SmartAudio/lichee/linux-4.9/drivers/iommu/iommu-debug.c

1076 lines
26 KiB
C
Executable File

/*
* Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#define pr_fmt(fmt) "iommu-debug: %s: " fmt, __func__
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/iommu.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/dma-contiguous.h>
#include <linux/dma-mapping.h>
#include <linux/ion_sunxi.h>
#include <asm/cacheflush.h>
#include <asm/barrier.h>
#include "sunxi-iommu.h"
#include <linux/iommu.h>
#include <asm/cacheflush.h>
#include <linux/module.h>
#include <linux/compiler.h>
#include "iommu-debug.h"
#ifdef CONFIG_IOMMU_TESTS
#ifdef CONFIG_64BIT
#define kstrtoux kstrtou64
#define kstrtox_from_user kstrtoll_from_user
#define kstrtosize_t kstrtoul
#else
#define kstrtoux kstrtou32
#define kstrtox_from_user kstrtoint_from_user
#define kstrtosize_t kstrtouint
#endif
#define ION_KERNEL_USER_ERR(str) pr_err("%s failed!", #str)
struct ion_facade {
struct ion_client *client;
struct ion_handle *handle;
dma_addr_t dma_address;
void *virtual_address;
size_t address_length;
struct sg_table *sg_table;
};
static struct dentry *iommu_debugfs_top;
static LIST_HEAD(iommu_debug_devices);
static struct dentry *debugfs_tests_dir;
struct iommu_debug_device {
struct device *dev;
struct iommu_domain *domain;
u64 iova;
u64 phys;
size_t len;
struct list_head list;
};
static const char * const _size_to_string(unsigned long size)
{
switch (size) {
case SZ_4K:
return "4K";
case SZ_8K:
return "8K";
case SZ_16K:
return "16K";
case SZ_64K:
return "64K";
case SZ_2M:
return "2M";
case SZ_1M * 12:
return "12M";
case SZ_1M * 20:
return "20M";
}
return "unknown size, please add to _size_to_string";
}
static int iommu_debug_profiling_fast_dma_api_show(struct seq_file *s,
void *ignored)
{
int i, experiment;
struct iommu_debug_device *ddev = s->private;
struct device *dev = ddev->dev;
u64 map_elapsed_ns[10], unmap_elapsed_ns[10];
dma_addr_t dma_addr;
void *virt;
const char * const extra_labels[] = {
"not coherent",
"coherent",
};
unsigned long extra_attrs[] = {
0,
DMA_ATTR_SKIP_CPU_SYNC,
};
virt = kmalloc(1518, GFP_KERNEL);
if (!virt)
goto out;
for (experiment = 0; experiment < 2; ++experiment) {
size_t map_avg = 0, unmap_avg = 0;
for (i = 0; i < 10; ++i) {
struct timespec tbefore, tafter, diff;
u64 ns;
getnstimeofday(&tbefore);
dma_addr = dma_map_single_attrs(
dev, virt, SZ_4K, DMA_TO_DEVICE,
extra_attrs[experiment]);
getnstimeofday(&tafter);
diff = timespec_sub(tafter, tbefore);
ns = timespec_to_ns(&diff);
if (dma_mapping_error(dev, dma_addr)) {
seq_puts(s, "dma_map_single failed\n");
goto out_disable_config_clocks;
}
map_elapsed_ns[i] = ns;
getnstimeofday(&tbefore);
dma_unmap_single_attrs(
dev, dma_addr, SZ_4K, DMA_TO_DEVICE,
extra_attrs[experiment]);
getnstimeofday(&tafter);
diff = timespec_sub(tafter, tbefore);
ns = timespec_to_ns(&diff);
unmap_elapsed_ns[i] = ns;
}
seq_printf(s, "%13s %24s (ns): [", extra_labels[experiment],
"dma_map_single_attrs");
for (i = 0; i < 10; ++i) {
map_avg += map_elapsed_ns[i];
seq_printf(s, "%5llu%s", map_elapsed_ns[i],
i < 9 ? ", " : "");
}
map_avg /= 10;
seq_printf(s, "] (avg: %zu)\n", map_avg);
seq_printf(s, "%13s %24s (ns): [", extra_labels[experiment],
"dma_unmap_single_attrs");
for (i = 0; i < 10; ++i) {
unmap_avg += unmap_elapsed_ns[i];
seq_printf(s, "%5llu%s", unmap_elapsed_ns[i],
i < 9 ? ", " : "");
}
unmap_avg /= 10;
seq_printf(s, "] (avg: %zu)\n", unmap_avg);
}
out_disable_config_clocks:
kfree(virt);
out:
return 0;
}
static int iommu_debug_profiling_fast_dma_api_open(struct inode *inode,
struct file *file)
{
return single_open(file, iommu_debug_profiling_fast_dma_api_show,
inode->i_private);
}
static const struct file_operations iommu_debug_profiling_fast_dma_api_fops = {
.open = iommu_debug_profiling_fast_dma_api_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/* Creates a fresh fast mapping and applies @fn to it */
static int __apply_to_new_mapping(struct seq_file *s,
int (*fn)(struct device *dev,
struct seq_file *s,
struct iommu_domain *domain,
void *priv),
void *priv)
{
struct iommu_debug_device *ddev = s->private;
struct device *dev = ddev->dev;
int ret = -EINVAL;
ret = fn(dev, s, global_iommu_domain, priv);
return ret;
}
static int __tlb_stress_sweep(struct device *dev, struct seq_file *s)
{
int i, ret = 0;
unsigned long iova;
const unsigned long max = SZ_1G * 4UL;
void *virt;
phys_addr_t phys;
dma_addr_t dma_addr;
/*
* we'll be doing 4K and 8K mappings. Need to own an entire 8K
* chunk that we can work with.
*/
virt = (void *)__get_free_pages(GFP_KERNEL, get_order(SZ_8K));
phys = virt_to_phys(virt);
/* fill the whole 4GB space */
for (iova = 0, i = 0; iova < max; iova += SZ_8K, ++i) {
dma_addr = dma_map_single(dev, virt, SZ_8K, DMA_TO_DEVICE);
if (dma_addr == DMA_ERROR_CODE) {
dev_err(dev, "Failed map on iter %d\n", i);
ret = -EINVAL;
goto out;
}
}
if (dma_map_single(dev, virt, SZ_4K, DMA_TO_DEVICE) != DMA_ERROR_CODE) {
dev_err(dev,
"dma_map_single unexpectedly (VA should have been exhausted)\n");
ret = -EINVAL;
goto out;
}
/*
* free up 4K at the very beginning, then leave one 4K mapping,
* then free up 8K. This will result in the next 8K map to skip
* over the 4K hole and take the 8K one.
*/
dma_unmap_single(dev, 0, SZ_4K, DMA_TO_DEVICE);
dma_unmap_single(dev, SZ_8K, SZ_4K, DMA_TO_DEVICE);
dma_unmap_single(dev, SZ_8K + SZ_4K, SZ_4K, DMA_TO_DEVICE);
/* remap 8K */
dma_addr = dma_map_single(dev, virt, SZ_8K, DMA_TO_DEVICE);
if (dma_addr != SZ_8K) {
dma_addr_t expected = SZ_8K;
dev_err(dev, "Unexpected dma_addr. got: %pa expected: %pa\n",
&dma_addr, &expected);
ret = -EINVAL;
goto out;
}
/*
* now remap 4K. We should get the first 4K chunk that was skipped
* over during the previous 8K map. If we missed a TLB invalidate
* at that point this should explode.
*/
dma_addr = dma_map_single(dev, virt, SZ_4K, DMA_TO_DEVICE);
if (dma_addr != 0) {
dma_addr_t expected = 0;
dev_err(dev, "Unexpected dma_addr. got: %pa expected: %pa\n",
&dma_addr, &expected);
ret = -EINVAL;
goto out;
}
if (dma_map_single(dev, virt, SZ_4K, DMA_TO_DEVICE) != DMA_ERROR_CODE) {
dev_err(dev,
"dma_map_single unexpectedly after remaps (VA should have been exhausted)\n");
ret = -EINVAL;
goto out;
}
/* we're all full again. unmap everything. */
for (dma_addr = 0; dma_addr < max; dma_addr += SZ_8K)
dma_unmap_single(dev, dma_addr, SZ_8K, DMA_TO_DEVICE);
out:
free_pages((unsigned long)virt, get_order(SZ_8K));
return ret;
}
struct fib_state {
unsigned long cur;
unsigned long prev;
};
static void fib_init(struct fib_state *f)
{
f->cur = f->prev = 1;
}
static unsigned long get_next_fib(struct fib_state *f)
{
int next = f->cur + f->prev;
f->prev = f->cur;
f->cur = next;
return next;
}
/*
* Not actually random. Just testing the fibs (and max - the fibs).
*/
static int __rand_va_sweep(struct device *dev, struct seq_file *s,
const size_t size)
{
u64 iova;
const unsigned long max = SZ_1G * 4UL;
int i, remapped, unmapped, ret = 0;
void *virt;
dma_addr_t dma_addr, dma_addr2;
struct fib_state fib;
virt = (void *)__get_free_pages(GFP_KERNEL, get_order(size));
if (!virt) {
if (size > SZ_8K) {
dev_err(dev,
"Failed to allocate %s of memory, which is a lot. Skipping test for this size\n",
_size_to_string(size));
return 0;
}
return -ENOMEM;
}
/* fill the whole 4GB space */
for (iova = 0, i = 0; iova < max; iova += size, ++i) {
dma_addr = dma_map_single(dev, virt, size, DMA_TO_DEVICE);
if (dma_addr == DMA_ERROR_CODE) {
dev_err(dev, "Failed map on iter %d\n", i);
ret = -EINVAL;
goto out;
}
}
/* now unmap "random" iovas */
unmapped = 0;
fib_init(&fib);
for (iova = get_next_fib(&fib) * size;
iova < max - size;
iova = get_next_fib(&fib) * size) {
dma_addr = iova;
dma_addr2 = max - size - iova;
if (dma_addr == dma_addr2) {
WARN(1,
"%s test needs update! The random number sequence is folding in on itself and should be changed.\n",
__func__);
return -EINVAL;
}
dma_unmap_single(dev, dma_addr, size, DMA_TO_DEVICE);
dma_unmap_single(dev, dma_addr2, size, DMA_TO_DEVICE);
unmapped += 2;
}
/* and map until everything fills back up */
for (remapped = 0;; ++remapped) {
dma_addr = dma_map_single(dev, virt, size, DMA_TO_DEVICE);
if (dma_addr == DMA_ERROR_CODE)
break;
}
if (unmapped != remapped) {
dev_err(dev,
"Unexpected random remap count! Unmapped %d but remapped %d\n",
unmapped, remapped);
ret = -EINVAL;
}
for (dma_addr = 0; dma_addr < max; dma_addr += size)
dma_unmap_single(dev, dma_addr, size, DMA_TO_DEVICE);
out:
free_pages((unsigned long)virt, get_order(size));
return ret;
}
static int __full_va_sweep(struct device *dev, struct seq_file *s,
const size_t size, struct iommu_domain *domain)
{
unsigned long iova;
dma_addr_t dma_addr;
void *virt;
phys_addr_t phys;
int ret = 0, i;
virt = (void *)__get_free_pages(GFP_KERNEL, get_order(size));
if (!virt) {
if (size > SZ_8K) {
dev_err(dev,
"Failed to allocate %s of memory, which is a lot. Skipping test for this size\n",
_size_to_string(size));
return 0;
}
return -ENOMEM;
}
phys = virt_to_phys(virt);
for (iova = 0, i = 0; iova < SZ_1G * 4UL; iova += size, ++i) {
unsigned long expected = iova;
dma_addr = dma_map_single(dev, virt, size, DMA_TO_DEVICE);
if (dma_addr != expected) {
dev_err_ratelimited(dev,
"Unexpected iova on iter %d (expected: 0x%lx got: 0x%lx)\n",
i, expected,
(unsigned long)dma_addr);
ret = -EINVAL;
goto out;
}
}
/* at this point, our VA space should be full */
dma_addr = dma_map_single(dev, virt, size, DMA_TO_DEVICE);
if (dma_addr != DMA_ERROR_CODE) {
dev_err_ratelimited(dev,
"dma_map_single succeeded when it should have failed. Got iova: 0x%lx\n",
(unsigned long)dma_addr);
ret = -EINVAL;
}
out:
for (dma_addr = 0; dma_addr < SZ_1G * 4UL; dma_addr += size)
dma_unmap_single(dev, dma_addr, size, DMA_TO_DEVICE);
free_pages((unsigned long)virt, get_order(size));
return ret;
}
#define ds_printf(d, s, fmt, ...) ({ \
dev_err(d, fmt, ##__VA_ARGS__); \
seq_printf(s, fmt, ##__VA_ARGS__); \
})
static int __functional_dma_api_va_test(struct device *dev, struct seq_file *s,
struct iommu_domain *domain, void *priv)
{
int i, j;
int ret = 0;
size_t *sz, *sizes = priv;
for (j = 0; j < 1; ++j) {
for (sz = sizes; *sz; ++sz) {
for (i = 0; i < 2; ++i) {
ds_printf(dev, s, "Full VA sweep @%s %d",
_size_to_string(*sz), i);
if (__full_va_sweep(dev, s, *sz, domain)) {
ds_printf(dev, s, " -> FAILED\n");
ret = -EINVAL;
goto out;
} else
ds_printf(dev, s, " -> SUCCEEDED\n");
}
}
}
ds_printf(dev, s, "bonus map:");
if (__full_va_sweep(dev, s, SZ_4K, domain)) {
ds_printf(dev, s, " -> FAILED\n");
ret = -EINVAL;
goto out;
} else
ds_printf(dev, s, " -> SUCCEEDED\n");
for (sz = sizes; *sz; ++sz) {
for (i = 0; i < 2; ++i) {
ds_printf(dev, s, "Rand VA sweep @%s %d",
_size_to_string(*sz), i);
if (__rand_va_sweep(dev, s, *sz)) {
ds_printf(dev, s, " -> FAILED\n");
ret = -EINVAL;
goto out;
} else
ds_printf(dev, s, " -> SUCCEEDED\n");
}
}
ds_printf(dev, s, "TLB stress sweep");
if (__tlb_stress_sweep(dev, s)) {
ds_printf(dev, s, " -> FAILED\n");
ret = -EINVAL;
goto out;
} else
ds_printf(dev, s, " -> SUCCEEDED\n");
ds_printf(dev, s, "second bonus map:");
if (__full_va_sweep(dev, s, SZ_4K, domain)) {
ds_printf(dev, s, " -> FAILED\n");
ret = -EINVAL;
goto out;
} else
ds_printf(dev, s, " -> SUCCEEDED\n");
out:
return ret;
}
/*iova alloc strategy stress test*/
static int iommu_iova_alloc_strategy_stress_show(struct seq_file *s,
void *ignored)
{
size_t sizes[] = {SZ_4K, SZ_8K, SZ_16K, SZ_64K, 0};
int ret = 0;
ret = __apply_to_new_mapping(s, __functional_dma_api_va_test, sizes);
return ret;
}
static int iommu_iova_alloc_strategy_stress_open(struct inode *inode,
struct file *file)
{
return single_open(file, iommu_iova_alloc_strategy_stress_show,
inode->i_private);
}
static const struct file_operations iommu_iova_alloc_strategy_stress_fops = {
.open = iommu_iova_alloc_strategy_stress_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int __functional_dma_api_alloc_test(struct device *dev,
struct seq_file *s,
struct iommu_domain *domain,
void *ignored)
{
size_t size = SZ_1K * 742;
int ret = 0;
u8 *data;
dma_addr_t iova;
/* Make sure we can allocate and use a buffer */
ds_printf(dev, s, "Allocating coherent buffer");
data = dma_alloc_coherent(dev, size, &iova, GFP_KERNEL);
if (!data) {
ds_printf(dev, s, " -> FAILED\n");
ret = -EINVAL;
} else {
int i;
ds_printf(dev, s, " -> SUCCEEDED\n");
ds_printf(dev, s, "Using coherent buffer");
for (i = 0; i < 742; ++i) {
int ind = SZ_1K * i;
u8 *p = data + ind;
u8 val = i % 255;
memset(data, 0xa5, size);
*p = val;
(*p)++;
if ((*p) != val + 1) {
ds_printf(dev, s,
" -> FAILED on iter %d since %d != %d\n",
i, *p, val + 1);
ret = -EINVAL;
break;
}
}
if (!ret)
ds_printf(dev, s, " -> SUCCEEDED\n");
dma_free_coherent(dev, size, data, iova);
}
return ret;
}
/*iommu kernel virtual addr read/write*/
static int iommu_kvirtual_addr_rdwr_show(struct seq_file *s,
void *ignored)
{
struct iommu_debug_device *ddev = s->private;
struct device *dev = ddev->dev;
int ret = -EINVAL;
ret = __functional_dma_api_alloc_test(dev, s,
global_iommu_domain, NULL);
return ret;
}
static int iommu_kvirtual_addr_rdwr_open(struct inode *inode,
struct file *file)
{
return single_open(file, iommu_kvirtual_addr_rdwr_show,
inode->i_private);
}
static const struct file_operations iommu_kvirtul_addr_rdwr_fops = {
.open = iommu_kvirtual_addr_rdwr_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#if 0
static int __functional_dma_api_ion_test(struct device *dev,
struct seq_file *s,
struct iommu_domain *domain,
void *ignored)
{
size_t size = SZ_4K * 2048 * 8;
int ret = 0;
struct ion_facade ionf;
sunxi_set_debug_mode();
/* Make sure we can allocate and use a buffer */
ds_printf(dev, s, "Allocating coherent ion buffer");
ionf.client = sunxi_ion_client_create("iommu-ion-test");
if (IS_ERR(ionf.client)) {
ION_KERNEL_USER_ERR(ion_client_create);
ret = -EINVAL;
goto out;
}
ionf.handle = ion_alloc(ionf.client, size, PAGE_SIZE,
ION_HEAP_SYSTEM_MASK, 0);
if (IS_ERR(ionf.handle)) {
ION_KERNEL_USER_ERR(ion_alloc);
ds_printf(dev, s, " -> FAILED\n");
ret = -EINVAL;
goto out_destroy_client;
}
ionf.virtual_address = ion_map_kernel(ionf.client, ionf.handle);
if (IS_ERR(ionf.virtual_address)) {
ION_KERNEL_USER_ERR(ion_map_kernel);
ret = -EINVAL;
goto out_ion_free;
}
ionf.sg_table = ion_sg_table(ionf.client, ionf.handle);
if (ionf.sg_table == NULL) {
ds_printf(dev, s, "ion sg table get failed\n");
ret = -EINVAL;
goto out_unmap_kernel;
}
ret = dma_map_sg(dev, ionf.sg_table->sgl,
ionf.sg_table->nents, DMA_BIDIRECTIONAL);
ionf.dma_address = sg_dma_address(ionf.sg_table->sgl);
ionf.address_length = sg_dma_len(ionf.sg_table->sgl);
if ((ret == 0) || (ret != 1)) {
ds_printf(dev, s, "DMA MAP SG FAILED:ret:%d\n", ret);
ret = -EINVAL;
goto out_unmap_kernel;
} else {
int i;
/**
*this code maybe no use
*dma_sync_sg_for_device(NULL, ionf.sg_table->sgl,
* ionf.sg_table->nents, DMA_BIDIRECTIONAL);
*/
ret = 0;
ds_printf(dev, s, " -> SUCCEEDED\n");
ds_printf(dev, s, "Using coherent ion buffer\n");
for (i = 0; i < 2048 * 8; ++i) {
int ind = (SZ_4K * i) / sizeof(u32);
u32 *p = (u32 *)ionf.virtual_address + ind;
u32 *p1 = (u32 *)ionf.dma_address + ind;
u32 read_data;
memset(p, 0xa5, SZ_4K);
*p = 0x5a5a5a5a;
__dma_map_area(p, sizeof(u32), DMA_TO_DEVICE);
sunxi_iova_test_write((dma_addr_t)p1, 0xdead);
__dma_unmap_area(p, sizeof(u32), DMA_FROM_DEVICE);
if ((*p) != 0xdead) {
ds_printf(dev, s,
"-> FAILED on iova0 iter %x %x\n", i, *p);
ret = -EINVAL;
goto out_unmap_sg;
}
*p = 0xffffaaaa;
__dma_map_area(p, sizeof(u32), DMA_TO_DEVICE);
read_data = sunxi_iova_test_read((dma_addr_t)p1);
if (read_data != 0xffffaaaa) {
ds_printf(dev, s,
"-> FAILED on iova1 iter %x %x\n",
i, read_data);
ret = -EINVAL;
goto out_unmap_sg;
}
}
if (!ret)
ds_printf(dev, s, " -> SUCCEEDED\n");
}
out_unmap_sg:
dma_unmap_sg(dev, ionf.sg_table->sgl,
ionf.sg_table->nents, DMA_BIDIRECTIONAL);
out_unmap_kernel:
ion_unmap_kernel(ionf.client, ionf.handle);
out_ion_free:
ion_free(ionf.client, ionf.handle);
out_destroy_client:
ion_client_destroy(ionf.client);
out:
sunxi_set_prefetch_mode();
return ret;
}
#else
static int __functional_dma_api_ion_test(struct device *dev,
struct seq_file *s,
struct iommu_domain *domain,
void *ignored)
{
return 0;
}
#endif
/*iommu ion interface test*/
static int iommu_ion_interface_test_show(struct seq_file *s,
void *ignored)
{
struct iommu_debug_device *ddev = s->private;
struct device *dev = ddev->dev;
int ret = -EINVAL;
ret = __functional_dma_api_ion_test(dev, s,
global_iommu_domain, NULL);
return ret;
}
static int iommu_ion_interface_test_open(struct inode *inode,
struct file *file)
{
return single_open(file, iommu_ion_interface_test_show,
inode->i_private);
}
static const struct file_operations iommu_ion_interface_test_fops = {
.open = iommu_ion_interface_test_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int __functional_dma_api_iova_test(struct device *dev,
struct seq_file *s,
struct iommu_domain *domain,
void *ignored)
{
size_t size = SZ_4K * 2048;
int ret = 0;
u32 *data;
dma_addr_t iova;
sunxi_set_debug_mode();
/* Make sure we can allocate and use a buffer */
ds_printf(dev, s, "Allocating coherent iova buffer");
data = dma_alloc_coherent(dev, size, &iova, GFP_KERNEL);
if (!data) {
ds_printf(dev, s, " -> FAILED\n");
ret = -EINVAL;
} else {
int i;
ds_printf(dev, s, " -> SUCCEEDED\n");
ds_printf(dev, s, "Using coherent buffer");
for (i = 0; i < 2048; ++i) {
int ind = (SZ_4K * i) / sizeof(u32);
u32 *p = data + ind;
u32 *p1 = (u32 *)iova + ind;
u32 read_data;
memset(data, 0xa5, size);
*p = 0x5a5a5a5a;
/**
* make sure that *p is written before
* the write operation of the debug mode of iommu
*/
wmb();
sunxi_iova_test_write((dma_addr_t)p1, 0xdead);
/**
* do the write operation of debug mode of iommu
* in order
*/
rmb();
if ((*p) != 0xdead) {
ds_printf(dev, s,
"-> FAILED on iova0 iter %x %x\n", i, *p);
ret = -EINVAL;
goto out;
}
*p = 0xffffaaaa;
/**
* make sure that *p is written before
* the read operation of the debug mode of iommu
*/
wmb();
read_data = sunxi_iova_test_read((dma_addr_t)p1);
if (read_data != 0xffffaaaa) {
ds_printf(dev, s,
"-> FAILED on iova1 iter %x %x\n",
i, read_data);
ret = -EINVAL;
goto out;
}
}
if (!ret)
ds_printf(dev, s, " -> SUCCEEDED\n");
}
out:
dma_free_coherent(dev, size, data, iova);
sunxi_set_prefetch_mode();
return ret;
}
/*iommu test use debug interface*/
static int iommu_vir_devio_addr_rdwr_show(struct seq_file *s,
void *ignored)
{
int ret = 0;
ret = __apply_to_new_mapping(s, __functional_dma_api_iova_test, NULL);
if (ret) {
pr_err("the first iova test failed\n");
return ret;
}
ret = 0;
ret = __apply_to_new_mapping(s, __functional_dma_api_iova_test, NULL);
if (ret) {
pr_err("the second iova test failed\n");
return ret;
}
ret = 0;
ret = __apply_to_new_mapping(s, __functional_dma_api_iova_test, NULL);
if (ret) {
pr_err("the third iova test failed\n");
return ret;
}
return 0;
}
static int iommu_vir_devio_addr_rdwr_open(struct inode *inode,
struct file *file)
{
return single_open(file, iommu_vir_devio_addr_rdwr_show,
inode->i_private);
}
static const struct file_operations iommu_vir_devio_addr_rdwr_fops = {
.open = iommu_vir_devio_addr_rdwr_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int __functional_dma_api_basic_test(struct device *dev,
struct seq_file *s,
struct iommu_domain *domain,
void *ignored)
{
size_t size = 1518;
int i, j, ret = 0;
u8 *data;
dma_addr_t iova;
phys_addr_t pa, pa2;
ds_printf(dev, s, "Basic DMA API test");
/* Make sure we can allocate and use a buffer */
for (i = 0; i < 1000; ++i) {
data = kmalloc(size, GFP_KERNEL);
if (!data) {
ds_printf(dev, s, " -> FAILED\n");
ret = -EINVAL;
goto out;
}
memset(data, 0xa5, size);
iova = dma_map_single(dev, data, size, DMA_TO_DEVICE);
pa = iommu_iova_to_phys(domain, iova);
pa2 = virt_to_phys(data);
if (pa != pa2) {
dev_err(dev,
"iova_to_phys doesn't match virt_to_phys: %pa != %pa\n",
&pa, &pa2);
ret = -EINVAL;
kfree(data);
goto out;
}
dma_unmap_single(dev, iova, size, DMA_TO_DEVICE);
for (j = 0; j < size; ++j) {
if (data[j] != 0xa5) {
dev_err(dev, "data[%d] != 0xa5\n", data[j]);
ret = -EINVAL;
kfree(data);
goto out;
}
}
kfree(data);
}
out:
if (ret)
ds_printf(dev, s, " -> FAILED\n");
else
ds_printf(dev, s, " -> SUCCEEDED\n");
return ret;
}
/*iommu basic test*/
static int iommu_debug_basic_test_show(struct seq_file *s,
void *ignored)
{
struct iommu_debug_device *ddev = s->private;
struct device *dev = ddev->dev;
int ret = -EINVAL;
ret = __functional_dma_api_basic_test(dev, s,
global_iommu_domain, NULL);
return ret;
}
static int iommu_debug_basic_test_open(struct inode *inode,
struct file *file)
{
return single_open(file, iommu_debug_basic_test_show,
inode->i_private);
}
static const struct file_operations iommu_debug_basic_test_fops = {
.open = iommu_debug_basic_test_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/*
* The following will only work for drivers that implement the generic
* device tree bindings described in
* Documentation/devicetree/bindings/iommu/iommu.txt
*/
static int snarf_iommu_devices(struct device *dev, const char *name)
{
struct iommu_debug_device *ddev;
struct dentry *dir;
if (IS_ERR_OR_NULL(dev))
return -EINVAL;
ddev = kzalloc(sizeof(*ddev), GFP_KERNEL);
if (!ddev)
return -ENODEV;
ddev->dev = dev;
ddev->domain = global_iommu_domain;
dir = debugfs_create_dir(name, debugfs_tests_dir);
if (!dir) {
pr_err("Couldn't create iommu/devices/%s debugfs dir\n",
name);
goto err;
}
if (!debugfs_create_file("profiling_fast_dma_api", 0400, dir, ddev,
&iommu_debug_profiling_fast_dma_api_fops)) {
pr_err("Couldn't create iommu/devices/%s/profiling_fast_dma_api debugfs file\n",
name);
goto err_rmdir;
}
if (!debugfs_create_file("iommu_basic_test", 0400, dir, ddev,
&iommu_debug_basic_test_fops)) {
pr_err("Couldn't create iommu/devices/%s/iommu_basic_test debugfs file\n",
name);
goto err_rmdir;
}
if (!debugfs_create_file("ion_interface_test", 0400, dir, ddev,
&iommu_ion_interface_test_fops)) {
pr_err("Couldn't create iommu/devices/%s/ion_interface_test debugfs file\n",
name);
goto err_rmdir;
}
if (!debugfs_create_file("iova_alloc_strategy_stress_test",
0200, dir, ddev,
&iommu_iova_alloc_strategy_stress_fops)) {
pr_err("Couldn't create iommu/devices/%s/iova_alloc_strategy_stress_test debugfs file\n",
name);
goto err_rmdir;
}
if (!debugfs_create_file("kvirtual_addr_rdwr_test", 0200, dir, ddev,
&iommu_kvirtul_addr_rdwr_fops)) {
pr_err("Couldn't create iommu/devices/%s/kvirtual_addr_rdwr_test debugfs file\n",
name);
goto err_rmdir;
}
if (!debugfs_create_file("vir_devio_addr_rdwr_test", 0200, dir, ddev,
&iommu_vir_devio_addr_rdwr_fops)) {
pr_err("Couldn't create iommu/devices/%s/vir_devio_addr_rdwr_test debugfs file\n",
name);
goto err_rmdir;
}
list_add(&ddev->list, &iommu_debug_devices);
return 0;
err_rmdir:
debugfs_remove_recursive(dir);
err:
kfree(ddev);
return 0;
}
static int pass_iommu_devices(struct device *dev, void *ignored)
{
if (!of_find_property(dev->of_node, "iommus", NULL))
return 0;
return snarf_iommu_devices(dev, dev_name(dev));
}
static int iommu_debug_populate_devices(void)
{
return bus_for_each_dev(&platform_bus_type, NULL, NULL,
pass_iommu_devices);
}
static int iommu_debug_init_tests(void)
{
iommu_debugfs_top = debugfs_create_dir("iommu", NULL);
if (!iommu_debugfs_top) {
pr_err("Couldn't create iommu debugfs directory\n");
return -ENODEV;
}
debugfs_tests_dir = debugfs_create_dir("tests",
iommu_debugfs_top);
if (!debugfs_tests_dir) {
pr_err("Couldn't create iommu/tests debugfs directory\n");
return -ENODEV;
}
return iommu_debug_populate_devices();
}
static void iommu_debug_destroy_tests(void)
{
debugfs_remove_recursive(debugfs_tests_dir);
}
#else
static inline int iommu_debug_init_tests(void) { return 0; }
static inline void iommu_debug_destroy_tests(void) { }
#endif
static int __init iommu_debug_init(void)
{
if (iommu_debug_init_tests())
return -ENODEV;
return 0;
}
static void __exit iommu_debug_exit(void)
{
iommu_debug_destroy_tests();
}
module_init(iommu_debug_init);
module_exit(iommu_debug_exit);