SmartAudio/lichee/linux-4.9/drivers/dma/sunxi-dma.c

1408 lines
35 KiB
C
Executable File

/*
* drivers/dma/sunxi-dma.c
*
* Copyright (C) 2015-2020 Allwinnertech Co., Ltd
*
* Author: Sugar <shuge@allwinnertech.com>
* Author: Wim Hwang <huangwei@allwinnertech.com>
*
* Sunxi DMA controller driver
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmapool.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/debugfs.h>
#include <linux/dma/sunxi-dma.h>
#include <linux/sunxi-smc.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/kernel.h>
#include "dmaengine.h"
#include "virt-dma.h"
#if defined(CONFIG_ARCH_SUN8IW1) \
|| defined(CONFIG_ARCH_SUN8IW11) \
|| defined(CONFIG_ARCH_SUN50IW6)\
|| defined(CONFIG_ARCH_SUN8IW12)
#define NR_MAX_CHAN 16 /* total of channels */
#elif defined(CONFIG_ARCH_SUN8IW7) \
|| defined(CONFIG_ARCH_SUN50IW2) \
|| defined(CONFIG_ARCH_SUN50IW3) \
|| defined(CONFIG_ARCH_SUN8IW17)
#define NR_MAX_CHAN 12 /* total of channels */
#elif defined(CONFIG_ARCH_SUN50IW8)
#define NR_MAX_CHAN 10 /* total of channels */
#else
#define NR_MAX_CHAN 8 /* total of channels */
#endif
#define HIGH_CHAN 8
#define DMA_IRQ_EN(x) (0x000 + ((x) << 2)) /* Interrupt enable register */
#define DMA_IRQ_STAT(x) (0x010 + ((x) << 2)) /* Inetrrupt status register */
#if defined(CONFIG_ARCH_SUN9I) \
|| defined(CONFIG_ARCH_SUN8IW7) \
|| defined(CONFIG_ARCH_SUN50I)\
|| defined(CONFIG_ARCH_SUN8IW12) \
|| defined(CONFIG_ARCH_SUN8IW15) \
|| defined(CONFIG_ARCH_SUN8IW17)
#define DMA_SECU 0x20 /* DMA security register */
#endif
#if defined(CONFIG_ARCH_SUN8IW1)
#undef DMA_GATE /* no gating register */
#elif defined(CONFIG_ARCH_SUN8IW3) \
|| defined(CONFIG_ARCH_SUN8IW5) \
|| defined(CONFIG_ARCH_SUN8IW6) \
|| defined(CONFIG_ARCH_SUN8IW8) \
|| defined(CONFIG_ARCH_SUN8IW9)
#define DMA_GATE 0x20 /* DMA gating rgister */
#else
#define DMA_GATE 0x28 /* DMA gating rgister */
#endif
#define DMA_MCLK_GATE 0x04
#define DMA_COMMON_GATE 0x02
#define DMA_CHAN_GATE 0x01
#define DMA_STAT 0x30 /* DMA Status Register RO */
#define DMA_ENABLE(x) (0x100 + ((x) << 6)) /* Channels enable register */
#define DMA_PAUSE(x) (0x104 + ((x) << 6)) /* DMA Channels pause register */
#define DMA_LLI_ADDR(x) (0x108 + ((x) << 6)) /* Descriptor address register */
#define DMA_CFG(x) (0x10C + ((x) << 6)) /* Configuration register RO */
#define DMA_CUR_SRC(x) (0x110 + ((x) << 6)) /* Current source address RO */
#define DMA_CUR_DST(x) (0x114 + ((x) << 6)) /* Current destination address RO */
#define DMA_CNT(x) (0x118 + ((x) << 6)) /* Byte counter left register RO */
#define DMA_PARA(x) (0x11C + ((x) << 6)) /* Parameter register RO */
#if defined(CONFIG_ARCH_SUN9I)
#define LINK_END 0x1FFFF800 /* lastest link must be 0x1ffff800 */
#else
#define LINK_END 0xFFFFF800 /* lastest link must be 0xfffff800 */
#endif
/* DMA opertions mode */
#if defined(CONFIG_ARCH_SUN8IW1) \
|| defined(CONFIG_ARCH_SUN8IW3) \
|| defined(CONFIG_ARCH_SUN8IW5) \
|| defined(CONFIG_ARCH_SUN8IW6) \
|| defined(CONFIG_ARCH_SUN8IW8) \
|| defined(CONFIG_ARCH_SUN8IW9)
#define DMA_OP_MODE(x)
#define SRC_HS_MASK
#define DST_HS_MASK
#define SET_OP_MODE(d, x, val) do { } while (0)
#else
#define DMA_OP_MODE(x) (0x128 + ((x) << 6)) /* DMA mode options register */
#define SRC_HS_MASK (0x1 << 2) /* bit 2: Source handshark mode */
#define DST_HS_MASK (0x1 << 3) /* bit 3: Destination handshark mode */
#define SET_OP_MODE(d, x, val) ({ \
writel(val, d->base + DMA_OP_MODE(x)); \
})
#endif
#define SHIFT_IRQ_MASK(val, ch) ({ \
(ch) >= HIGH_CHAN \
? (val) << ((ch - HIGH_CHAN) << 2) \
: (val) << ((ch) << 2); \
})
#define IRQ_HALF 0x01 /* Half package transfer interrupt pending */
#define IRQ_PKG 0x02 /* One package complete interrupt pending */
#define IRQ_QUEUE 0x04 /* All list complete transfer interrupt pending */
/* The detail information of DMA configuration */
#define SRC_WIDTH(x) ((x) << 9)
#if defined(CONFIG_ARCH_SUN8IW1) \
|| defined(CONFIG_ARCH_SUN8IW3) \
|| defined(CONFIG_ARCH_SUN8IW5) \
|| defined(CONFIG_ARCH_SUN8IW6) \
|| defined(CONFIG_ARCH_SUN8IW8) \
|| defined(CONFIG_ARCH_SUN8IW9)
#define SRC_BURST(x) ((x) << 7)
#else
#define SRC_BURST(x) ((x) << 6)
#endif
#if defined(CONFIG_ARCH_SUN50IW3) \
|| defined(CONFIG_ARCH_SUN50IW6)\
|| defined(CONFIG_ARCH_SUN8IW12)\
|| defined(CONFIG_ARCH_SUN8IW15)\
|| defined(CONFIG_ARCH_SUN50IW8)\
|| defined(CONFIG_ARCH_SUN8IW17)\
|| defined(CONFIG_ARCH_SUN50IW5T)
#define SRC_IO_MODE (0x01 << 8)
#define SRC_LINEAR_MODE (0x00 << 8)
#else
#define SRC_IO_MODE (0x01 << 5)
#define SRC_LINEAR_MODE (0x00 << 5)
#endif
#define SRC_DRQ(x) ((x) << 0)
#define DST_WIDTH(x) ((x) << 25)
#if defined(CONFIG_ARCH_SUN8IW1) \
|| defined(CONFIG_ARCH_SUN8IW3) \
|| defined(CONFIG_ARCH_SUN8IW5) \
|| defined(CONFIG_ARCH_SUN8IW6) \
|| defined(CONFIG_ARCH_SUN8IW8) \
|| defined(CONFIG_ARCH_SUN8IW9)
#define DST_BURST(x) ((x) << 23)
#else
#define DST_BURST(x) ((x) << 22)
#endif
#if defined(CONFIG_ARCH_SUN50IW3) \
|| defined(CONFIG_ARCH_SUN50IW6)\
|| defined(CONFIG_ARCH_SUN8IW12) \
|| defined(CONFIG_ARCH_SUN8IW15)\
|| defined(CONFIG_ARCH_SUN50IW8)\
|| defined(CONFIG_ARCH_SUN8IW17)\
|| defined(CONFIG_ARCH_SUN50IW5T)
#define DST_IO_MODE (0x01 << 24)
#define DST_LINEAR_MODE (0x00 << 24)
#else
#define DST_IO_MODE (0x01 << 21)
#define DST_LINEAR_MODE (0x00 << 21)
#endif
#define DST_DRQ(x) ((x) << 16)
#define CHAN_START 1
#define CHAN_STOP 0
#define CHAN_PAUSE 1
#define CHAN_RESUME 0
#define NORMAL_WAIT (8 << 0)
/*
* struct sunxi_dma_lli - linked list ltem, the DMA block descriptor
* @cfg: DMA configuration
* @src: Source address
* @dst: Destination address
* @len: Length of buffers
* @para: Parameter register
* @p_lln: Next lli physical address
* @v_lln: Next lli virtual address (only for cpu)
* @this_phy: Physical address of this lli
*/
struct sunxi_dma_lli {
u32 cfg;
u32 src;
u32 dst;
u32 len;
u32 para;
u32 p_lln;
struct sunxi_dma_lli *v_lln;
#ifdef DEBUG
u32 this_phy;
#define set_this_phy(li, addr) \
((li)->this_phy = (addr))
#else
#define set_this_phy(li, addr)
#endif
} __packed;
struct sunxi_dmadev {
struct dma_device dma_dev;
void __iomem *base;
phys_addr_t pbase;
struct clk *ahb_clk; /* AHB clock gate for DMA */
spinlock_t lock;
struct tasklet_struct task;
struct list_head pending; /* the pending channels list */
struct dma_pool *lli_pool; /* Pool of lli */
};
struct sunxi_desc {
struct virt_dma_desc vd;
u32 lli_phys; /* physical start for llis */
struct sunxi_dma_lli *lli_virt; /* virtual start for lli */
};
struct sunxi_chan {
struct virt_dma_chan vc;
struct list_head node; /* queue it to pending list */
struct dma_slave_config cfg;
bool cyclic;
struct sunxi_desc *desc;
u32 irq_type;
};
static u64 sunxi_dma_mask = DMA_BIT_MASK(32);
static inline struct sunxi_dmadev *to_sunxi_dmadev(struct dma_device *d)
{
return container_of(d, struct sunxi_dmadev, dma_dev);
}
static inline struct sunxi_chan *to_sunxi_chan(struct dma_chan *chan)
{
return container_of(chan, struct sunxi_chan, vc.chan);
}
static inline struct sunxi_desc *to_sunxi_desc(struct dma_async_tx_descriptor *tx)
{
return container_of(tx, struct sunxi_desc, vd.tx);
}
static struct device *chan2dev(struct dma_chan *chan)
{
return &chan->dev->device;
}
static struct device *chan2parent(struct dma_chan *chan)
{
return chan->dev->device.parent;
}
/*
* Fix sconfig's burst size according to sunxi_dmac. We need to convert them as:
* 1 -> 0, 4 -> 1, 8 -> 2, 16->3
*
* NOTE: burst size 2 is not supported by controller.
*
* This can be done by finding least significant bit set: n & (n - 1)
*/
static inline void convert_burst(u32 *maxburst)
{
if (*maxburst > 1)
*maxburst = fls(*maxburst) - 2;
else
*maxburst = 0;
}
/*
* Fix sconfig's bus width according to at_dmac.
* 1 byte -> 0, 2 bytes -> 1, 4 bytes -> 2.
*/
static inline u8 convert_buswidth(enum dma_slave_buswidth addr_width)
{
switch (addr_width) {
case DMA_SLAVE_BUSWIDTH_2_BYTES:
return 1;
case DMA_SLAVE_BUSWIDTH_4_BYTES:
return 2;
default:
/* For 1 byte width or fallback */
return 0;
}
}
static size_t sunxi_get_desc_size(struct sunxi_desc *txd)
{
struct sunxi_dma_lli *lli;
size_t size = 0;
for (lli = txd->lli_virt; lli != NULL; lli = lli->v_lln)
size += lli->len;
return size;
}
/*
* sunxi_get_chan_size - get the bytes left of one channel.
* @ch: the channel
*/
static size_t sunxi_get_chan_size(struct sunxi_chan *ch)
{
struct sunxi_dma_lli *lli;
struct sunxi_desc *txd;
struct sunxi_dmadev *sdev;
size_t size = 0;
u32 pos;
bool count = false;
txd = ch->desc;
if (!txd)
return 0;
sdev = to_sunxi_dmadev(ch->vc.chan.device);
pos = readl(sdev->base + DMA_LLI_ADDR(ch->vc.chan.chan_id));
size = readl(sdev->base + DMA_CNT(ch->vc.chan.chan_id));
/* It is the last package, and just read count register */
if (pos == LINK_END)
return size;
for (lli = txd->lli_virt; lli != NULL; lli = lli->v_lln) {
/* Ok, found next lli that is ready be transported */
if (lli->p_lln == pos) {
count = true;
continue;
}
if (count)
size += lli->len;
}
return size;
}
/*
* sunxi_free_desc - free the struct sunxi_desc.
* @vd: the virt-desc for this chan
*/
static void sunxi_free_desc(struct virt_dma_desc *vd)
{
struct sunxi_desc *txd = to_sunxi_desc(&vd->tx);
struct sunxi_dmadev *sdev = to_sunxi_dmadev(vd->tx.chan->device);
struct sunxi_dma_lli *li_adr, *next_virt;
u32 phy, next_phy;
if (unlikely(!txd))
return;
phy = txd->lli_phys;
li_adr = txd->lli_virt;
while (li_adr) {
next_virt = li_adr->v_lln;
next_phy = li_adr->p_lln;
dma_pool_free(sdev->lli_pool, li_adr, phy);
li_adr = next_virt;
phy = next_phy;
}
txd->vd.tx.callback = NULL;
txd->vd.tx.callback_param = NULL;
kfree(txd);
txd = NULL;
}
static inline void sunxi_dump_com_regs(struct sunxi_chan *ch)
{
struct sunxi_dmadev *sdev;
sdev = to_sunxi_dmadev(ch->vc.chan.device);
pr_debug("Common register:\n"
"\tmask0(%04x): 0x%08x\n"
"\tmask1(%04x): 0x%08x\n"
"\tpend0(%04x): 0x%08x\n"
"\tpend1(%04x): 0x%08x\n"
#ifdef DMA_SECU
"\tsecur(%04x): 0x%08x\n"
#endif
#ifdef DMA_GATE
"\t_gate(%04x): 0x%08x\n"
#endif
"\tstats(%04x): 0x%08x\n",
DMA_IRQ_EN(0), readl(sdev->base + DMA_IRQ_EN(0)),
DMA_IRQ_EN(1), readl(sdev->base + DMA_IRQ_EN(1)),
DMA_IRQ_STAT(0), readl(sdev->base + DMA_IRQ_STAT(0)),
DMA_IRQ_STAT(1), readl(sdev->base + DMA_IRQ_STAT(1)),
#ifdef DMA_SECU
DMA_SECU, readl(sdev->base + DMA_SECU),
#endif
#ifdef DMA_GATE
DMA_GATE, readl(sdev->base + DMA_GATE),
#endif
DMA_STAT, readl(sdev->base + DMA_STAT));
}
static inline void sunxi_dump_chan_regs(struct sunxi_chan *ch)
{
struct sunxi_dmadev *sdev = to_sunxi_dmadev(ch->vc.chan.device);
u32 chan_num = ch->vc.chan.chan_id;
pr_debug("Chan %d reg:\n"
"\t___en(%04x): \t0x%08x\n"
"\tpause(%04x): \t0x%08x\n"
"\tstart(%04x): \t0x%08x\n"
"\t__cfg(%04x): \t0x%08x\n"
"\t__src(%04x): \t0x%08x\n"
"\t__dst(%04x): \t0x%08x\n"
"\tcount(%04x): \t0x%08x\n"
"\t_para(%04x): \t0x%08x\n\n",
chan_num,
DMA_ENABLE(chan_num),
readl(sdev->base + DMA_ENABLE(chan_num)),
DMA_PAUSE(chan_num),
readl(sdev->base + DMA_PAUSE(chan_num)),
DMA_LLI_ADDR(chan_num),
readl(sdev->base + DMA_LLI_ADDR(chan_num)),
DMA_CFG(chan_num),
readl(sdev->base + DMA_CFG(chan_num)),
DMA_CUR_SRC(chan_num),
readl(sdev->base + DMA_CUR_SRC(chan_num)),
DMA_CUR_DST(chan_num),
readl(sdev->base + DMA_CUR_DST(chan_num)),
DMA_CNT(chan_num),
readl(sdev->base + DMA_CNT(chan_num)),
DMA_PARA(chan_num),
readl(sdev->base + DMA_PARA(chan_num)));
}
/*
* sunxi_dma_resume - resume channel, which is pause sate.
* @chan: the channel to resume
*/
static int sunxi_dma_resume(struct dma_chan *chan)
{
struct sunxi_chan *schan = to_sunxi_chan(chan);
struct sunxi_dmadev *sdev = to_sunxi_dmadev(schan->vc.chan.device);
u32 chan_num = schan->vc.chan.chan_id;
writel(CHAN_RESUME, sdev->base + DMA_PAUSE(chan_num));
return 0;
}
static int sunxi_dma_pause(struct dma_chan *chan)
{
struct sunxi_chan *schan = to_sunxi_chan(chan);
struct sunxi_dmadev *sdev = to_sunxi_dmadev(schan->vc.chan.device);
u32 chan_num = schan->vc.chan.chan_id;
writel(CHAN_PAUSE, sdev->base + DMA_PAUSE(chan_num));
return 0;
}
/*
* sunxi_terminate_all - stop all descriptors that waiting transfer on chan.
* @ch: the channel to stop
*/
static int sunxi_terminate_all(struct dma_chan *chan)
{
struct sunxi_chan *schan = to_sunxi_chan(chan);
struct sunxi_dmadev *sdev = to_sunxi_dmadev(schan->vc.chan.device);
struct virt_dma_desc *vd = NULL;
struct virt_dma_chan *vc = NULL;
u32 chan_num = schan->vc.chan.chan_id;
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&schan->vc.lock, flags);
spin_lock(&sdev->lock);
list_del_init(&schan->node);
spin_unlock(&sdev->lock);
/* We should entry PAUSE state first to avoid missing data
* count which transferring on bus.
*/
writel(CHAN_PAUSE, sdev->base + DMA_PAUSE(chan_num));
writel(CHAN_STOP, sdev->base + DMA_ENABLE(chan_num));
writel(CHAN_RESUME, sdev->base + DMA_PAUSE(chan_num));
/* At cyclic mode, desc is not be managed by virt-dma,
* we need to add it to desc_completed
*/
if (schan->cyclic) {
schan->cyclic = false;
if (schan->desc) {
vd = &(schan->desc->vd);
vc = &(schan->vc);
list_add_tail(&vd->node, &vc->desc_completed);
}
}
schan->desc = NULL;
vchan_get_all_descriptors(&schan->vc, &head);
spin_unlock_irqrestore(&schan->vc.lock, flags);
vchan_dma_desc_free_list(&schan->vc, &head);
return 0;
}
/*
* sunxi_start_desc - begin to transport the descriptor
* @ch: the channel of descriptor
*/
static void sunxi_start_desc(struct sunxi_chan *ch)
{
struct virt_dma_desc *vd = vchan_next_desc(&ch->vc);
struct sunxi_dmadev *sdev = to_sunxi_dmadev(ch->vc.chan.device);
struct sunxi_desc *txd = NULL;
u32 chan_num = ch->vc.chan.chan_id;
u32 irq_val;
u32 high;
if (!vd) {
while (readl(sdev->base + DMA_STAT) & (1 << chan_num))
cpu_relax();
writel(CHAN_STOP, sdev->base + DMA_ENABLE(chan_num));
return;
}
/* Delete this desc from the desc_issued list */
list_del(&vd->node);
txd = to_sunxi_desc(&vd->tx);
ch->desc = txd;
if (ch->cyclic)
ch->irq_type = IRQ_PKG;
else
ch->irq_type = IRQ_QUEUE;
high = (chan_num >= HIGH_CHAN) ? 1 : 0;
irq_val = readl(sdev->base + DMA_IRQ_EN(high));
irq_val |= SHIFT_IRQ_MASK(ch->irq_type, chan_num);
writel(irq_val, sdev->base + DMA_IRQ_EN(high));
/* Set the DMA opertions mode */
SET_OP_MODE(sdev, chan_num, SRC_HS_MASK | DST_HS_MASK);
/* write the first lli address to register, and start to transfer */
writel(txd->lli_phys, sdev->base + DMA_LLI_ADDR(chan_num));
writel(CHAN_START, sdev->base + DMA_ENABLE(chan_num));
sunxi_dump_com_regs(ch);
sunxi_dump_chan_regs(ch);
}
/*
* sunxi_alloc_lli - Allocate a sunxi_lli
* @sdev: the sunxi_dmadev
* @phy_addr: return the physical address
*/
void *sunxi_alloc_lli(struct sunxi_dmadev *sdev, u32 *phy_addr)
{
struct sunxi_dma_lli *l_item;
dma_addr_t phy;
WARN_TAINT(!sdev->lli_pool, TAINT_WARN, "The dma pool is empty!!\n");
if (unlikely(!sdev->lli_pool))
return NULL;
l_item = dma_pool_alloc(sdev->lli_pool, GFP_ATOMIC, &phy);
*phy_addr = (u32)phy;
set_this_phy(l_item, *phy_addr);
return l_item;
}
/*
* sunxi_dump_lli - dump the information for one lli
* @shcan: the channel
* @lli: a lli to dump
*/
static inline void sunxi_dump_lli(struct sunxi_chan *schan,
struct sunxi_dma_lli *lli)
{
#ifdef DEBUG
dev_dbg(chan2dev(&schan->vc.chan),
"\n\tdesc: p - 0x%08x v - 0x%08x\n"
"\t\tc - 0x%08x s - 0x%08x d - 0x%08x\n"
"\t\tl - 0x%08x p - 0x%08x n - 0x%08x\n",
lli->this_phy, (u32)lli,
lli->cfg, lli->src, lli->dst,
lli->len, lli->para, lli->p_lln);
#endif
}
static void *sunxi_lli_list(struct sunxi_dma_lli *prev,
struct sunxi_dma_lli *next, u32 next_phy,
struct sunxi_desc *txd)
{
if ((!prev && !txd) || !next)
return NULL;
if (!prev) {
txd->lli_phys = next_phy;
txd->lli_virt = next;
} else {
prev->p_lln = next_phy;
prev->v_lln = next;
}
next->p_lln = LINK_END;
next->v_lln = NULL;
return next;
}
static inline void sunxi_cfg_lli(struct sunxi_dma_lli *lli, dma_addr_t src,
dma_addr_t dst, u32 len, struct dma_slave_config *config)
{
u32 src_width, dst_width;
if (!config)
return;
/* Get the data width */
src_width = convert_buswidth(config->src_addr_width);
dst_width = convert_buswidth(config->dst_addr_width);
lli->cfg = SRC_BURST(config->src_maxburst)
| SRC_WIDTH(src_width)
| DST_BURST(config->dst_maxburst)
| DST_WIDTH(dst_width);
lli->src = (u32)src;
lli->dst = (u32)dst;
lli->len = len;
lli->para = NORMAL_WAIT;
}
/*
* sunxi_dma_tasklet - ensure that the desc's lli be putted into hardware.
* @data: sunxi_dmadev
*/
static void sunxi_dma_tasklet(unsigned long data)
{
struct sunxi_dmadev *sdev = (struct sunxi_dmadev *)data;
LIST_HEAD(head);
spin_lock_irq(&sdev->lock);
list_splice_tail_init(&sdev->pending, &head);
spin_unlock_irq(&sdev->lock);
while (!list_empty(&head)) {
struct sunxi_chan *c = list_first_entry(&head,
struct sunxi_chan, node);
spin_lock_irq(&c->vc.lock);
list_del_init(&c->node);
sunxi_start_desc(c);
spin_unlock_irq(&c->vc.lock);
}
}
/*
* sunxi_dma_interrupt - interrupt handle.
* @irq: irq number
* @dev_id: sunxi_dmadev
*/
static irqreturn_t sunxi_dma_interrupt(int irq, void *dev_id)
{
struct sunxi_dmadev *sdev = (struct sunxi_dmadev *)dev_id;
struct sunxi_chan *ch = NULL;
struct sunxi_desc *desc;
unsigned long flags;
u32 status_lo = 0, status_hi = 0;
/* Get the status of irq */
status_lo = readl(sdev->base + DMA_IRQ_STAT(0));
#if NR_MAX_CHAN > HIGH_CHAN
status_hi = readl(sdev->base + DMA_IRQ_STAT(1));
#endif
dev_dbg(sdev->dma_dev.dev,
"[sunxi_dma]: DMA irq status_lo: 0x%08x, status_hi: 0x%08x\n",
status_lo, status_hi);
/* Clear the bit of irq status */
writel(status_lo, sdev->base + DMA_IRQ_STAT(0));
#if NR_MAX_CHAN > HIGH_CHAN
writel(status_hi, sdev->base + DMA_IRQ_STAT(1));
#endif
list_for_each_entry(ch, &sdev->dma_dev.channels, vc.chan.device_node) {
u32 chan_num = ch->vc.chan.chan_id;
u32 status;
status = (chan_num >= HIGH_CHAN)
? (status_hi >> ((chan_num - HIGH_CHAN) << 2))
: (status_lo >> (chan_num << 2));
spin_lock_irqsave(&ch->vc.lock, flags);
if (!(ch->irq_type & status))
goto unlock;
if (!ch->desc)
goto unlock;
desc = ch->desc;
if (ch->cyclic) {
struct virt_dma_desc *vd;
dma_async_tx_callback cb = NULL;
void *cb_data = NULL;
vd = &desc->vd;
if (vd) {
cb = vd->tx.callback;
cb_data = vd->tx.callback_param;
}
spin_unlock_irqrestore(&ch->vc.lock, flags);
if (cb)
cb(cb_data);
spin_lock_irqsave(&ch->vc.lock, flags);
} else {
ch->desc = NULL;
vchan_cookie_complete(&desc->vd);
sunxi_start_desc(ch);
}
unlock:
spin_unlock_irqrestore(&ch->vc.lock, flags);
}
return IRQ_HANDLED;
}
static struct dma_async_tx_descriptor *sunxi_prep_dma_memcpy(
struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
size_t len, unsigned long flags)
{
struct sunxi_chan *schan = to_sunxi_chan(chan);
struct sunxi_desc *txd;
struct sunxi_dma_lli *l_item;
struct sunxi_dmadev *sdev = to_sunxi_dmadev(chan->device);
struct dma_slave_config *sconfig = &schan->cfg;
u32 phy;
dev_dbg(chan2dev(chan),
"chan: %d, dest: 0x%08lx, src: 0x%08lx, len: 0x%08zx, flags: 0x%08lx\n",
schan->vc.chan.chan_id, (unsigned long)dest,
(unsigned long)src, len, flags);
if (unlikely(!len)) {
dev_dbg(chan2dev(chan), "memcpy length is zero!\n");
return NULL;
}
txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
if (!txd)
return NULL;
vchan_tx_prep(&schan->vc, &txd->vd, flags);
l_item = sunxi_alloc_lli(sdev, &phy);
if (!l_item) {
sunxi_free_desc(&txd->vd);
dev_err(sdev->dma_dev.dev, "Failed to alloc lli memory!\n");
return NULL;
}
sunxi_cfg_lli(l_item, src, dest, len, sconfig);
l_item->cfg |= SRC_DRQ(DRQSRC_SDRAM)
| DST_DRQ(DRQDST_SDRAM)
| DST_LINEAR_MODE
| SRC_LINEAR_MODE;
sunxi_lli_list(NULL, l_item, phy, txd);
sunxi_dump_lli(schan, l_item);
return &txd->vd.tx;
}
static struct dma_async_tx_descriptor *sunxi_prep_dma_sg(
struct dma_chan *chan,
struct scatterlist *dst_sg, unsigned int dst_nents,
struct scatterlist *src_sg, unsigned int src_nents,
unsigned long flags)
{
struct sunxi_chan *schan = to_sunxi_chan(chan);
struct sunxi_dmadev *sdev = to_sunxi_dmadev(chan->device);
struct dma_slave_config *sconfig = &schan->cfg;
struct sunxi_desc *txd;
struct sunxi_dma_lli *l_item, *prev = NULL;
u32 phy;
if (dst_nents != src_nents)
return NULL;
if (!dst_nents || !src_nents)
return NULL;
if (dst_sg == NULL || src_sg == NULL)
return NULL;
txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
if (!txd)
return NULL;
vchan_tx_prep(&schan->vc, &txd->vd, flags);
while ((src_sg != NULL) && (dst_sg != NULL)) {
l_item = sunxi_alloc_lli(sdev, &phy);
if (!l_item) {
sunxi_free_desc(&txd->vd);
return NULL;
}
sunxi_cfg_lli(l_item, sg_dma_address(src_sg),
sg_dma_address(dst_sg), sg_dma_len(dst_sg),
sconfig);
l_item->cfg |= SRC_LINEAR_MODE
| DST_LINEAR_MODE
| GET_DST_DRQ(sconfig->slave_id)
| GET_SRC_DRQ(sconfig->slave_id);
prev = sunxi_lli_list(prev, l_item, phy, txd);
src_sg = sg_next(src_sg);
dst_sg = sg_next(dst_sg);
}
#ifdef DEBUG
pr_debug("[sunxi_dma]: First: 0x%08x\n", txd->lli_phys);
for (prev = txd->lli_virt; prev != NULL; prev = prev->v_lln)
sunxi_dump_lli(schan, prev);
#endif
return &txd->vd.tx;
}
static struct dma_async_tx_descriptor *sunxi_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction dir,
unsigned long flags, void *context)
{
struct sunxi_chan *schan = to_sunxi_chan(chan);
struct sunxi_desc *txd;
struct sunxi_dma_lli *l_item, *prev = NULL;
struct sunxi_dmadev *sdev = to_sunxi_dmadev(chan->device);
struct dma_slave_config *sconfig = &schan->cfg;
struct scatterlist *sg = NULL;
u32 phy;
unsigned int i = 0;
if (unlikely(!sg_len)) {
dev_dbg(chan2dev(chan), "sg length is zero!!\n");
return NULL;
}
txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
if (!txd)
return NULL;
vchan_tx_prep(&schan->vc, &txd->vd, flags);
for_each_sg(sgl, sg, sg_len, i) {
l_item = sunxi_alloc_lli(sdev, &phy);
if (!l_item) {
sunxi_free_desc(&txd->vd);
return NULL;
}
if (dir == DMA_MEM_TO_DEV) {
sunxi_cfg_lli(l_item, sg_dma_address(sg),
sconfig->dst_addr, sg_dma_len(sg),
sconfig);
l_item->cfg |= DST_IO_MODE
| SRC_LINEAR_MODE
| SRC_DRQ(DRQSRC_SDRAM)
| GET_DST_DRQ(sconfig->slave_id);
} else if (dir == DMA_DEV_TO_MEM) {
sunxi_cfg_lli(l_item, sconfig->src_addr,
sg_dma_address(sg), sg_dma_len(sg),
sconfig);
l_item->cfg |= DST_LINEAR_MODE
| SRC_IO_MODE
| DST_DRQ(DRQDST_SDRAM)
| GET_SRC_DRQ(sconfig->slave_id);
}
prev = sunxi_lli_list(prev, l_item, phy, txd);
}
#ifdef DEBUG
pr_debug("[sunxi_dma]: First: 0x%08x\n", txd->lli_phys);
for (prev = txd->lli_virt; prev != NULL; prev = prev->v_lln)
sunxi_dump_lli(schan, prev);
#endif
return &txd->vd.tx;
}
/**
* sunxi_prep_dma_cyclic - prepare the cyclic DMA transfer
* @chan: the DMA channel to prepare
* @buf_addr: physical DMA address where the buffer starts
* @buf_len: total number of bytes for the entire buffer
* @period_len: number of bytes for each period
* @dir: transfer direction, to or from device
*
* Must be called before trying to start the transfer. Returns a valid struct
* sunxi_cyclic_desc if successful or an ERR_PTR(-errno) if not successful.
*/
struct dma_async_tx_descriptor *sunxi_prep_dma_cyclic(struct dma_chan *chan,
dma_addr_t buf_addr, size_t buf_len, size_t period_len,
enum dma_transfer_direction dir, unsigned long flags)
{
struct sunxi_desc *txd;
struct sunxi_chan *schan = to_sunxi_chan(chan);
struct sunxi_dmadev *sdev = to_sunxi_dmadev(chan->device);
struct sunxi_dma_lli *l_item, *prev = NULL;
struct dma_slave_config *sconfig = &schan->cfg;
u32 phy;
unsigned int periods = buf_len / period_len;
unsigned int i;
/*
* Not allow duplicate prep dma on cyclic channel.
*/
if (schan->desc && schan->cyclic)
return NULL;
txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
if (!txd)
return NULL;
vchan_tx_prep(&schan->vc, &txd->vd, flags);
for (i = 0; i < periods; i++) {
l_item = sunxi_alloc_lli(sdev, &phy);
if (!l_item) {
sunxi_free_desc(&txd->vd);
return NULL;
}
if (dir == DMA_MEM_TO_DEV) {
sunxi_cfg_lli(l_item, (buf_addr + period_len * i),
sconfig->dst_addr, period_len,
sconfig);
l_item->cfg |= GET_DST_DRQ(sconfig->slave_id)
| SRC_LINEAR_MODE
| DST_IO_MODE
| SRC_DRQ(DRQSRC_SDRAM);
} else if (dir == DMA_DEV_TO_MEM) {
sunxi_cfg_lli(l_item, sconfig->src_addr,
(buf_addr + period_len * i),
period_len, sconfig);
l_item->cfg |= GET_SRC_DRQ(sconfig->slave_id)
| DST_LINEAR_MODE
| SRC_IO_MODE
| DST_DRQ(DRQDST_SDRAM);
} else if (dir == DMA_DEV_TO_DEV) {
sunxi_cfg_lli(l_item, sconfig->src_addr,
sconfig->dst_addr, period_len,
sconfig);
l_item->cfg |= GET_SRC_DRQ(sconfig->slave_id)
| DST_IO_MODE
| SRC_IO_MODE
| GET_DST_DRQ(sconfig->slave_id);
}
prev = sunxi_lli_list(prev, l_item, phy, txd);
}
/* Make a cyclic list */
prev->p_lln = txd->lli_phys;
schan->cyclic = true;
#ifdef DEBUG
pr_debug("[sunxi_dma]: First: 0x%08x\n", txd->lli_phys);
for (prev = txd->lli_virt; prev != NULL; prev = prev->v_lln)
sunxi_dump_lli(schan, prev);
#endif
return &txd->vd.tx;
}
static int sunxi_set_runtime_config(struct dma_chan *chan,
struct dma_slave_config *config)
{
struct sunxi_chan *schan = to_sunxi_chan(chan);
memcpy(&schan->cfg, config, sizeof(struct dma_slave_config));
convert_burst(&schan->cfg.src_maxburst);
convert_burst(&schan->cfg.dst_maxburst);
return 0;
}
static enum dma_status sunxi_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, struct dma_tx_state *txstate)
{
struct sunxi_chan *schan = to_sunxi_chan(chan);
struct virt_dma_desc *vd;
enum dma_status ret;
unsigned long flags;
size_t bytes = 0;
ret = dma_cookie_status(chan, cookie, txstate);
if (ret == DMA_COMPLETE || !txstate)
return ret;
spin_lock_irqsave(&schan->vc.lock, flags);
vd = vchan_find_desc(&schan->vc, cookie);
if (vd)
bytes = sunxi_get_desc_size(to_sunxi_desc(&vd->tx));
else if (schan->desc && schan->desc->vd.tx.cookie == cookie)
bytes = sunxi_get_chan_size(to_sunxi_chan(chan));
/*
* This cookie not complete yet
* Get number of bytes left in the active transactions and queue
*/
dma_set_residue(txstate, bytes);
spin_unlock_irqrestore(&schan->vc.lock, flags);
return ret;
}
/*
* sunxi_issue_pending - try to finish work
* @chan: target DMA channel
*
* It will call vchan_issue_pending(), which can move the desc_submitted
* list to desc_issued list. And we will move the chan to pending list of
* sunxi_dmadev.
*/
static void sunxi_issue_pending(struct dma_chan *chan)
{
struct sunxi_chan *schan = to_sunxi_chan(chan);
struct sunxi_dmadev *sdev = to_sunxi_dmadev(chan->device);
unsigned long flags;
spin_lock_irqsave(&schan->vc.lock, flags);
if (vchan_issue_pending(&schan->vc) && !schan->desc) {
if (schan->cyclic) {
sunxi_start_desc(schan);
goto out;
}
spin_lock(&sdev->lock);
if (list_empty(&schan->node))
list_add_tail(&schan->node, &sdev->pending);
spin_unlock(&sdev->lock);
tasklet_schedule(&sdev->task);
}
out:
spin_unlock_irqrestore(&schan->vc.lock, flags);
}
static int sunxi_alloc_chan_resources(struct dma_chan *chan)
{
struct sunxi_chan *schan = to_sunxi_chan(chan);
dev_dbg(chan2parent(chan), "%s: Now alloc chan resources!\n", __func__);
schan->cyclic = false;
return 0;
}
/*
* sunxi_free_chan_resources - free the resources of channel
* @chan: the channel to free
*/
static void sunxi_free_chan_resources(struct dma_chan *chan)
{
struct sunxi_chan *schan = to_sunxi_chan(chan);
vchan_free_chan_resources(&schan->vc);
dev_dbg(chan2parent(chan), "%s: Now free chan resources!!\n", __func__);
}
/*
* sunxi_chan_free - free the channel on dmadevice
* @sdev: the dmadevice of sunxi
*/
static inline void sunxi_chan_free(struct sunxi_dmadev *sdev)
{
struct sunxi_chan *ch;
tasklet_kill(&sdev->task);
while (!list_empty(&sdev->dma_dev.channels)) {
ch = list_first_entry(&sdev->dma_dev.channels,
struct sunxi_chan, vc.chan.device_node);
list_del(&ch->vc.chan.device_node);
tasklet_kill(&ch->vc.task);
kfree(ch);
}
}
static void sunxi_dma_hw_init(struct sunxi_dmadev *dev)
{
struct sunxi_dmadev *sunxi_dev = dev;
clk_prepare_enable(sunxi_dev->ahb_clk);
#if defined(CONFIG_SUNXI_SMC)
sunxi_smc_writel(0xff, sunxi_dev->pbase + DMA_SECU);
#endif
#if defined(CONFIG_ARCH_SUN8IW3) || \
defined(CONFIG_ARCH_SUN8IW5) || \
defined(CONFIG_ARCH_SUN8IW6) || \
defined(CONFIG_ARCH_SUN8IW8)
writel(DMA_MCLK_GATE|DMA_COMMON_GATE|DMA_CHAN_GATE,
sunxi_dev->base + DMA_GATE);
#endif
}
static int sunxi_probe(struct platform_device *pdev)
{
struct sunxi_dmadev *sunxi_dev;
struct sunxi_chan *schan;
struct resource *res;
int irq;
int ret, i;
pdev->dev.dma_mask = &sunxi_dma_mask;
pdev->dev.coherent_dma_mask = DMA_BIT_MASK(32);
sunxi_dev = kzalloc(sizeof(struct sunxi_dmadev), GFP_KERNEL);
if (!sunxi_dev)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
ret = -EINVAL;
goto io_err;
}
sunxi_dev->pbase = res->start;
sunxi_dev->base = ioremap(res->start, resource_size(res));
if (!sunxi_dev->base) {
dev_err(&pdev->dev, "Remap I/O memory failed!\n");
ret = -ENOMEM;
goto io_err;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = irq;
goto irq_err;
}
ret = request_irq(irq, sunxi_dma_interrupt, IRQF_SHARED,
dev_name(&pdev->dev), sunxi_dev);
if (ret) {
dev_err(&pdev->dev, "NO IRQ found!!!\n");
goto irq_err;
}
sunxi_dev->ahb_clk = clk_get(&pdev->dev, "dma");
if (!sunxi_dev->ahb_clk) {
dev_err(&pdev->dev, "NO clock to dma!!!\n");
ret = -EINVAL;
goto clk_err;
}
sunxi_dev->lli_pool = dma_pool_create(dev_name(&pdev->dev), &pdev->dev,
sizeof(struct sunxi_dma_lli), 4/* word alignment */, 0);
if (!sunxi_dev->lli_pool) {
ret = -ENOMEM;
goto pool_err;
}
platform_set_drvdata(pdev, sunxi_dev);
INIT_LIST_HEAD(&sunxi_dev->pending);
spin_lock_init(&sunxi_dev->lock);
/* Initialize dmaengine */
dma_cap_set(DMA_MEMCPY, sunxi_dev->dma_dev.cap_mask);
dma_cap_set(DMA_SLAVE, sunxi_dev->dma_dev.cap_mask);
dma_cap_set(DMA_CYCLIC, sunxi_dev->dma_dev.cap_mask);
dma_cap_set(DMA_SG, sunxi_dev->dma_dev.cap_mask);
INIT_LIST_HEAD(&sunxi_dev->dma_dev.channels);
sunxi_dev->dma_dev.device_alloc_chan_resources = sunxi_alloc_chan_resources;
sunxi_dev->dma_dev.device_free_chan_resources = sunxi_free_chan_resources;
sunxi_dev->dma_dev.device_tx_status = sunxi_tx_status;
sunxi_dev->dma_dev.device_issue_pending = sunxi_issue_pending;
sunxi_dev->dma_dev.device_prep_dma_sg = sunxi_prep_dma_sg;
sunxi_dev->dma_dev.device_prep_slave_sg = sunxi_prep_slave_sg;
sunxi_dev->dma_dev.device_prep_dma_cyclic = sunxi_prep_dma_cyclic;
sunxi_dev->dma_dev.device_prep_dma_memcpy = sunxi_prep_dma_memcpy;
sunxi_dev->dma_dev.device_config = sunxi_set_runtime_config;
sunxi_dev->dma_dev.device_pause = sunxi_dma_pause;
sunxi_dev->dma_dev.device_resume = sunxi_dma_resume;
sunxi_dev->dma_dev.device_terminate_all = sunxi_terminate_all;
sunxi_dev->dma_dev.dev = &pdev->dev;
tasklet_init(&sunxi_dev->task, sunxi_dma_tasklet,
(unsigned long)sunxi_dev);
for (i = 0; i < NR_MAX_CHAN; i++) {
schan = kzalloc(sizeof(*schan), GFP_KERNEL);
if (!schan) {
dev_err(&pdev->dev, "no memory for channel\n");
ret = -ENOMEM;
goto chan_err;
}
INIT_LIST_HEAD(&schan->node);
sunxi_dev->dma_dev.chancnt++;
schan->vc.desc_free = sunxi_free_desc;
vchan_init(&schan->vc, &sunxi_dev->dma_dev);
}
/* Register the sunxi-dma to dmaengine */
ret = dma_async_device_register(&sunxi_dev->dma_dev);
if (ret) {
dev_warn(&pdev->dev, "Failed to register DMA engine device\n");
goto chan_err;
}
/* All is ok, and open the clock */
sunxi_dma_hw_init(sunxi_dev);
return 0;
chan_err:
sunxi_chan_free(sunxi_dev);
platform_set_drvdata(pdev, NULL);
dma_pool_destroy(sunxi_dev->lli_pool);
pool_err:
clk_put(sunxi_dev->ahb_clk);
clk_err:
free_irq(irq, sunxi_dev);
irq_err:
iounmap(sunxi_dev->base);
io_err:
kfree(sunxi_dev);
return ret;
}
static int sunxi_remove(struct platform_device *pdev)
{
struct sunxi_dmadev *sunxi_dev = platform_get_drvdata(pdev);
dma_async_device_unregister(&sunxi_dev->dma_dev);
sunxi_chan_free(sunxi_dev);
free_irq(platform_get_irq(pdev, 0), sunxi_dev);
dma_pool_destroy(sunxi_dev->lli_pool);
clk_disable_unprepare(sunxi_dev->ahb_clk);
clk_put(sunxi_dev->ahb_clk);
iounmap(sunxi_dev->base);
kfree(sunxi_dev);
return 0;
}
static void sunxi_shutdown(struct platform_device *pdev)
{
struct sunxi_dmadev *sdev = platform_get_drvdata(pdev);
clk_disable_unprepare(sdev->ahb_clk);
}
static int sunxi_suspend_noirq(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct sunxi_dmadev *sunxi_dev = platform_get_drvdata(pdev);
clk_disable_unprepare(sunxi_dev->ahb_clk);
return 0;
}
static int sunxi_resume_noirq(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct sunxi_dmadev *sunxi_dev = platform_get_drvdata(pdev);
sunxi_dma_hw_init(sunxi_dev);
return 0;
}
static const struct dev_pm_ops sunxi_dev_pm_ops = {
.suspend_noirq = sunxi_suspend_noirq,
.resume_noirq = sunxi_resume_noirq,
.freeze_noirq = sunxi_suspend_noirq,
.thaw_noirq = sunxi_resume_noirq,
.restore_noirq = sunxi_resume_noirq,
.poweroff_noirq = sunxi_suspend_noirq,
};
#ifndef CONFIG_OF
static struct resource sunxi_dma_reousce[] = {
[0] = {
.start = DMA_PHYS_BASE,
.end = DMA_PHYS_BASE + DMA_PARA(15),
.flags = IORESOURCE_MEM,
},
[1] = {
.start = DMA_IRQ_ID,
.end = DMA_IRQ_ID,
.flags = IORESOURCE_IRQ,
},
};
static struct platform_device sunxi_dma_device = {
.name = "sunxi_dmac",
.id = -1,
.resource = sunxi_dma_reousce,
.num_resources = ARRAY_SIZE(sunxi_dma_reousce),
.dev = {
.dma_mask = &sunxi_dma_mask,
.coherent_dma_mask = DMA_BIT_MASK(32),
},
};
#else
static const struct of_device_id sunxi_dma_match[] = {
{ .compatible = "allwinner,sun50i-dma", },
{ .compatible = "allwinner,sun8i-dma", },
{},
};
#endif
static struct platform_driver sunxi_dma_driver = {
.probe = sunxi_probe,
.remove = sunxi_remove,
.shutdown = sunxi_shutdown,
.driver = {
.name = "sunxi_dmac",
.pm = &sunxi_dev_pm_ops,
.of_match_table = sunxi_dma_match,
},
};
bool sunxi_dma_filter_fn(struct dma_chan *chan, void *param)
{
bool ret = false;
if (chan->device->dev->driver == &sunxi_dma_driver.driver) {
const char *p = param;
ret = !strcmp("sunxi_dmac", p);
pr_debug("[sunxi_rdma]: sunxi_dma_filter_fn: %s\n", p);
}
return ret;
}
EXPORT_SYMBOL_GPL(sunxi_dma_filter_fn);
static int __init sunxi_dma_init(void)
{
int ret;
#ifndef CONFIG_OF
platform_device_register(&sunxi_dma_device);
#endif
ret = platform_driver_register(&sunxi_dma_driver);
return ret;
}
subsys_initcall(sunxi_dma_init);
static void __exit sunxi_dma_exit(void)
{
platform_driver_unregister(&sunxi_dma_driver);
#ifndef CONFIG_OF
platform_device_unregister(&sunxi_dma_device);
#endif
}
module_exit(sunxi_dma_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Sunxi DMA Controller driver");
MODULE_AUTHOR("Shuge");
MODULE_AUTHOR("Wim Hwang");
MODULE_ALIAS("platform:sunxi_dmac");