SmartAudio/lichee/linux-4.9/drivers/input/sensor/sunxi_gpadc.c

1704 lines
39 KiB
C
Executable File

/*
* drivers/input/sensor/sunxi_gpadc.c
*
* Copyright (C) 2016 Allwinner.
* fuzhaoke <fuzhaoke@allwinnertech.com>
*
* SUNXI GPADC Controller Driver
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/input.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <linux/timer.h>
#include <linux/clk.h>
#include <linux/irq.h>
#include <linux/of_platform.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/pm.h>
#include "sunxi_gpadc.h"
#include <linux/sched.h>
static u32 debug_mask = 1;
#define dprintk(level_mask, fmt, ...) \
do { \
if (unlikely(debug_mask & level_mask)) \
printk(fmt, ##__VA_ARGS__); \
} while (0)
static struct sunxi_gpadc *sunxi_gpadc;
static struct status_reg status_para;
static struct vol_reg vol_para;
static struct sr_reg sr_para;
static struct filter_reg filter_para;
u32 key_vol[VOL_NUM];
u8 filter_cnt = 4;
static unsigned char keypad_mapindex[128] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, /* key 1, 0-8 */
1, 1, 1, 1, 1, /* key 2, 9-13 */
2, 2, 2, 2, 2, 2, /* key 3, 14-19 */
3, 3, 3, 3, 3, 3, /* key 4, 20-25 */
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, /* key 5, 26-36 */
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, /* key 6, 37-39 */
6, 6, 6, 6, 6, 6, 6, 6, 6, /* key 7, 40-49 */
7, 7, 7, 7, 7, 7, 7 /* key 8, 50-63 */
};
u32 sunxi_gpadc_sample_rate_read(void __iomem *reg_base, u32 clk_in)
{
u32 div, round_clk;
div = readl(reg_base + GP_SR_REG);
div = div >> 16;
round_clk = clk_in / (div + 1);
return round_clk;
}
/* clk_in: source clock, round_clk: sample rate */
void sunxi_gpadc_sample_rate_set(void __iomem *reg_base, u32 clk_in,
u32 round_clk)
{
u32 div, reg_val;
if (round_clk > clk_in)
pr_err("%s, invalid round clk!\n", __func__);
div = clk_in / round_clk - 1 ;
reg_val = readl(reg_base + GP_SR_REG);
reg_val &= ~GP_SR_CON;
reg_val |= (div << 16);
writel(reg_val, reg_base + GP_SR_REG);
}
void sunxi_gpadc_ctrl_set(void __iomem *reg_base, u32 ctrl_para)
{
u32 reg_val;
reg_val = readl(reg_base + GP_CTRL_REG);
reg_val |= ctrl_para;
writel(reg_val, reg_base + GP_CTRL_REG);
}
static u32 sunxi_gpadc_ch_select(void __iomem *reg_base, enum gp_channel_id id)
{
u32 reg_val;
reg_val = readl(reg_base + GP_CS_EN_REG);
switch (id) {
case GP_CH_0:
reg_val |= GP_CH0_SELECT;
break;
case GP_CH_1:
reg_val |= GP_CH1_SELECT;
break;
case GP_CH_2:
reg_val |= GP_CH2_SELECT;
break;
case GP_CH_3:
reg_val |= GP_CH3_SELECT;
break;
case GP_CH_4:
reg_val |= GP_CH4_SELECT;
break;
case GP_CH_5:
reg_val |= GP_CH5_SELECT;
break;
case GP_CH_6:
reg_val |= GP_CH6_SELECT;
break;
case GP_CH_7:
reg_val |= GP_CH7_SELECT;
break;
default:
pr_err("%s, invalid channel id!", __func__);
return -EINVAL;
}
writel(reg_val, reg_base + GP_CS_EN_REG);
return 0;
}
static u32 sunxi_gpadc_ch_deselect(void __iomem *reg_base,
enum gp_channel_id id)
{
u32 reg_val;
reg_val = readl(reg_base + GP_CS_EN_REG);
switch (id) {
case GP_CH_0:
reg_val &= ~GP_CH0_SELECT;
break;
case GP_CH_1:
reg_val &= ~GP_CH1_SELECT;
break;
case GP_CH_2:
reg_val &= ~GP_CH2_SELECT;
break;
case GP_CH_3:
reg_val &= ~GP_CH3_SELECT;
break;
case GP_CH_4:
reg_val &= ~GP_CH4_SELECT;
break;
case GP_CH_5:
reg_val &= ~GP_CH5_SELECT;
break;
case GP_CH_6:
reg_val &= ~GP_CH6_SELECT;
break;
case GP_CH_7:
reg_val &= ~GP_CH7_SELECT;
break;
default:
pr_err("%s, invalid channel id!", __func__);
return -EINVAL;
}
writel(reg_val, reg_base + GP_CS_EN_REG);
return 0;
}
static u32 sunxi_gpadc_ch_cmp_low(void __iomem *reg_base, enum gp_channel_id id,
u32 low_uv)
{
u32 reg_val = 0, low = 0, unit = 0;
/* analog voltage range 0~1.8v, 12bits sample rate, unit=1.8v/(2^12) */
unit = VOL_RANGE / 4096; /* 12bits sample rate */
low = low_uv / unit;
if (low > VOL_VALUE_MASK)
low = VOL_VALUE_MASK;
switch (id) {
case GP_CH_0:
reg_val = readl(reg_base + GP_CH0_CMP_DATA_REG);
reg_val &= ~VOL_VALUE_MASK;
reg_val |= (low & VOL_VALUE_MASK);
writel(reg_val, reg_base + GP_CH0_CMP_DATA_REG);
break;
case GP_CH_1:
reg_val = readl(reg_base + GP_CH1_CMP_DATA_REG);
reg_val &= ~VOL_VALUE_MASK;
reg_val |= (low & VOL_VALUE_MASK);
writel(reg_val, reg_base + GP_CH1_CMP_DATA_REG);
break;
case GP_CH_2:
reg_val = readl(reg_base + GP_CH2_CMP_DATA_REG);
reg_val &= ~VOL_VALUE_MASK;
reg_val |= (low & VOL_VALUE_MASK);
writel(reg_val, reg_base + GP_CH2_CMP_DATA_REG);
break;
case GP_CH_3:
reg_val = readl(reg_base + GP_CH3_CMP_DATA_REG);
reg_val &= ~VOL_VALUE_MASK;
reg_val |= (low & VOL_VALUE_MASK);
writel(reg_val, reg_base + GP_CH3_CMP_DATA_REG);
break;
case GP_CH_4:
reg_val = readl(reg_base + GP_CH4_CMP_DATA_REG);
reg_val &= ~VOL_VALUE_MASK;
reg_val |= (low & VOL_VALUE_MASK);
writel(reg_val, reg_base + GP_CH4_CMP_DATA_REG);
break;
case GP_CH_5:
reg_val = readl(reg_base + GP_CH5_CMP_DATA_REG);
reg_val &= ~VOL_VALUE_MASK;
reg_val |= (low & VOL_VALUE_MASK);
writel(reg_val, reg_base + GP_CH5_CMP_DATA_REG);
break;
case GP_CH_6:
reg_val = readl(reg_base + GP_CH6_CMP_DATA_REG);
reg_val &= ~VOL_VALUE_MASK;
reg_val |= (low & VOL_VALUE_MASK);
writel(reg_val, reg_base + GP_CH6_CMP_DATA_REG);
break;
case GP_CH_7:
reg_val = readl(reg_base + GP_CH7_CMP_DATA_REG);
reg_val &= ~VOL_VALUE_MASK;
reg_val |= (low & VOL_VALUE_MASK);
writel(reg_val, reg_base + GP_CH7_CMP_DATA_REG);
break;
default:
pr_err("%s, invalid channel id!", __func__);
return -EINVAL;
}
return 0;
}
static u32 sunxi_gpadc_ch_cmp_hig(void __iomem *reg_base, enum gp_channel_id id,
u32 hig_uv)
{
u32 reg_val = 0, hig = 0, unit = 0;
/* anolog voltage range 0~1.8v, 12bits sample rate, unit=1.8v/(2^12) */
unit = VOL_RANGE / 4096; /* 12bits sample rate */
hig = hig_uv / unit;
if (hig > VOL_VALUE_MASK)
hig = VOL_VALUE_MASK;
switch (id) {
case GP_CH_0:
reg_val = readl(reg_base + GP_CH0_CMP_DATA_REG);
reg_val &= ~(VOL_VALUE_MASK << 16);
reg_val |= (hig & VOL_VALUE_MASK) << 16;
writel(reg_val, reg_base + GP_CH0_CMP_DATA_REG);
break;
case GP_CH_1:
reg_val = readl(reg_base + GP_CH1_CMP_DATA_REG);
reg_val &= ~(VOL_VALUE_MASK << 16);
reg_val |= (hig & VOL_VALUE_MASK) << 16;
writel(reg_val, reg_base + GP_CH1_CMP_DATA_REG);
break;
case GP_CH_2:
reg_val = readl(reg_base + GP_CH2_CMP_DATA_REG);
reg_val &= ~(VOL_VALUE_MASK << 16);
reg_val |= (hig & VOL_VALUE_MASK) << 16;
writel(reg_val, reg_base + GP_CH2_CMP_DATA_REG);
break;
case GP_CH_3:
reg_val = readl(reg_base + GP_CH3_CMP_DATA_REG);
reg_val &= ~(VOL_VALUE_MASK << 16);
reg_val |= (hig & VOL_VALUE_MASK) << 16;
writel(reg_val, reg_base + GP_CH3_CMP_DATA_REG);
break;
case GP_CH_4:
reg_val = readl(reg_base + GP_CH4_CMP_DATA_REG);
reg_val &= ~(VOL_VALUE_MASK << 16);
reg_val |= (hig & VOL_VALUE_MASK) << 16;
writel(reg_val, reg_base + GP_CH4_CMP_DATA_REG);
break;
case GP_CH_5:
reg_val = readl(reg_base + GP_CH5_CMP_DATA_REG);
reg_val &= ~(VOL_VALUE_MASK << 16);
reg_val |= (hig & VOL_VALUE_MASK) << 16;
writel(reg_val, reg_base + GP_CH5_CMP_DATA_REG);
break;
case GP_CH_6:
reg_val = readl(reg_base + GP_CH6_CMP_DATA_REG);
reg_val &= ~(VOL_VALUE_MASK << 16);
reg_val |= (hig & VOL_VALUE_MASK) << 16;
writel(reg_val, reg_base + GP_CH6_CMP_DATA_REG);
break;
case GP_CH_7:
reg_val = readl(reg_base + GP_CH7_CMP_DATA_REG);
reg_val &= ~(VOL_VALUE_MASK << 16);
reg_val |= (hig & VOL_VALUE_MASK) << 16;
writel(reg_val, reg_base + GP_CH7_CMP_DATA_REG);
break;
default:
pr_err("%s, invalid channel id!", __func__);
return -EINVAL;
}
return 0;
}
static u32 sunxi_gpadc_cmp_select(void __iomem *reg_base, enum gp_channel_id id)
{
u32 reg_val;
reg_val = readl(reg_base + GP_CS_EN_REG);
switch (id) {
case GP_CH_0:
reg_val |= GP_CH0_CMP_EN;
break;
case GP_CH_1:
reg_val |= GP_CH1_CMP_EN;
break;
case GP_CH_2:
reg_val |= GP_CH2_CMP_EN;
break;
case GP_CH_3:
reg_val |= GP_CH3_CMP_EN;
break;
case GP_CH_4:
reg_val |= GP_CH4_CMP_EN;
break;
case GP_CH_5:
reg_val |= GP_CH5_CMP_EN;
break;
case GP_CH_6:
reg_val |= GP_CH6_CMP_EN;
break;
case GP_CH_7:
reg_val |= GP_CH7_CMP_EN;
break;
default:
pr_err("%s, invalid value!", __func__);
return -EINVAL;
}
writel(reg_val, reg_base + GP_CS_EN_REG);
return 0;
}
static u32 sunxi_gpadc_cmp_deselect(void __iomem *reg_base,
enum gp_channel_id id)
{
u32 reg_val;
reg_val = readl(reg_base + GP_CTRL_REG);
switch (id) {
case GP_CH_0:
reg_val &= ~GP_CH0_CMP_EN;
break;
case GP_CH_1:
reg_val &= ~GP_CH1_CMP_EN;
break;
case GP_CH_2:
reg_val &= ~GP_CH2_CMP_EN;
break;
case GP_CH_3:
reg_val &= ~GP_CH3_CMP_EN;
break;
case GP_CH_4:
reg_val &= ~GP_CH4_CMP_EN;
break;
case GP_CH_5:
reg_val &= ~GP_CH5_CMP_EN;
break;
case GP_CH_6:
reg_val &= ~GP_CH6_CMP_EN;
break;
case GP_CH_7:
reg_val &= ~GP_CH7_CMP_EN;
break;
default:
pr_err("%s, invalid value!", __func__);
return -EINVAL;
}
writel(reg_val, reg_base + GP_CTRL_REG);
return 0;
}
static u32 sunxi_gpadc_mode_select(void __iomem *reg_base,
enum gp_select_mode mode)
{
u32 reg_val;
reg_val = readl(reg_base + GP_CTRL_REG);
reg_val &= ~GP_MODE_SELECT;
reg_val |= (mode << 18);
writel(reg_val, reg_base + GP_CTRL_REG);
return 0;
}
/* enable gpadc function, true:enable, false:disable */
static void sunxi_gpadc_enable(void __iomem *reg_base, bool onoff)
{
u32 reg_val = 0;
reg_val = readl(reg_base + GP_CTRL_REG);
if (true == onoff)
reg_val |= GP_ADC_EN;
else
reg_val &= ~GP_ADC_EN;
writel(reg_val, reg_base + GP_CTRL_REG);
}
static void sunxi_gpadc_calibration_enable(void __iomem *reg_base)
{
u32 reg_val;
reg_val = readl(reg_base + GP_CTRL_REG);
reg_val |= GP_CALIBRATION_ENABLE;
writel(reg_val, reg_base + GP_CTRL_REG);
}
static u32 sunxi_enable_lowirq_ch_select(void __iomem *reg_base,
enum gp_channel_id id)
{
u32 reg_val;
reg_val = readl(reg_base + GP_DATAL_INTC_REG);
switch (id) {
case GP_CH_0:
reg_val |= GP_CH0_SELECT;
break;
case GP_CH_1:
reg_val |= GP_CH1_SELECT;
break;
case GP_CH_2:
reg_val |= GP_CH2_SELECT;
break;
case GP_CH_3:
reg_val |= GP_CH3_SELECT;
break;
case GP_CH_4:
reg_val |= GP_CH4_SELECT;
break;
case GP_CH_5:
reg_val |= GP_CH5_SELECT;
break;
case GP_CH_6:
reg_val |= GP_CH6_SELECT;
break;
case GP_CH_7:
reg_val |= GP_CH7_SELECT;
break;
default:
pr_err("%s, invalid channel id!", __func__);
return -EINVAL;
}
writel(reg_val, reg_base + GP_DATAL_INTC_REG);
return 0;
}
static u32 sunxi_disable_lowirq_ch_select(void __iomem *reg_base,
enum gp_channel_id id)
{
u32 reg_val;
reg_val = readl(reg_base + GP_DATAL_INTC_REG);
switch (id) {
case GP_CH_0:
reg_val &= ~GP_CH0_SELECT;
break;
case GP_CH_1:
reg_val &= ~GP_CH1_SELECT;
break;
case GP_CH_2:
reg_val &= ~GP_CH2_SELECT;
break;
case GP_CH_3:
reg_val &= ~GP_CH3_SELECT;
break;
case GP_CH_4:
reg_val &= ~GP_CH4_SELECT;
break;
case GP_CH_5:
reg_val &= ~GP_CH5_SELECT;
break;
case GP_CH_6:
reg_val &= ~GP_CH6_SELECT;
break;
case GP_CH_7:
reg_val &= ~GP_CH7_SELECT;
break;
default:
pr_err("%s, invalid channel id!", __func__);
return -EINVAL;
}
writel(reg_val, reg_base + GP_DATAL_INTC_REG);
return 0;
}
static u32 sunxi_enable_higirq_ch_select(void __iomem *reg_base,
enum gp_channel_id id)
{
u32 reg_val = 0;
reg_val = readl(reg_base + GP_DATAH_INTC_REG);
switch (id) {
case GP_CH_0:
reg_val |= GP_CH0_SELECT;
break;
case GP_CH_1:
reg_val |= GP_CH1_SELECT;
break;
case GP_CH_2:
reg_val |= GP_CH2_SELECT;
break;
case GP_CH_3:
reg_val |= GP_CH3_SELECT;
break;
case GP_CH_4:
reg_val |= GP_CH4_SELECT;
break;
case GP_CH_5:
reg_val |= GP_CH5_SELECT;
break;
case GP_CH_6:
reg_val |= GP_CH6_SELECT;
break;
case GP_CH_7:
reg_val |= GP_CH7_SELECT;
break;
default:
pr_err("%s, invalid channel id!", __func__);
return -EINVAL;
}
writel(reg_val, reg_base + GP_DATAH_INTC_REG);
return 0;
}
static u32 sunxi_disable_higirq_ch_select(void __iomem *reg_base,
enum gp_channel_id id)
{
u32 reg_val = 0;
reg_val = readl(reg_base + GP_DATAH_INTC_REG);
switch (id) {
case GP_CH_0:
reg_val &= ~GP_CH0_SELECT;
break;
case GP_CH_1:
reg_val &= ~GP_CH1_SELECT;
break;
case GP_CH_2:
reg_val &= ~GP_CH2_SELECT;
break;
case GP_CH_3:
reg_val &= ~GP_CH3_SELECT;
break;
case GP_CH_4:
reg_val &= ~GP_CH4_SELECT;
break;
case GP_CH_5:
reg_val &= ~GP_CH5_SELECT;
break;
case GP_CH_6:
reg_val &= ~GP_CH6_SELECT;
break;
case GP_CH_7:
reg_val &= ~GP_CH7_SELECT;
break;
default:
pr_err("%s, invalid channel id!", __func__);
return -EINVAL;
}
writel(reg_val, reg_base + GP_DATAH_INTC_REG);
return 0;
}
static u32 sunxi_gpadc_channel_id(enum gp_channel_id id)
{
u32 channel_id;
switch (id) {
case GP_CH_0:
channel_id = CHANNEL_0_SELECT;
break;
case GP_CH_1:
channel_id = CHANNEL_1_SELECT;
break;
case GP_CH_2:
channel_id = CHANNEL_2_SELECT;
break;
case GP_CH_3:
channel_id = CHANNEL_3_SELECT;
break;
case GP_CH_4:
channel_id = CHANNEL_4_SELECT;
break;
case GP_CH_5:
channel_id = CHANNEL_5_SELECT;
break;
case GP_CH_6:
channel_id = CHANNEL_6_SELECT;
break;
case GP_CH_7:
channel_id = CHANNEL_7_SELECT;
break;
default:
pr_err("%s,channel id select fail", __func__);
return -EINVAL;
}
return channel_id;
}
static u32 sunxi_enable_irq_ch_select(void __iomem *reg_base,
enum gp_channel_id id)
{
u32 reg_val;
reg_val = readl(reg_base + GP_DATA_INTC_REG);
switch (id) {
case GP_CH_0:
reg_val |= GP_CH0_SELECT;
break;
case GP_CH_1:
reg_val |= GP_CH1_SELECT;
break;
case GP_CH_2:
reg_val |= GP_CH2_SELECT;
break;
case GP_CH_3:
reg_val |= GP_CH3_SELECT;
break;
case GP_CH_4:
reg_val |= GP_CH4_SELECT;
break;
case GP_CH_5:
reg_val |= GP_CH5_SELECT;
break;
case GP_CH_6:
reg_val |= GP_CH6_SELECT;
break;
case GP_CH_7:
reg_val |= GP_CH7_SELECT;
break;
default:
pr_err("%s, invalid channel id!", __func__);
return -EINVAL;
}
writel(reg_val, reg_base + GP_DATA_INTC_REG);
return 0;
}
static u32 sunxi_disable_irq_ch_select(void __iomem *reg_base,
enum gp_channel_id id)
{
u32 reg_val;
reg_val = readl(reg_base + GP_DATA_INTC_REG);
switch (id) {
case GP_CH_0:
reg_val &= ~GP_CH0_SELECT;
break;
case GP_CH_1:
reg_val &= ~GP_CH1_SELECT;
break;
case GP_CH_2:
reg_val &= ~GP_CH2_SELECT;
break;
case GP_CH_3:
reg_val &= ~GP_CH3_SELECT;
break;
case GP_CH_4:
reg_val &= ~GP_CH4_SELECT;
break;
case GP_CH_5:
reg_val &= ~GP_CH5_SELECT;
break;
case GP_CH_6:
reg_val &= ~GP_CH6_SELECT;
break;
case GP_CH_7:
reg_val &= ~GP_CH7_SELECT;
break;
default:
pr_err("%s, invalid channel id!", __func__);
return -EINVAL;
}
writel(reg_val, reg_base + GP_DATA_INTC_REG);
return 0;
}
static u32 sunxi_ch_lowirq_status(void __iomem *reg_base)
{
return readl(reg_base + GP_DATAL_INTS_REG);
}
static void sunxi_ch_lowirq_clear_flags(void __iomem *reg_base, u32 flags)
{
writel(flags, reg_base + GP_DATAL_INTS_REG);
}
static u32 sunxi_ch_higirq_status(void __iomem *reg_base)
{
return readl(reg_base + GP_DATAH_INTS_REG);
}
static void sunxi_ch_higirq_clear_flags(void __iomem *reg_base, u32 flags)
{
writel(flags, reg_base + GP_DATAH_INTS_REG);
}
static u32 sunxi_ch_irq_status(void __iomem *reg_base)
{
return readl(reg_base + GP_DATA_INTS_REG);
}
static void sunxi_ch_irq_clear_flags(void __iomem *reg_base, u32 flags)
{
writel(flags, reg_base + GP_DATA_INTS_REG);
}
static u32 sunxi_gpadc_read_ch_lowirq_enable(void __iomem *reg_base)
{
return readl(reg_base + GP_DATAL_INTC_REG);
}
static u32 sunxi_gpadc_read_ch_higirq_enable(void __iomem *reg_base)
{
return readl(reg_base + GP_DATAH_INTC_REG);
}
static u32 sunxi_gpadc_read_ch_irq_enable(void __iomem *reg_base)
{
return readl(reg_base + GP_DATA_INTC_REG);
}
static u32 sunxi_gpadc_read_data(void __iomem *reg_base, enum gp_channel_id id)
{
switch (id) {
case GP_CH_0:
return readl(reg_base + GP_CH0_DATA_REG) & GP_CH0_DATA_MASK;
case GP_CH_1:
return readl(reg_base + GP_CH1_DATA_REG) & GP_CH1_DATA_MASK;
case GP_CH_2:
return readl(reg_base + GP_CH2_DATA_REG) & GP_CH2_DATA_MASK;
case GP_CH_3:
return readl(reg_base + GP_CH3_DATA_REG) & GP_CH3_DATA_MASK;
case GP_CH_4:
return readl(reg_base + GP_CH4_DATA_REG) & GP_CH4_DATA_MASK;
case GP_CH_5:
return readl(reg_base + GP_CH5_DATA_REG) & GP_CH5_DATA_MASK;
case GP_CH_6:
return readl(reg_base + GP_CH6_DATA_REG) & GP_CH6_DATA_MASK;
case GP_CH_7:
return readl(reg_base + GP_CH7_DATA_REG) & GP_CH7_DATA_MASK;
default:
pr_err("%s, invalid channel id!", __func__);
return -EINVAL;
}
}
static int sunxi_gpadc_input_event_set(struct input_dev *input_dev,
enum gp_channel_id id)
{
int i;
if (!input_dev) {
pr_err("%s:input_dev: not enough memory for input device\n",
__func__);
return -ENOMEM;
}
switch (id) {
case GP_CH_0:
input_dev->evbit[0] = BIT_MASK(EV_KEY);
for (i = 0; i < KEY_MAX_CNT; i++)
set_bit(sunxi_gpadc->scankeycodes[i],
input_dev->keybit);
break;
case GP_CH_1:
case GP_CH_2:
case GP_CH_3:
case GP_CH_4:
case GP_CH_5:
case GP_CH_6:
case GP_CH_7:
input_dev->evbit[0] = BIT_MASK(EV_MSC);
set_bit(EV_MSC, input_dev->evbit);
set_bit(MSC_SCAN, input_dev->mscbit);
break;
default:
pr_err("%s, invalid channel id!", __func__);
return -ENOMEM;
}
return 0;
}
static int sunxi_gpadc_input_register(struct sunxi_gpadc *sunxi_gpadc, int id)
{
static struct input_dev *input_dev;
int ret;
input_dev = input_allocate_device();
if (!input_dev) {
pr_err("input_dev: not enough memory for input device\n");
return -ENOMEM;
}
switch (id) {
case GP_CH_0:
input_dev->name = "sunxi-gpadc0";
input_dev->phys = "sunxigpadc0/input0";
break;
case GP_CH_1:
input_dev->name = "sunxi-gpadc1";
input_dev->phys = "sunxigpadc1/input0";
break;
case GP_CH_2:
input_dev->name = "sunxi-gpadc2";
input_dev->phys = "sunxigpadc2/input0";
break;
case GP_CH_3:
input_dev->name = "sunxi-gpadc3";
input_dev->phys = "sunxigpadc3/input0";
break;
case GP_CH_4:
input_dev->name = "sunxi-gpadc4";
input_dev->phys = "sunxigpadc4/input0";
break;
case GP_CH_5:
input_dev->name = "sunxi-gpadc5";
input_dev->phys = "sunxigpadc5/input0";
break;
case GP_CH_6:
input_dev->name = "sunxi-gpadc6";
input_dev->phys = "sunxigpadc6/input0";
break;
case GP_CH_7:
input_dev->name = "sunxi-gpadc7";
input_dev->phys = "sunxigpadc7/input0";
break;
default:
pr_err("%s, invalid channel id!", __func__);
goto fail;
}
input_dev->id.bustype = BUS_HOST;
input_dev->id.vendor = 0x0001;
input_dev->id.product = 0x0001;
input_dev->id.version = 0x0100;
sunxi_gpadc_input_event_set(input_dev, id);
sunxi_gpadc->input_gpadc[id] = input_dev;
ret = input_register_device(sunxi_gpadc->input_gpadc[id]);
if (ret) {
pr_err("input register fail\n");
goto fail1;
}
return 0;
fail1:
input_unregister_device(sunxi_gpadc->input_gpadc[id]);
fail:
input_free_device(sunxi_gpadc->input_gpadc[id]);
return ret;
}
static int sunxi_key_init(struct sunxi_gpadc *sunxi_gpadc,
struct platform_device *pdev)
{
struct device_node *np = NULL;
unsigned char i, j = 0;
u32 vol, val, gap = 0, half_gap = 0, cnt = 0;
u32 set_vol[VOL_NUM];
np = pdev->dev.of_node;
if (of_property_read_u32(np, "key_cnt", &sunxi_gpadc->key_num)) {
pr_err("%s: get key count failed", __func__);
return -EBUSY;
}
pr_debug("%s key number = %d.\n", __func__, sunxi_gpadc->key_num);
if (sunxi_gpadc->key_num < 1 || sunxi_gpadc->key_num > VOL_NUM) {
pr_err("incorrect key number.\n");
return -1;
}
for (i = 0; i < sunxi_gpadc->key_num; i++) {
sprintf(sunxi_gpadc->key_name, "key%d_vol", i);
if (of_property_read_u32(np, sunxi_gpadc->key_name, &vol)) {
pr_err("%s:get%s err!\n", __func__,
sunxi_gpadc->key_name);
return -EBUSY;
}
key_vol[i] = vol;
sprintf(sunxi_gpadc->key_name, "key%d_val", i);
if (of_property_read_u32(np, sunxi_gpadc->key_name, &val)) {
pr_err("%s:get%s err!\n", __func__,
sunxi_gpadc->key_name);
return -EBUSY;
}
sunxi_gpadc->scankeycodes[i] = val;
pr_debug("%s: key%d vol= %d code= %d\n", __func__, i,
key_vol[i], sunxi_gpadc->scankeycodes[i]);
}
key_vol[sunxi_gpadc->key_num] = MAXIMUM_INPUT_VOLTAGE;
for (i = sunxi_gpadc->key_num - 1; i > 0; i--) {
gap = gap + (key_vol[i] - key_vol[i-1]);
cnt++;
}
half_gap = gap/cnt/2;
for (i = 0; i < sunxi_gpadc->key_num; i++)
set_vol[i] = key_vol[i] + half_gap;
for (i = 0; i < 128; i++) {
if (i * SCALE_UNIT > set_vol[j])
j++;
keypad_mapindex[i] = j;
}
return 0;
}
static int sunxi_gpadc_input_register_setup(struct sunxi_gpadc *sunxi_gpadc)
{
struct sunxi_config *config = NULL;
int i;
config = &sunxi_gpadc->gpadc_config;
for (i = 0; i < sunxi_gpadc->channel_num; i++) {
if (config->channel_select & sunxi_gpadc_channel_id(i))
sunxi_gpadc_input_register(sunxi_gpadc, i);
}
return 0;
}
static int sunxi_gpadc_setup(struct platform_device *pdev,
struct sunxi_gpadc *sunxi_gpadc)
{
struct device_node *np = NULL;
struct sunxi_config *gpadc_config = &sunxi_gpadc->gpadc_config;
u32 val;
int i;
unsigned char name[30];
np = pdev->dev.of_node;
if (of_property_read_u32(np, "gpadc_sample_rate",
&sunxi_gpadc->gpadc_sample_rate)) {
pr_debug("%s: get sample rate failed\n", __func__);
sunxi_gpadc->gpadc_sample_rate = DEFAULT_SR;
} else {
if (sunxi_gpadc->gpadc_sample_rate < MIN_SR ||
sunxi_gpadc->gpadc_sample_rate > MAX_SR)
sunxi_gpadc->gpadc_sample_rate = DEFAULT_SR;
}
if (of_property_read_u32(np, "channel_num", &sunxi_gpadc->channel_num)) {
pr_err("%s: get channel num failed\n", __func__);
return -EBUSY;
}
if (of_property_read_u32(np, "channel_select", &val)) {
pr_err("%s: get channel set select failed\n", __func__);
gpadc_config->channel_select = 0;
}
gpadc_config->channel_select = val;
if (of_property_read_u32(np, "channel_data_select",
&gpadc_config->channel_data_select)) {
pr_err("%s: get channel data setlect failed\n", __func__);
gpadc_config->channel_data_select = 0;
}
if (of_property_read_u32(np, "channel_compare_select",
&gpadc_config->channel_compare_select)) {
pr_err("%s: get channel compare select failed\n", __func__);
gpadc_config->channel_compare_select = 0;
}
if (of_property_read_u32(np, "channel_cld_select",
&gpadc_config->channel_cld_select)) {
pr_err("%s: get channel compare low data select failed\n",
__func__);
gpadc_config->channel_select = 0;
}
if (of_property_read_u32(np, "channel_chd_select",
&gpadc_config->channel_chd_select)) {
pr_err("%s: get channel compare hig data select failed\n",
__func__);
gpadc_config->channel_chd_select = 0;
}
for (i = 0; i < sunxi_gpadc->channel_num; i++) {
sprintf(name, "channel%d_compare_lowdata", i);
if (of_property_read_u32(np, name, &val)) {
pr_err("%s:get %s err!\n", __func__, name);
val = 0;
}
gpadc_config->channel_compare_lowdata[i] = val;
sprintf(name, "channel%d_compare_higdata", i);
if (of_property_read_u32(np, name, &val)) {
pr_err("%s:get %s err!\n", __func__, name);
val = 0;
}
gpadc_config->channel_compare_higdata[i] = val;
}
return 0;
}
static int sunxi_gpadc_hw_init(struct sunxi_gpadc *sunxi_gpadc)
{
struct sunxi_config *gpadc_config = &sunxi_gpadc->gpadc_config;
int i;
sunxi_gpadc_sample_rate_set(sunxi_gpadc->reg_base, OSC_24MHZ,
sunxi_gpadc->gpadc_sample_rate);
for (i = 0; i < sunxi_gpadc->channel_num; i++) {
if (gpadc_config->channel_select & sunxi_gpadc_channel_id(i)) {
sunxi_gpadc_ch_select(sunxi_gpadc->reg_base, i);
if (gpadc_config->channel_data_select & sunxi_gpadc_channel_id(i))
sunxi_enable_irq_ch_select(sunxi_gpadc->reg_base, i);
if (gpadc_config->channel_compare_select & sunxi_gpadc_channel_id(i)) {
sunxi_gpadc_cmp_select(sunxi_gpadc->reg_base, i);
if (gpadc_config->channel_cld_select & sunxi_gpadc_channel_id(i)) {
sunxi_enable_lowirq_ch_select(sunxi_gpadc->reg_base, i);
sunxi_gpadc_ch_cmp_low(sunxi_gpadc->reg_base, i,
gpadc_config->channel_compare_lowdata[i]);
}
if (gpadc_config->channel_chd_select & sunxi_gpadc_channel_id(i)) {
sunxi_enable_higirq_ch_select(sunxi_gpadc->reg_base, i);
sunxi_gpadc_ch_cmp_hig(sunxi_gpadc->reg_base, i,
gpadc_config->channel_compare_higdata[i]);
}
}
}
}
sunxi_gpadc_calibration_enable(sunxi_gpadc->reg_base);
sunxi_gpadc_mode_select(sunxi_gpadc->reg_base, GP_CONTINUOUS_MODE);
sunxi_gpadc_enable(sunxi_gpadc->reg_base, true);
return 0;
}
static int sunxi_gpadc_hw_exit(struct sunxi_gpadc *sunxi_gpadc)
{
struct sunxi_config *gpadc_config = &sunxi_gpadc->gpadc_config;
int i;
for (i = 0; i < sunxi_gpadc->channel_num; i++) {
if (gpadc_config->channel_select & sunxi_gpadc_channel_id(i)) {
sunxi_gpadc_ch_deselect(sunxi_gpadc->reg_base, i);
if (gpadc_config->channel_data_select & sunxi_gpadc_channel_id(i))
sunxi_disable_irq_ch_select(sunxi_gpadc->reg_base, i);
if (gpadc_config->channel_compare_select & sunxi_gpadc_channel_id(i)) {
sunxi_gpadc_cmp_deselect(sunxi_gpadc->reg_base, i);
if (gpadc_config->channel_cld_select & sunxi_gpadc_channel_id(i))
sunxi_disable_lowirq_ch_select(sunxi_gpadc->reg_base, i);
if (gpadc_config->channel_chd_select & sunxi_gpadc_channel_id(i))
sunxi_disable_higirq_ch_select(sunxi_gpadc->reg_base, i);
}
}
}
sunxi_gpadc_enable(sunxi_gpadc->reg_base, false);
return 0;
}
static u32 sunxi_gpadc_key_xfer(struct sunxi_gpadc *sunxi_gpadc, u32 data)
{
u32 vol_data;
dprintk(DEBUG_RUN, "data=%4d cnt=%1d ", data, sunxi_gpadc->key_cnt);
data = ((VOL_RANGE / 4096)*data); /* 12bits sample rate */
vol_data = data / 1000;
if (vol_data < SUNXIKEY_DOWN) {
/* MAX compare_before = 128 */
sunxi_gpadc->compare_before = ((data / SCALE_UNIT) / 1000)&0xff;
dprintk(DEBUG_RUN, "bf=%3d lt=%3d\n",
sunxi_gpadc->compare_before,
sunxi_gpadc->compare_later);
if (sunxi_gpadc->compare_before == sunxi_gpadc->compare_later)
sunxi_gpadc->key_cnt++;
else
sunxi_gpadc->key_cnt = 0;
sunxi_gpadc->compare_later = sunxi_gpadc->compare_before;
if (sunxi_gpadc->key_cnt >= filter_cnt) {
sunxi_gpadc->compare_later = sunxi_gpadc->compare_before;
sunxi_gpadc->key_code = keypad_mapindex[sunxi_gpadc->compare_before];
input_report_key(sunxi_gpadc->input_gpadc[GP_CH_0], sunxi_gpadc->scankeycodes[sunxi_gpadc->key_code], 1);
input_sync(sunxi_gpadc->input_gpadc[GP_CH_0]);
sunxi_gpadc->compare_later = 0;
sunxi_gpadc->key_cnt = 0;
}
}
return 0;
}
#if defined(CONFIG_SUNXI_IR_CUT)
extern int ir_cut_condition, ir_cut_data, ir_cut_volt_data;
extern wait_queue_head_t ir_cut_queue;
#endif
static irqreturn_t sunxi_gpadc_interrupt(int irqno, void *dev_id)
{
struct sunxi_gpadc *sunxi_gpadc = (struct sunxi_gpadc *)dev_id;
u32 reg_val, reg_low, reg_hig;
u32 reg_enable_val, reg_enable_low, reg_enable_hig;
u32 data, i;
reg_enable_val = sunxi_gpadc_read_ch_irq_enable(sunxi_gpadc->reg_base);
reg_enable_low = sunxi_gpadc_read_ch_lowirq_enable(
sunxi_gpadc->reg_base);
reg_enable_hig = sunxi_gpadc_read_ch_higirq_enable(
sunxi_gpadc->reg_base);
reg_val = sunxi_ch_irq_status(sunxi_gpadc->reg_base);
sunxi_ch_irq_clear_flags(sunxi_gpadc->reg_base, reg_val);
reg_low = sunxi_ch_lowirq_status(sunxi_gpadc->reg_base);
sunxi_ch_lowirq_clear_flags(sunxi_gpadc->reg_base, reg_low);
reg_hig = sunxi_ch_higirq_status(sunxi_gpadc->reg_base);
sunxi_ch_higirq_clear_flags(sunxi_gpadc->reg_base, reg_hig);
if (reg_val & GP_CH0_DATA) {
data = sunxi_gpadc_read_data(sunxi_gpadc->reg_base, GP_CH_0);
}
if (reg_low & GP_CH0_LOW) {
data = sunxi_gpadc_read_data(sunxi_gpadc->reg_base, GP_CH_0);
sunxi_gpadc_key_xfer(sunxi_gpadc, data);
}
if (reg_hig & GP_CH0_HIG) {
input_report_key(sunxi_gpadc->input_gpadc[GP_CH_0],
sunxi_gpadc->scankeycodes[sunxi_gpadc->key_code], 0);
input_sync(sunxi_gpadc->input_gpadc[GP_CH_0]);
sunxi_gpadc->compare_later = 0;
sunxi_gpadc->key_cnt = 0;
}
for (i = 1; i < sunxi_gpadc->channel_num; i++) {
if (reg_val & reg_enable_val & (1 << i)) {
data = sunxi_gpadc_read_data(sunxi_gpadc->reg_base, i);
input_event(sunxi_gpadc->input_gpadc[i],
EV_MSC, MSC_SCAN, data);
input_sync(sunxi_gpadc->input_gpadc[i]);
pr_debug("channel %d data pend\n", i);
}
if (reg_enable_low & reg_enable_hig & (1 << i)) {
if (reg_low & reg_hig & (1 << i)) {
data = sunxi_gpadc_read_data(
sunxi_gpadc->reg_base, i);
input_event(sunxi_gpadc->input_gpadc[i],
EV_MSC, MSC_SCAN, data);
input_sync(sunxi_gpadc->input_gpadc[i]);
pr_debug("channel %d low and hig pend\n", i);
} else
pr_debug("invalid range\n");
} else {
if (reg_low & reg_enable_low & ~reg_enable_hig
& (1 << i)) {
data = sunxi_gpadc_read_data(
sunxi_gpadc->reg_base, i);
input_event(sunxi_gpadc->input_gpadc[i],
EV_MSC, MSC_SCAN, data);
input_sync(sunxi_gpadc->input_gpadc[i]);
pr_debug("channel %d low pend\n", i);
} else {
if (reg_hig & reg_enable_hig & ~reg_enable_low
& (1 << i)) {
data = sunxi_gpadc_read_data(
sunxi_gpadc->reg_base,
i);
input_event(sunxi_gpadc->input_gpadc[i],
EV_MSC, MSC_SCAN, data);
input_sync(sunxi_gpadc->input_gpadc[i]);
pr_debug("channel %d hig pend\n", i);
}
}
}
}
return IRQ_HANDLED;
}
void __status_regs_ex(void __iomem *reg_base)
{
unsigned char i;
u32 reg_val;
reg_val = readl(reg_base + GP_CS_EN_REG);
for (i = 0; i < sunxi_gpadc->channel_num; i++) {
if (reg_val & (1 << i))
pr_warn("gpadc%d: okay\n", i);
else
pr_warn("gpadc%d: disable\n", i);
}
}
void __vol_regs_ex(struct sunxi_gpadc *sunxi_gpadc)
{
unsigned char i;
char tmp = -1;
pr_info("key_cnt = %d\n", sunxi_gpadc->key_num);
for (i = 0; i < sunxi_gpadc->key_num; i++)
pr_info("key%d_vol = %d\n", i, key_vol[i]);
dprintk(DEBUG_INFO, "keypad_mapindex[%d] = {", MAXIMUM_SCALE);
for (i = 0; i < MAXIMUM_SCALE; i++) {
if (keypad_mapindex[i] != tmp)
dprintk(DEBUG_INFO, "\n\t");
dprintk(DEBUG_INFO, "%d, ", keypad_mapindex[i]);
tmp = keypad_mapindex[i];
}
dprintk(DEBUG_INFO, "\n}\n");
}
static struct status_reg __parse_status_str(const char *buf, size_t size)
{
char *ptr = NULL;
char *str = "gpadc";
struct status_reg reg_tmp;
if (!buf)
goto err;
reg_tmp.pst = (char *)buf;
reg_tmp.ped = reg_tmp.pst;
reg_tmp.ped = strnchr(reg_tmp.pst, size, ',');
if (!reg_tmp.ped)
goto err;
*reg_tmp.ped = '\0';
reg_tmp.ped++;
reg_tmp.pst = strim(reg_tmp.pst);
reg_tmp.ped = strim(reg_tmp.ped);
ptr = strstr(reg_tmp.pst, str);
if (!ptr) {
ptr = reg_tmp.pst;
while (*ptr != 0) {
if (*ptr >= 'A' && *ptr <= 'Z')
*ptr += 32;
ptr++;
}
ptr = reg_tmp.pst;
ptr = strstr(ptr, str);
if (!ptr)
goto err;
}
reg_tmp.channel = *(reg_tmp.pst + strlen(str)) - 48;
if (reg_tmp.channel < 0
|| reg_tmp.channel > (sunxi_gpadc->channel_num - 1))
goto err;
if (!(strlen(reg_tmp.ped) == 1))
goto err;
reg_tmp.val = *reg_tmp.ped - 48;
return reg_tmp;
err:
reg_tmp.pst = NULL;
reg_tmp.ped = NULL;
return reg_tmp;
}
static struct vol_reg __parse_vol_str(const char *buf, size_t size)
{
int ret = 0;
char *ptr = NULL;
char *str = "vol";
struct vol_reg reg_tmp;
if (!buf)
goto err;
reg_tmp.pst = (char *)buf;
reg_tmp.ped = reg_tmp.pst;
reg_tmp.ped = strnchr(reg_tmp.pst, size, ',');
if (!reg_tmp.ped)
goto err;
*reg_tmp.ped = '\0';
reg_tmp.ped++;
reg_tmp.pst = strim(reg_tmp.pst);
reg_tmp.ped = strim(reg_tmp.ped);
ptr = strstr(reg_tmp.pst, str);
if (!ptr) {
ptr = reg_tmp.pst;
while (*ptr != 0) {
if (*ptr >= 'A' && *ptr <= 'Z')
*ptr += 32;
ptr++;
}
ptr = reg_tmp.pst;
ptr = strstr(ptr, str);
if (!ptr)
goto err;
}
reg_tmp.index = *(reg_tmp.pst + strlen(str)) - 48;
if (reg_tmp.index < 0
|| reg_tmp.index > (sunxi_gpadc->key_num - 1))
goto err;
ret = kstrtoul(reg_tmp.ped, 10, &reg_tmp.vol);
if (ret)
goto err;
return reg_tmp;
err:
reg_tmp.pst = NULL;
reg_tmp.ped = NULL;
return reg_tmp;
}
static struct sr_reg __parse_sr_str(const char *buf, size_t size)
{
int ret = 0;
struct sr_reg reg_tmp;
if (!buf)
reg_tmp.pst = NULL;
reg_tmp.pst = (char *)buf;
reg_tmp.pst = strim(reg_tmp.pst);
ret = kstrtoul(reg_tmp.pst, 10, &reg_tmp.val);
if (ret)
goto err;
if (reg_tmp.val < MIN_SR || reg_tmp.val > MAX_SR) {
pr_err("%s,%d err. sampling frequency: [%lu,%lu]\n",
__func__, __LINE__, MIN_SR, MAX_SR);
reg_tmp.pst = NULL;
}
return reg_tmp;
err:
reg_tmp.pst = NULL;
return reg_tmp;
}
static struct filter_reg __parse_filter_str(const char *buf, size_t size)
{
int ret = 0;
struct filter_reg reg_tmp;
if (!buf)
reg_tmp.pst = NULL;
reg_tmp.pst = (char *)buf;
reg_tmp.pst = strim(reg_tmp.pst);
ret = kstrtoul(reg_tmp.pst, 10, &reg_tmp.val);
if (ret)
goto err;
return reg_tmp;
err:
reg_tmp.pst = NULL;
return reg_tmp;
}
static ssize_t
status_show(struct class *class, struct class_attribute *attr, char *buf)
{
__status_regs_ex(sunxi_gpadc->reg_base);
return 0;
}
static ssize_t
status_store(struct class *class, struct class_attribute *attr,
const char *buf, size_t count)
{
status_para = __parse_status_str(buf, count);
if (!status_para.pst || !status_para.ped)
goto err;
if (status_para.val) {
sunxi_gpadc_ch_select(sunxi_gpadc->reg_base,
status_para.channel);
pr_warn("Enable gpadc%u\n", status_para.channel);
} else {
sunxi_gpadc_ch_deselect(sunxi_gpadc->reg_base,
status_para.channel);
pr_warn("Disable gpadc%u\n", status_para.channel);
}
return count;
err:
pr_err("%s,%d err, invalid para!\n", __func__, __LINE__);
status_para.pst = NULL;
status_para.ped = NULL;
status_para.channel = -1;
status_para.val = -1;
return -EINVAL;
}
static ssize_t
vol_show(struct class *class, struct class_attribute *attr, char *buf)
{
__vol_regs_ex(sunxi_gpadc);
return 0;
}
static ssize_t
vol_store(struct class *class, struct class_attribute *attr,
const char *buf, size_t count)
{
unsigned char i, j = 0;
u32 gap = 0, half_gap = 0, cnt = 0;
u32 set_vol[VOL_NUM];
vol_para = __parse_vol_str(buf, count);
if (!vol_para.pst || !vol_para.ped)
goto err;
key_vol[vol_para.index] = vol_para.vol;
for (i = sunxi_gpadc->key_num - 1; i > 0; i--) {
gap = gap + (key_vol[i] - key_vol[i-1]);
cnt++;
}
half_gap = gap/cnt/2;
for (i = 0; i < sunxi_gpadc->key_num; i++)
set_vol[i] = key_vol[i] + half_gap;
for (i = 0; i < 128; i++) {
if (i * SCALE_UNIT > set_vol[j])
j++;
keypad_mapindex[i] = j;
}
return count;
err:
pr_err("%s,%d err, invalid para!\n", __func__, __LINE__);
vol_para.pst = NULL;
vol_para.ped = NULL;
vol_para.index = -1;
vol_para.vol = -1;
return -EINVAL;
}
static ssize_t
sr_show(struct class *class, struct class_attribute *attr, char *buf)
{
u32 sr;
sr = sunxi_gpadc_sample_rate_read(sunxi_gpadc->reg_base, OSC_24MHZ);
pr_warn("gpadc sampling frequency: %u\n", sr);
return 0;
}
static ssize_t
sr_store(struct class *class, struct class_attribute *attr,
const char *buf, size_t count)
{
sr_para = __parse_sr_str(buf, count);
if (!sr_para.pst)
goto err;
sunxi_gpadc_sample_rate_set(sunxi_gpadc->reg_base, OSC_24MHZ,
sr_para.val);
return count;
err:
pr_err("%s,%d err, invalid para!\n", __func__, __LINE__);
return -EINVAL;
}
static ssize_t
filter_show(struct class *class, struct class_attribute *attr, char *buf)
{
dprintk(DEBUG_INFO, "filter_cnt = %u\n", filter_cnt);
return 0;
}
static ssize_t
filter_store(struct class *class, struct class_attribute *attr,
const char *buf, size_t count)
{
filter_para = __parse_filter_str(buf, count);
if (!filter_para.pst)
goto err;
filter_cnt = filter_para.val;
return count;
err:
pr_err("%s,%d err, invalid para!\n", __func__, __LINE__);
return -EINVAL;
}
static struct class_attribute gpadc_class_attrs[] = {
__ATTR(status, 0644, status_show, status_store),
__ATTR(vol, 0644, vol_show, vol_store),
__ATTR(sr, 0644, sr_show, sr_store),
__ATTR(filter, 0644, filter_show, filter_store),
__ATTR_NULL,
};
static struct class gpadc_class = {
.name = "gpadc",
.owner = THIS_MODULE,
.class_attrs = gpadc_class_attrs,
};
static int __init gpadc_class_init(void)
{
int status;
status = class_register(&gpadc_class);
if (status < 0)
pr_err("%s,%d err, status:%d\n", __func__, __LINE__, status);
else
pr_info("%s,%d, success\n", __func__, __LINE__);
return status;
}
postcore_initcall(gpadc_class_init);
int sunxi_gpadc_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
int ret = 0;
if (!of_device_is_available(np)) {
pr_err("%s: sunxi gpadc is disable\n", __func__);
return -EPERM;
}
sunxi_gpadc = kzalloc(sizeof(struct sunxi_gpadc), GFP_KERNEL);
if (IS_ERR_OR_NULL(sunxi_gpadc)) {
pr_err("not enough memory for sunxi_gpadc\n");
return -ENOMEM;
}
sunxi_gpadc->reg_base = of_iomap(np, 0);
if (NULL == sunxi_gpadc->reg_base) {
pr_err("sunxi_gpadc iomap fail\n");
ret = -EBUSY;
goto fail1;
}
sunxi_gpadc->irq_num = irq_of_parse_and_map(np, 0);
if (0 == sunxi_gpadc->irq_num) {
pr_err("sunxi_gpadc fail to map irq\n");
ret = -EBUSY;
goto fail2;
}
sunxi_gpadc->mclk = of_clk_get(np, 0);
if (IS_ERR_OR_NULL(sunxi_gpadc->mclk)) {
pr_err("sunxi_gpadc has no clk\n");
ret = -EINVAL;
goto fail3;
} else{
if (clk_prepare_enable(sunxi_gpadc->mclk)) {
pr_err("enable sunxi_gpadc clock failed!\n");
ret = -EINVAL;
goto fail3;
}
}
sunxi_key_init(sunxi_gpadc, pdev);
sunxi_gpadc_setup(pdev, sunxi_gpadc);
sunxi_gpadc_hw_init(sunxi_gpadc);
sunxi_gpadc_input_register_setup(sunxi_gpadc);
platform_set_drvdata(pdev, sunxi_gpadc);
if (request_irq(sunxi_gpadc->irq_num, sunxi_gpadc_interrupt,
IRQF_TRIGGER_NONE, "sunxi-gpadc", sunxi_gpadc)) {
pr_err("sunxi_gpadc request irq failure\n");
return -1;
}
return 0;
fail3:
free_irq(sunxi_gpadc->irq_num, sunxi_gpadc);
fail2:
iounmap(sunxi_gpadc->reg_base);
fail1:
kfree(sunxi_gpadc);
return ret;
}
int sunxi_gpadc_remove(struct platform_device *pdev)
{
struct sunxi_gpadc *sunxi_gpadc = platform_get_drvdata(pdev);
sunxi_gpadc_hw_exit(sunxi_gpadc);
free_irq(sunxi_gpadc->irq_num, sunxi_gpadc);
clk_disable_unprepare(sunxi_gpadc->mclk);
iounmap(sunxi_gpadc->reg_base);
kfree(sunxi_gpadc);
return 0;
}
#ifdef CONFIG_PM
static int sunxi_gpadc_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct sunxi_gpadc *sunxi_gpadc = platform_get_drvdata(pdev);
disable_irq_nosync(sunxi_gpadc->irq_num);
sunxi_gpadc_hw_exit(sunxi_gpadc);
clk_disable_unprepare(sunxi_gpadc->mclk);
return 0;
}
static int sunxi_gpadc_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct sunxi_gpadc *sunxi_gpadc = platform_get_drvdata(pdev);
enable_irq(sunxi_gpadc->irq_num);
clk_prepare_enable(sunxi_gpadc->mclk);
sunxi_gpadc_hw_init(sunxi_gpadc);
return 0;
}
static const struct dev_pm_ops sunxi_gpadc_dev_pm_ops = {
.suspend = sunxi_gpadc_suspend,
.resume = sunxi_gpadc_resume,
};
#define SUNXI_GPADC_DEV_PM_OPS (&sunxi_gpadc_dev_pm_ops)
#else
#define SUNXI_GPADC_DEV_PM_OPS NULL
#endif
static struct of_device_id sunxi_gpadc_of_match[] = {
{ .compatible = "allwinner,sunxi-gpadc"},
{},
};
MODULE_DEVICE_TABLE(of, sunxi_gpadc_of_match);
static struct platform_driver sunxi_gpadc_driver = {
.probe = sunxi_gpadc_probe,
.remove = sunxi_gpadc_remove,
.driver = {
.name = "sunxi-gpadc",
.owner = THIS_MODULE,
.pm = SUNXI_GPADC_DEV_PM_OPS,
.of_match_table = of_match_ptr(sunxi_gpadc_of_match),
},
};
module_param_named(debug_mask, debug_mask, int, 0644);
module_platform_driver(sunxi_gpadc_driver);
MODULE_AUTHOR("Fuzhaoke");
MODULE_DESCRIPTION("sunxi-gpadc driver");
MODULE_LICENSE("GPL");