/* * A V4L2 driver for IMX219 cameras. * */ #include #include #include #include #include #include #include #include #include #include #include "camera.h" #include "sensor_helper.h" MODULE_AUTHOR("Chomoly"); MODULE_DESCRIPTION("A low-level driver for IMX219 sensors"); MODULE_LICENSE("GPL"); /* for internal driver debug */ #define DEV_DBG_EN 0 #if (DEV_DBG_EN == 1) #define vfe_dev_dbg(x, arg...) pr_debug("[IMX219]"x, ##arg) #else #define vfe_dev_dbg(x, arg...) #endif #define vfe_dev_err(x, arg...) pr_err("[IMX219]"x, ##arg) #define vfe_dev_print(x, arg...) pr_info("[IMX219]"x, ##arg) /* *#define LOG_ERR_RET(x) { \ * int ret; \ * ret = x; \ * if (ret < 0) { \ * vfe_dev_err("error at %s\n", __func__); \ * return ret; \ * } \ * } */ /* define module timing */ #define MCLK (24*1000*1000) #define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_LOW #define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH #define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING #define V4L2_IDENT_SENSOR 0x0219 /* * Our nominal (default) frame rate. */ #ifdef FPGA #define SENSOR_FRAME_RATE 15 #else #define SENSOR_FRAME_RATE 30 #endif /* * The IMX219 sits on i2c with ID 0x6c */ #define I2C_ADDR 0x20 #define SENSOR_NAME "imx219" int imx219_sensor_vts; #define ES_GAIN(a, b, c) ((unsigned short)(a*160) < (c*10) && (c*10) <= (unsigned short)(b*160)) /* static struct delayed_work sensor_s_ae_ratio_work; */ static struct v4l2_subdev *glb_sd; /* * Information we maintain about a known sensor. */ struct sensor_format_struct; /* coming later */ struct cfg_array { /* coming later */ struct regval_list *regs; int size; }; static int LOG_ERR_RET(int x) { int ret; ret = x; if (ret < 0) vfe_dev_err("error at %s\n", __func__); return ret; } static inline struct sensor_info *to_state(struct v4l2_subdev *sd) { return container_of(sd, struct sensor_info, sd); } /* * The default register settings * */ /*3280 x 2464_20fps 4lanes 720Mbps/lane*/ static struct regval_list sensor_default_regs[] = { }; /* for capture */ static struct regval_list sensor_hxga_regs[] = { /* 3280 * 2464 20fps 4lane */ {0x30EB, 0x05}, {0x30EB, 0x0C}, {0x300A, 0xFF}, {0x300B, 0xFF}, {0x30EB, 0x05}, {0x30EB, 0x09}, {0x0114, 0x03}, {0x0128, 0x00}, {0x012A, 0x18}, {0x012B, 0x00}, {0x0160, 0x0F}, {0x0161, 0xC5}, {0x0162, 0x0D}, {0x0163, 0x78}, {0x0164, 0x00}, {0x0165, 0x00}, {0x0166, 0x0C}, {0x0167, 0xCF}, {0x0168, 0x00}, {0x0169, 0x00}, {0x016A, 0x09}, {0x016B, 0x9F}, {0x016C, 0x0C}, {0x016D, 0xD0}, {0x016E, 0x09}, {0x016F, 0xA0}, {0x0170, 0x01}, {0x0171, 0x01}, {0x0174, 0x00}, {0x0175, 0x00}, {0x018C, 0x0A}, {0x018D, 0x0A}, {0x0301, 0x05}, {0x0303, 0x01}, {0x0304, 0x03}, {0x0305, 0x03}, {0x0306, 0x00}, {0x0307, 0x57}, {0x0309, 0x0A}, {0x030B, 0x01}, {0x030C, 0x00}, {0x030D, 0x5A}, {0x4767, 0x0F}, {0x4750, 0x14}, {0x47B4, 0x14}, {0x0100, 0x01}, }; static struct regval_list sensor_sxga_regs[] = { /* SXGA: 1280*960@30fps */ /* 720Mbps 4lane 20fps */ {0x30EB, 0x05}, {0x30EB, 0x0C}, {0x300A, 0xFF}, {0x300B, 0xFF}, {0x30EB, 0x05}, {0x30EB, 0x09}, {0x0114, 0x03}, {0x0128, 0x00}, {0x012A, 0x18}, {0x012B, 0x00}, {0x0160, 0x0a}, {0x0161, 0x2f}, {0x0162, 0x0d}, {0x0163, 0xe8}, {0x0164, 0x03}, {0x0165, 0xe8}, {0x0166, 0x08}, {0x0167, 0xe7}, {0x0168, 0x02}, {0x0169, 0xf0}, {0x016A, 0x06}, {0x016B, 0xaF}, {0x016C, 0x05}, {0x016D, 0x00}, {0x016E, 0x03}, {0x016F, 0xc0}, /* {0x016C, 0x0c}, */ /* {0x016D, 0xd0}, */ /* {0x016E, 0x09}, */ /* {0x016F, 0xa0}, */ {0x0170, 0x01}, {0x0171, 0x01}, {0x0174, 0x00}, {0x0175, 0x00}, {0x018C, 0x0A}, {0x018D, 0x0A}, {0x0301, 0x05}, {0x0303, 0x01}, {0x0304, 0x03}, {0x0305, 0x03}, {0x0306, 0x00}, {0x0307, 0x57}, {0x0309, 0x0A}, {0x030B, 0x01}, {0x030C, 0x00}, {0x030D, 0x5A}, {0x4767, 0x0F}, {0x4750, 0x14}, {0x47B4, 0x14}, {0x0100, 0x01}, }; /* for video */ static struct regval_list sensor_1080p_regs[] = { /* 1080: 1920*1080@30fps */ /* MIPI=720Mbps */ /* 1920x1080 30fps */ {0x30EB, 0x05}, {0x30EB, 0x0C}, {0x300A, 0xFF}, {0x300B, 0xFF}, {0x30EB, 0x05}, {0x30EB, 0x09}, /* {0x , 0x }, */ {0x0114, 0x03}, {0x0128, 0x00}, {0x012A, 0x18}, {0x012B, 0x00}, /* {0x0157, 0x }, */ /* {0x015A, 0x }, */ /* {0x015B, 0x }, */ {0x0160, 0x0A}, {0x0161, 0x2F}, {0x0162, 0x0D}, {0x0163, 0xE8}, {0x0164, 0x02}, {0x0165, 0xA8}, {0x0166, 0x0A}, {0x0167, 0x27}, {0x0168, 0x02}, {0x0169, 0xB4}, {0x016A, 0x06}, {0x016B, 0xEB}, {0x016C, 0x07}, {0x016D, 0x80}, {0x016E, 0x04}, {0x016F, 0x38}, {0x0170, 0x01}, {0x0171, 0x01}, {0x0174, 0x00}, {0x0175, 0x00}, {0x018C, 0x0A}, {0x018D, 0x0A}, {0x0301, 0x05}, {0x0303, 0x01}, {0x0304, 0x03}, {0x0305, 0x03}, {0x0306, 0x00}, {0x0307, 0x57}, {0x0309, 0x0A}, {0x030B, 0x01}, {0x030C, 0x00}, {0x030D, 0x5A}, {0x4767, 0x0F}, {0x4750, 0x14}, {0x47B4, 0x14}, {0x0100, 0x01}, }; static struct regval_list sensor_720p_regs[] = { /* 720: 1280*720@30fps */ /* MIPI=720Mbps, */ /* 1280x720 60fps //perhaps reach to 100~120fps */ {0x30EB, 0x05}, {0x30EB, 0x0C}, {0x300A, 0xFF}, {0x300B, 0xFF}, {0x30EB, 0x05}, {0x30EB, 0x09}, {0x0114, 0x03}, {0x0128, 0x00}, {0x012A, 0x18}, {0x012B, 0x00}, {0x0160, 0x02}, /* 0x05 for 60fps */ {0x0161, 0x00}, /* 0x17 for 60fps */ {0x0162, 0x0d}, /*0D*/ {0x0163, 0xE8}, {0x0164, 0x03}, {0x0165, 0xE8}, {0x0166, 0x08}, {0x0167, 0xE7}, {0x0168, 0x03}, {0x0169, 0x68}, {0x016A, 0x06}, {0x016B, 0x37}, {0x016C, 0x05}, {0x016D, 0x00}, {0x016E, 0x02}, {0x016F, 0xD0}, {0x0170, 0x01}, {0x0171, 0x01}, {0x0174, 0x00}, {0x0175, 0x00}, {0x018C, 0x0A}, {0x018D, 0x0A}, {0x0301, 0x05}, {0x0303, 0x01}, {0x0304, 0x03}, {0x0305, 0x03}, {0x0306, 0x00}, {0x0307, 0x57}, {0x0309, 0x05}, /* 0A */ {0x030B, 0x01}, {0x030C, 0x00}, {0x030D, 0x5A}, {0x4767, 0x0F}, {0x4750, 0x14}, {0x47B4, 0x14}, {0x0100, 0x01}, }; /* *static struct regval_list sensor_vga_regs[] = { //VGA: 640*480 *}; */ /* misc */ /* *static struct regval_list sensor_oe_disable_regs[] = { *}; */ /* *static struct regval_list sensor_oe_enable_regs[] = { *}; */ /* * Here we'll try to encapsulate the changes for just the output * video format. * */ static struct regval_list sensor_fmt_raw[] = { }; static int sensor_s_exp_gain(struct v4l2_subdev *sd, struct sensor_exp_gain *exp_gain) { /* return -1; */ int exp_val, gain_val, frame_length, shutter; unsigned char explow = 0, exphigh = 0; /* expmid = 0; */ /* unsigned char gainlow = 0, gainhigh = 0; */ struct sensor_info *info = to_state(sd); exp_val = exp_gain->exp_val; gain_val = exp_gain->gain_val; /* if((info->exp == exp_val)&&(info->gain == gain_val)) */ /* return 0; */ if (gain_val < 1*16) gain_val = 16; if (gain_val > 10*16-1) gain_val = 10*16-1; if (exp_val > 0xfffff) exp_val = 0xfffff; exp_val >>= 4; exphigh = (unsigned char) ((0x00ff00&exp_val)>>8); explow = (unsigned char) ((0x0000ff&exp_val)); sensor_write(sd, 0x015b, explow); sensor_write(sd, 0x015a, exphigh); shutter = exp_val; if (shutter > imx219_sensor_vts - 4) frame_length = shutter + 4; else frame_length = imx219_sensor_vts; sensor_write(sd, 0x0161, frame_length & 0xff); sensor_write(sd, 0x0160, frame_length >> 8); if (gain_val == 16) sensor_write(sd, 0x0157, 0x01); if (ES_GAIN(1.0, 1.1, gain_val)) sensor_write(sd, 0x0157, 24); else if (ES_GAIN(1.1, 1.2, gain_val)) sensor_write(sd, 0x0157, 42); else if (ES_GAIN(1.2, 1.3, gain_val)) sensor_write(sd, 0x0157, 60); else if (ES_GAIN(1.3, 1.4, gain_val)) sensor_write(sd, 0x0157, 73); else if (ES_GAIN(1.4, 1.5, gain_val)) sensor_write(sd, 0x0157, 85); else if (ES_GAIN(1.5, 1.6, gain_val)) sensor_write(sd, 0x0157, 96); else if (ES_GAIN(1.6, 1.7, gain_val)) sensor_write(sd, 0x0157, 105); else if (ES_GAIN(1.7, 1.8, gain_val)) sensor_write(sd, 0x0157, 114); else if (ES_GAIN(1.8, 1.9, gain_val)) sensor_write(sd, 0x0157, 122); else if (ES_GAIN(1.9, 2.0, gain_val)) sensor_write(sd, 0x0157, 0x80); else if (ES_GAIN(2.0, 2.1, gain_val)) sensor_write(sd, 0x0157, 134); else if (ES_GAIN(2.1, 2.2, gain_val)) sensor_write(sd, 0x0157, 140); else if (ES_GAIN(2.2, 2.3, gain_val)) sensor_write(sd, 0x0157, 145); else if (ES_GAIN(2.3, 2.4, gain_val)) sensor_write(sd, 0x0157, 150); else if (ES_GAIN(2.4, 2.5, gain_val)) sensor_write(sd, 0x0157, 154); else if (ES_GAIN(2.5, 2.6, gain_val)) sensor_write(sd, 0x0157, 158); else if (ES_GAIN(2.6, 2.7, gain_val)) sensor_write(sd, 0x0157, 162); else if (ES_GAIN(2.7, 2.8, gain_val)) sensor_write(sd, 0x0157, 165); else if (ES_GAIN(2.8, 2.9, gain_val)) sensor_write(sd, 0x0157, 168); else if (ES_GAIN(2.9, 3.0, gain_val)) sensor_write(sd, 0x0157, 0xab); else if (ES_GAIN(3.0, 3.1, gain_val)) sensor_write(sd, 0x0157, 174); else if (ES_GAIN(3.1, 3.2, gain_val)) sensor_write(sd, 0x0157, 176); else if (ES_GAIN(3.2, 3.3, gain_val)) sensor_write(sd, 0x0157, 179); else if (ES_GAIN(3.3, 3.4, gain_val)) sensor_write(sd, 0x0157, 181); else if (ES_GAIN(3.4, 3.5, gain_val)) sensor_write(sd, 0x0157, 183); else if (ES_GAIN(3.5, 3.6, gain_val)) sensor_write(sd, 0x0157, 185); else if (ES_GAIN(3.6, 3.7, gain_val)) sensor_write(sd, 0x0157, 187); else if (ES_GAIN(3.7, 3.8, gain_val)) sensor_write(sd, 0x0157, 189); else if (ES_GAIN(3.8, 3.9, gain_val)) sensor_write(sd, 0x0157, 191); else if (ES_GAIN(3.9, 4.0, gain_val)) sensor_write(sd, 0x0157, 192); else if (ES_GAIN(4.0, 4.1, gain_val)) sensor_write(sd, 0x0157, 194); else if (ES_GAIN(4.1, 4.2, gain_val)) sensor_write(sd, 0x0157, 195); else if (ES_GAIN(4.2, 4.3, gain_val)) sensor_write(sd, 0x0157, 197); else if (ES_GAIN(4.3, 4.4, gain_val)) sensor_write(sd, 0x0157, 198); else if (ES_GAIN(4.4, 4.5, gain_val)) sensor_write(sd, 0x0157, 200); else if (ES_GAIN(4.5, 4.6, gain_val)) sensor_write(sd, 0x0157, 201); else if (ES_GAIN(4.6, 4.7, gain_val)) sensor_write(sd, 0x0157, 202); else if (ES_GAIN(4.7, 4.8, gain_val)) sensor_write(sd, 0x0157, 203); else if (ES_GAIN(4.8, 4.9, gain_val)) sensor_write(sd, 0x0157, 204); else if (ES_GAIN(4.9, 5.0, gain_val)) sensor_write(sd, 0x0157, 205); else if (ES_GAIN(5.0, 5.1, gain_val)) sensor_write(sd, 0x0157, 206); else if (ES_GAIN(5.1, 5.2, gain_val)) sensor_write(sd, 0x0157, 207); else if (ES_GAIN(5.2, 5.3, gain_val)) sensor_write(sd, 0x0157, 208); else if (ES_GAIN(5.3, 5.4, gain_val)) sensor_write(sd, 0x0157, 209); else if (ES_GAIN(5.4, 5.5, gain_val)) sensor_write(sd, 0x0157, 210); else if (ES_GAIN(5.5, 5.7, gain_val)) sensor_write(sd, 0x0157, 211); else if (ES_GAIN(5.7, 5.8, gain_val)) sensor_write(sd, 0x0157, 212); else if (ES_GAIN(5.8, 5.9, gain_val)) sensor_write(sd, 0x0157, 213); else if (ES_GAIN(5.9, 6.2, gain_val)) sensor_write(sd, 0x0157, 215); else if (ES_GAIN(6.2, 6.4, gain_val)) sensor_write(sd, 0x0157, 216); else if (ES_GAIN(6.4, 6.5, gain_val)) sensor_write(sd, 0x0157, 217); else if (ES_GAIN(6.5, 6.7, gain_val)) sensor_write(sd, 0x0157, 218); else if (ES_GAIN(6.7, 6.9, gain_val)) sensor_write(sd, 0x0157, 219); else if (ES_GAIN(6.9, 7.1, gain_val)) sensor_write(sd, 0x0157, 220); else if (ES_GAIN(7.1, 7.3, gain_val)) sensor_write(sd, 0x0157, 221); else if (ES_GAIN(7.3, 7.5, gain_val)) sensor_write(sd, 0x0157, 222); else if (ES_GAIN(7.5, 7.7, gain_val)) sensor_write(sd, 0x0157, 223); else if (ES_GAIN(7.7, 8.0, gain_val)) sensor_write(sd, 0x0157, 224); else if (ES_GAIN(8.0, 8.3, gain_val)) sensor_write(sd, 0x0157, 225); else if (ES_GAIN(8.3, 8.5, gain_val)) sensor_write(sd, 0x0157, 226); else if (ES_GAIN(8.5, 8.8, gain_val)) sensor_write(sd, 0x0157, 227); else if (ES_GAIN(8.8, 9.1, gain_val)) sensor_write(sd, 0x0157, 228); else if (ES_GAIN(9.1, 9.4, gain_val)) sensor_write(sd, 0x0157, 228); else if (ES_GAIN(9.4, 9.8, gain_val)) sensor_write(sd, 0x0157, 230); else if (ES_GAIN(9.8, 10.2, gain_val)) sensor_write(sd, 0x0157, 231); else if (ES_GAIN(10.0, 10.6, gain_val)) sensor_write(sd, 0x0157, 232); info->exp = exp_val; info->gain = gain_val; return 0; } static int sensor_g_exp(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->exp; vfe_dev_dbg("sensor_get_exposure = %d\n", info->exp); return 0; } static int sensor_s_exp(struct v4l2_subdev *sd, unsigned int exp_val) { unsigned char explow, exphigh; struct sensor_info *info = to_state(sd); if (exp_val > 0xfffff) exp_val = 0xfffff; exp_val >>= 4; exphigh = (unsigned char) ((0x00ff00&exp_val)>>8); explow = (unsigned char) ((0x0000ff&exp_val)); sensor_write(sd, 0x015b, explow); sensor_write(sd, 0x015a, exphigh); info->exp = exp_val; return 0; } static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->gain; vfe_dev_dbg("sensor_get_gain = %d\n", info->gain); return 0; } static int sensor_s_gain(struct v4l2_subdev *sd, int gain_val) { struct sensor_info *info = to_state(sd); if (gain_val < 1*16) gain_val = 16; if (gain_val > 0x1ff) gain_val = 0x1ff; if (gain_val == 16) sensor_write(sd, 0x0157, 0x01); if (ES_GAIN(1.0, 1.1, gain_val)) sensor_write(sd, 0x0157, 24); else if (ES_GAIN(1.1, 1.2, gain_val)) sensor_write(sd, 0x0157, 42); else if (ES_GAIN(1.2, 1.3, gain_val)) sensor_write(sd, 0x0157, 60); else if (ES_GAIN(1.3, 1.4, gain_val)) sensor_write(sd, 0x0157, 73); else if (ES_GAIN(1.4, 1.5, gain_val)) sensor_write(sd, 0x0157, 85); else if (ES_GAIN(1.5, 1.6, gain_val)) sensor_write(sd, 0x0157, 96); else if (ES_GAIN(1.6, 1.7, gain_val)) sensor_write(sd, 0x0157, 105); else if (ES_GAIN(1.7, 1.8, gain_val)) sensor_write(sd, 0x0157, 114); else if (ES_GAIN(1.8, 1.9, gain_val)) sensor_write(sd, 0x0157, 122); else if (ES_GAIN(1.9, 2.0, gain_val)) sensor_write(sd, 0x0157, 0x80); else if (ES_GAIN(2.0, 2.1, gain_val)) sensor_write(sd, 0x0157, 134); else if (ES_GAIN(2.1, 2.2, gain_val)) sensor_write(sd, 0x0157, 140); else if (ES_GAIN(2.2, 2.3, gain_val)) sensor_write(sd, 0x0157, 145); else if (ES_GAIN(2.3, 2.4, gain_val)) sensor_write(sd, 0x0157, 150); else if (ES_GAIN(2.4, 2.5, gain_val)) sensor_write(sd, 0x0157, 154); else if (ES_GAIN(2.5, 2.6, gain_val)) sensor_write(sd, 0x0157, 158); else if (ES_GAIN(2.6, 2.7, gain_val)) sensor_write(sd, 0x0157, 162); else if (ES_GAIN(2.7, 2.8, gain_val)) sensor_write(sd, 0x0157, 165); else if (ES_GAIN(2.8, 2.9, gain_val)) sensor_write(sd, 0x0157, 168); else if (ES_GAIN(2.9, 3.0, gain_val)) sensor_write(sd, 0x0157, 0xab); else if (ES_GAIN(3.0, 3.1, gain_val)) sensor_write(sd, 0x0157, 174); else if (ES_GAIN(3.1, 3.2, gain_val)) sensor_write(sd, 0x0157, 176); else if (ES_GAIN(3.2, 3.3, gain_val)) sensor_write(sd, 0x0157, 179); else if (ES_GAIN(3.3, 3.4, gain_val)) sensor_write(sd, 0x0157, 181); else if (ES_GAIN(3.4, 3.5, gain_val)) sensor_write(sd, 0x0157, 183); else if (ES_GAIN(3.5, 3.6, gain_val)) sensor_write(sd, 0x0157, 185); else if (ES_GAIN(3.6, 3.7, gain_val)) sensor_write(sd, 0x0157, 187); else if (ES_GAIN(3.7, 3.8, gain_val)) sensor_write(sd, 0x0157, 189); else if (ES_GAIN(3.8, 3.9, gain_val)) sensor_write(sd, 0x0157, 191); else if (ES_GAIN(3.9, 4.0, gain_val)) sensor_write(sd, 0x0157, 192); else if (ES_GAIN(4.0, 4.1, gain_val)) sensor_write(sd, 0x0157, 194); else if (ES_GAIN(4.1, 4.2, gain_val)) sensor_write(sd, 0x0157, 195); else if (ES_GAIN(4.2, 4.3, gain_val)) sensor_write(sd, 0x0157, 197); else if (ES_GAIN(4.3, 4.4, gain_val)) sensor_write(sd, 0x0157, 198); else if (ES_GAIN(4.4, 4.5, gain_val)) sensor_write(sd, 0x0157, 200); else if (ES_GAIN(4.5, 4.6, gain_val)) sensor_write(sd, 0x0157, 201); else if (ES_GAIN(4.6, 4.7, gain_val)) sensor_write(sd, 0x0157, 202); else if (ES_GAIN(4.7, 4.8, gain_val)) sensor_write(sd, 0x0157, 203); else if (ES_GAIN(4.8, 4.9, gain_val)) sensor_write(sd, 0x0157, 204); else if (ES_GAIN(4.9, 5.0, gain_val)) sensor_write(sd, 0x0157, 205); else if (ES_GAIN(5.0, 5.1, gain_val)) sensor_write(sd, 0x0157, 206); else if (ES_GAIN(5.1, 5.2, gain_val)) sensor_write(sd, 0x0157, 207); else if (ES_GAIN(5.2, 5.3, gain_val)) sensor_write(sd, 0x0157, 208); else if (ES_GAIN(5.3, 5.4, gain_val)) sensor_write(sd, 0x0157, 209); else if (ES_GAIN(5.4, 5.5, gain_val)) sensor_write(sd, 0x0157, 210); else if (ES_GAIN(5.5, 5.7, gain_val)) sensor_write(sd, 0x0157, 211); else if (ES_GAIN(5.7, 5.8, gain_val)) sensor_write(sd, 0x0157, 212); else if (ES_GAIN(5.8, 5.9, gain_val)) sensor_write(sd, 0x0157, 213); else if (ES_GAIN(5.9, 6.2, gain_val)) sensor_write(sd, 0x0157, 215); else if (ES_GAIN(6.2, 6.4, gain_val)) sensor_write(sd, 0x0157, 216); else if (ES_GAIN(6.4, 6.5, gain_val)) sensor_write(sd, 0x0157, 217); else if (ES_GAIN(6.5, 6.7, gain_val)) sensor_write(sd, 0x0157, 218); else if (ES_GAIN(6.7, 6.9, gain_val)) sensor_write(sd, 0x0157, 219); else if (ES_GAIN(6.9, 7.1, gain_val)) sensor_write(sd, 0x0157, 220); else if (ES_GAIN(7.1, 7.3, gain_val)) sensor_write(sd, 0x0157, 221); else if (ES_GAIN(7.3, 7.5, gain_val)) sensor_write(sd, 0x0157, 222); else if (ES_GAIN(7.5, 7.7, gain_val)) sensor_write(sd, 0x0157, 223); else if (ES_GAIN(7.7, 8.0, gain_val)) sensor_write(sd, 0x0157, 224); else if (ES_GAIN(8.0, 8.3, gain_val)) sensor_write(sd, 0x0157, 225); else if (ES_GAIN(8.3, 8.5, gain_val)) sensor_write(sd, 0x0157, 226); else if (ES_GAIN(8.5, 8.8, gain_val)) sensor_write(sd, 0x0157, 227); else if (ES_GAIN(8.8, 9.1, gain_val)) sensor_write(sd, 0x0157, 228); else if (ES_GAIN(9.1, 9.4, gain_val)) sensor_write(sd, 0x0157, 228); else if (ES_GAIN(9.4, 9.8, gain_val)) sensor_write(sd, 0x0157, 230); else if (ES_GAIN(9.8, 10.2, gain_val)) sensor_write(sd, 0x0157, 231); else if (ES_GAIN(10.0, 10.6, gain_val)) sensor_write(sd, 0x0157, 232); info->gain = gain_val; return 0; } /* *static int sensor_s_sw_stby(struct v4l2_subdev *sd, int on_off) *{ * int ret; * data_type rdval; * * ret = sensor_read(sd, 0x0100, &rdval); * if (ret != 0) * return ret; * * if (on_off == CSI_GPIO_LOW) //sw stby on * ret = sensor_write(sd, 0x0100, rdval&0xfe); * else //sw stby off * ret = sensor_write(sd, 0x0100, rdval|0x01); * return ret; *} */ /* * Stuff that knows about the sensor. */ static int sensor_power(struct v4l2_subdev *sd, int on) { int ret; ret = 0; switch (on) { case CSI_SUBDEV_STBY_ON: vfe_dev_dbg("CSI_SUBDEV_STBY_ON!\n"); cci_lock(sd); vfe_gpio_write(sd, RESET, CSI_GPIO_LOW); cci_unlock(sd); vfe_set_mclk(sd, OFF); break; case CSI_SUBDEV_STBY_OFF: vfe_dev_dbg("CSI_SUBDEV_STBY_OFF!\n"); cci_lock(sd); vfe_set_mclk_freq(sd, MCLK); vfe_set_mclk(sd, ON); msleep(20); cci_unlock(sd); vfe_gpio_write(sd, RESET, CSI_GPIO_HIGH); break; case CSI_SUBDEV_PWR_ON: vfe_dev_dbg("CSI_SUBDEV_PWR_ON!\n"); cci_lock(sd); vfe_gpio_set_status(sd, PWDN, 1); /* set the gpio to output */ vfe_gpio_set_status(sd, RESET, 1); /* set the gpio to output */ vfe_gpio_write(sd, PWDN, CSI_GPIO_LOW); vfe_gpio_write(sd, RESET, CSI_GPIO_LOW); usleep_range(1000, 1200); vfe_set_mclk_freq(sd, MCLK); vfe_set_mclk(sd, ON); usleep_range(10000, 12000); vfe_gpio_write(sd, POWER_EN, CSI_GPIO_HIGH); vfe_set_pmu_channel(sd, IOVDD, ON); vfe_set_pmu_channel(sd, AVDD, ON); vfe_set_pmu_channel(sd, DVDD, ON); vfe_set_pmu_channel(sd, AFVDD, ON); usleep_range(10000, 12000); vfe_gpio_write(sd, PWDN, CSI_GPIO_HIGH); vfe_gpio_write(sd, RESET, CSI_GPIO_HIGH); usleep_range(30000, 31000); cci_unlock(sd); break; case CSI_SUBDEV_PWR_OFF: vfe_dev_dbg("CSI_SUBDEV_PWR_OFF!\n"); cci_lock(sd); vfe_set_mclk(sd, OFF); vfe_gpio_write(sd, POWER_EN, CSI_GPIO_LOW); vfe_set_pmu_channel(sd, AFVDD, OFF); vfe_set_pmu_channel(sd, DVDD, OFF); vfe_set_pmu_channel(sd, AVDD, OFF); vfe_set_pmu_channel(sd, IOVDD, OFF); usleep_range(10000, 12000); vfe_gpio_write(sd, PWDN, CSI_GPIO_LOW); vfe_gpio_write(sd, RESET, CSI_GPIO_LOW); vfe_gpio_set_status(sd, RESET, 0); /* set the gpio to input */ vfe_gpio_set_status(sd, PWDN, 0); /* set the gpio to input */ cci_unlock(sd); break; default: return -EINVAL; } return 0; } static int sensor_reset(struct v4l2_subdev *sd, u32 val) { switch (val) { case 0: vfe_gpio_write(sd, RESET, CSI_GPIO_HIGH); usleep_range(10000, 12000); break; case 1: vfe_gpio_write(sd, RESET, CSI_GPIO_LOW); usleep_range(10000, 12000); break; default: return -EINVAL; } return 0; } static int sensor_detect(struct v4l2_subdev *sd) { data_type rdval; LOG_ERR_RET(sensor_read(sd, 0x0000, &rdval)); if ((rdval&0x0f) != 0x02) return -ENODEV; LOG_ERR_RET(sensor_read(sd, 0x0001, &rdval)); if (rdval != 0x19) return -ENODEV; vfe_dev_print("find the sony IMX219 ***********\n"); return 0; } static int sensor_init(struct v4l2_subdev *sd, u32 val) { int ret; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_init\n"); /*Make sure it is a target sensor*/ ret = sensor_detect(sd); if (ret) { vfe_dev_err("chip found is not an target chip.\n"); return ret; } vfe_get_standby_mode(sd, &info->stby_mode); if ((info->stby_mode == HW_STBY || info->stby_mode == SW_STBY) && info->init_first_flag == 0) { vfe_dev_print("stby_mode and init_first_flag = 0\n"); return 0; } info->focus_status = 0; info->low_speed = 0; info->width = HXGA_WIDTH; info->height = HXGA_HEIGHT; info->hflip = 0; info->vflip = 0; info->gain = 0; info->tpf.numerator = 1; info->tpf.denominator = 30; /* 30fps */ ret = sensor_write_array(sd, sensor_default_regs, ARRAY_SIZE(sensor_default_regs)); if (ret < 0) { vfe_dev_err("write sensor_default_regs error\n"); return ret; } if (info->stby_mode == 0) info->init_first_flag = 0; info->preview_first_flag = 1; return 0; } static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg) { int ret = 0; struct sensor_info *info = to_state(sd); switch (cmd) { case GET_CURRENT_WIN_CFG: if (info->current_wins != NULL) { memcpy(arg, info->current_wins, sizeof(struct sensor_win_size)); ret = 0; } else { vfe_dev_err("empty wins!\n"); ret = -1; } break; case SET_FPS: break; case ISP_SET_EXP_GAIN: sensor_s_exp_gain(sd, (struct sensor_exp_gain *)arg); break; default: return -EINVAL; } return ret; } /* * Store information about the video data format. */ static struct sensor_format_struct { __u8 *desc; /* __u32 pixelformat; */ u32 mbus_code; struct regval_list *regs; int regs_size; int bpp; /* Bytes per pixel */ } sensor_formats[] = { { .desc = "Raw RGB Bayer", .mbus_code = MEDIA_BUS_FMT_SRGGB10_1X10, .regs = sensor_fmt_raw, .regs_size = ARRAY_SIZE(sensor_fmt_raw), .bpp = 1 }, }; #define N_FMTS ARRAY_SIZE(sensor_formats) /* * Then there is the issue of window sizes. Try to capture the info here. */ static struct sensor_win_size sensor_win_sizes[] = { /* 3280*2464 */ { .width = 3264, /* 3280, */ .height = 2448, /* 2464, */ .hoffset = (3280-3264)/2, /* 0, */ .voffset = (2464-2448)/2, /* 0, */ .hts = 3448, /* //4352,//3448,//4037, */ .vts = 4037, /* //2757,//4037, */ .pclk = (278*1000*1000), /* 252*1000*1000, */ .mipi_bps = 720*1000*1000, .fps_fixed = 1, .bin_factor = 1, .intg_min = 1<<4, .intg_max = (4037-4)<<4, .gain_min = 1<<4, .gain_max = 10<<4, .regs = sensor_hxga_regs, .regs_size = ARRAY_SIZE(sensor_hxga_regs), .set_size = NULL, }, /* 1080P */ { .width = HD1080_WIDTH, .height = HD1080_HEIGHT, .hoffset = 0, .voffset = 0, .hts = 3560, .vts = 2607, .pclk = (278*1000*1000), .mipi_bps = 720*1000*1000, .fps_fixed = 1, .bin_factor = 2, .intg_min = 1<<4, .intg_max = (2607-4)<<4, .gain_min = 1<<4, .gain_max = 10<<4, .regs = sensor_1080p_regs, .regs_size = ARRAY_SIZE(sensor_1080p_regs), .set_size = NULL, }, /* SXGA */ { .width = SXGA_WIDTH, .height = SXGA_HEIGHT, .hoffset = 0, .voffset = 0, .hts = 3560, .vts = 2607, .pclk = (278*1000*1000), .mipi_bps = 720*1000*1000, .fps_fixed = 1, .bin_factor = 2, .intg_min = 1<<4, .intg_max = 2607<<4, .gain_min = 1<<4, .gain_max = 10<<4, .regs = sensor_sxga_regs, .regs_size = ARRAY_SIZE(sensor_sxga_regs), .set_size = NULL, }, /* 720p */ { .width = HD720_WIDTH, .height = HD720_HEIGHT, .hoffset = 0, .voffset = 0, .hts = 2560, .vts = 1303, /* 735 106fps */ .pclk = (200*1000*1000), .mipi_bps = 720*1000*1000, .fps_fixed = 1, .bin_factor = 2, .intg_min = 1<<4, .intg_max = (1303-4)<<4, .gain_min = 1<<4, .gain_max = 10<<4, .regs = sensor_720p_regs, .regs_size = ARRAY_SIZE(sensor_720p_regs), .set_size = NULL, }, }; #define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes)) static int sensor_enum_code(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_mbus_code_enum *code) { if (code->index >= N_FMTS) return -EINVAL; code->code = sensor_formats[code->index].mbus_code; return 0; } static int sensor_enum_frame_size(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_frame_size_enum *fse) { if (fse->index > N_WIN_SIZES-1) return -EINVAL; fse->min_width = sensor_win_sizes[fse->index].width; fse->max_width = fse->min_width; fse->min_height = sensor_win_sizes[fse->index].height; fse->max_height = fse->min_height; return 0; } static int sensor_try_fmt_internal(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt, struct sensor_format_struct **ret_fmt, struct sensor_win_size **ret_wsize) { int index; struct sensor_win_size *wsize; struct sensor_info *info = to_state(sd); for (index = 0; index < N_FMTS; index++) if (sensor_formats[index].mbus_code == fmt->code) break; if (index >= N_FMTS) return -EINVAL; if (ret_fmt != NULL) *ret_fmt = sensor_formats + index; /* * Fields: the sensor devices claim to be progressive. */ fmt->field = V4L2_FIELD_NONE; /* * Round requested image size down to the nearest * we support, but not below the smallest. */ for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++) if (fmt->width >= wsize->width && fmt->height >= wsize->height) break; if (wsize >= sensor_win_sizes + N_WIN_SIZES) wsize--; /* Take the smallest one */ if (ret_wsize != NULL) *ret_wsize = wsize; /* * Note the size we'll actually handle. */ fmt->width = wsize->width; fmt->height = wsize->height; info->current_wins = wsize; return 0; } static int sensor_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_format *fmat) { struct v4l2_mbus_framefmt *fmt = &fmat->format; return sensor_try_fmt_internal(sd, fmt, NULL, NULL); } static int sensor_g_mbus_config(struct v4l2_subdev *sd, struct v4l2_mbus_config *cfg) { cfg->type = V4L2_MBUS_CSI2; cfg->flags = 0 | V4L2_MBUS_CSI2_4_LANE | V4L2_MBUS_CSI2_CHANNEL_0; return 0; } /* * Set a format. */ static int sensor_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_format *fmat) { int ret; struct v4l2_mbus_framefmt *fmt = &fmat->format; struct sensor_format_struct *sensor_fmt; struct sensor_win_size *wsize; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_s_fmt\n"); ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize); if (ret) return ret; /* *if(info->capture_mode == V4L2_MODE_VIDEO) *{ * //video *} *else if(info->capture_mode == V4L2_MODE_IMAGE) *{ * //image *} */ sensor_write_array(sd, sensor_fmt->regs, sensor_fmt->regs_size); ret = 0; if (wsize->regs) LOG_ERR_RET(sensor_write_array(sd, wsize->regs, wsize->regs_size)); if (wsize->set_size) LOG_ERR_RET(wsize->set_size(sd)); info->fmt = sensor_fmt; info->width = wsize->width; info->height = wsize->height; imx219_sensor_vts = wsize->vts; vfe_dev_print("s_fmt set width = %d, height = %d\n", wsize->width, wsize->height); /* *if(info->capture_mode == V4L2_MODE_VIDEO) *{ * //video *} else { * //capture image *} */ return 0; } /* * Implement G/S_PARM. There is a "high quality" mode we could try * to do someday; for now, we just do the frame rate tweak. */ static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; struct sensor_info *info = to_state(sd); if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; memset(cp, 0, sizeof(struct v4l2_captureparm)); cp->capability = V4L2_CAP_TIMEPERFRAME; cp->capturemode = info->capture_mode; return 0; } static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_s_parm\n"); if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; if (info->tpf.numerator == 0) return -EINVAL; info->capture_mode = cp->capturemode; return 0; } static int sensor_g_ctrl(struct v4l2_ctrl *ctrl) { struct sensor_info *info = container_of(ctrl->handler, struct sensor_info, handler); struct v4l2_subdev *sd = &info->sd; switch (ctrl->id) { case V4L2_CID_GAIN: return sensor_g_gain(sd, &ctrl->val); case V4L2_CID_EXPOSURE: return sensor_g_exp(sd, &ctrl->val); } return -EINVAL; } static int sensor_s_ctrl(struct v4l2_ctrl *ctrl) { struct sensor_info *info = container_of(ctrl->handler, struct sensor_info, handler); struct v4l2_subdev *sd = &info->sd; switch (ctrl->id) { case V4L2_CID_GAIN: return sensor_s_gain(sd, ctrl->val); case V4L2_CID_EXPOSURE: return sensor_s_exp(sd, ctrl->val); } return -EINVAL; } /* ----------------------------------------------------------------------- */ static const struct v4l2_ctrl_ops sensor_ctrl_ops = { .g_volatile_ctrl = sensor_g_ctrl, .s_ctrl = sensor_s_ctrl, }; static const struct v4l2_subdev_core_ops sensor_core_ops = { .reset = sensor_reset, .init = sensor_init, .s_power = sensor_power, .ioctl = sensor_ioctl, }; static const struct v4l2_subdev_video_ops sensor_video_ops = { .s_parm = sensor_s_parm, .g_parm = sensor_g_parm, .g_mbus_config = sensor_g_mbus_config, }; static const struct v4l2_subdev_pad_ops sensor_pad_ops = { .enum_mbus_code = sensor_enum_code, .enum_frame_size = sensor_enum_frame_size, .get_fmt = sensor_get_fmt, .set_fmt = sensor_set_fmt, }; static const struct v4l2_subdev_ops sensor_ops = { .core = &sensor_core_ops, .video = &sensor_video_ops, .pad = &sensor_pad_ops, }; /* ----------------------------------------------------------------------- */ static struct cci_driver cci_drv = { .name = SENSOR_NAME, .addr_width = CCI_BITS_16, .data_width = CCI_BITS_8, }; static const struct v4l2_ctrl_config sensor_custom_ctrls[] = { { .ops = &sensor_ctrl_ops, .id = V4L2_CID_FRAME_RATE, .name = "frame rate", .type = V4L2_CTRL_TYPE_INTEGER, .min = 15, .max = 120, .step = 1, .def = 120, }, }; static int sensor_init_controls(struct v4l2_subdev *sd, const struct v4l2_ctrl_ops *ops) { struct sensor_info *info = to_state(sd); struct v4l2_ctrl_handler *handler = &info->handler; struct v4l2_ctrl *ctrl; int ret = 0; int i; v4l2_ctrl_handler_init(handler, 2 + ARRAY_SIZE(sensor_custom_ctrls)); ctrl = v4l2_ctrl_new_std(handler, ops, V4L2_CID_GAIN, 1*16, 64*16-1, 1, 1*16); if (ctrl != NULL) ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE; ctrl = v4l2_ctrl_new_std(handler, ops, V4L2_CID_EXPOSURE, 0, 65536*16, 1, 0); if (ctrl != NULL) ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE; for (i = 0; i < ARRAY_SIZE(sensor_custom_ctrls); i++) v4l2_ctrl_new_custom(handler, &sensor_custom_ctrls[i], NULL); if (handler->error) { ret = handler->error; v4l2_ctrl_handler_free(handler); } sd->ctrl_handler = handler; return ret; } static int sensor_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct v4l2_subdev *sd; struct sensor_info *info; info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL); if (info == NULL) return -ENOMEM; sd = &info->sd; glb_sd = sd; sensor_init_controls(sd, &sensor_ctrl_ops); cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv); info->fmt = &sensor_formats[0]; info->af_first_flag = 1; info->init_first_flag = 1; return 0; } static int sensor_remove(struct i2c_client *client) { struct v4l2_subdev *sd; sd = cci_dev_remove_helper(client, &cci_drv); kfree(to_state(sd)); return 0; } static const struct i2c_device_id sensor_id[] = { {SENSOR_NAME, 0}, { } }; MODULE_DEVICE_TABLE(i2c, sensor_id); static struct i2c_driver sensor_driver = { .driver = { .owner = THIS_MODULE, .name = SENSOR_NAME, }, .probe = sensor_probe, .remove = sensor_remove, .id_table = sensor_id, }; static __init int init_sensor(void) { return cci_dev_init_helper(&sensor_driver); } static __exit void exit_sensor(void) { cci_dev_exit_helper(&sensor_driver); } module_init(init_sensor); module_exit(exit_sensor);