg(sih, SI_CC_IDX, regoff, 0, 0));
|
|
}
|
|
|
|
/* mask&set gpio interrupt polarity bits */
|
|
uint32
|
|
si_gpiointpolarity(si_t *sih, uint32 mask, uint32 val, uint8 priority)
|
|
{
|
|
uint regoff;
|
|
|
|
/* gpios could be shared on router platforms */
|
|
if ((BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
|
|
mask = priority ? (si_gpioreservation & mask) :
|
|
((si_gpioreservation | mask) & ~(si_gpioreservation));
|
|
val &= mask;
|
|
}
|
|
|
|
regoff = OFFSETOF(chipcregs_t, gpiointpolarity);
|
|
return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
|
|
}
|
|
|
|
/* mask&set gpio interrupt mask bits */
|
|
uint32
|
|
si_gpiointmask(si_t *sih, uint32 mask, uint32 val, uint8 priority)
|
|
{
|
|
uint regoff;
|
|
|
|
/* gpios could be shared on router platforms */
|
|
if ((BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
|
|
mask = priority ? (si_gpioreservation & mask) :
|
|
((si_gpioreservation | mask) & ~(si_gpioreservation));
|
|
val &= mask;
|
|
}
|
|
|
|
regoff = OFFSETOF(chipcregs_t, gpiointmask);
|
|
return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
|
|
}
|
|
|
|
uint32
|
|
si_gpioeventintmask(si_t *sih, uint32 mask, uint32 val, uint8 priority)
|
|
{
|
|
uint regoff;
|
|
/* gpios could be shared on router platforms */
|
|
if ((BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
|
|
mask = priority ? (si_gpioreservation & mask) :
|
|
((si_gpioreservation | mask) & ~(si_gpioreservation));
|
|
val &= mask;
|
|
}
|
|
regoff = OFFSETOF(chipcregs_t, gpioeventintmask);
|
|
return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
|
|
}
|
|
|
|
/* assign the gpio to an led */
|
|
uint32
|
|
si_gpioled(si_t *sih, uint32 mask, uint32 val)
|
|
{
|
|
if (CCREV(sih->ccrev) < 16)
|
|
return 0xffffffff;
|
|
|
|
/* gpio led powersave reg */
|
|
return (si_corereg(sih, SI_CC_IDX, OFFSETOF(chipcregs_t, gpiotimeroutmask), mask, val));
|
|
}
|
|
|
|
/* mask&set gpio timer val */
|
|
uint32
|
|
si_gpiotimerval(si_t *sih, uint32 mask, uint32 gpiotimerval)
|
|
{
|
|
if (CCREV(sih->ccrev) < 16)
|
|
return 0xffffffff;
|
|
|
|
return (si_corereg(sih, SI_CC_IDX,
|
|
OFFSETOF(chipcregs_t, gpiotimerval), mask, gpiotimerval));
|
|
}
|
|
|
|
uint32
|
|
si_gpiopull(si_t *sih, bool updown, uint32 mask, uint32 val)
|
|
{
|
|
uint offs;
|
|
|
|
if (CCREV(sih->ccrev) < 20)
|
|
return 0xffffffff;
|
|
|
|
offs = (updown ? OFFSETOF(chipcregs_t, gpiopulldown) : OFFSETOF(chipcregs_t, gpiopullup));
|
|
return (si_corereg(sih, SI_CC_IDX, offs, mask, val));
|
|
}
|
|
|
|
uint32
|
|
si_gpioevent(si_t *sih, uint regtype, uint32 mask, uint32 val)
|
|
{
|
|
uint offs;
|
|
|
|
if (CCREV(sih->ccrev) < 11)
|
|
return 0xffffffff;
|
|
|
|
if (regtype == GPIO_REGEVT)
|
|
offs = OFFSETOF(chipcregs_t, gpioevent);
|
|
else if (regtype == GPIO_REGEVT_INTMSK)
|
|
offs = OFFSETOF(chipcregs_t, gpioeventintmask);
|
|
else if (regtype == GPIO_REGEVT_INTPOL)
|
|
offs = OFFSETOF(chipcregs_t, gpioeventintpolarity);
|
|
else
|
|
return 0xffffffff;
|
|
|
|
return (si_corereg(sih, SI_CC_IDX, offs, mask, val));
|
|
}
|
|
|
|
uint32
|
|
si_gpio_int_enable(si_t *sih, bool enable)
|
|
{
|
|
uint offs;
|
|
|
|
if (CCREV(sih->ccrev) < 11)
|
|
return 0xffffffff;
|
|
|
|
offs = OFFSETOF(chipcregs_t, intmask);
|
|
return (si_corereg(sih, SI_CC_IDX, offs, CI_GPIO, (enable ? CI_GPIO : 0)));
|
|
}
|
|
|
|
/** Return the size of the specified SYSMEM bank */
|
|
static uint
|
|
sysmem_banksize(si_info_t *sii, sysmemregs_t *regs, uint8 idx)
|
|
{
|
|
uint banksize, bankinfo;
|
|
uint bankidx = idx;
|
|
|
|
W_REG(sii->osh, ®s->bankidx, bankidx);
|
|
bankinfo = R_REG(sii->osh, ®s->bankinfo);
|
|
banksize = SYSMEM_BANKINFO_SZBASE * ((bankinfo & SYSMEM_BANKINFO_SZMASK) + 1);
|
|
return banksize;
|
|
}
|
|
|
|
/** Return the RAM size of the SYSMEM core */
|
|
uint32
|
|
si_sysmem_size(si_t *sih)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
uint origidx;
|
|
uint intr_val = 0;
|
|
|
|
sysmemregs_t *regs;
|
|
bool wasup;
|
|
uint32 coreinfo;
|
|
uint memsize = 0;
|
|
uint8 i;
|
|
uint nb, nrb;
|
|
|
|
/* Block ints and save current core */
|
|
INTR_OFF(sii, intr_val);
|
|
origidx = si_coreidx(sih);
|
|
|
|
/* Switch to SYSMEM core */
|
|
if (!(regs = si_setcore(sih, SYSMEM_CORE_ID, 0)))
|
|
goto done;
|
|
|
|
/* Get info for determining size */
|
|
if (!(wasup = si_iscoreup(sih)))
|
|
si_core_reset(sih, 0, 0);
|
|
coreinfo = R_REG(sii->osh, ®s->coreinfo);
|
|
|
|
/* Number of ROM banks, SW need to skip the ROM banks. */
|
|
nrb = (coreinfo & SYSMEM_SRCI_ROMNB_MASK) >> SYSMEM_SRCI_ROMNB_SHIFT;
|
|
|
|
nb = (coreinfo & SYSMEM_SRCI_SRNB_MASK) >> SYSMEM_SRCI_SRNB_SHIFT;
|
|
for (i = 0; i < nb; i++)
|
|
memsize += sysmem_banksize(sii, regs, i + nrb);
|
|
|
|
si_setcoreidx(sih, origidx);
|
|
|
|
done:
|
|
INTR_RESTORE(sii, intr_val);
|
|
|
|
return memsize;
|
|
}
|
|
|
|
/** Return the size of the specified SOCRAM bank */
|
|
static uint
|
|
socram_banksize(si_info_t *sii, sbsocramregs_t *regs, uint8 idx, uint8 mem_type)
|
|
{
|
|
uint banksize, bankinfo;
|
|
uint bankidx = idx | (mem_type << SOCRAM_BANKIDX_MEMTYPE_SHIFT);
|
|
|
|
ASSERT(mem_type <= SOCRAM_MEMTYPE_DEVRAM);
|
|
|
|
W_REG(sii->osh, ®s->bankidx, bankidx);
|
|
bankinfo = R_REG(sii->osh, ®s->bankinfo);
|
|
banksize = SOCRAM_BANKINFO_SZBASE * ((bankinfo & SOCRAM_BANKINFO_SZMASK) + 1);
|
|
return banksize;
|
|
}
|
|
|
|
void si_socram_set_bankpda(si_t *sih, uint32 bankidx, uint32 bankpda)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
uint origidx;
|
|
uint intr_val = 0;
|
|
sbsocramregs_t *regs;
|
|
bool wasup;
|
|
uint corerev;
|
|
|
|
/* Block ints and save current core */
|
|
INTR_OFF(sii, intr_val);
|
|
origidx = si_coreidx(sih);
|
|
|
|
/* Switch to SOCRAM core */
|
|
if (!(regs = si_setcore(sih, SOCRAM_CORE_ID, 0)))
|
|
goto done;
|
|
|
|
if (!(wasup = si_iscoreup(sih)))
|
|
si_core_reset(sih, 0, 0);
|
|
|
|
corerev = si_corerev(sih);
|
|
if (corerev >= 16) {
|
|
W_REG(sii->osh, ®s->bankidx, bankidx);
|
|
W_REG(sii->osh, ®s->bankpda, bankpda);
|
|
}
|
|
|
|
/* Return to previous state and core */
|
|
if (!wasup)
|
|
si_core_disable(sih, 0);
|
|
si_setcoreidx(sih, origidx);
|
|
|
|
done:
|
|
INTR_RESTORE(sii, intr_val);
|
|
}
|
|
|
|
void
|
|
si_socdevram(si_t *sih, bool set, uint8 *enable, uint8 *protect, uint8 *remap)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
uint origidx;
|
|
uint intr_val = 0;
|
|
sbsocramregs_t *regs;
|
|
bool wasup;
|
|
uint corerev;
|
|
|
|
/* Block ints and save current core */
|
|
INTR_OFF(sii, intr_val);
|
|
origidx = si_coreidx(sih);
|
|
|
|
if (!set)
|
|
*enable = *protect = *remap = 0;
|
|
|
|
/* Switch to SOCRAM core */
|
|
if (!(regs = si_setcore(sih, SOCRAM_CORE_ID, 0)))
|
|
goto done;
|
|
|
|
/* Get info for determining size */
|
|
if (!(wasup = si_iscoreup(sih)))
|
|
si_core_reset(sih, 0, 0);
|
|
|
|
corerev = si_corerev(sih);
|
|
if (corerev >= 10) {
|
|
uint32 extcinfo;
|
|
uint8 nb;
|
|
uint8 i;
|
|
uint32 bankidx, bankinfo;
|
|
|
|
extcinfo = R_REG(sii->osh, ®s->extracoreinfo);
|
|
nb = ((extcinfo & SOCRAM_DEVRAMBANK_MASK) >> SOCRAM_DEVRAMBANK_SHIFT);
|
|
for (i = 0; i < nb; i++) {
|
|
bankidx = i | (SOCRAM_MEMTYPE_DEVRAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT);
|
|
W_REG(sii->osh, ®s->bankidx, bankidx);
|
|
bankinfo = R_REG(sii->osh, ®s->bankinfo);
|
|
if (set) {
|
|
bankinfo &= ~SOCRAM_BANKINFO_DEVRAMSEL_MASK;
|
|
bankinfo &= ~SOCRAM_BANKINFO_DEVRAMPRO_MASK;
|
|
bankinfo &= ~SOCRAM_BANKINFO_DEVRAMREMAP_MASK;
|
|
if (*enable) {
|
|
bankinfo |= (1 << SOCRAM_BANKINFO_DEVRAMSEL_SHIFT);
|
|
if (*protect)
|
|
bankinfo |= (1 << SOCRAM_BANKINFO_DEVRAMPRO_SHIFT);
|
|
if ((corerev >= 16) && *remap)
|
|
bankinfo |=
|
|
(1 << SOCRAM_BANKINFO_DEVRAMREMAP_SHIFT);
|
|
}
|
|
W_REG(sii->osh, ®s->bankinfo, bankinfo);
|
|
} else if (i == 0) {
|
|
if (bankinfo & SOCRAM_BANKINFO_DEVRAMSEL_MASK) {
|
|
*enable = 1;
|
|
if (bankinfo & SOCRAM_BANKINFO_DEVRAMPRO_MASK)
|
|
*protect = 1;
|
|
if (bankinfo & SOCRAM_BANKINFO_DEVRAMREMAP_MASK)
|
|
*remap = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return to previous state and core */
|
|
if (!wasup)
|
|
si_core_disable(sih, 0);
|
|
si_setcoreidx(sih, origidx);
|
|
|
|
done:
|
|
INTR_RESTORE(sii, intr_val);
|
|
}
|
|
|
|
bool
|
|
si_socdevram_remap_isenb(si_t *sih)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
uint origidx;
|
|
uint intr_val = 0;
|
|
sbsocramregs_t *regs;
|
|
bool wasup, remap = FALSE;
|
|
uint corerev;
|
|
uint32 extcinfo;
|
|
uint8 nb;
|
|
uint8 i;
|
|
uint32 bankidx, bankinfo;
|
|
|
|
/* Block ints and save current core */
|
|
INTR_OFF(sii, intr_val);
|
|
origidx = si_coreidx(sih);
|
|
|
|
/* Switch to SOCRAM core */
|
|
if (!(regs = si_setcore(sih, SOCRAM_CORE_ID, 0)))
|
|
goto done;
|
|
|
|
/* Get info for determining size */
|
|
if (!(wasup = si_iscoreup(sih)))
|
|
si_core_reset(sih, 0, 0);
|
|
|
|
corerev = si_corerev(sih);
|
|
if (corerev >= 16) {
|
|
extcinfo = R_REG(sii->osh, ®s->extracoreinfo);
|
|
nb = ((extcinfo & SOCRAM_DEVRAMBANK_MASK) >> SOCRAM_DEVRAMBANK_SHIFT);
|
|
for (i = 0; i < nb; i++) {
|
|
bankidx = i | (SOCRAM_MEMTYPE_DEVRAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT);
|
|
W_REG(sii->osh, ®s->bankidx, bankidx);
|
|
bankinfo = R_REG(sii->osh, ®s->bankinfo);
|
|
if (bankinfo & SOCRAM_BANKINFO_DEVRAMREMAP_MASK) {
|
|
remap = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return to previous state and core */
|
|
if (!wasup)
|
|
si_core_disable(sih, 0);
|
|
si_setcoreidx(sih, origidx);
|
|
|
|
done:
|
|
INTR_RESTORE(sii, intr_val);
|
|
return remap;
|
|
}
|
|
|
|
bool
|
|
si_socdevram_pkg(si_t *sih)
|
|
{
|
|
if (si_socdevram_size(sih) > 0)
|
|
return TRUE;
|
|
else
|
|
return FALSE;
|
|
}
|
|
|
|
uint32
|
|
si_socdevram_size(si_t *sih)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
uint origidx;
|
|
uint intr_val = 0;
|
|
uint32 memsize = 0;
|
|
sbsocramregs_t *regs;
|
|
bool wasup;
|
|
uint corerev;
|
|
|
|
/* Block ints and save current core */
|
|
INTR_OFF(sii, intr_val);
|
|
origidx = si_coreidx(sih);
|
|
|
|
/* Switch to SOCRAM core */
|
|
if (!(regs = si_setcore(sih, SOCRAM_CORE_ID, 0)))
|
|
goto done;
|
|
|
|
/* Get info for determining size */
|
|
if (!(wasup = si_iscoreup(sih)))
|
|
si_core_reset(sih, 0, 0);
|
|
|
|
corerev = si_corerev(sih);
|
|
if (corerev >= 10) {
|
|
uint32 extcinfo;
|
|
uint8 nb;
|
|
uint8 i;
|
|
|
|
extcinfo = R_REG(sii->osh, ®s->extracoreinfo);
|
|
nb = (((extcinfo & SOCRAM_DEVRAMBANK_MASK) >> SOCRAM_DEVRAMBANK_SHIFT));
|
|
for (i = 0; i < nb; i++)
|
|
memsize += socram_banksize(sii, regs, i, SOCRAM_MEMTYPE_DEVRAM);
|
|
}
|
|
|
|
/* Return to previous state and core */
|
|
if (!wasup)
|
|
si_core_disable(sih, 0);
|
|
si_setcoreidx(sih, origidx);
|
|
|
|
done:
|
|
INTR_RESTORE(sii, intr_val);
|
|
|
|
return memsize;
|
|
}
|
|
|
|
uint32
|
|
si_socdevram_remap_size(si_t *sih)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
uint origidx;
|
|
uint intr_val = 0;
|
|
uint32 memsize = 0, banksz;
|
|
sbsocramregs_t *regs;
|
|
bool wasup;
|
|
uint corerev;
|
|
uint32 extcinfo;
|
|
uint8 nb;
|
|
uint8 i;
|
|
uint32 bankidx, bankinfo;
|
|
|
|
/* Block ints and save current core */
|
|
INTR_OFF(sii, intr_val);
|
|
origidx = si_coreidx(sih);
|
|
|
|
/* Switch to SOCRAM core */
|
|
if (!(regs = si_setcore(sih, SOCRAM_CORE_ID, 0)))
|
|
goto done;
|
|
|
|
/* Get info for determining size */
|
|
if (!(wasup = si_iscoreup(sih)))
|
|
si_core_reset(sih, 0, 0);
|
|
|
|
corerev = si_corerev(sih);
|
|
if (corerev >= 16) {
|
|
extcinfo = R_REG(sii->osh, ®s->extracoreinfo);
|
|
nb = (((extcinfo & SOCRAM_DEVRAMBANK_MASK) >> SOCRAM_DEVRAMBANK_SHIFT));
|
|
|
|
/*
|
|
* FIX: A0 Issue: Max addressable is 512KB, instead 640KB
|
|
* Only four banks are accessible to ARM
|
|
*/
|
|
if ((corerev == 16) && (nb == 5))
|
|
nb = 4;
|
|
|
|
for (i = 0; i < nb; i++) {
|
|
bankidx = i | (SOCRAM_MEMTYPE_DEVRAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT);
|
|
W_REG(sii->osh, ®s->bankidx, bankidx);
|
|
bankinfo = R_REG(sii->osh, ®s->bankinfo);
|
|
if (bankinfo & SOCRAM_BANKINFO_DEVRAMREMAP_MASK) {
|
|
banksz = socram_banksize(sii, regs, i, SOCRAM_MEMTYPE_DEVRAM);
|
|
memsize += banksz;
|
|
} else {
|
|
/* Account only consecutive banks for now */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return to previous state and core */
|
|
if (!wasup)
|
|
si_core_disable(sih, 0);
|
|
si_setcoreidx(sih, origidx);
|
|
|
|
done:
|
|
INTR_RESTORE(sii, intr_val);
|
|
|
|
return memsize;
|
|
}
|
|
|
|
/** Return the RAM size of the SOCRAM core */
|
|
uint32
|
|
si_socram_size(si_t *sih)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
uint origidx;
|
|
uint intr_val = 0;
|
|
|
|
sbsocramregs_t *regs;
|
|
bool wasup;
|
|
uint corerev;
|
|
uint32 coreinfo;
|
|
uint memsize = 0;
|
|
|
|
/* Block ints and save current core */
|
|
INTR_OFF(sii, intr_val);
|
|
origidx = si_coreidx(sih);
|
|
|
|
/* Switch to SOCRAM core */
|
|
if (!(regs = si_setcore(sih, SOCRAM_CORE_ID, 0)))
|
|
goto done;
|
|
|
|
/* Get info for determining size */
|
|
if (!(wasup = si_iscoreup(sih)))
|
|
si_core_reset(sih, 0, 0);
|
|
corerev = si_corerev(sih);
|
|
coreinfo = R_REG(sii->osh, ®s->coreinfo);
|
|
|
|
/* Calculate size from coreinfo based on rev */
|
|
if (corerev == 0)
|
|
memsize = 1 << (16 + (coreinfo & SRCI_MS0_MASK));
|
|
else if (corerev < 3) {
|
|
memsize = 1 << (SR_BSZ_BASE + (coreinfo & SRCI_SRBSZ_MASK));
|
|
memsize *= (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
|
|
} else if ((corerev <= 7) || (corerev == 12)) {
|
|
uint nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
|
|
uint bsz = (coreinfo & SRCI_SRBSZ_MASK);
|
|
uint lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT;
|
|
if (lss != 0)
|
|
nb --;
|
|
memsize = nb * (1 << (bsz + SR_BSZ_BASE));
|
|
if (lss != 0)
|
|
memsize += (1 << ((lss - 1) + SR_BSZ_BASE));
|
|
} else {
|
|
uint8 i;
|
|
uint nb;
|
|
/* length of SRAM Banks increased for corerev greater than 23 */
|
|
if (corerev >= 23) {
|
|
nb = (coreinfo & (SRCI_SRNB_MASK | SRCI_SRNB_MASK_EXT)) >> SRCI_SRNB_SHIFT;
|
|
} else {
|
|
nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
|
|
}
|
|
for (i = 0; i < nb; i++)
|
|
memsize += socram_banksize(sii, regs, i, SOCRAM_MEMTYPE_RAM);
|
|
}
|
|
|
|
/* Return to previous state and core */
|
|
if (!wasup)
|
|
si_core_disable(sih, 0);
|
|
si_setcoreidx(sih, origidx);
|
|
|
|
done:
|
|
INTR_RESTORE(sii, intr_val);
|
|
|
|
return memsize;
|
|
}
|
|
|
|
|
|
/** Return the TCM-RAM size of the ARMCR4 core. */
|
|
uint32
|
|
si_tcm_size(si_t *sih)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
uint origidx;
|
|
uint intr_val = 0;
|
|
volatile uint8 *regs;
|
|
bool wasup;
|
|
uint32 corecap;
|
|
uint memsize = 0;
|
|
uint32 nab = 0;
|
|
uint32 nbb = 0;
|
|
uint32 totb = 0;
|
|
uint32 bxinfo = 0;
|
|
uint32 idx = 0;
|
|
volatile uint32 *arm_cap_reg;
|
|
volatile uint32 *arm_bidx;
|
|
volatile uint32 *arm_binfo;
|
|
|
|
/* Block ints and save current core */
|
|
INTR_OFF(sii, intr_val);
|
|
origidx = si_coreidx(sih);
|
|
|
|
/* Switch to CR4 core */
|
|
if (!(regs = si_setcore(sih, ARMCR4_CORE_ID, 0)))
|
|
goto done;
|
|
|
|
/* Get info for determining size. If in reset, come out of reset,
|
|
* but remain in halt
|
|
*/
|
|
if (!(wasup = si_iscoreup(sih)))
|
|
si_core_reset(sih, SICF_CPUHALT, SICF_CPUHALT);
|
|
|
|
arm_cap_reg = (volatile uint32 *)(regs + SI_CR4_CAP);
|
|
corecap = R_REG(sii->osh, arm_cap_reg);
|
|
|
|
nab = (corecap & ARMCR4_TCBANB_MASK) >> ARMCR4_TCBANB_SHIFT;
|
|
nbb = (corecap & ARMCR4_TCBBNB_MASK) >> ARMCR4_TCBBNB_SHIFT;
|
|
totb = nab + nbb;
|
|
|
|
arm_bidx = (volatile uint32 *)(regs + SI_CR4_BANKIDX);
|
|
arm_binfo = (volatile uint32 *)(regs + SI_CR4_BANKINFO);
|
|
for (idx = 0; idx < totb; idx++) {
|
|
W_REG(sii->osh, arm_bidx, idx);
|
|
|
|
bxinfo = R_REG(sii->osh, arm_binfo);
|
|
memsize += ((bxinfo & ARMCR4_BSZ_MASK) + 1) * ARMCR4_BSZ_MULT;
|
|
}
|
|
|
|
/* Return to previous state and core */
|
|
if (!wasup)
|
|
si_core_disable(sih, 0);
|
|
si_setcoreidx(sih, origidx);
|
|
|
|
done:
|
|
INTR_RESTORE(sii, intr_val);
|
|
|
|
return memsize;
|
|
}
|
|
|
|
bool
|
|
si_has_flops(si_t *sih)
|
|
{
|
|
uint origidx, cr4_rev;
|
|
|
|
/* Find out CR4 core revision */
|
|
origidx = si_coreidx(sih);
|
|
if (si_setcore(sih, ARMCR4_CORE_ID, 0)) {
|
|
cr4_rev = si_corerev(sih);
|
|
si_setcoreidx(sih, origidx);
|
|
|
|
if (cr4_rev == 1 || cr4_rev >= 3)
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
uint32
|
|
si_socram_srmem_size(si_t *sih)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
uint origidx;
|
|
uint intr_val = 0;
|
|
|
|
sbsocramregs_t *regs;
|
|
bool wasup;
|
|
uint corerev;
|
|
uint32 coreinfo;
|
|
uint memsize = 0;
|
|
|
|
if ((CHIPID(sih->chip) == BCM4334_CHIP_ID) && (CHIPREV(sih->chiprev) < 2)) {
|
|
return (32 * 1024);
|
|
}
|
|
|
|
if (CHIPID(sih->chip) == BCM43430_CHIP_ID ||
|
|
CHIPID(sih->chip) == BCM43018_CHIP_ID) {
|
|
return (64 * 1024);
|
|
}
|
|
|
|
/* Block ints and save current core */
|
|
INTR_OFF(sii, intr_val);
|
|
origidx = si_coreidx(sih);
|
|
|
|
/* Switch to SOCRAM core */
|
|
if (!(regs = si_setcore(sih, SOCRAM_CORE_ID, 0)))
|
|
goto done;
|
|
|
|
/* Get info for determining size */
|
|
if (!(wasup = si_iscoreup(sih)))
|
|
si_core_reset(sih, 0, 0);
|
|
corerev = si_corerev(sih);
|
|
coreinfo = R_REG(sii->osh, ®s->coreinfo);
|
|
|
|
/* Calculate size from coreinfo based on rev */
|
|
if (corerev >= 16) {
|
|
uint8 i;
|
|
uint nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
|
|
for (i = 0; i < nb; i++) {
|
|
W_REG(sii->osh, ®s->bankidx, i);
|
|
if (R_REG(sii->osh, ®s->bankinfo) & SOCRAM_BANKINFO_RETNTRAM_MASK)
|
|
memsize += socram_banksize(sii, regs, i, SOCRAM_MEMTYPE_RAM);
|
|
}
|
|
}
|
|
|
|
/* Return to previous state and core */
|
|
if (!wasup)
|
|
si_core_disable(sih, 0);
|
|
si_setcoreidx(sih, origidx);
|
|
|
|
done:
|
|
INTR_RESTORE(sii, intr_val);
|
|
|
|
return memsize;
|
|
}
|
|
|
|
|
|
#if !defined(_CFEZ_) || defined(CFG_WL)
|
|
void
|
|
si_btcgpiowar(si_t *sih)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
uint origidx;
|
|
uint intr_val = 0;
|
|
chipcregs_t *cc;
|
|
|
|
/* Make sure that there is ChipCommon core present &&
|
|
* UART_TX is strapped to 1
|
|
*/
|
|
if (!(sih->cccaps & CC_CAP_UARTGPIO))
|
|
return;
|
|
|
|
/* si_corereg cannot be used as we have to guarantee 8-bit read/writes */
|
|
INTR_OFF(sii, intr_val);
|
|
|
|
origidx = si_coreidx(sih);
|
|
|
|
cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0);
|
|
ASSERT(cc != NULL);
|
|
|
|
W_REG(sii->osh, &cc->uart0mcr, R_REG(sii->osh, &cc->uart0mcr) | 0x04);
|
|
|
|
/* restore the original index */
|
|
si_setcoreidx(sih, origidx);
|
|
|
|
INTR_RESTORE(sii, intr_val);
|
|
}
|
|
|
|
void
|
|
si_chipcontrl_btshd0_4331(si_t *sih, bool on)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
chipcregs_t *cc;
|
|
uint origidx;
|
|
uint32 val;
|
|
uint intr_val = 0;
|
|
|
|
INTR_OFF(sii, intr_val);
|
|
|
|
origidx = si_coreidx(sih);
|
|
|
|
if ((cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0)) == NULL) {
|
|
SI_ERROR(("%s: Failed to find CORE ID!\n", __FUNCTION__));
|
|
return;
|
|
}
|
|
|
|
val = R_REG(sii->osh, &cc->chipcontrol);
|
|
|
|
/* bt_shd0 controls are same for 4331 chiprevs 0 and 1, packages 12x9 and 12x12 */
|
|
if (on) {
|
|
/* Enable bt_shd0 on gpio4: */
|
|
val |= (CCTRL4331_BT_SHD0_ON_GPIO4);
|
|
W_REG(sii->osh, &cc->chipcontrol, val);
|
|
} else {
|
|
val &= ~(CCTRL4331_BT_SHD0_ON_GPIO4);
|
|
W_REG(sii->osh, &cc->chipcontrol, val);
|
|
}
|
|
|
|
/* restore the original index */
|
|
si_setcoreidx(sih, origidx);
|
|
|
|
INTR_RESTORE(sii, intr_val);
|
|
}
|
|
|
|
void
|
|
si_chipcontrl_restore(si_t *sih, uint32 val)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
chipcregs_t *cc;
|
|
uint origidx = si_coreidx(sih);
|
|
|
|
if ((cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0)) == NULL) {
|
|
SI_ERROR(("%s: Failed to find CORE ID!\n", __FUNCTION__));
|
|
return;
|
|
}
|
|
W_REG(sii->osh, &cc->chipcontrol, val);
|
|
si_setcoreidx(sih, origidx);
|
|
}
|
|
|
|
uint32
|
|
si_chipcontrl_read(si_t *sih)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
chipcregs_t *cc;
|
|
uint origidx = si_coreidx(sih);
|
|
uint32 val;
|
|
|
|
if ((cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0)) == NULL) {
|
|
SI_ERROR(("%s: Failed to find CORE ID!\n", __FUNCTION__));
|
|
return -1;
|
|
}
|
|
val = R_REG(sii->osh, &cc->chipcontrol);
|
|
si_setcoreidx(sih, origidx);
|
|
return val;
|
|
}
|
|
|
|
void
|
|
si_chipcontrl_epa4331(si_t *sih, bool on)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
chipcregs_t *cc;
|
|
uint origidx = si_coreidx(sih);
|
|
uint32 val;
|
|
|
|
if ((cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0)) == NULL) {
|
|
SI_ERROR(("%s: Failed to find CORE ID!\n", __FUNCTION__));
|
|
return;
|
|
}
|
|
val = R_REG(sii->osh, &cc->chipcontrol);
|
|
|
|
if (on) {
|
|
if (sih->chippkg == 9 || sih->chippkg == 0xb) {
|
|
val |= (CCTRL4331_EXTPA_EN | CCTRL4331_EXTPA_ON_GPIO2_5);
|
|
/* Ext PA Controls for 4331 12x9 Package */
|
|
W_REG(sii->osh, &cc->chipcontrol, val);
|
|
} else {
|
|
/* Ext PA Controls for 4331 12x12 Package */
|
|
if (CHIPREV(sih->chiprev) > 0) {
|
|
W_REG(sii->osh, &cc->chipcontrol, val |
|
|
(CCTRL4331_EXTPA_EN) | (CCTRL4331_EXTPA_EN2));
|
|
} else {
|
|
W_REG(sii->osh, &cc->chipcontrol, val | (CCTRL4331_EXTPA_EN));
|
|
}
|
|
}
|
|
} else {
|
|
val &= ~(CCTRL4331_EXTPA_EN | CCTRL4331_EXTPA_EN2 | CCTRL4331_EXTPA_ON_GPIO2_5);
|
|
W_REG(sii->osh, &cc->chipcontrol, val);
|
|
}
|
|
|
|
si_setcoreidx(sih, origidx);
|
|
}
|
|
|
|
/** switch muxed pins, on: SROM, off: FEMCTRL. Called for a family of ac chips, not just 4360. */
|
|
void
|
|
si_chipcontrl_srom4360(si_t *sih, bool on)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
chipcregs_t *cc;
|
|
uint origidx = si_coreidx(sih);
|
|
uint32 val;
|
|
|
|
if ((cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0)) == NULL) {
|
|
SI_ERROR(("%s: Failed to find CORE ID!\n", __FUNCTION__));
|
|
return;
|
|
}
|
|
val = R_REG(sii->osh, &cc->chipcontrol);
|
|
|
|
if (on) {
|
|
val &= ~(CCTRL4360_SECI_MODE |
|
|
CCTRL4360_BTSWCTRL_MODE |
|
|
CCTRL4360_EXTRA_FEMCTRL_MODE |
|
|
CCTRL4360_BT_LGCY_MODE |
|
|
CCTRL4360_CORE2FEMCTRL4_ON);
|
|
|
|
W_REG(sii->osh, &cc->chipcontrol, val);
|
|
} else {
|
|
}
|
|
|
|
si_setcoreidx(sih, origidx);
|
|
}
|
|
|
|
void
|
|
si_clk_srom4365(si_t *sih)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
chipcregs_t *cc;
|
|
uint origidx = si_coreidx(sih);
|
|
uint32 val;
|
|
|
|
if ((cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0)) == NULL) {
|
|
SI_ERROR(("%s: Failed to find CORE ID!\n", __FUNCTION__));
|
|
return;
|
|
}
|
|
val = R_REG(sii->osh, &cc->clkdiv2);
|
|
W_REG(sii->osh, &cc->clkdiv2, ((val&~0xf) | 0x4));
|
|
|
|
si_setcoreidx(sih, origidx);
|
|
}
|
|
|
|
void
|
|
si_chipcontrl_epa4331_wowl(si_t *sih, bool enter_wowl)
|
|
{
|
|
si_info_t *sii;
|
|
chipcregs_t *cc;
|
|
uint origidx;
|
|
uint32 val;
|
|
bool sel_chip;
|
|
|
|
sel_chip = (CHIPID(sih->chip) == BCM4331_CHIP_ID) ||
|
|
(CHIPID(sih->chip) == BCM43431_CHIP_ID);
|
|
sel_chip &= ((sih->chippkg == 9 || sih->chippkg == 0xb));
|
|
|
|
if (!sel_chip)
|
|
return;
|
|
|
|
sii = SI_INFO(sih);
|
|
origidx = si_coreidx(sih);
|
|
|
|
if ((cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0)) == NULL) {
|
|
SI_ERROR(("%s: Failed to find CORE ID!\n", __FUNCTION__));
|
|
return;
|
|
}
|
|
|
|
val = R_REG(sii->osh, &cc->chipcontrol);
|
|
|
|
if (enter_wowl) {
|
|
val |= CCTRL4331_EXTPA_EN;
|
|
W_REG(sii->osh, &cc->chipcontrol, val);
|
|
} else {
|
|
val |= (CCTRL4331_EXTPA_EN | CCTRL4331_EXTPA_ON_GPIO2_5);
|
|
W_REG(sii->osh, &cc->chipcontrol, val);
|
|
}
|
|
si_setcoreidx(sih, origidx);
|
|
}
|
|
#endif
|
|
|
|
uint
|
|
si_pll_reset(si_t *sih)
|
|
{
|
|
uint err = 0;
|
|
|
|
return (err);
|
|
}
|
|
|
|
/** Enable BT-COEX & Ex-PA for 4313 */
|
|
void
|
|
si_epa_4313war(si_t *sih)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
chipcregs_t *cc;
|
|
uint origidx = si_coreidx(sih);
|
|
|
|
if ((cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0)) == NULL) {
|
|
SI_ERROR(("%s: Failed to find CORE ID!\n", __FUNCTION__));
|
|
return;
|
|
}
|
|
|
|
/* EPA Fix */
|
|
W_REG(sii->osh, &cc->gpiocontrol,
|
|
R_REG(sii->osh, &cc->gpiocontrol) | GPIO_CTRL_EPA_EN_MASK);
|
|
|
|
si_setcoreidx(sih, origidx);
|
|
}
|
|
|
|
void
|
|
si_clk_pmu_htavail_set(si_t *sih, bool set_clear)
|
|
{
|
|
}
|
|
|
|
void
|
|
si_pmu_avb_clk_set(si_t *sih, osl_t *osh, bool set_flag)
|
|
{
|
|
}
|
|
|
|
/** Re-enable synth_pwrsw resource in min_res_mask for 4313 */
|
|
void
|
|
si_pmu_synth_pwrsw_4313_war(si_t *sih)
|
|
{
|
|
}
|
|
|
|
/** WL/BT control for 4313 btcombo boards >= P250 */
|
|
void
|
|
si_btcombo_p250_4313_war(si_t *sih)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
chipcregs_t *cc;
|
|
uint origidx = si_coreidx(sih);
|
|
|
|
if ((cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0)) == NULL) {
|
|
SI_ERROR(("%s: Failed to find CORE ID!\n", __FUNCTION__));
|
|
return;
|
|
}
|
|
W_REG(sii->osh, &cc->gpiocontrol,
|
|
R_REG(sii->osh, &cc->gpiocontrol) | GPIO_CTRL_5_6_EN_MASK);
|
|
|
|
W_REG(sii->osh, &cc->gpioouten,
|
|
R_REG(sii->osh, &cc->gpioouten) | GPIO_CTRL_5_6_EN_MASK);
|
|
|
|
si_setcoreidx(sih, origidx);
|
|
}
|
|
void
|
|
si_btc_enable_chipcontrol(si_t *sih)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
chipcregs_t *cc;
|
|
uint origidx = si_coreidx(sih);
|
|
|
|
if ((cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0)) == NULL) {
|
|
SI_ERROR(("%s: Failed to find CORE ID!\n", __FUNCTION__));
|
|
return;
|
|
}
|
|
|
|
/* BT fix */
|
|
W_REG(sii->osh, &cc->chipcontrol,
|
|
R_REG(sii->osh, &cc->chipcontrol) | CC_BTCOEX_EN_MASK);
|
|
|
|
si_setcoreidx(sih, origidx);
|
|
}
|
|
void
|
|
si_btcombo_43228_war(si_t *sih)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
chipcregs_t *cc;
|
|
uint origidx = si_coreidx(sih);
|
|
|
|
if ((cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0)) == NULL) {
|
|
SI_ERROR(("%s: Failed to find CORE ID!\n", __FUNCTION__));
|
|
return;
|
|
}
|
|
|
|
W_REG(sii->osh, &cc->gpioouten, GPIO_CTRL_7_6_EN_MASK);
|
|
W_REG(sii->osh, &cc->gpioout, GPIO_OUT_7_EN_MASK);
|
|
|
|
si_setcoreidx(sih, origidx);
|
|
}
|
|
|
|
/** cache device removed state */
|
|
void si_set_device_removed(si_t *sih, bool status)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
|
|
sii->device_removed = status;
|
|
}
|
|
|
|
/** check if the device is removed */
|
|
bool
|
|
si_deviceremoved(si_t *sih)
|
|
{
|
|
uint32 w;
|
|
si_info_t *sii = SI_INFO(sih);
|
|
|
|
if (sii->device_removed) {
|
|
return TRUE;
|
|
}
|
|
|
|
switch (BUSTYPE(sih->bustype)) {
|
|
case PCI_BUS:
|
|
ASSERT(SI_INFO(sih)->osh != NULL);
|
|
w = OSL_PCI_READ_CONFIG(SI_INFO(sih)->osh, PCI_CFG_VID, sizeof(uint32));
|
|
if ((w & 0xFFFF) != VENDOR_BROADCOM)
|
|
return TRUE;
|
|
break;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
bool
|
|
si_is_warmboot(void)
|
|
{
|
|
|
|
#ifdef BCMULP
|
|
return (boot_type == WARM_BOOT);
|
|
#else
|
|
return FALSE;
|
|
#endif
|
|
}
|
|
|
|
bool
|
|
si_is_sprom_available(si_t *sih)
|
|
{
|
|
if (CCREV(sih->ccrev) >= 31) {
|
|
si_info_t *sii;
|
|
uint origidx;
|
|
chipcregs_t *cc;
|
|
uint32 sromctrl;
|
|
|
|
if ((sih->cccaps & CC_CAP_SROM) == 0)
|
|
return FALSE;
|
|
|
|
sii = SI_INFO(sih);
|
|
origidx = sii->curidx;
|
|
cc = si_setcoreidx(sih, SI_CC_IDX);
|
|
ASSERT(cc);
|
|
sromctrl = R_REG(sii->osh, &cc->sromcontrol);
|
|
si_setcoreidx(sih, origidx);
|
|
return (sromctrl & SRC_PRESENT);
|
|
}
|
|
|
|
switch (CHIPID(sih->chip)) {
|
|
case BCM43018_CHIP_ID:
|
|
case BCM43430_CHIP_ID:
|
|
return FALSE;
|
|
case BCM4336_CHIP_ID:
|
|
case BCM43362_CHIP_ID:
|
|
return (sih->chipst & CST4336_SPROM_PRESENT) != 0;
|
|
case BCM4330_CHIP_ID:
|
|
return (sih->chipst & CST4330_SPROM_PRESENT) != 0;
|
|
case BCM4313_CHIP_ID:
|
|
return (sih->chipst & CST4313_SPROM_PRESENT) != 0;
|
|
case BCM4331_CHIP_ID:
|
|
case BCM43431_CHIP_ID:
|
|
return (sih->chipst & CST4331_SPROM_PRESENT) != 0;
|
|
case BCM43239_CHIP_ID:
|
|
return ((sih->chipst & CST43239_SPROM_MASK) &&
|
|
!(sih->chipst & CST43239_SFLASH_MASK));
|
|
case BCM4324_CHIP_ID:
|
|
case BCM43242_CHIP_ID:
|
|
return ((sih->chipst & CST4324_SPROM_MASK) &&
|
|
!(sih->chipst & CST4324_SFLASH_MASK));
|
|
case BCM4335_CHIP_ID:
|
|
CASE_BCM4345_CHIP:
|
|
return ((sih->chipst & CST4335_SPROM_MASK) &&
|
|
!(sih->chipst & CST4335_SFLASH_MASK));
|
|
case BCM4349_CHIP_GRPID:
|
|
return (sih->chipst & CST4349_SPROM_PRESENT) != 0;
|
|
case BCM53573_CHIP_GRPID:
|
|
return FALSE; /* SPROM PRESENT is not defined for 53573 as of now */
|
|
case BCM4347_CHIP_ID:
|
|
return (sih->chipst & CST4347_SPROM_PRESENT) != 0;
|
|
break;
|
|
case BCM4350_CHIP_ID:
|
|
case BCM4354_CHIP_ID:
|
|
case BCM43556_CHIP_ID:
|
|
case BCM43558_CHIP_ID:
|
|
case BCM43566_CHIP_ID:
|
|
case BCM43568_CHIP_ID:
|
|
case BCM43569_CHIP_ID:
|
|
case BCM43570_CHIP_ID:
|
|
case BCM4358_CHIP_ID:
|
|
return (sih->chipst & CST4350_SPROM_PRESENT) != 0;
|
|
CASE_BCM43602_CHIP:
|
|
return (sih->chipst & CST43602_SPROM_PRESENT) != 0;
|
|
case BCM43131_CHIP_ID:
|
|
case BCM43217_CHIP_ID:
|
|
case BCM43227_CHIP_ID:
|
|
case BCM43228_CHIP_ID:
|
|
case BCM43428_CHIP_ID:
|
|
return (sih->chipst & CST43228_OTP_PRESENT) != CST43228_OTP_PRESENT;
|
|
case BCM43012_CHIP_ID:
|
|
return FALSE;
|
|
default:
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
|
|
uint32 si_get_sromctl(si_t *sih)
|
|
{
|
|
chipcregs_t *cc;
|
|
uint origidx = si_coreidx(sih);
|
|
uint32 sromctl;
|
|
osl_t *osh = si_osh(sih);
|
|
|
|
cc = si_setcoreidx(sih, SI_CC_IDX);
|
|
ASSERT((uintptr)cc);
|
|
|
|
sromctl = R_REG(osh, &cc->sromcontrol);
|
|
|
|
/* return to the original core */
|
|
si_setcoreidx(sih, origidx);
|
|
return sromctl;
|
|
}
|
|
|
|
int si_set_sromctl(si_t *sih, uint32 value)
|
|
{
|
|
chipcregs_t *cc;
|
|
uint origidx = si_coreidx(sih);
|
|
osl_t *osh = si_osh(sih);
|
|
int ret = BCME_OK;
|
|
|
|
cc = si_setcoreidx(sih, SI_CC_IDX);
|
|
ASSERT((uintptr)cc);
|
|
|
|
/* get chipcommon rev */
|
|
if (si_corerev(sih) >= 32) {
|
|
/* SpromCtrl is only accessible if CoreCapabilities.SpromSupported and
|
|
* SpromPresent is 1.
|
|
*/
|
|
if ((R_REG(osh, &cc->capabilities) & CC_CAP_SROM) != 0 &&
|
|
(R_REG(osh, &cc->sromcontrol) & SRC_PRESENT)) {
|
|
W_REG(osh, &cc->sromcontrol, value);
|
|
} else {
|
|
ret = BCME_NODEVICE;
|
|
}
|
|
} else {
|
|
ret = BCME_UNSUPPORTED;
|
|
}
|
|
|
|
/* return to the original core */
|
|
si_setcoreidx(sih, origidx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
uint
|
|
si_core_wrapperreg(si_t *sih, uint32 coreidx, uint32 offset, uint32 mask, uint32 val)
|
|
{
|
|
uint origidx, intr_val = 0;
|
|
uint ret_val;
|
|
si_info_t *sii = SI_INFO(sih);
|
|
|
|
origidx = si_coreidx(sih);
|
|
|
|
INTR_OFF(sii, intr_val);
|
|
si_setcoreidx(sih, coreidx);
|
|
|
|
ret_val = si_wrapperreg(sih, offset, mask, val);
|
|
|
|
/* return to the original core */
|
|
si_setcoreidx(sih, origidx);
|
|
INTR_RESTORE(sii, intr_val);
|
|
return ret_val;
|
|
}
|
|
|
|
|
|
/* cleanup the timer from the host when ARM is been halted
|
|
* without a chance for ARM cleanup its resources
|
|
* If left not cleanup, Intr from a software timer can still
|
|
* request HT clk when ARM is halted.
|
|
*/
|
|
uint32
|
|
si_pmu_res_req_timer_clr(si_t *sih)
|
|
{
|
|
uint32 mask;
|
|
|
|
mask = PRRT_REQ_ACTIVE | PRRT_INTEN | PRRT_HT_REQ;
|
|
mask <<= 14;
|
|
/* clear mask bits */
|
|
pmu_corereg(sih, SI_CC_IDX, res_req_timer, mask, 0);
|
|
/* readback to ensure write completes */
|
|
return pmu_corereg(sih, SI_CC_IDX, res_req_timer, 0, 0);
|
|
}
|
|
|
|
/** turn on/off rfldo */
|
|
void
|
|
si_pmu_rfldo(si_t *sih, bool on)
|
|
{
|
|
}
|
|
|
|
|
|
#ifdef SURVIVE_PERST_ENAB
|
|
static uint32
|
|
si_pcie_survive_perst(si_t *sih, uint32 mask, uint32 val)
|
|
{
|
|
si_info_t *sii;
|
|
|
|
sii = SI_INFO(sih);
|
|
|
|
if (!PCIE(sii))
|
|
return (0);
|
|
|
|
return pcie_survive_perst(sii->pch, mask, val);
|
|
}
|
|
|
|
static void
|
|
si_watchdog_reset(si_t *sih)
|
|
{
|
|
uint32 i;
|
|
|
|
/* issue a watchdog reset */
|
|
pmu_corereg(sih, SI_CC_IDX, pmuwatchdog, 2, 2);
|
|
/* do busy wait for 20ms */
|
|
for (i = 0; i < 2000; i++) {
|
|
OSL_DELAY(10);
|
|
}
|
|
}
|
|
#endif /* SURVIVE_PERST_ENAB */
|
|
|
|
void
|
|
si_survive_perst_war(si_t *sih, bool reset, uint32 sperst_mask, uint32 sperst_val)
|
|
{
|
|
#ifdef SURVIVE_PERST_ENAB
|
|
if (BUSTYPE(sih->bustype) != PCI_BUS)
|
|
return;
|
|
|
|
if ((CHIPID(sih->chip) != BCM4360_CHIP_ID && CHIPID(sih->chip) != BCM4352_CHIP_ID) ||
|
|
(CHIPREV(sih->chiprev) >= 4))
|
|
return;
|
|
|
|
if (reset) {
|
|
si_info_t *sii = SI_INFO(sih);
|
|
uint32 bar0win, bar0win_after;
|
|
|
|
/* save the bar0win */
|
|
bar0win = OSL_PCI_READ_CONFIG(sii->osh, PCI_BAR0_WIN, sizeof(uint32));
|
|
|
|
si_watchdog_reset(sih);
|
|
|
|
bar0win_after = OSL_PCI_READ_CONFIG(sii->osh, PCI_BAR0_WIN, sizeof(uint32));
|
|
if (bar0win_after != bar0win) {
|
|
SI_ERROR(("%s: bar0win before %08x, bar0win after %08x\n",
|
|
__FUNCTION__, bar0win, bar0win_after));
|
|
OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, sizeof(uint32), bar0win);
|
|
}
|
|
}
|
|
if (sperst_mask) {
|
|
/* enable survive perst */
|
|
si_pcie_survive_perst(sih, sperst_mask, sperst_val);
|
|
}
|
|
#endif /* SURVIVE_PERST_ENAB */
|
|
}
|
|
|
|
/* Caller of this function should make sure is on PCIE core
|
|
* Used in pciedev.c.
|
|
*/
|
|
void
|
|
si_pcie_disable_oobselltr(si_t *sih)
|
|
{
|
|
ASSERT(si_coreid(sih) == PCIE2_CORE_ID);
|
|
si_wrapperreg(sih, AI_OOBSELIND30, ~0, 0);
|
|
}
|
|
|
|
void
|
|
si_pcie_ltr_war(si_t *sih)
|
|
{
|
|
}
|
|
|
|
void
|
|
si_pcie_hw_LTR_war(si_t *sih)
|
|
{
|
|
}
|
|
|
|
void
|
|
si_pciedev_reg_pm_clk_period(si_t *sih)
|
|
{
|
|
}
|
|
|
|
void
|
|
si_pciedev_crwlpciegen2(si_t *sih)
|
|
{
|
|
}
|
|
|
|
void
|
|
si_pcie_prep_D3(si_t *sih, bool enter_D3)
|
|
{
|
|
}
|
|
|
|
|
|
#ifdef BCM_BACKPLANE_TIMEOUT
|
|
uint32
|
|
si_clear_backplane_to_fast(si_t *sih, void * addr)
|
|
{
|
|
if (CHIPTYPE(sih->socitype) == SOCI_AI) {
|
|
return ai_clear_backplane_to_fast(sih, addr);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
const si_axi_error_info_t * si_get_axi_errlog_info(si_t * sih)
|
|
{
|
|
if (CHIPTYPE(sih->socitype) == SOCI_AI) {
|
|
return (const si_axi_error_info_t *)sih->err_info;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void si_reset_axi_errlog_info(si_t * sih)
|
|
{
|
|
sih->err_info->count = 0;
|
|
}
|
|
#endif /* BCM_BACKPLANE_TIMEOUT */
|
|
|
|
#if defined(AXI_TIMEOUTS) || defined(BCM_BACKPLANE_TIMEOUT)
|
|
uint32
|
|
si_clear_backplane_to_per_core(si_t *sih, uint coreid, uint coreunit, void * wrap)
|
|
{
|
|
if (CHIPTYPE(sih->socitype) == SOCI_AI) {
|
|
return ai_clear_backplane_to_per_core(sih, coreid, coreunit, wrap);
|
|
}
|
|
|
|
return AXI_WRAP_STS_NONE;
|
|
}
|
|
#endif /* AXI_TIMEOUTS || BCM_BACKPLANE_TIMEOUT */
|
|
|
|
uint32
|
|
si_clear_backplane_to(si_t *sih)
|
|
{
|
|
if (CHIPTYPE(sih->socitype) == SOCI_AI) {
|
|
return ai_clear_backplane_to(sih);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This routine adds the AXI timeouts for
|
|
* chipcommon, pcie and ARM slave wrappers
|
|
*/
|
|
void
|
|
si_slave_wrapper_add(si_t *sih)
|
|
{
|
|
#if defined(AXI_TIMEOUTS) || defined(BCM_BACKPLANE_TIMEOUT)
|
|
/* Enable only for AXI */
|
|
if (CHIPTYPE(sih->socitype) != SOCI_AI) {
|
|
return;
|
|
}
|
|
|
|
if (CHIPID(sih->chip) == BCM4345_CHIP_ID && CHIPREV(sih->chiprev) >= 6) {
|
|
si_info_t *sii = SI_INFO(sih);
|
|
|
|
int wrapper_idx = (int)sii->axi_num_wrappers - 1;
|
|
|
|
ASSERT(wrapper_idx >= 0); /* axi_wrapper[] not initialised */
|
|
do {
|
|
if (sii->axi_wrapper[wrapper_idx].wrapper_type == AI_SLAVE_WRAPPER &&
|
|
sii->axi_wrapper[wrapper_idx].cid == 0xfff) {
|
|
sii->axi_wrapper[wrapper_idx].wrapper_addr = 0x1810b000;
|
|
break;
|
|
}
|
|
} while (wrapper_idx-- > 0);
|
|
ASSERT(wrapper_idx >= 0); /* all addresses valid for the chiprev under test */
|
|
}
|
|
|
|
/* All required slave wrappers are added in ai_scan */
|
|
ai_enable_backplane_timeouts(sih);
|
|
#endif /* AXI_TIMEOUTS || BCM_BACKPLANE_TIMEOUT */
|
|
}
|
|
|
|
|
|
void
|
|
si_pll_sr_reinit(si_t *sih)
|
|
{
|
|
}
|
|
|
|
|
|
/* Programming d11 core oob settings for 4364
|
|
* WARs for HW4364-237 and HW4364-166
|
|
*/
|
|
void
|
|
si_config_4364_d11_oob(si_t *sih, uint coreid)
|
|
{
|
|
uint save_idx;
|
|
|
|
save_idx = si_coreidx(sih);
|
|
si_setcore(sih, coreid, 0);
|
|
si_wrapperreg(sih, AI_OOBSELINC30, ~0, 0x81828180);
|
|
si_wrapperreg(sih, AI_OOBSELINC74, ~0, 0x87868183);
|
|
si_wrapperreg(sih, AI_OOBSELOUTB74, ~0, 0x84858484);
|
|
si_setcore(sih, coreid, 1);
|
|
si_wrapperreg(sih, AI_OOBSELINC30, ~0, 0x81828180);
|
|
si_wrapperreg(sih, AI_OOBSELINC74, ~0, 0x87868184);
|
|
si_wrapperreg(sih, AI_OOBSELOUTB74, ~0, 0x84868484);
|
|
si_setcoreidx(sih, save_idx);
|
|
}
|
|
|
|
void
|
|
si_pll_closeloop(si_t *sih)
|
|
{
|
|
#if defined(SAVERESTORE)
|
|
uint32 data;
|
|
|
|
/* disable PLL open loop operation */
|
|
switch (CHIPID(sih->chip)) {
|
|
#ifdef SAVERESTORE
|
|
case BCM43018_CHIP_ID:
|
|
case BCM43430_CHIP_ID:
|
|
if (SR_ENAB() && sr_isenab(sih)) {
|
|
/* read back the pll openloop state */
|
|
data = si_pmu_pllcontrol(sih, PMU1_PLL0_PLLCTL8, 0, 0);
|
|
/* current mode is openloop (possible POR) */
|
|
if ((data & PMU1_PLLCTL8_OPENLOOP_MASK) != 0) {
|
|
si_pmu_pllcontrol(sih, PMU1_PLL0_PLLCTL8,
|
|
PMU1_PLLCTL8_OPENLOOP_MASK, 0);
|
|
si_pmu_pllupd(sih);
|
|
}
|
|
}
|
|
break;
|
|
#endif /* SAVERESTORE */
|
|
default:
|
|
/* any unsupported chip bail */
|
|
return;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
si_update_macclk_mul_fact(si_t *sih, uint32 mul_fact)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
sii->macclk_mul_fact = mul_fact;
|
|
}
|
|
|
|
uint32
|
|
si_get_macclk_mul_fact(si_t *sih)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
return sii->macclk_mul_fact;
|
|
}
|
|
|
|
|
|
#if defined(BCMSRPWR) && !defined(BCMSRPWR_DISABLED)
|
|
bool _bcmsrpwr = TRUE;
|
|
#else
|
|
bool _bcmsrpwr = FALSE;
|
|
#endif
|
|
|
|
uint32
|
|
si_srpwr_request(si_t *sih, uint32 mask, uint32 val)
|
|
{
|
|
uint32 r, offset = OFFSETOF(chipcregs_t, powerctl); /* Same 0x1e8 per core */
|
|
uint cidx = (BUSTYPE(sih->bustype) == SI_BUS) ? SI_CC_IDX : sih->buscoreidx;
|
|
|
|
if (mask || val) {
|
|
mask <<= SRPWR_REQON_SHIFT;
|
|
val <<= SRPWR_REQON_SHIFT;
|
|
|
|
r = ((si_corereg(sih, cidx, offset, 0, 0) & ~mask) | val);
|
|
r = si_corereg(sih, cidx, offset, ~0, r);
|
|
} else {
|
|
r = si_corereg(sih, cidx, offset, 0, 0);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
uint32
|
|
si_srpwr_stat_spinwait(si_t *sih, uint32 mask, uint32 val)
|
|
{
|
|
uint32 r, offset = OFFSETOF(chipcregs_t, powerctl); /* Same 0x1e8 per core */
|
|
uint cidx = (BUSTYPE(sih->bustype) == SI_BUS) ? SI_CC_IDX : sih->buscoreidx;
|
|
|
|
ASSERT(mask);
|
|
ASSERT(val);
|
|
|
|
/* spinwait on pwrstatus */
|
|
mask <<= SRPWR_STATUS_SHIFT;
|
|
val <<= SRPWR_STATUS_SHIFT;
|
|
|
|
SPINWAIT(((si_corereg(sih, cidx, offset, 0, 0) & mask) != val),
|
|
PMU_MAX_TRANSITION_DLY);
|
|
ASSERT((si_corereg(sih, cidx, offset, 0, 0) & mask) == val);
|
|
|
|
r = si_corereg(sih, cidx, offset, 0, 0) & mask;
|
|
r = (r >> SRPWR_STATUS_SHIFT) & SRPWR_DMN_ALL_MASK;
|
|
|
|
return r;
|
|
}
|
|
|
|
uint32
|
|
si_srpwr_stat(si_t *sih)
|
|
{
|
|
uint32 r, offset = OFFSETOF(chipcregs_t, powerctl); /* Same 0x1e8 per core */
|
|
uint cidx = (BUSTYPE(sih->bustype) == SI_BUS) ? SI_CC_IDX : sih->buscoreidx;
|
|
|
|
r = si_corereg(sih, cidx, offset, 0, 0);
|
|
r = (r >> SRPWR_STATUS_SHIFT) & SRPWR_DMN_ALL_MASK;
|
|
|
|
return r;
|
|
}
|
|
|
|
uint32
|
|
si_srpwr_domain(si_t *sih)
|
|
{
|
|
uint32 r, offset = OFFSETOF(chipcregs_t, powerctl); /* Same 0x1e8 per core */
|
|
uint cidx = (BUSTYPE(sih->bustype) == SI_BUS) ? SI_CC_IDX : sih->buscoreidx;
|
|
|
|
r = si_corereg(sih, cidx, offset, 0, 0);
|
|
r = (r >> SRPWR_DMN_SHIFT) & SRPWR_DMN_ALL_MASK;
|
|
|
|
return r;
|
|
}
|
|
|
|
/* Utility API to read/write the raw registers with absolute address.
|
|
* This function can be invoked from either FW or host driver.
|
|
*/
|
|
uint32
|
|
si_raw_reg(si_t *sih, uint32 reg, uint32 val, uint32 wrire_req)
|
|
{
|
|
si_info_t *sii = SI_INFO(sih);
|
|
uint32 address_space = reg & ~0xFFF;
|
|
volatile uint32 * addr = (void*)(uintptr)(reg);
|
|
uint32 prev_value = 0;
|
|
uint32 cfg_reg = 0;
|
|
|
|
if (sii == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
/* No need to translate the absolute address on SI bus */
|
|
if (BUSTYPE(sih->bustype) == SI_BUS) {
|
|
goto skip_cfg;
|
|
}
|
|
|
|
/* This API supports only the PCI host interface */
|
|
if (BUSTYPE(sih->bustype) != PCI_BUS) {
|
|
return ID32_INVALID;
|
|
}
|
|
|
|
if (PCIE_GEN2(sii)) {
|
|
/* Use BAR0 Secondary window is PCIe Gen2.
|
|
* Set the secondary BAR0 Window to current register of interest
|
|
*/
|
|
addr = (volatile uint32*)(((volatile uint8*)sii->curmap) +
|
|
PCI_SEC_BAR0_WIN_OFFSET + (reg & 0xfff));
|
|
cfg_reg = PCIE2_BAR0_CORE2_WIN;
|
|
|
|
} else {
|
|
/* PCIe Gen1 do not have secondary BAR0 window.
|
|
* reuse the BAR0 WIN2
|
|
*/
|
|
addr = (volatile uint32*)(((volatile uint8*)sii->curmap) +
|
|
PCI_BAR0_WIN2_OFFSET + (reg & 0xfff));
|
|
cfg_reg = PCI_BAR0_WIN2;
|
|
}
|
|
|
|
prev_value = OSL_PCI_READ_CONFIG(sii->osh, cfg_reg, 4);
|
|
|
|
if (prev_value != address_space) {
|
|
OSL_PCI_WRITE_CONFIG(sii->osh, cfg_reg,
|
|
sizeof(uint32), address_space);
|
|
} else {
|
|
prev_value = 0;
|
|
}
|
|
|
|
skip_cfg:
|
|
if (wrire_req) {
|
|
W_REG(sii->osh, addr, val);
|
|
} else {
|
|
val = R_REG(sii->osh, addr);
|
|
}
|
|
|
|
if (prev_value) {
|
|
/* Restore BAR0 WIN2 for PCIE GEN1 devices */
|
|
OSL_PCI_WRITE_CONFIG(sii->osh,
|
|
cfg_reg, sizeof(uint32), prev_value);
|
|
}
|
|
|
|
return val;
|
|
}
|