SmartAudio/lichee/linux-4.9/drivers/crypto/qce/ablkcipher.c

435 lines
11 KiB
C
Executable File

/*
* Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <crypto/aes.h>
#include <crypto/des.h>
#include <crypto/internal/skcipher.h>
#include "cipher.h"
static LIST_HEAD(ablkcipher_algs);
static void qce_ablkcipher_done(void *data)
{
struct crypto_async_request *async_req = data;
struct ablkcipher_request *req = ablkcipher_request_cast(async_req);
struct qce_cipher_reqctx *rctx = ablkcipher_request_ctx(req);
struct qce_alg_template *tmpl = to_cipher_tmpl(async_req->tfm);
struct qce_device *qce = tmpl->qce;
enum dma_data_direction dir_src, dir_dst;
u32 status;
int error;
bool diff_dst;
diff_dst = (req->src != req->dst) ? true : false;
dir_src = diff_dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL;
dir_dst = diff_dst ? DMA_FROM_DEVICE : DMA_BIDIRECTIONAL;
error = qce_dma_terminate_all(&qce->dma);
if (error)
dev_dbg(qce->dev, "ablkcipher dma termination error (%d)\n",
error);
if (diff_dst)
dma_unmap_sg(qce->dev, rctx->src_sg, rctx->src_nents, dir_src);
dma_unmap_sg(qce->dev, rctx->dst_sg, rctx->dst_nents, dir_dst);
sg_free_table(&rctx->dst_tbl);
error = qce_check_status(qce, &status);
if (error < 0)
dev_dbg(qce->dev, "ablkcipher operation error (%x)\n", status);
qce->async_req_done(tmpl->qce, error);
}
static int
qce_ablkcipher_async_req_handle(struct crypto_async_request *async_req)
{
struct ablkcipher_request *req = ablkcipher_request_cast(async_req);
struct qce_cipher_reqctx *rctx = ablkcipher_request_ctx(req);
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
struct qce_alg_template *tmpl = to_cipher_tmpl(async_req->tfm);
struct qce_device *qce = tmpl->qce;
enum dma_data_direction dir_src, dir_dst;
struct scatterlist *sg;
bool diff_dst;
gfp_t gfp;
int ret;
rctx->iv = req->info;
rctx->ivsize = crypto_ablkcipher_ivsize(ablkcipher);
rctx->cryptlen = req->nbytes;
diff_dst = (req->src != req->dst) ? true : false;
dir_src = diff_dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL;
dir_dst = diff_dst ? DMA_FROM_DEVICE : DMA_BIDIRECTIONAL;
rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
if (diff_dst)
rctx->dst_nents = sg_nents_for_len(req->dst, req->nbytes);
else
rctx->dst_nents = rctx->src_nents;
if (rctx->src_nents < 0) {
dev_err(qce->dev, "Invalid numbers of src SG.\n");
return rctx->src_nents;
}
if (rctx->dst_nents < 0) {
dev_err(qce->dev, "Invalid numbers of dst SG.\n");
return -rctx->dst_nents;
}
rctx->dst_nents += 1;
gfp = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
ret = sg_alloc_table(&rctx->dst_tbl, rctx->dst_nents, gfp);
if (ret)
return ret;
sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
sg = qce_sgtable_add(&rctx->dst_tbl, req->dst);
if (IS_ERR(sg)) {
ret = PTR_ERR(sg);
goto error_free;
}
sg = qce_sgtable_add(&rctx->dst_tbl, &rctx->result_sg);
if (IS_ERR(sg)) {
ret = PTR_ERR(sg);
goto error_free;
}
sg_mark_end(sg);
rctx->dst_sg = rctx->dst_tbl.sgl;
ret = dma_map_sg(qce->dev, rctx->dst_sg, rctx->dst_nents, dir_dst);
if (ret < 0)
goto error_free;
if (diff_dst) {
ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, dir_src);
if (ret < 0)
goto error_unmap_dst;
rctx->src_sg = req->src;
} else {
rctx->src_sg = rctx->dst_sg;
}
ret = qce_dma_prep_sgs(&qce->dma, rctx->src_sg, rctx->src_nents,
rctx->dst_sg, rctx->dst_nents,
qce_ablkcipher_done, async_req);
if (ret)
goto error_unmap_src;
qce_dma_issue_pending(&qce->dma);
ret = qce_start(async_req, tmpl->crypto_alg_type, req->nbytes, 0);
if (ret)
goto error_terminate;
return 0;
error_terminate:
qce_dma_terminate_all(&qce->dma);
error_unmap_src:
if (diff_dst)
dma_unmap_sg(qce->dev, req->src, rctx->src_nents, dir_src);
error_unmap_dst:
dma_unmap_sg(qce->dev, rctx->dst_sg, rctx->dst_nents, dir_dst);
error_free:
sg_free_table(&rctx->dst_tbl);
return ret;
}
static int qce_ablkcipher_setkey(struct crypto_ablkcipher *ablk, const u8 *key,
unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(ablk);
struct qce_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
unsigned long flags = to_cipher_tmpl(tfm)->alg_flags;
int ret;
if (!key || !keylen)
return -EINVAL;
if (IS_AES(flags)) {
switch (keylen) {
case AES_KEYSIZE_128:
case AES_KEYSIZE_256:
break;
default:
goto fallback;
}
} else if (IS_DES(flags)) {
u32 tmp[DES_EXPKEY_WORDS];
ret = des_ekey(tmp, key);
if (!ret && crypto_ablkcipher_get_flags(ablk) &
CRYPTO_TFM_REQ_WEAK_KEY)
goto weakkey;
}
ctx->enc_keylen = keylen;
memcpy(ctx->enc_key, key, keylen);
return 0;
fallback:
ret = crypto_skcipher_setkey(ctx->fallback, key, keylen);
if (!ret)
ctx->enc_keylen = keylen;
return ret;
weakkey:
crypto_ablkcipher_set_flags(ablk, CRYPTO_TFM_RES_WEAK_KEY);
return -EINVAL;
}
static int qce_ablkcipher_crypt(struct ablkcipher_request *req, int encrypt)
{
struct crypto_tfm *tfm =
crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
struct qce_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct qce_cipher_reqctx *rctx = ablkcipher_request_ctx(req);
struct qce_alg_template *tmpl = to_cipher_tmpl(tfm);
int ret;
rctx->flags = tmpl->alg_flags;
rctx->flags |= encrypt ? QCE_ENCRYPT : QCE_DECRYPT;
if (IS_AES(rctx->flags) && ctx->enc_keylen != AES_KEYSIZE_128 &&
ctx->enc_keylen != AES_KEYSIZE_256) {
SKCIPHER_REQUEST_ON_STACK(subreq, ctx->fallback);
skcipher_request_set_tfm(subreq, ctx->fallback);
skcipher_request_set_callback(subreq, req->base.flags,
NULL, NULL);
skcipher_request_set_crypt(subreq, req->src, req->dst,
req->nbytes, req->info);
ret = encrypt ? crypto_skcipher_encrypt(subreq) :
crypto_skcipher_decrypt(subreq);
skcipher_request_zero(subreq);
return ret;
}
return tmpl->qce->async_req_enqueue(tmpl->qce, &req->base);
}
static int qce_ablkcipher_encrypt(struct ablkcipher_request *req)
{
return qce_ablkcipher_crypt(req, 1);
}
static int qce_ablkcipher_decrypt(struct ablkcipher_request *req)
{
return qce_ablkcipher_crypt(req, 0);
}
static int qce_ablkcipher_init(struct crypto_tfm *tfm)
{
struct qce_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
memset(ctx, 0, sizeof(*ctx));
tfm->crt_ablkcipher.reqsize = sizeof(struct qce_cipher_reqctx);
ctx->fallback = crypto_alloc_skcipher(crypto_tfm_alg_name(tfm), 0,
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->fallback))
return PTR_ERR(ctx->fallback);
return 0;
}
static void qce_ablkcipher_exit(struct crypto_tfm *tfm)
{
struct qce_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
crypto_free_skcipher(ctx->fallback);
}
struct qce_ablkcipher_def {
unsigned long flags;
const char *name;
const char *drv_name;
unsigned int blocksize;
unsigned int ivsize;
unsigned int min_keysize;
unsigned int max_keysize;
};
static const struct qce_ablkcipher_def ablkcipher_def[] = {
{
.flags = QCE_ALG_AES | QCE_MODE_ECB,
.name = "ecb(aes)",
.drv_name = "ecb-aes-qce",
.blocksize = AES_BLOCK_SIZE,
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
},
{
.flags = QCE_ALG_AES | QCE_MODE_CBC,
.name = "cbc(aes)",
.drv_name = "cbc-aes-qce",
.blocksize = AES_BLOCK_SIZE,
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
},
{
.flags = QCE_ALG_AES | QCE_MODE_CTR,
.name = "ctr(aes)",
.drv_name = "ctr-aes-qce",
.blocksize = AES_BLOCK_SIZE,
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
},
{
.flags = QCE_ALG_AES | QCE_MODE_XTS,
.name = "xts(aes)",
.drv_name = "xts-aes-qce",
.blocksize = AES_BLOCK_SIZE,
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
},
{
.flags = QCE_ALG_DES | QCE_MODE_ECB,
.name = "ecb(des)",
.drv_name = "ecb-des-qce",
.blocksize = DES_BLOCK_SIZE,
.ivsize = 0,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
},
{
.flags = QCE_ALG_DES | QCE_MODE_CBC,
.name = "cbc(des)",
.drv_name = "cbc-des-qce",
.blocksize = DES_BLOCK_SIZE,
.ivsize = DES_BLOCK_SIZE,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
},
{
.flags = QCE_ALG_3DES | QCE_MODE_ECB,
.name = "ecb(des3_ede)",
.drv_name = "ecb-3des-qce",
.blocksize = DES3_EDE_BLOCK_SIZE,
.ivsize = 0,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
},
{
.flags = QCE_ALG_3DES | QCE_MODE_CBC,
.name = "cbc(des3_ede)",
.drv_name = "cbc-3des-qce",
.blocksize = DES3_EDE_BLOCK_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
},
};
static int qce_ablkcipher_register_one(const struct qce_ablkcipher_def *def,
struct qce_device *qce)
{
struct qce_alg_template *tmpl;
struct crypto_alg *alg;
int ret;
tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
if (!tmpl)
return -ENOMEM;
alg = &tmpl->alg.crypto;
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
def->drv_name);
alg->cra_blocksize = def->blocksize;
alg->cra_ablkcipher.ivsize = def->ivsize;
alg->cra_ablkcipher.min_keysize = def->min_keysize;
alg->cra_ablkcipher.max_keysize = def->max_keysize;
alg->cra_ablkcipher.setkey = qce_ablkcipher_setkey;
alg->cra_ablkcipher.encrypt = qce_ablkcipher_encrypt;
alg->cra_ablkcipher.decrypt = qce_ablkcipher_decrypt;
alg->cra_priority = 300;
alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK;
alg->cra_ctxsize = sizeof(struct qce_cipher_ctx);
alg->cra_alignmask = 0;
alg->cra_type = &crypto_ablkcipher_type;
alg->cra_module = THIS_MODULE;
alg->cra_init = qce_ablkcipher_init;
alg->cra_exit = qce_ablkcipher_exit;
INIT_LIST_HEAD(&alg->cra_list);
INIT_LIST_HEAD(&tmpl->entry);
tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_ABLKCIPHER;
tmpl->alg_flags = def->flags;
tmpl->qce = qce;
ret = crypto_register_alg(alg);
if (ret) {
kfree(tmpl);
dev_err(qce->dev, "%s registration failed\n", alg->cra_name);
return ret;
}
list_add_tail(&tmpl->entry, &ablkcipher_algs);
dev_dbg(qce->dev, "%s is registered\n", alg->cra_name);
return 0;
}
static void qce_ablkcipher_unregister(struct qce_device *qce)
{
struct qce_alg_template *tmpl, *n;
list_for_each_entry_safe(tmpl, n, &ablkcipher_algs, entry) {
crypto_unregister_alg(&tmpl->alg.crypto);
list_del(&tmpl->entry);
kfree(tmpl);
}
}
static int qce_ablkcipher_register(struct qce_device *qce)
{
int ret, i;
for (i = 0; i < ARRAY_SIZE(ablkcipher_def); i++) {
ret = qce_ablkcipher_register_one(&ablkcipher_def[i], qce);
if (ret)
goto err;
}
return 0;
err:
qce_ablkcipher_unregister(qce);
return ret;
}
const struct qce_algo_ops ablkcipher_ops = {
.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.register_algs = qce_ablkcipher_register,
.unregister_algs = qce_ablkcipher_unregister,
.async_req_handle = qce_ablkcipher_async_req_handle,
};