767 lines
22 KiB
C
767 lines
22 KiB
C
/*
|
|
* Copyright 2008-2014 Freescale Semiconductor, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* Version 2 as published by the Free Software Foundation.
|
|
*/
|
|
|
|
/*
|
|
* Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
|
|
* Based on code from spd_sdram.c
|
|
* Author: James Yang [at freescale.com]
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <i2c.h>
|
|
#include <fsl_ddr_sdram.h>
|
|
#include <fsl_ddr.h>
|
|
|
|
/*
|
|
* CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY is the physical address from the view
|
|
* of DDR controllers. It is the same as CONFIG_SYS_DDR_SDRAM_BASE for
|
|
* all Power SoCs. But it could be different for ARM SoCs. For example,
|
|
* fsl_lsch3 has a mapping mechanism to map DDR memory to ranges (in order) of
|
|
* 0x00_8000_0000 ~ 0x00_ffff_ffff
|
|
* 0x80_8000_0000 ~ 0xff_ffff_ffff
|
|
*/
|
|
#ifndef CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY
|
|
#define CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY CONFIG_SYS_DDR_SDRAM_BASE
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC
|
|
#include <asm/fsl_law.h>
|
|
|
|
void fsl_ddr_set_lawbar(
|
|
const common_timing_params_t *memctl_common_params,
|
|
unsigned int memctl_interleaved,
|
|
unsigned int ctrl_num);
|
|
#endif
|
|
|
|
void fsl_ddr_set_intl3r(const unsigned int granule_size);
|
|
#if defined(SPD_EEPROM_ADDRESS) || \
|
|
defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \
|
|
defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4)
|
|
#if (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
|
|
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
|
|
[0][0] = SPD_EEPROM_ADDRESS,
|
|
};
|
|
#elif (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
|
|
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
|
|
[0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
|
|
[0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
|
|
};
|
|
#elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
|
|
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
|
|
[0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
|
|
[1][0] = SPD_EEPROM_ADDRESS2, /* controller 2 */
|
|
};
|
|
#elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
|
|
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
|
|
[0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
|
|
[0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
|
|
[1][0] = SPD_EEPROM_ADDRESS3, /* controller 2 */
|
|
[1][1] = SPD_EEPROM_ADDRESS4, /* controller 2 */
|
|
};
|
|
#elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
|
|
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
|
|
[0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
|
|
[1][0] = SPD_EEPROM_ADDRESS2, /* controller 2 */
|
|
[2][0] = SPD_EEPROM_ADDRESS3, /* controller 3 */
|
|
};
|
|
#elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
|
|
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
|
|
[0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
|
|
[0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
|
|
[1][0] = SPD_EEPROM_ADDRESS3, /* controller 2 */
|
|
[1][1] = SPD_EEPROM_ADDRESS4, /* controller 2 */
|
|
[2][0] = SPD_EEPROM_ADDRESS5, /* controller 3 */
|
|
[2][1] = SPD_EEPROM_ADDRESS6, /* controller 3 */
|
|
};
|
|
|
|
#endif
|
|
|
|
#define SPD_SPA0_ADDRESS 0x36
|
|
#define SPD_SPA1_ADDRESS 0x37
|
|
|
|
static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address)
|
|
{
|
|
int ret;
|
|
#ifdef CONFIG_SYS_FSL_DDR4
|
|
uint8_t dummy = 0;
|
|
#endif
|
|
|
|
i2c_set_bus_num(CONFIG_SYS_SPD_BUS_NUM);
|
|
|
|
#ifdef CONFIG_SYS_FSL_DDR4
|
|
/*
|
|
* DDR4 SPD has 384 to 512 bytes
|
|
* To access the lower 256 bytes, we need to set EE page address to 0
|
|
* To access the upper 256 bytes, we need to set EE page address to 1
|
|
* See Jedec standar No. 21-C for detail
|
|
*/
|
|
i2c_write(SPD_SPA0_ADDRESS, 0, 1, &dummy, 1);
|
|
ret = i2c_read(i2c_address, 0, 1, (uchar *)spd, 256);
|
|
if (!ret) {
|
|
i2c_write(SPD_SPA1_ADDRESS, 0, 1, &dummy, 1);
|
|
ret = i2c_read(i2c_address, 0, 1,
|
|
(uchar *)((ulong)spd + 256),
|
|
min(256, sizeof(generic_spd_eeprom_t) - 256));
|
|
}
|
|
#else
|
|
ret = i2c_read(i2c_address, 0, 1, (uchar *)spd,
|
|
sizeof(generic_spd_eeprom_t));
|
|
#endif
|
|
|
|
if (ret) {
|
|
if (i2c_address ==
|
|
#ifdef SPD_EEPROM_ADDRESS
|
|
SPD_EEPROM_ADDRESS
|
|
#elif defined(SPD_EEPROM_ADDRESS1)
|
|
SPD_EEPROM_ADDRESS1
|
|
#endif
|
|
) {
|
|
printf("DDR: failed to read SPD from address %u\n",
|
|
i2c_address);
|
|
} else {
|
|
debug("DDR: failed to read SPD from address %u\n",
|
|
i2c_address);
|
|
}
|
|
memset(spd, 0, sizeof(generic_spd_eeprom_t));
|
|
}
|
|
}
|
|
|
|
__attribute__((weak, alias("__get_spd")))
|
|
void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address);
|
|
|
|
void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
|
|
unsigned int ctrl_num)
|
|
{
|
|
unsigned int i;
|
|
unsigned int i2c_address = 0;
|
|
|
|
if (ctrl_num >= CONFIG_NUM_DDR_CONTROLLERS) {
|
|
printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < CONFIG_DIMM_SLOTS_PER_CTLR; i++) {
|
|
i2c_address = spd_i2c_addr[ctrl_num][i];
|
|
get_spd(&(ctrl_dimms_spd[i]), i2c_address);
|
|
}
|
|
}
|
|
#else
|
|
void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
|
|
unsigned int ctrl_num)
|
|
{
|
|
}
|
|
#endif /* SPD_EEPROM_ADDRESSx */
|
|
|
|
/*
|
|
* ASSUMPTIONS:
|
|
* - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
|
|
* - Same memory data bus width on all controllers
|
|
*
|
|
* NOTES:
|
|
*
|
|
* The memory controller and associated documentation use confusing
|
|
* terminology when referring to the orgranization of DRAM.
|
|
*
|
|
* Here is a terminology translation table:
|
|
*
|
|
* memory controller/documention |industry |this code |signals
|
|
* -------------------------------|-----------|-----------|-----------------
|
|
* physical bank/bank |rank |rank |chip select (CS)
|
|
* logical bank/sub-bank |bank |bank |bank address (BA)
|
|
* page/row |row |page |row address
|
|
* ??? |column |column |column address
|
|
*
|
|
* The naming confusion is further exacerbated by the descriptions of the
|
|
* memory controller interleaving feature, where accesses are interleaved
|
|
* _BETWEEN_ two seperate memory controllers. This is configured only in
|
|
* CS0_CONFIG[INTLV_CTL] of each memory controller.
|
|
*
|
|
* memory controller documentation | number of chip selects
|
|
* | per memory controller supported
|
|
* --------------------------------|-----------------------------------------
|
|
* cache line interleaving | 1 (CS0 only)
|
|
* page interleaving | 1 (CS0 only)
|
|
* bank interleaving | 1 (CS0 only)
|
|
* superbank interleraving | depends on bank (chip select)
|
|
* | interleraving [rank interleaving]
|
|
* | mode used on every memory controller
|
|
*
|
|
* Even further confusing is the existence of the interleaving feature
|
|
* _WITHIN_ each memory controller. The feature is referred to in
|
|
* documentation as chip select interleaving or bank interleaving,
|
|
* although it is configured in the DDR_SDRAM_CFG field.
|
|
*
|
|
* Name of field | documentation name | this code
|
|
* -----------------------------|-----------------------|------------------
|
|
* DDR_SDRAM_CFG[BA_INTLV_CTL] | Bank (chip select) | rank interleaving
|
|
* | interleaving
|
|
*/
|
|
|
|
const char *step_string_tbl[] = {
|
|
"STEP_GET_SPD",
|
|
"STEP_COMPUTE_DIMM_PARMS",
|
|
"STEP_COMPUTE_COMMON_PARMS",
|
|
"STEP_GATHER_OPTS",
|
|
"STEP_ASSIGN_ADDRESSES",
|
|
"STEP_COMPUTE_REGS",
|
|
"STEP_PROGRAM_REGS",
|
|
"STEP_ALL"
|
|
};
|
|
|
|
const char * step_to_string(unsigned int step) {
|
|
|
|
unsigned int s = __ilog2(step);
|
|
|
|
if ((1 << s) != step)
|
|
return step_string_tbl[7];
|
|
|
|
if (s >= ARRAY_SIZE(step_string_tbl)) {
|
|
printf("Error for the step in %s\n", __func__);
|
|
s = 0;
|
|
}
|
|
|
|
return step_string_tbl[s];
|
|
}
|
|
|
|
static unsigned long long __step_assign_addresses(fsl_ddr_info_t *pinfo,
|
|
unsigned int dbw_cap_adj[])
|
|
{
|
|
int i, j;
|
|
unsigned long long total_mem, current_mem_base, total_ctlr_mem;
|
|
unsigned long long rank_density, ctlr_density = 0;
|
|
|
|
/*
|
|
* If a reduced data width is requested, but the SPD
|
|
* specifies a physically wider device, adjust the
|
|
* computed dimm capacities accordingly before
|
|
* assigning addresses.
|
|
*/
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
unsigned int found = 0;
|
|
|
|
switch (pinfo->memctl_opts[i].data_bus_width) {
|
|
case 2:
|
|
/* 16-bit */
|
|
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
|
|
unsigned int dw;
|
|
if (!pinfo->dimm_params[i][j].n_ranks)
|
|
continue;
|
|
dw = pinfo->dimm_params[i][j].primary_sdram_width;
|
|
if ((dw == 72 || dw == 64)) {
|
|
dbw_cap_adj[i] = 2;
|
|
break;
|
|
} else if ((dw == 40 || dw == 32)) {
|
|
dbw_cap_adj[i] = 1;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 1:
|
|
/* 32-bit */
|
|
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
|
|
unsigned int dw;
|
|
dw = pinfo->dimm_params[i][j].data_width;
|
|
if (pinfo->dimm_params[i][j].n_ranks
|
|
&& (dw == 72 || dw == 64)) {
|
|
/*
|
|
* FIXME: can't really do it
|
|
* like this because this just
|
|
* further reduces the memory
|
|
*/
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (found) {
|
|
dbw_cap_adj[i] = 1;
|
|
}
|
|
break;
|
|
|
|
case 0:
|
|
/* 64-bit */
|
|
break;
|
|
|
|
default:
|
|
printf("unexpected data bus width "
|
|
"specified controller %u\n", i);
|
|
return 1;
|
|
}
|
|
debug("dbw_cap_adj[%d]=%d\n", i, dbw_cap_adj[i]);
|
|
}
|
|
|
|
current_mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
|
|
total_mem = 0;
|
|
if (pinfo->memctl_opts[0].memctl_interleaving) {
|
|
rank_density = pinfo->dimm_params[0][0].rank_density >>
|
|
dbw_cap_adj[0];
|
|
switch (pinfo->memctl_opts[0].ba_intlv_ctl &
|
|
FSL_DDR_CS0_CS1_CS2_CS3) {
|
|
case FSL_DDR_CS0_CS1_CS2_CS3:
|
|
ctlr_density = 4 * rank_density;
|
|
break;
|
|
case FSL_DDR_CS0_CS1:
|
|
case FSL_DDR_CS0_CS1_AND_CS2_CS3:
|
|
ctlr_density = 2 * rank_density;
|
|
break;
|
|
case FSL_DDR_CS2_CS3:
|
|
default:
|
|
ctlr_density = rank_density;
|
|
break;
|
|
}
|
|
debug("rank density is 0x%llx, ctlr density is 0x%llx\n",
|
|
rank_density, ctlr_density);
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
if (pinfo->memctl_opts[i].memctl_interleaving) {
|
|
switch (pinfo->memctl_opts[i].memctl_interleaving_mode) {
|
|
case FSL_DDR_256B_INTERLEAVING:
|
|
case FSL_DDR_CACHE_LINE_INTERLEAVING:
|
|
case FSL_DDR_PAGE_INTERLEAVING:
|
|
case FSL_DDR_BANK_INTERLEAVING:
|
|
case FSL_DDR_SUPERBANK_INTERLEAVING:
|
|
total_ctlr_mem = 2 * ctlr_density;
|
|
break;
|
|
case FSL_DDR_3WAY_1KB_INTERLEAVING:
|
|
case FSL_DDR_3WAY_4KB_INTERLEAVING:
|
|
case FSL_DDR_3WAY_8KB_INTERLEAVING:
|
|
total_ctlr_mem = 3 * ctlr_density;
|
|
break;
|
|
case FSL_DDR_4WAY_1KB_INTERLEAVING:
|
|
case FSL_DDR_4WAY_4KB_INTERLEAVING:
|
|
case FSL_DDR_4WAY_8KB_INTERLEAVING:
|
|
total_ctlr_mem = 4 * ctlr_density;
|
|
break;
|
|
default:
|
|
panic("Unknown interleaving mode");
|
|
}
|
|
pinfo->common_timing_params[i].base_address =
|
|
current_mem_base;
|
|
pinfo->common_timing_params[i].total_mem =
|
|
total_ctlr_mem;
|
|
total_mem = current_mem_base + total_ctlr_mem;
|
|
debug("ctrl %d base 0x%llx\n", i, current_mem_base);
|
|
debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
|
|
} else {
|
|
/* when 3rd controller not interleaved */
|
|
current_mem_base = total_mem;
|
|
total_ctlr_mem = 0;
|
|
pinfo->common_timing_params[i].base_address =
|
|
current_mem_base;
|
|
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
|
|
unsigned long long cap =
|
|
pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
|
|
pinfo->dimm_params[i][j].base_address =
|
|
current_mem_base;
|
|
debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
|
|
current_mem_base += cap;
|
|
total_ctlr_mem += cap;
|
|
}
|
|
debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
|
|
pinfo->common_timing_params[i].total_mem =
|
|
total_ctlr_mem;
|
|
total_mem += total_ctlr_mem;
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* Simple linear assignment if memory
|
|
* controllers are not interleaved.
|
|
*/
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
total_ctlr_mem = 0;
|
|
pinfo->common_timing_params[i].base_address =
|
|
current_mem_base;
|
|
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
|
|
/* Compute DIMM base addresses. */
|
|
unsigned long long cap =
|
|
pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
|
|
pinfo->dimm_params[i][j].base_address =
|
|
current_mem_base;
|
|
debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
|
|
current_mem_base += cap;
|
|
total_ctlr_mem += cap;
|
|
}
|
|
debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
|
|
pinfo->common_timing_params[i].total_mem =
|
|
total_ctlr_mem;
|
|
total_mem += total_ctlr_mem;
|
|
}
|
|
}
|
|
debug("Total mem by %s is 0x%llx\n", __func__, total_mem);
|
|
|
|
return total_mem;
|
|
}
|
|
|
|
/* Use weak function to allow board file to override the address assignment */
|
|
__attribute__((weak, alias("__step_assign_addresses")))
|
|
unsigned long long step_assign_addresses(fsl_ddr_info_t *pinfo,
|
|
unsigned int dbw_cap_adj[]);
|
|
|
|
unsigned long long
|
|
fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step,
|
|
unsigned int size_only)
|
|
{
|
|
unsigned int i, j;
|
|
unsigned long long total_mem = 0;
|
|
int assert_reset;
|
|
|
|
fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
|
|
common_timing_params_t *timing_params = pinfo->common_timing_params;
|
|
assert_reset = board_need_mem_reset();
|
|
|
|
/* data bus width capacity adjust shift amount */
|
|
unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS];
|
|
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
dbw_capacity_adjust[i] = 0;
|
|
}
|
|
|
|
debug("starting at step %u (%s)\n",
|
|
start_step, step_to_string(start_step));
|
|
|
|
switch (start_step) {
|
|
case STEP_GET_SPD:
|
|
#if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM)
|
|
/* STEP 1: Gather all DIMM SPD data */
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i);
|
|
}
|
|
|
|
case STEP_COMPUTE_DIMM_PARMS:
|
|
/* STEP 2: Compute DIMM parameters from SPD data */
|
|
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
|
|
unsigned int retval;
|
|
generic_spd_eeprom_t *spd =
|
|
&(pinfo->spd_installed_dimms[i][j]);
|
|
dimm_params_t *pdimm =
|
|
&(pinfo->dimm_params[i][j]);
|
|
|
|
retval = compute_dimm_parameters(spd, pdimm, i);
|
|
#ifdef CONFIG_SYS_DDR_RAW_TIMING
|
|
if (!i && !j && retval) {
|
|
printf("SPD error on controller %d! "
|
|
"Trying fallback to raw timing "
|
|
"calculation\n", i);
|
|
fsl_ddr_get_dimm_params(pdimm, i, j);
|
|
}
|
|
#else
|
|
if (retval == 2) {
|
|
printf("Error: compute_dimm_parameters"
|
|
" non-zero returned FATAL value "
|
|
"for memctl=%u dimm=%u\n", i, j);
|
|
return 0;
|
|
}
|
|
#endif
|
|
if (retval) {
|
|
debug("Warning: compute_dimm_parameters"
|
|
" non-zero return value for memctl=%u "
|
|
"dimm=%u\n", i, j);
|
|
}
|
|
}
|
|
}
|
|
|
|
#elif defined(CONFIG_SYS_DDR_RAW_TIMING)
|
|
case STEP_COMPUTE_DIMM_PARMS:
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
|
|
dimm_params_t *pdimm =
|
|
&(pinfo->dimm_params[i][j]);
|
|
fsl_ddr_get_dimm_params(pdimm, i, j);
|
|
}
|
|
}
|
|
debug("Filling dimm parameters from board specific file\n");
|
|
#endif
|
|
case STEP_COMPUTE_COMMON_PARMS:
|
|
/*
|
|
* STEP 3: Compute a common set of timing parameters
|
|
* suitable for all of the DIMMs on each memory controller
|
|
*/
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
debug("Computing lowest common DIMM"
|
|
" parameters for memctl=%u\n", i);
|
|
compute_lowest_common_dimm_parameters(
|
|
pinfo->dimm_params[i],
|
|
&timing_params[i],
|
|
CONFIG_DIMM_SLOTS_PER_CTLR);
|
|
}
|
|
|
|
case STEP_GATHER_OPTS:
|
|
/* STEP 4: Gather configuration requirements from user */
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
debug("Reloading memory controller "
|
|
"configuration options for memctl=%u\n", i);
|
|
/*
|
|
* This "reloads" the memory controller options
|
|
* to defaults. If the user "edits" an option,
|
|
* next_step points to the step after this,
|
|
* which is currently STEP_ASSIGN_ADDRESSES.
|
|
*/
|
|
populate_memctl_options(
|
|
timing_params[i].all_dimms_registered,
|
|
&pinfo->memctl_opts[i],
|
|
pinfo->dimm_params[i], i);
|
|
/*
|
|
* For RDIMMs, JEDEC spec requires clocks to be stable
|
|
* before reset signal is deasserted. For the boards
|
|
* using fixed parameters, this function should be
|
|
* be called from board init file.
|
|
*/
|
|
if (timing_params[i].all_dimms_registered)
|
|
assert_reset = 1;
|
|
}
|
|
if (assert_reset) {
|
|
debug("Asserting mem reset\n");
|
|
board_assert_mem_reset();
|
|
}
|
|
|
|
case STEP_ASSIGN_ADDRESSES:
|
|
/* STEP 5: Assign addresses to chip selects */
|
|
check_interleaving_options(pinfo);
|
|
total_mem = step_assign_addresses(pinfo, dbw_capacity_adjust);
|
|
debug("Total mem %llu assigned\n", total_mem);
|
|
|
|
case STEP_COMPUTE_REGS:
|
|
/* STEP 6: compute controller register values */
|
|
debug("FSL Memory ctrl register computation\n");
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
if (timing_params[i].ndimms_present == 0) {
|
|
memset(&ddr_reg[i], 0,
|
|
sizeof(fsl_ddr_cfg_regs_t));
|
|
continue;
|
|
}
|
|
|
|
compute_fsl_memctl_config_regs(
|
|
&pinfo->memctl_opts[i],
|
|
&ddr_reg[i], &timing_params[i],
|
|
pinfo->dimm_params[i],
|
|
dbw_capacity_adjust[i],
|
|
size_only);
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
{
|
|
/*
|
|
* Compute the amount of memory available just by
|
|
* looking for the highest valid CSn_BNDS value.
|
|
* This allows us to also experiment with using
|
|
* only CS0 when using dual-rank DIMMs.
|
|
*/
|
|
unsigned int max_end = 0;
|
|
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
|
|
fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
|
|
if (reg->cs[j].config & 0x80000000) {
|
|
unsigned int end;
|
|
/*
|
|
* 0xfffffff is a special value we put
|
|
* for unused bnds
|
|
*/
|
|
if (reg->cs[j].bnds == 0xffffffff)
|
|
continue;
|
|
end = reg->cs[j].bnds & 0xffff;
|
|
if (end > max_end) {
|
|
max_end = end;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
total_mem = 1 + (((unsigned long long)max_end << 24ULL) |
|
|
0xFFFFFFULL) - CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
|
|
}
|
|
|
|
return total_mem;
|
|
}
|
|
|
|
/*
|
|
* fsl_ddr_sdram() -- this is the main function to be called by
|
|
* initdram() in the board file.
|
|
*
|
|
* It returns amount of memory configured in bytes.
|
|
*/
|
|
phys_size_t fsl_ddr_sdram(void)
|
|
{
|
|
unsigned int i;
|
|
#ifdef CONFIG_PPC
|
|
unsigned int law_memctl = LAW_TRGT_IF_DDR_1;
|
|
#endif
|
|
unsigned long long total_memory;
|
|
fsl_ddr_info_t info;
|
|
int deassert_reset;
|
|
|
|
/* Reset info structure. */
|
|
memset(&info, 0, sizeof(fsl_ddr_info_t));
|
|
|
|
/* Compute it once normally. */
|
|
#ifdef CONFIG_FSL_DDR_INTERACTIVE
|
|
if (tstc() && (getc() == 'd')) { /* we got a key press of 'd' */
|
|
total_memory = fsl_ddr_interactive(&info, 0);
|
|
} else if (fsl_ddr_interactive_env_var_exists()) {
|
|
total_memory = fsl_ddr_interactive(&info, 1);
|
|
} else
|
|
#endif
|
|
total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 0);
|
|
|
|
/* setup 3-way interleaving before enabling DDRC */
|
|
if (info.memctl_opts[0].memctl_interleaving) {
|
|
switch (info.memctl_opts[0].memctl_interleaving_mode) {
|
|
case FSL_DDR_3WAY_1KB_INTERLEAVING:
|
|
case FSL_DDR_3WAY_4KB_INTERLEAVING:
|
|
case FSL_DDR_3WAY_8KB_INTERLEAVING:
|
|
fsl_ddr_set_intl3r(
|
|
info.memctl_opts[0].memctl_interleaving_mode);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Program configuration registers.
|
|
* JEDEC specs requires clocks to be stable before deasserting reset
|
|
* for RDIMMs. Clocks start after chip select is enabled and clock
|
|
* control register is set. During step 1, all controllers have their
|
|
* registers set but not enabled. Step 2 proceeds after deasserting
|
|
* reset through board FPGA or GPIO.
|
|
* For non-registered DIMMs, initialization can go through but it is
|
|
* also OK to follow the same flow.
|
|
*/
|
|
deassert_reset = board_need_mem_reset();
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
if (info.common_timing_params[i].all_dimms_registered)
|
|
deassert_reset = 1;
|
|
}
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
debug("Programming controller %u\n", i);
|
|
if (info.common_timing_params[i].ndimms_present == 0) {
|
|
debug("No dimms present on controller %u; "
|
|
"skipping programming\n", i);
|
|
continue;
|
|
}
|
|
/*
|
|
* The following call with step = 1 returns before enabling
|
|
* the controller. It has to finish with step = 2 later.
|
|
*/
|
|
fsl_ddr_set_memctl_regs(&(info.fsl_ddr_config_reg[i]), i,
|
|
deassert_reset ? 1 : 0);
|
|
}
|
|
if (deassert_reset) {
|
|
/* Use board FPGA or GPIO to deassert reset signal */
|
|
debug("Deasserting mem reset\n");
|
|
board_deassert_mem_reset();
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
/* Call with step = 2 to continue initialization */
|
|
fsl_ddr_set_memctl_regs(&(info.fsl_ddr_config_reg[i]),
|
|
i, 2);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PPC
|
|
/* program LAWs */
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
if (info.memctl_opts[i].memctl_interleaving) {
|
|
switch (info.memctl_opts[i].memctl_interleaving_mode) {
|
|
case FSL_DDR_CACHE_LINE_INTERLEAVING:
|
|
case FSL_DDR_PAGE_INTERLEAVING:
|
|
case FSL_DDR_BANK_INTERLEAVING:
|
|
case FSL_DDR_SUPERBANK_INTERLEAVING:
|
|
if (i == 0) {
|
|
law_memctl = LAW_TRGT_IF_DDR_INTRLV;
|
|
fsl_ddr_set_lawbar(&info.common_timing_params[i],
|
|
law_memctl, i);
|
|
} else if (i == 2) {
|
|
law_memctl = LAW_TRGT_IF_DDR_INTLV_34;
|
|
fsl_ddr_set_lawbar(&info.common_timing_params[i],
|
|
law_memctl, i);
|
|
}
|
|
break;
|
|
case FSL_DDR_3WAY_1KB_INTERLEAVING:
|
|
case FSL_DDR_3WAY_4KB_INTERLEAVING:
|
|
case FSL_DDR_3WAY_8KB_INTERLEAVING:
|
|
law_memctl = LAW_TRGT_IF_DDR_INTLV_123;
|
|
if (i == 0) {
|
|
fsl_ddr_set_lawbar(&info.common_timing_params[i],
|
|
law_memctl, i);
|
|
}
|
|
break;
|
|
case FSL_DDR_4WAY_1KB_INTERLEAVING:
|
|
case FSL_DDR_4WAY_4KB_INTERLEAVING:
|
|
case FSL_DDR_4WAY_8KB_INTERLEAVING:
|
|
law_memctl = LAW_TRGT_IF_DDR_INTLV_1234;
|
|
if (i == 0)
|
|
fsl_ddr_set_lawbar(&info.common_timing_params[i],
|
|
law_memctl, i);
|
|
/* place holder for future 4-way interleaving */
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
} else {
|
|
switch (i) {
|
|
case 0:
|
|
law_memctl = LAW_TRGT_IF_DDR_1;
|
|
break;
|
|
case 1:
|
|
law_memctl = LAW_TRGT_IF_DDR_2;
|
|
break;
|
|
case 2:
|
|
law_memctl = LAW_TRGT_IF_DDR_3;
|
|
break;
|
|
case 3:
|
|
law_memctl = LAW_TRGT_IF_DDR_4;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
fsl_ddr_set_lawbar(&info.common_timing_params[i],
|
|
law_memctl, i);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
debug("total_memory by %s = %llu\n", __func__, total_memory);
|
|
|
|
#if !defined(CONFIG_PHYS_64BIT)
|
|
/* Check for 4G or more. Bad. */
|
|
if (total_memory >= (1ull << 32)) {
|
|
puts("Detected ");
|
|
print_size(total_memory, " of memory\n");
|
|
printf(" This U-Boot only supports < 4G of DDR\n");
|
|
printf(" You could rebuild it with CONFIG_PHYS_64BIT\n");
|
|
printf(" "); /* re-align to match init_func_ram print */
|
|
total_memory = CONFIG_MAX_MEM_MAPPED;
|
|
}
|
|
#endif
|
|
|
|
return total_memory;
|
|
}
|
|
|
|
/*
|
|
* fsl_ddr_sdram_size() - This function only returns the size of the total
|
|
* memory without setting ddr control registers.
|
|
*/
|
|
phys_size_t
|
|
fsl_ddr_sdram_size(void)
|
|
{
|
|
fsl_ddr_info_t info;
|
|
unsigned long long total_memory = 0;
|
|
|
|
memset(&info, 0 , sizeof(fsl_ddr_info_t));
|
|
|
|
/* Compute it once normally. */
|
|
total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1);
|
|
|
|
return total_memory;
|
|
}
|