SmartAudio/lichee/brandy/arm-trusted-firmware-1.0/bl1/aarch64/bl1_entrypoint.S

173 lines
5.9 KiB
ArmAsm

/*
* Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <arch.h>
#include <asm_macros.S>
.globl bl1_entrypoint
/* -----------------------------------------------------
* bl1_entrypoint() is the entry point into the trusted
* firmware code when a cpu is released from warm or
* cold reset.
* -----------------------------------------------------
*/
func bl1_entrypoint
/* ---------------------------------------------
* Set the CPU endianness before doing anything
* that might involve memory reads or writes.
* ---------------------------------------------
*/
mrs x0, sctlr_el3
bic x0, x0, #SCTLR_EE_BIT
msr sctlr_el3, x0
isb
/* ---------------------------------------------
* Perform any processor specific actions upon
* reset e.g. cache, tlb invalidations etc.
* ---------------------------------------------
*/
bl reset_handler
/* ---------------------------------------------
* Enable the instruction cache, stack pointer
* and data access alignment checks
* ---------------------------------------------
*/
mov x1, #(SCTLR_I_BIT | SCTLR_A_BIT | SCTLR_SA_BIT)
mrs x0, sctlr_el3
orr x0, x0, x1
msr sctlr_el3, x0
isb
/* ---------------------------------------------
* Set the exception vector to something sane.
* ---------------------------------------------
*/
adr x0, bl1_exceptions
msr vbar_el3, x0
isb
/* ---------------------------------------------
* Enable the SError interrupt now that the
* exception vectors have been setup.
* ---------------------------------------------
*/
msr daifclr, #DAIF_ABT_BIT
/* ---------------------------------------------------------------------
* The initial state of the Architectural feature trap register
* (CPTR_EL3) is unknown and it must be set to a known state. All
* feature traps are disabled. Some bits in this register are marked as
* Reserved and should not be modified.
*
* CPTR_EL3.TCPAC: This causes a direct access to the CPACR_EL1 from EL1
* or the CPTR_EL2 from EL2 to trap to EL3 unless it is trapped at EL2.
* CPTR_EL3.TTA: This causes access to the Trace functionality to trap
* to EL3 when executed from EL0, EL1, EL2, or EL3. If system register
* access to trace functionality is not supported, this bit is RES0.
* CPTR_EL3.TFP: This causes instructions that access the registers
* associated with Floating Point and Advanced SIMD execution to trap
* to EL3 when executed from any exception level, unless trapped to EL1
* or EL2.
* ---------------------------------------------------------------------
*/
mrs x0, cptr_el3
bic w0, w0, #TCPAC_BIT
bic w0, w0, #TTA_BIT
bic w0, w0, #TFP_BIT
msr cptr_el3, x0
/* -------------------------------------------------------
* Will not return from this macro if it is a warm boot.
* -------------------------------------------------------
*/
wait_for_entrypoint
bl platform_mem_init
/* ---------------------------------------------
* Init C runtime environment.
* - Zero-initialise the NOBITS sections.
* There are 2 of them:
* - the .bss section;
* - the coherent memory section.
* - Copy the data section from BL1 image
* (stored in ROM) to the correct location
* in RAM.
* ---------------------------------------------
*/
ldr x0, =__BSS_START__
ldr x1, =__BSS_SIZE__
bl zeromem16
ldr x0, =__COHERENT_RAM_START__
ldr x1, =__COHERENT_RAM_UNALIGNED_SIZE__
bl zeromem16
ldr x0, =__DATA_RAM_START__
ldr x1, =__DATA_ROM_START__
ldr x2, =__DATA_SIZE__
bl memcpy16
/* --------------------------------------------
* Allocate a stack whose memory will be marked
* as Normal-IS-WBWA when the MMU is enabled.
* There is no risk of reading stale stack
* memory after enabling the MMU as only the
* primary cpu is running at the moment.
* --------------------------------------------
*/
mrs x0, mpidr_el1
bl platform_set_stack
/* ---------------------------------------------
* Architectural init. can be generic e.g.
* enabling stack alignment and platform spec-
* ific e.g. MMU & page table setup as per the
* platform memory map. Perform the latter here
* and the former in bl1_main.
* ---------------------------------------------
*/
bl bl1_early_platform_setup
bl bl1_plat_arch_setup
/* --------------------------------------------------
* Initialize platform and jump to our c-entry point
* for this type of reset. Panic if it returns
* --------------------------------------------------
*/
bl bl1_main
panic:
b panic