SmartAudio/lichee/linux-4.9/drivers/pwm/pwm-sunxi.c

722 lines
18 KiB
C

/*
* drivers/pwm/pwm-sunxi.c
*
* Allwinnertech pulse-width-modulation controller driver
*
* Copyright (C) 2015 AllWinner
*
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/types.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cdev.h>
#include <linux/pwm.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/device.h>
#include <linux/gpio.h>
#include <linux/pinctrl/pinconf.h>
/*#include <linux/sunxi-gpio.h>*/
#include <linux/pinctrl/consumer.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_iommu.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/io.h>
#include <linux/clk.h>
#define PWM_DEBUG 0
#define PWM_NUM_MAX 4
#define PWM_PIN_STATE_ACTIVE "active"
#define PWM_PIN_STATE_SLEEP "sleep"
#define SETMASK(width, shift) ((width?((-1U) >> (32-width)):0) << (shift))
#define CLRMASK(width, shift) (~(SETMASK(width, shift)))
#define GET_BITS(shift, width, reg) \
(((reg) & SETMASK(width, shift)) >> (shift))
#define SET_BITS(shift, width, reg, val) \
(((reg) & CLRMASK(width, shift)) | (val << (shift)))
#if PWM_DEBUG
#define pwm_debug(msg...) pr_info
#else
#define pwm_debug(msg...)
#endif
#if ((defined CONFIG_ARCH_SUN8IW12P1) ||\
(defined CONFIG_ARCH_SUN8IW17P1) ||\
(defined CONFIG_ARCH_SUN50IW6P1) ||\
(defined CONFIG_ARCH_SUN8IW15P1) ||\
(defined CONFIG_ARCH_SUN50IW3P1))
#define CLK_GATE_SUPPORT
#endif
struct sunxi_pwm_config {
unsigned int reg_busy_offset;
unsigned int reg_busy_shift;
unsigned int reg_enable_offset;
unsigned int reg_enable_shift;
unsigned int reg_clk_gating_offset;
unsigned int reg_clk_gating_shift;
unsigned int reg_bypass_offset;
unsigned int reg_bypass_shift;
unsigned int reg_pulse_start_offset;
unsigned int reg_pulse_start_shift;
unsigned int reg_mode_offset;
unsigned int reg_mode_shift;
unsigned int reg_polarity_offset;
unsigned int reg_polarity_shift;
unsigned int reg_period_offset;
unsigned int reg_period_shift;
unsigned int reg_period_width;
unsigned int reg_active_offset;
unsigned int reg_active_shift;
unsigned int reg_active_width;
unsigned int reg_prescal_offset;
unsigned int reg_prescal_shift;
unsigned int reg_prescal_width;
};
struct sunxi_pwm_chip {
struct pwm_chip chip;
void __iomem *base;
struct sunxi_pwm_config *config;
#if defined(CLK_GATE_SUPPORT)
struct clk *pwm_clk;
#endif
};
static inline struct sunxi_pwm_chip *to_sunxi_pwm_chip(struct pwm_chip *chip)
{
return container_of(chip, struct sunxi_pwm_chip, chip);
}
static inline u32 sunxi_pwm_readl(struct pwm_chip *chip, u32 offset)
{
struct sunxi_pwm_chip *pc = to_sunxi_pwm_chip(chip);
u32 value = 0;
value = readl(pc->base + offset);
return value;
}
static inline u32 sunxi_pwm_writel(struct pwm_chip *chip, u32 offset, u32 value)
{
struct sunxi_pwm_chip *pc = to_sunxi_pwm_chip(chip);
writel(value, pc->base + offset);
return 0;
}
static int sunxi_pwm_pin_set_state(struct device *dev, char *name)
{
struct pinctrl *pctl;
struct pinctrl_state *state;
int ret = -1;
pctl = pinctrl_get(dev);
if (IS_ERR(pctl)) {
dev_err(dev, "pinctrl_get failed!\n");
ret = PTR_ERR(pctl);
goto exit;
}
state = pinctrl_lookup_state(pctl, name);
if (IS_ERR(state)) {
dev_err(dev, "pinctrl_lookup_state(%s) failed!\n", name);
ret = PTR_ERR(state);
goto exit;
}
ret = pinctrl_select_state(pctl, state);
if (ret < 0) {
dev_err(dev, "pinctrl_select_state(%s) failed!\n", name);
goto exit;
}
ret = 0;
exit:
return ret;
}
static int sunxi_pwm_get_config(struct platform_device *pdev,
struct sunxi_pwm_config *config)
{
struct device_node *np = pdev->dev.of_node;
int ret = 0;
/* read register config */
ret = of_property_read_u32(np,
"reg_busy_offset", &config->reg_busy_offset);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get reg_busy_offset! err=%d\n", ret);
goto err;
}
ret = of_property_read_u32(np,
"reg_busy_shift", &config->reg_busy_shift);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get reg_busy_shift! err=%d\n", ret);
goto err;
}
ret = of_property_read_u32(np,
"reg_enable_offset", &config->reg_enable_offset);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get reg_enable_offset! err=%d\n", ret);
goto err;
}
ret = of_property_read_u32(np,
"reg_enable_shift", &config->reg_enable_shift);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get reg_enable_shift! err=%d\n", ret);
goto err;
}
ret = of_property_read_u32(np,
"reg_clk_gating_offset", &config->reg_clk_gating_offset);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get reg_clk_gating_offset! err=%d\n", ret);
goto err;
}
ret = of_property_read_u32(np,
"reg_clk_gating_shift", &config->reg_clk_gating_shift);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get reg_clk_gating_shift! err=%d\n", ret);
goto err;
}
ret = of_property_read_u32(np,
"reg_bypass_offset", &config->reg_bypass_offset);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get reg_bypass_offset! err=%d\n", ret);
goto err;
}
ret = of_property_read_u32(np,
"reg_bypass_shift", &config->reg_bypass_shift);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get reg_bypass_shift! err=%d\n", ret);
goto err;
}
ret = of_property_read_u32(np,
"reg_pulse_start_offset", &config->reg_pulse_start_offset);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get reg_bypass_offset! err=%d\n", ret);
goto err;
}
ret = of_property_read_u32(np,
"reg_pulse_start_shift", &config->reg_pulse_start_shift);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get reg_pulse_start_shift! err=%d\n", ret);
goto err;
}
ret = of_property_read_u32(np,
"reg_mode_offset", &config->reg_mode_offset);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get reg_mode_offset! err=%d\n", ret);
goto err;
}
ret = of_property_read_u32(np,
"reg_mode_shift", &config->reg_mode_shift);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get reg_mode_shift! err=%d\n", ret);
goto err;
}
ret = of_property_read_u32(np,
"reg_polarity_offset", &config->reg_polarity_offset);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get reg_polarity_offset! err=%d\n", ret);
goto err;
}
ret = of_property_read_u32(np,
"reg_polarity_shift", &config->reg_polarity_shift);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get reg_polarity_shift! err=%d\n", ret);
goto err;
}
ret = of_property_read_u32(np,
"reg_period_offset", &config->reg_period_offset);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get reg_period_offset! err=%d\n", ret);
goto err;
}
ret = of_property_read_u32(np,
"reg_period_shift", &config->reg_period_shift);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get reg_period_shift! err=%d\n", ret);
goto err;
}
ret = of_property_read_u32(np,
"reg_period_width", &config->reg_period_width);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get reg_period_width! err=%d\n", ret);
goto err;
}
ret = of_property_read_u32(np,
"reg_active_offset", &config->reg_active_offset);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get reg_duty_offset! err=%d\n", ret);
goto err;
}
ret = of_property_read_u32(np,
"reg_active_shift", &config->reg_active_shift);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get reg_duty_shift! err=%d\n", ret);
goto err;
}
ret = of_property_read_u32(np,
"reg_active_width", &config->reg_active_width);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get reg_duty_width! err=%d\n", ret);
goto err;
}
ret = of_property_read_u32(np,
"reg_prescal_offset", &config->reg_prescal_offset);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get reg_duty_width! err=%d\n", ret);
goto err;
}
ret = of_property_read_u32(np,
"reg_prescal_shift", &config->reg_prescal_shift);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get reg_duty_width! err=%d\n", ret);
goto err;
}
ret = of_property_read_u32(np,
"reg_prescal_width", &config->reg_prescal_width);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get reg_duty_width! err=%d\n", ret);
goto err;
}
err:
of_node_put(np);
return ret;
}
static int sunxi_pwm_set_polarity(struct pwm_chip *chip,
struct pwm_device *pwm, enum pwm_polarity polarity)
{
u32 temp;
struct sunxi_pwm_chip *pc = to_sunxi_pwm_chip(chip);
unsigned int reg_offset, reg_shift;
reg_offset = pc->config[pwm->pwm - chip->base].reg_polarity_offset;
reg_shift = pc->config[pwm->pwm - chip->base].reg_polarity_shift;
temp = sunxi_pwm_readl(chip, reg_offset);
if (polarity == PWM_POLARITY_NORMAL)
temp = SET_BITS(reg_shift, 1, temp, 1);
else
temp = SET_BITS(reg_shift, 1, temp, 0);
sunxi_pwm_writel(chip, reg_offset, temp);
return 0;
}
static int sunxi_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
int duty_ns, int period_ns)
{
u32 pre_scal[11][2] = {
/* reg_value clk_pre_div */
{15, 1},
{0, 120},
{1, 180},
{2, 240},
{3, 360},
{4, 480},
{8, 12000},
{9, 24000},
{10, 36000},
{11, 48000},
{12, 72000}
};
u32 freq;
u32 pre_scal_id = 0;
u32 entire_cycles = 256;
u32 active_cycles = 192;
u32 entire_cycles_max = 65536;
u32 temp;
struct sunxi_pwm_chip *pc = to_sunxi_pwm_chip(chip);
unsigned int reg_offset, reg_shift, reg_width;
reg_offset = pc->config[pwm->pwm - chip->base].reg_bypass_offset;
reg_shift = pc->config[pwm->pwm - chip->base].reg_bypass_shift;
if (period_ns < 42) {
/* if freq lt 24M, then direct output 24M clock */
temp = sunxi_pwm_readl(chip, reg_offset);
temp = SET_BITS(reg_shift, 1, temp, 1);
sunxi_pwm_writel(chip, reg_offset, temp);
return 0;
}
/* disable bypass function */
temp = sunxi_pwm_readl(chip, reg_offset);
temp = SET_BITS(reg_shift, 1, temp, 0);
sunxi_pwm_writel(chip, reg_offset, temp);
if (period_ns < 10667)
freq = 93747;
else if (period_ns > 1000000000)
freq = 1;
else
freq = 1000000000 / period_ns;
/* clock source rate is 24Mhz */
entire_cycles = 24000000 / freq / pre_scal[pre_scal_id][1];
while (entire_cycles > entire_cycles_max) {
pre_scal_id++;
if (pre_scal_id > 10)
break;
entire_cycles = 24000000 / freq / pre_scal[pre_scal_id][1];
}
if (period_ns < 5*100*1000)
active_cycles = (duty_ns * entire_cycles + (period_ns/2))
/ period_ns;
else if (period_ns >= 5*100*1000 && period_ns < 6553500)
active_cycles = ((duty_ns / 100) * entire_cycles +
(period_ns / 2 / 100)) / (period_ns/100);
else
active_cycles = ((duty_ns / 10000) * entire_cycles +
(period_ns / 2 / 10000)) / (period_ns/10000);
/* config prescal */
reg_offset = pc->config[pwm->pwm - chip->base].reg_prescal_offset;
reg_shift = pc->config[pwm->pwm - chip->base].reg_prescal_shift;
reg_width = pc->config[pwm->pwm - chip->base].reg_prescal_width;
temp = sunxi_pwm_readl(chip, reg_offset);
temp = SET_BITS(reg_shift, reg_width, temp, (pre_scal[pre_scal_id][0]));
sunxi_pwm_writel(chip, reg_offset, temp);
/* config active cycles */
reg_offset = pc->config[pwm->pwm - chip->base].reg_active_offset;
reg_shift = pc->config[pwm->pwm - chip->base].reg_active_shift;
reg_width = pc->config[pwm->pwm - chip->base].reg_active_width;
temp = sunxi_pwm_readl(chip, reg_offset);
temp = SET_BITS(reg_shift, reg_width, temp, (active_cycles));
sunxi_pwm_writel(chip, reg_offset, temp);
/* config period cycles */
reg_offset = pc->config[pwm->pwm - chip->base].reg_period_offset;
reg_shift = pc->config[pwm->pwm - chip->base].reg_period_shift;
reg_width = pc->config[pwm->pwm - chip->base].reg_period_width;
temp = sunxi_pwm_readl(chip, reg_offset);
temp = SET_BITS(reg_shift, reg_width, temp, (entire_cycles - 1));
sunxi_pwm_writel(chip, reg_offset, temp);
return 0;
}
static int sunxi_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
{
u32 value = 0, index = 0;
struct sunxi_pwm_chip *pc = to_sunxi_pwm_chip(chip);
unsigned int reg_offset, reg_shift;
struct device_node *sub_np;
struct platform_device *pwm_pdevice;
index = pwm->pwm - chip->base;
sub_np = of_parse_phandle(chip->dev->of_node, "pwms", index);
if (IS_ERR_OR_NULL(sub_np)) {
pr_err("%s: can't parse \"pwms\" property\n", __func__);
return -ENODEV;
}
pwm_pdevice = of_find_device_by_node(sub_np);
if (IS_ERR_OR_NULL(pwm_pdevice)) {
pr_err("%s: can't parse pwm device\n", __func__);
return -ENODEV;
}
sunxi_pwm_pin_set_state(&pwm_pdevice->dev, PWM_PIN_STATE_ACTIVE);
/* enable clk for pwm controller */
reg_offset = pc->config[pwm->pwm - chip->base].reg_clk_gating_offset;
reg_shift = pc->config[pwm->pwm - chip->base].reg_clk_gating_shift;
value = sunxi_pwm_readl(chip, reg_offset);
value = SET_BITS(reg_shift, 1, value, 1);
sunxi_pwm_writel(chip, reg_offset, value);
/* enable pwm controller */
reg_offset = pc->config[pwm->pwm - chip->base].reg_enable_offset;
reg_shift = pc->config[pwm->pwm - chip->base].reg_enable_shift;
value = sunxi_pwm_readl(chip, reg_offset);
value = SET_BITS(reg_shift, 1, value, 1);
sunxi_pwm_writel(chip, reg_offset, value);
return 0;
}
static void sunxi_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
{
u32 value = 0, index = 0;
struct sunxi_pwm_chip *pc = to_sunxi_pwm_chip(chip);
unsigned int reg_offset, reg_shift;
struct device_node *sub_np;
struct platform_device *pwm_pdevice;
index = pwm->pwm - chip->base;
sub_np = of_parse_phandle(chip->dev->of_node, "pwms", index);
if (IS_ERR_OR_NULL(sub_np)) {
pr_err("%s: can't parse \"pwms\" property\n", __func__);
return;
}
pwm_pdevice = of_find_device_by_node(sub_np);
if (IS_ERR_OR_NULL(pwm_pdevice)) {
pr_err("%s: can't parse pwm device\n", __func__);
return;
}
/* disable pwm controller */
reg_offset = pc->config[pwm->pwm - chip->base].reg_enable_offset;
reg_shift = pc->config[pwm->pwm - chip->base].reg_enable_shift;
value = sunxi_pwm_readl(chip, reg_offset);
value = SET_BITS(reg_shift, 1, value, 0);
sunxi_pwm_writel(chip, reg_offset, value);
/* disable pwm controller */
reg_offset = pc->config[pwm->pwm - chip->base].reg_clk_gating_offset;
reg_shift = pc->config[pwm->pwm - chip->base].reg_clk_gating_shift;
value = sunxi_pwm_readl(chip, reg_offset);
value = SET_BITS(reg_shift, 1, value, 0);
sunxi_pwm_writel(chip, reg_offset, value);
sunxi_pwm_pin_set_state(&pwm_pdevice->dev, PWM_PIN_STATE_SLEEP);
}
static struct pwm_ops sunxi_pwm_ops = {
.config = sunxi_pwm_config,
.enable = sunxi_pwm_enable,
.disable = sunxi_pwm_disable,
.set_polarity = sunxi_pwm_set_polarity,
.owner = THIS_MODULE,
};
static int sunxi_pwm_probe(struct platform_device *pdev)
{
int ret;
struct sunxi_pwm_chip *pwm;
struct device_node *np = pdev->dev.of_node;
int i;
struct platform_device *pwm_pdevice;
struct device_node *sub_np;
pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
if (!pwm) {
ret = -ENOMEM;
dev_err(&pdev->dev, "failed to allocate memory!\n");
return ret;
}
/* io map pwm base */
pwm->base = (void __iomem *)of_iomap(pdev->dev.of_node, 0);
if (!pwm->base) {
dev_err(&pdev->dev, "unable to map pwm registers\n");
ret = -EINVAL;
goto err_iomap;
}
/* read property pwm-number */
ret = of_property_read_u32(np, "pwm-number", &pwm->chip.npwm);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get pwm number: %d, force to one!\n", ret);
/* force to one pwm if read property fail */
pwm->chip.npwm = 1;
}
/* read property pwm-base */
ret = of_property_read_u32(np, "pwm-base", &pwm->chip.base);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to get pwm-base: %d, force to -1 !\n", ret);
/* force to one pwm if read property fail */
pwm->chip.base = -1;
}
pwm->chip.dev = &pdev->dev;
pwm->chip.ops = &sunxi_pwm_ops;
/* add pwm chip to pwm-core */
ret = pwmchip_add(&pwm->chip);
if (ret < 0) {
dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret);
goto err_add;
}
platform_set_drvdata(pdev, pwm);
pwm->config = devm_kzalloc(&pdev->dev,
sizeof(*pwm->config) * pwm->chip.npwm, GFP_KERNEL);
if (!pwm->config) {
ret = -ENOMEM;
dev_err(&pdev->dev, "failed to allocate memory!\n");
goto err_alloc;
}
for (i = 0; i < pwm->chip.npwm; i++) {
sub_np = of_parse_phandle(np, "pwms", i);
if (IS_ERR_OR_NULL(sub_np)) {
pr_err("%s: can't parse \"pwms\" property\n",
__func__);
return -EINVAL;
}
pwm_pdevice = of_find_device_by_node(sub_np);
ret = sunxi_pwm_get_config(pwm_pdevice, &pwm->config[i]);
if (ret)
goto err_get_config;
}
#if defined(CLK_GATE_SUPPORT)
pwm->pwm_clk = of_clk_get(pdev->dev.of_node, 0);
if (IS_ERR_OR_NULL(pwm->pwm_clk)) {
pr_err("%s: can't get pwm clk\n", __func__);
return -EINVAL;
}
clk_prepare_enable(pwm->pwm_clk);
#endif
return 0;
err_get_config:
err_alloc:
pwmchip_remove(&pwm->chip);
err_add:
iounmap(pwm->base);
err_iomap:
return ret;
}
static int sunxi_pwm_remove(struct platform_device *pdev)
{
struct sunxi_pwm_chip *pwm = platform_get_drvdata(pdev);
#if defined CLK_GATE_SUPPORT
clk_disable(pwm->pwm_clk);
#endif
return pwmchip_remove(&pwm->chip);
}
static int sunxi_pwm_suspend(struct platform_device *pdev, pm_message_t state)
{
return 0;
}
static int sunxi_pwm_resume(struct platform_device *pdev)
{
return 0;
}
#if !defined(CONFIG_OF)
struct platform_device sunxi_pwm_device = {
.name = "sunxi_pwm",
.id = -1,
};
#else
static const struct of_device_id sunxi_pwm_match[] = {
{ .compatible = "allwinner,sunxi-pwm", },
{ .compatible = "allwinner,sunxi-s_pwm", },
{},
};
#endif
static struct platform_driver sunxi_pwm_driver = {
.probe = sunxi_pwm_probe,
.remove = sunxi_pwm_remove,
.suspend = sunxi_pwm_suspend,
.resume = sunxi_pwm_resume,
.driver = {
.name = "sunxi_pwm",
.owner = THIS_MODULE,
.of_match_table = sunxi_pwm_match,
},
};
static int __init pwm_module_init(void)
{
int ret = 0;
pr_info("pwm module init!\n");
#if !defined(CONFIG_OF)
ret = platform_device_register(&sunxi_pwm_device);
#endif
if (ret == 0)
ret = platform_driver_register(&sunxi_pwm_driver);
return ret;
}
static void __exit pwm_module_exit(void)
{
pr_info("pwm module exit!\n");
platform_driver_unregister(&sunxi_pwm_driver);
#if !defined(CONFIG_OF)
platform_device_unregister(&sunxi_pwm_device);
#endif
}
subsys_initcall(pwm_module_init);
module_exit(pwm_module_exit);
MODULE_AUTHOR("tyle");
MODULE_DESCRIPTION("pwm driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:sunxi-pwm");