/* * A V4L2 driver for GalaxyCore GC0312 cameras. * */ #include #include #include #include #include #include #include #include #include #include #include "camera.h" #include "sensor_helper.h" MODULE_AUTHOR("raymonxiu"); MODULE_DESCRIPTION("A low-level driver for GalaxyCore GC0312 sensors"); MODULE_LICENSE("GPL"); /* for internal driver debug */ #define DEV_DBG_EN 0 #if (DEV_DBG_EN == 1) #define vfe_dev_dbg(x, arg...) pr_debug("[CSI_DEBUG][GC0312]"x, ##arg) #else #define vfe_dev_dbg(x, arg...) #endif #define vfe_dev_err(x, arg...) pr_err("[CSI_ERR][GC0312]"x, ##arg) #define vfe_dev_print(x, arg...) pr_info("[CSI][GC0312]"x, ##arg) /* *#define LOG_ERR_RET(x) { \ * int ret; \ * ret = x; \ * if (ret < 0) { \ * vfe_dev_err("error at %s\n", __func__); \ * return ret; \ * } \ * */ /* define module timing */ #define MCLK (24*1000*1000) #define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_HIGH #define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH #define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING #define V4L2_IDENT_SENSOR 0x0312 /* * Our nominal (default) frame rate. */ #define SENSOR_FRAME_RATE 10 /* * The gc0312 sits on i2c with ID 0x42 */ #define I2C_ADDR 0x42 #define SENSOR_NAME "gc0312" /* * Information we maintain about a known sensor. */ struct sensor_format_struct; /* coming later */ struct cfg_array { /* coming later */ struct regval_list *regs; int size; }; static int LOG_ERR_RET(int x) { int ret; ret = x; if (ret < 0) vfe_dev_err("error at %s\n", __func__); return ret; } static inline struct sensor_info *to_state(struct v4l2_subdev *sd) { return container_of(sd, struct sensor_info, sd); } static struct regval_list sensor_default_regs[] = { {0xfe, 0xf0}, {0xfe, 0xf0}, {0xfe, 0x00}, {0xfc, 0x16}, {0xfc, 0x16}, {0xf2, 0x07}, {0xf3, 0x00}, {0xf7, 0x00}, {0xf8, 0x00}, {0xf9, 0x4d}, {0xfa, 0x00}, /* /////////////////////////////////////////////// */ /* /////////////// CISCTL reg //////////////////// */ /* /////////////////////////////////////////////// */ {0x00, 0x2f}, {0x01, 0x0f}, /* 06 */ {0x02, 0x04}, {0x03, 0x03}, {0x04, 0xe8}, {0x09, 0x00}, {0x0a, 0x00}, {0x0b, 0x00}, {0x0c, 0x06}, {0x0d, 0x01}, {0x0e, 0xe8}, {0x0f, 0x02}, {0x10, 0x88}, {0x16, 0x00}, {0x17, 0x14}, {0x18, 0x1a}, {0x19, 0x14}, {0x1b, 0x48}, {0x1e, 0x6b}, {0x1f, 0x28}, {0x20, 0x89}, {0x21, 0x49}, {0x22, 0xb0}, {0x23, 0x04}, {0x24, 0x16}, {0x34, 0x20}, /* /////////////////////////////////////////////// */ /* //////////////////// BLK ////////////////////// */ /* /////////////////////////////////////////////// */ {0x26, 0x23}, {0x28, 0xff}, {0x29, 0x00}, {0x33, 0x18}, {0x37, 0x20}, {0x47, 0x80}, {0x4e, 0x66}, {0xa8, 0x02}, {0xa9, 0x80}, /* /////////////////////////////////////////////// */ /* ///////////////// ISP reg ///////////////////// */ /* /////////////////////////////////////////////// */ {0x40, 0xff}, {0x41, 0x21}, {0x42, 0xcf}, {0x44, 0x00}, {0x45, 0xaf}, {0x46, 0x03}, /* sync */ {0x4a, 0x11}, {0x4b, 0x01}, {0x4c, 0x20}, {0x4d, 0x05}, {0x4f, 0x01}, {0x50, 0x01}, {0x55, 0x01}, {0x56, 0xe0}, {0x57, 0x02}, {0x58, 0x80}, /* /////////////////////////////////////////////// */ /* /////////////////// GAIN ///////////////////// */ /* /////////////////////////////////////////////// */ {0x70, 0x50}, {0x5a, 0x98}, {0x5b, 0xdc}, {0x5c, 0xfe}, {0x77, 0x74}, {0x78, 0x40}, {0x79, 0x5f}, /* /////////////////////////////////////////////// */ /* /////////////////// DNDD ////////////////////// */ /* /////////////////////////////////////////////// */ {0x82, 0x08}, {0x83, 0x0b}, /* /////////////////////////////////////////////// */ /* ////////////////// EEINTP ///////////////////// */ /* /////////////////////////////////////////////// */ {0x8f, 0xff}, {0x90, 0x8c}, {0x91, 0x90}, {0x92, 0x10}, {0x93, 0x10}, {0x95, 0x57}, /* 0x46 */ {0x96, 0x46}, /* /////////////////////////////////////////////// */ /* //////////////////// ASDE ///////////////////// */ /* /////////////////////////////////////////////// */ {0xfe, 0x00}, {0x9a, 0x20}, {0x9b, 0x80}, {0x9c, 0x40}, {0x9d, 0x80}, {0xa1, 0x30}, {0xa2, 0x32}, {0xa4, 0x30}, {0xa5, 0x30}, {0xaa, 0x50}, {0xac, 0x22}, /* /////////////////////////////////////////////// */ /* /////////////////// GAMMA ///////////////////// */ /* /////////////////////////////////////////////// */ {0xBF, 0x0E}, {0xc0, 0x1C}, {0xc1, 0x34}, {0xc2, 0x48}, {0xc3, 0x5A}, {0xc4, 0x6B}, {0xc5, 0x7B}, {0xc6, 0x95}, {0xc7, 0xAB}, {0xc8, 0xBF}, {0xc9, 0xCE}, {0xcA, 0xD9}, {0xcB, 0xE4}, {0xcC, 0xEC}, {0xcD, 0xF7}, {0xcE, 0xFD}, {0xcF, 0xFF}, /* /////////////////////////////////////////////// */ /* ////////////////// YCP //////////////////////// */ /* /////////////////////////////////////////////// */ {0xd0, 0x40}, {0xd1, 0x3c}, /* 0x30 */ {0xd2, 0x3c}, /* 0x30 */ {0xd3, 0x42}, /* 44 */ {0xd6, 0xf2}, {0xd7, 0x1b}, {0xd8, 0x18}, {0xdd, 0x73}, /* /////////////////////////////////////////////// */ /* //////////////////// AEC ////////////////////// */ /* /////////////////////////////////////////////// */ {0xfe, 0x01}, {0x05, 0x30}, {0x06, 0x75}, {0x07, 0x40}, {0x08, 0xb0}, {0x0a, 0xc5}, {0x0c, 0x00}, {0x12, 0x52}, {0x13, 0x34}, {0x1f, 0x30}, {0x20, 0x40}, /* 80 */ {0x3e, 0x40}, {0x3f, 0x5c}, {0x40, 0x7b}, {0x41, 0xbd}, {0x42, 0xf6}, {0x43, 0x63}, /* {0x04,0xe3}, */ {0x03, 0x60}, {0x44, 0x03}, /* /////////////////////////////////////////////// */ /* //////////////////// AWB ////////////////////// */ /* /////////////////////////////////////////////// */ {0x1c, 0x91}, {0x21, 0x15}, {0x50, 0x80}, {0x59, 0x08}, {0x5b, 0x02}, {0x61, 0x8d}, {0x62, 0xa7}, {0x63, 0xd0}, {0x65, 0x06}, {0x66, 0x06}, {0x67, 0x84}, {0x69, 0x08}, {0x6a, 0x25}, /* 50 */ {0x6b, 0x01}, {0x6c, 0x10}, {0x6d, 0x00}, /* 02 */ {0x6e, 0xf0}, {0x6f, 0xd0}, /* {0x70,0x00}, */ {0x78, 0xaf}, {0x79, 0x75}, {0x7a, 0x40}, {0x7b, 0x66}, {0x7c, 0x0c}, {0xa4, 0xb9}, {0xa5, 0xa0}, {0x90, 0xc9}, {0x91, 0xbe}, {0xa6, 0xb8}, {0xa7, 0x95}, {0x92, 0xeb}, {0x93, 0xca}, {0xa9, 0xb6}, {0xaa, 0x89}, {0x95, 0x0f}, {0x96, 0xeb}, {0xab, 0x9d}, {0xac, 0x80}, {0x97, 0x43}, {0x98, 0x10}, {0xae, 0xb7}, {0xaf, 0x9e}, {0x9a, 0x43}, {0x9b, 0x0f}, {0xb0, 0xc8}, {0xb1, 0x97}, {0x9c, 0xc4}, {0x9d, 0x44}, {0xb3, 0xb7}, {0xb4, 0x7f}, {0x9f, 0xc7}, {0xa0, 0xc8}, {0xb5, 0x00}, {0xb6, 0x00}, {0xa1, 0x00}, {0xa2, 0x00}, {0x86, 0x60}, {0x87, 0x08}, {0x88, 0x00}, {0x89, 0x00}, {0x8b, 0xde}, {0x8c, 0x80}, {0x8d, 0x00}, {0x8e, 0x00}, {0x94, 0x55}, {0x99, 0xa6}, {0x9e, 0xaa}, {0xa3, 0x0a}, {0x8a, 0x0a}, {0xa8, 0x55}, {0xad, 0x55}, {0xb2, 0x55}, {0xb7, 0x05}, {0x8f, 0x05}, {0xb8, 0xcc}, {0xb9, 0x9a}, /* /////////////////////////////////////////////// */ /* ///////////////////// CC ////////////////////// */ /* /////////////////////////////////////////////// */ {0xd0, 0x45}, {0xd1, 0x06}, {0xd2, 0x0f}, {0xd3, 0xff}, {0xd4, 0x40}, {0xd5, 0x03}, {0xd6, 0x3f}, {0xd7, 0xf8}, {0xd8, 0x05}, {0xd9, 0x08}, {0xda, 0x38}, {0xdb, 0xe9}, /* /////////////////////////////////////////////// */ /* //////////////////// LSC ////////////////////// */ /* /////////////////////////////////////////////// */ {0xfe, 0x01}, {0x76, 0x80}, {0xc1, 0x3c}, {0xc2, 0x50}, {0xc3, 0x00}, {0xc4, 0x40}, {0xc5, 0x30}, {0xc6, 0x30}, {0xc7, 0x10}, {0xc8, 0x00}, {0xc9, 0x00}, {0xdc, 0x20}, {0xdd, 0x10}, {0xdf, 0x00}, {0xde, 0x00}, /* /////////////////////////////////////////////// */ /* ////////////////// Histogram ////////////////// */ /* /////////////////////////////////////////////// */ {0x01, 0x10}, {0x0b, 0x31}, {0x0e, 0x6c}, {0x0f, 0x0f}, {0x10, 0x6e}, {0x12, 0xa0}, {0x15, 0x40}, {0x16, 0x60}, {0x17, 0x20}, /* /////////////////////////////////////////////// */ /* ////////////// Measure Window ///////////////// */ /* /////////////////////////////////////////////// */ {0xcc, 0x0c}, {0xcd, 0x10}, {0xce, 0xa0}, {0xcf, 0xe6}, /* /////////////////////////////////////////////// */ /* //////////////// dark sun ///////////////////// */ /* /////////////////////////////////////////////// */ {0x45, 0xf7}, {0x46, 0xff}, {0x47, 0x15}, {0x48, 0x03}, {0x4f, 0x60}, /* ////////////////banding////////////////////// */ {0xfe, 0x00}, {0x05, 0x02}, {0x06, 0x2c}, {0x07, 0x00}, {0x08, 0xb8}, {0xfe, 0x01}, {0x25, 0x00}, /* anti-flicker step [11:8] */ {0x26, 0x60}, /* anti-flicker step [7:0] */ {0x27, 0x02}, /* exp level 0 20fps */ {0x28, 0xa0}, {0x29, 0x03}, /* exp level 1 12.50fps 300 */ {0x2a, 0xc0}, {0x2b, 0x05}, /* exp level 2 8.33fps */ {0x2c, 0xa0}, {0x2d, 0x07}, /* exp level 3 6.67fps */ {0x2e, 0x80}, {0x3c, 0x20}, {0xfe, 0x00}, /* /////////////////////////////////////////////// */ /* //////////////////// DVP ////////////////////// */ /* /////////////////////////////////////////////// */ {0xfe, 0x03}, {0x01, 0x00}, {0x02, 0x00}, {0x10, 0x00}, {0x15, 0x00}, {0xfe, 0x00}, /* /////////////////OUTPUT////////////////////// */ {0xf3, 0xff}, /* output_enable */ }; /* * The white balance settings * Here only tune the R G B channel gain. * The white balance enalbe bit is modified in sensor_s_autowb and sensor_s_wb */ static struct regval_list sensor_wb_manual[] = { /* null */ }; static struct regval_list sensor_wb_auto_regs[] = { {0xfe, 0x00}, {0x42, 0xcf}, }; static struct regval_list sensor_wb_incandescence_regs[] = { /* bai re guang */ {0xfe, 0x00}, {0x42, 0xcd}, {0x77, 0x48}, {0x78, 0x40}, {0x79, 0x5c}, }; static struct regval_list sensor_wb_fluorescent_regs[] = { /* ri guang deng */ {0xfe, 0x00}, {0x42, 0xcd}, {0x77, 0x40}, {0x78, 0x42}, {0x79, 0x50}, }; static struct regval_list sensor_wb_tungsten_regs[] = { /* wu si deng */ {0xfe, 0x00}, {0x42, 0xcd}, {0x77, 0x40}, {0x78, 0x54}, {0x79, 0x70}, }; static struct regval_list sensor_wb_horizon[] = { /* null */ }; static struct regval_list sensor_wb_daylight_regs[] = { /* tai yang guang */ {0xfe, 0x00}, {0x42, 0xcd}, {0x77, 0x74}, {0x78, 0x52}, {0x79, 0x40}, }; static struct regval_list sensor_wb_flash[] = { /* null */ }; static struct regval_list sensor_wb_cloud_regs[] = { {0xfe, 0x00}, {0x42, 0xcd}, {0x77, 0x8c}, /* WB_manual_gain */ {0x78, 0x50}, {0x79, 0x40}, }; static struct regval_list sensor_wb_shade[] = { /* null */ }; static struct cfg_array sensor_wb[] = { { /* V4L2_WHITE_BALANCE_MANUAL */ .regs = sensor_wb_manual, .size = ARRAY_SIZE(sensor_wb_manual), }, { /* V4L2_WHITE_BALANCE_AUTO */ .regs = sensor_wb_auto_regs, .size = ARRAY_SIZE(sensor_wb_auto_regs), }, { /* V4L2_WHITE_BALANCE_INCANDESCENT */ .regs = sensor_wb_incandescence_regs, .size = ARRAY_SIZE(sensor_wb_incandescence_regs), }, { /* V4L2_WHITE_BALANCE_FLUORESCENT */ .regs = sensor_wb_fluorescent_regs, .size = ARRAY_SIZE(sensor_wb_fluorescent_regs), }, { /* V4L2_WHITE_BALANCE_FLUORESCENT_H */ .regs = sensor_wb_tungsten_regs, .size = ARRAY_SIZE(sensor_wb_tungsten_regs), }, { /* V4L2_WHITE_BALANCE_HORIZON */ .regs = sensor_wb_horizon, .size = ARRAY_SIZE(sensor_wb_horizon), }, { /* V4L2_WHITE_BALANCE_DAYLIGHT */ .regs = sensor_wb_daylight_regs, .size = ARRAY_SIZE(sensor_wb_daylight_regs), }, { /* V4L2_WHITE_BALANCE_FLASH */ .regs = sensor_wb_flash, .size = ARRAY_SIZE(sensor_wb_flash), }, { /* V4L2_WHITE_BALANCE_CLOUDY */ .regs = sensor_wb_cloud_regs, .size = ARRAY_SIZE(sensor_wb_cloud_regs), }, { /* V4L2_WHITE_BALANCE_SHADE */ .regs = sensor_wb_shade, .size = ARRAY_SIZE(sensor_wb_shade), }, }; /* * The color effect settings */ static struct regval_list sensor_colorfx_none_regs[] = { {0xfe, 0x00}, {0x43, 0x00}, }; static struct regval_list sensor_colorfx_bw_regs[] = { {0xfe, 0x00}, {0x43, 0x02}, {0xda, 0x00}, {0xdb, 0x00}, }; static struct regval_list sensor_colorfx_sepia_regs[] = { {0xfe, 0x00}, {0x43, 0x02}, {0xda, 0xd0}, {0xdb, 0x28}, }; static struct regval_list sensor_colorfx_negative_regs[] = { {0xfe, 0x00}, {0x43, 0x01}, }; static struct regval_list sensor_colorfx_emboss_regs[] = { }; static struct regval_list sensor_colorfx_sketch_regs[] = { }; static struct regval_list sensor_colorfx_sky_blue_regs[] = { {0xfe, 0x00}, {0x43, 0x02}, {0xda, 0x50}, {0xdb, 0xe0}, }; static struct regval_list sensor_colorfx_grass_green_regs[] = { {0xfe, 0x00}, {0x43, 0x02}, {0xda, 0xc0}, {0xdb, 0xc0}, }; static struct regval_list sensor_colorfx_skin_whiten_regs[] = { }; static struct regval_list sensor_colorfx_vivid_regs[] = { /* NULL */ }; static struct regval_list sensor_colorfx_aqua_regs[] = { /* null */ }; static struct regval_list sensor_colorfx_art_freeze_regs[] = { /* null */ }; static struct regval_list sensor_colorfx_silhouette_regs[] = { /* null */ }; static struct regval_list sensor_colorfx_solarization_regs[] = { /* null */ }; static struct regval_list sensor_colorfx_antique_regs[] = { /* null */ }; static struct regval_list sensor_colorfx_set_cbcr_regs[] = { /* null */ }; static struct cfg_array sensor_colorfx[] = { { /* V4L2_COLORFX_NONE = 0, */ .regs = sensor_colorfx_none_regs, .size = ARRAY_SIZE(sensor_colorfx_none_regs), }, { /* V4L2_COLORFX_BW = 1, */ .regs = sensor_colorfx_bw_regs, .size = ARRAY_SIZE(sensor_colorfx_bw_regs), }, { /* V4L2_COLORFX_SEPIA = 2, */ .regs = sensor_colorfx_sepia_regs, .size = ARRAY_SIZE(sensor_colorfx_sepia_regs), }, { /* V4L2_COLORFX_NEGATIVE = 3, */ .regs = sensor_colorfx_negative_regs, .size = ARRAY_SIZE(sensor_colorfx_negative_regs), }, { /* V4L2_COLORFX_EMBOSS = 4, */ .regs = sensor_colorfx_emboss_regs, .size = ARRAY_SIZE(sensor_colorfx_emboss_regs), }, { /* V4L2_COLORFX_SKETCH = 5, */ .regs = sensor_colorfx_sketch_regs, .size = ARRAY_SIZE(sensor_colorfx_sketch_regs), }, { /* V4L2_COLORFX_SKY_BLUE = 6, */ .regs = sensor_colorfx_sky_blue_regs, .size = ARRAY_SIZE(sensor_colorfx_sky_blue_regs), }, { /* V4L2_COLORFX_GRASS_GREEN = 7, */ .regs = sensor_colorfx_grass_green_regs, .size = ARRAY_SIZE(sensor_colorfx_grass_green_regs), }, { /* V4L2_COLORFX_SKIN_WHITEN = 8, */ .regs = sensor_colorfx_skin_whiten_regs, .size = ARRAY_SIZE(sensor_colorfx_skin_whiten_regs), }, { /* V4L2_COLORFX_VIVID = 9, */ .regs = sensor_colorfx_vivid_regs, .size = ARRAY_SIZE(sensor_colorfx_vivid_regs), }, { /* V4L2_COLORFX_AQUA = 10, */ .regs = sensor_colorfx_aqua_regs, .size = ARRAY_SIZE(sensor_colorfx_aqua_regs), }, { /* V4L2_COLORFX_ART_FREEZE = 11, */ .regs = sensor_colorfx_art_freeze_regs, .size = ARRAY_SIZE(sensor_colorfx_art_freeze_regs), }, { /* V4L2_COLORFX_SILHOUETTE = 12, */ .regs = sensor_colorfx_silhouette_regs, .size = ARRAY_SIZE(sensor_colorfx_silhouette_regs), }, { /* V4L2_COLORFX_SOLARIZATION = 13, */ .regs = sensor_colorfx_solarization_regs, .size = ARRAY_SIZE(sensor_colorfx_solarization_regs), }, { /* V4L2_COLORFX_ANTIQUE = 14, */ .regs = sensor_colorfx_antique_regs, .size = ARRAY_SIZE(sensor_colorfx_antique_regs), }, { /* V4L2_COLORFX_SET_CBCR = 15, */ .regs = sensor_colorfx_set_cbcr_regs, .size = ARRAY_SIZE(sensor_colorfx_set_cbcr_regs), }, }; /* * The brightness setttings */ static struct regval_list sensor_brightness_neg4_regs[] = { /* NULL */ }; static struct regval_list sensor_brightness_neg3_regs[] = { /* NULL */ }; static struct regval_list sensor_brightness_neg2_regs[] = { /* NULL */ }; static struct regval_list sensor_brightness_neg1_regs[] = { /* NULL */ }; static struct regval_list sensor_brightness_zero_regs[] = { /* NULL */ }; static struct regval_list sensor_brightness_pos1_regs[] = { /* NULL */ }; static struct regval_list sensor_brightness_pos2_regs[] = { /* NULL */ }; static struct regval_list sensor_brightness_pos3_regs[] = { /* NULL */ }; static struct regval_list sensor_brightness_pos4_regs[] = { /* NULL */ }; static struct cfg_array sensor_brightness[] = { { .regs = sensor_brightness_neg4_regs, .size = ARRAY_SIZE(sensor_brightness_neg4_regs), }, { .regs = sensor_brightness_neg3_regs, .size = ARRAY_SIZE(sensor_brightness_neg3_regs), }, { .regs = sensor_brightness_neg2_regs, .size = ARRAY_SIZE(sensor_brightness_neg2_regs), }, { .regs = sensor_brightness_neg1_regs, .size = ARRAY_SIZE(sensor_brightness_neg1_regs), }, { .regs = sensor_brightness_zero_regs, .size = ARRAY_SIZE(sensor_brightness_zero_regs), }, { .regs = sensor_brightness_pos1_regs, .size = ARRAY_SIZE(sensor_brightness_pos1_regs), }, { .regs = sensor_brightness_pos2_regs, .size = ARRAY_SIZE(sensor_brightness_pos2_regs), }, { .regs = sensor_brightness_pos3_regs, .size = ARRAY_SIZE(sensor_brightness_pos3_regs), }, { .regs = sensor_brightness_pos4_regs, .size = ARRAY_SIZE(sensor_brightness_pos4_regs), }, }; /* * The contrast setttings */ static struct regval_list sensor_contrast_neg4_regs[] = { /* NULL */ }; static struct regval_list sensor_contrast_neg3_regs[] = { /* NULL */ }; static struct regval_list sensor_contrast_neg2_regs[] = { /* NULL */ }; static struct regval_list sensor_contrast_neg1_regs[] = { /* NULL */ }; static struct regval_list sensor_contrast_zero_regs[] = { /* NULL */ }; static struct regval_list sensor_contrast_pos1_regs[] = { /* NULL */ }; static struct regval_list sensor_contrast_pos2_regs[] = { /* NULL */ }; static struct regval_list sensor_contrast_pos3_regs[] = { /* NULL */ }; static struct regval_list sensor_contrast_pos4_regs[] = { }; static struct cfg_array sensor_contrast[] = { { .regs = sensor_contrast_neg4_regs, .size = ARRAY_SIZE(sensor_contrast_neg4_regs), }, { .regs = sensor_contrast_neg3_regs, .size = ARRAY_SIZE(sensor_contrast_neg3_regs), }, { .regs = sensor_contrast_neg2_regs, .size = ARRAY_SIZE(sensor_contrast_neg2_regs), }, { .regs = sensor_contrast_neg1_regs, .size = ARRAY_SIZE(sensor_contrast_neg1_regs), }, { .regs = sensor_contrast_zero_regs, .size = ARRAY_SIZE(sensor_contrast_zero_regs), }, { .regs = sensor_contrast_pos1_regs, .size = ARRAY_SIZE(sensor_contrast_pos1_regs), }, { .regs = sensor_contrast_pos2_regs, .size = ARRAY_SIZE(sensor_contrast_pos2_regs), }, { .regs = sensor_contrast_pos3_regs, .size = ARRAY_SIZE(sensor_contrast_pos3_regs), }, { .regs = sensor_contrast_pos4_regs, .size = ARRAY_SIZE(sensor_contrast_pos4_regs), }, }; /* * The saturation setttings */ static struct regval_list sensor_saturation_neg4_regs[] = { /* NULL */ }; static struct regval_list sensor_saturation_neg3_regs[] = { /* NULL */ }; static struct regval_list sensor_saturation_neg2_regs[] = { /* NULL */ }; static struct regval_list sensor_saturation_neg1_regs[] = { /* NULL */ }; static struct regval_list sensor_saturation_zero_regs[] = { /* NULL */ }; static struct regval_list sensor_saturation_pos1_regs[] = { /* NULL */ }; static struct regval_list sensor_saturation_pos2_regs[] = { /* NULL */ }; static struct regval_list sensor_saturation_pos3_regs[] = { /* NULL */ }; static struct regval_list sensor_saturation_pos4_regs[] = { /* NULL */ }; static struct cfg_array sensor_saturation[] = { { .regs = sensor_saturation_neg4_regs, .size = ARRAY_SIZE(sensor_saturation_neg4_regs), }, { .regs = sensor_saturation_neg3_regs, .size = ARRAY_SIZE(sensor_saturation_neg3_regs), }, { .regs = sensor_saturation_neg2_regs, .size = ARRAY_SIZE(sensor_saturation_neg2_regs), }, { .regs = sensor_saturation_neg1_regs, .size = ARRAY_SIZE(sensor_saturation_neg1_regs), }, { .regs = sensor_saturation_zero_regs, .size = ARRAY_SIZE(sensor_saturation_zero_regs), }, { .regs = sensor_saturation_pos1_regs, .size = ARRAY_SIZE(sensor_saturation_pos1_regs), }, { .regs = sensor_saturation_pos2_regs, .size = ARRAY_SIZE(sensor_saturation_pos2_regs), }, { .regs = sensor_saturation_pos3_regs, .size = ARRAY_SIZE(sensor_saturation_pos3_regs), }, { .regs = sensor_saturation_pos4_regs, .size = ARRAY_SIZE(sensor_saturation_pos4_regs), }, }; /* * The exposure target setttings */ static struct regval_list sensor_ev_neg4_regs[] = { {0xfe, 0x01}, {0x13, 0x10}, {0xfe, 0x00}, }; static struct regval_list sensor_ev_neg3_regs[] = { {0xfe, 0x01}, {0x13, 0x18}, {0xfe, 0x00}, }; static struct regval_list sensor_ev_neg2_regs[] = { {0xfe, 0x01}, {0x13, 0x20}, {0xfe, 0x00}, }; static struct regval_list sensor_ev_neg1_regs[] = { {0xfe, 0x01}, {0x13, 0x28}, {0xfe, 0x00}, }; static struct regval_list sensor_ev_zero_regs[] = { {0xfe, 0x01}, {0x13, 0x34}, {0xfe, 0x00}, }; static struct regval_list sensor_ev_pos1_regs[] = { {0xfe, 0x01}, {0x13, 0x40}, {0xfe, 0x00}, }; static struct regval_list sensor_ev_pos2_regs[] = { {0xfe, 0x01}, {0x13, 0x48}, {0xfe, 0x00}, }; static struct regval_list sensor_ev_pos3_regs[] = { {0xfe, 0x01}, {0x13, 0x50}, {0xfe, 0x00}, }; static struct regval_list sensor_ev_pos4_regs[] = { {0xfe, 0x01}, {0x13, 0x58}, {0xfe, 0x00}, }; static struct cfg_array sensor_ev[] = { { .regs = sensor_ev_neg4_regs, .size = ARRAY_SIZE(sensor_ev_neg4_regs), }, { .regs = sensor_ev_neg3_regs, .size = ARRAY_SIZE(sensor_ev_neg3_regs), }, { .regs = sensor_ev_neg2_regs, .size = ARRAY_SIZE(sensor_ev_neg2_regs), }, { .regs = sensor_ev_neg1_regs, .size = ARRAY_SIZE(sensor_ev_neg1_regs), }, { .regs = sensor_ev_zero_regs, .size = ARRAY_SIZE(sensor_ev_zero_regs), }, { .regs = sensor_ev_pos1_regs, .size = ARRAY_SIZE(sensor_ev_pos1_regs), }, { .regs = sensor_ev_pos2_regs, .size = ARRAY_SIZE(sensor_ev_pos2_regs), }, { .regs = sensor_ev_pos3_regs, .size = ARRAY_SIZE(sensor_ev_pos3_regs), }, { .regs = sensor_ev_pos4_regs, .size = ARRAY_SIZE(sensor_ev_pos4_regs), }, }; /* * Here we'll try to encapsulate the changes for just the output * video format. * */ static struct regval_list sensor_fmt_yuv422_yuyv[] = { {0x44, 0x02}, /* YCbYCr */ }; static struct regval_list sensor_fmt_yuv422_yvyu[] = { {0x44, 0x03}, /* YCrYCb */ }; static struct regval_list sensor_fmt_yuv422_vyuy[] = { {0x44, 0x01}, /* CrYCbY */ }; static struct regval_list sensor_fmt_yuv422_uyvy[] = { {0x44, 0x00}, /* CbYCrY */ }; static struct regval_list sensor_fmt_raw[] = { {0x44, 0xb7}, /* raw */ }; static int sensor_g_hflip(struct v4l2_subdev *sd, __s32 *value) { int ret; struct sensor_info *info = to_state(sd); data_type val; return 0; ret = sensor_write(sd, 0xfe, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_g_hflip!\n"); return ret; } ret = sensor_read(sd, 0x17, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_g_hflip!\n"); return ret; } val &= (1<<0); val = val>>0; /* 0x14 bit0 is mirror */ *value = val; info->hflip = *value; return 0; } static int sensor_s_hflip(struct v4l2_subdev *sd, int value) { int ret; struct sensor_info *info = to_state(sd); data_type val; return 0; ret = sensor_write(sd, 0xfe, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_hflip!\n"); return ret; } ret = sensor_read(sd, 0x17, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_s_hflip!\n"); return ret; } switch (value) { case 0: val &= 0xfc; break; case 1: val |= (0x01|(info->vflip<<1)); break; default: return -EINVAL; } ret = sensor_write(sd, 0x17, val); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_hflip!\n"); return ret; } usleep_range(10000, 12000); info->hflip = value; return 0; } static int sensor_g_vflip(struct v4l2_subdev *sd, __s32 *value) { int ret; struct sensor_info *info = to_state(sd); data_type val; return 0; ret = sensor_write(sd, 0xfe, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_g_vflip!\n"); return ret; } ret = sensor_read(sd, 0x17, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_g_vflip!\n"); return ret; } val &= (1<<1); val = val>>1; /* 0x14 bit1 is upsidedown */ *value = val; info->vflip = *value; return 0; } static int sensor_s_vflip(struct v4l2_subdev *sd, int value) { int ret; struct sensor_info *info = to_state(sd); data_type val; return 0; ret = sensor_write(sd, 0xfe, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_vflip!\n"); return ret; } ret = sensor_read(sd, 0x17, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_s_vflip!\n"); return ret; } switch (value) { case 0: val &= 0xfc; break; case 1: val |= (0x02|info->hflip); break; default: return -EINVAL; } ret = sensor_write(sd, 0x14, val); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_vflip!\n"); return ret; } usleep_range(10000, 12000); info->vflip = value; return 0; } static int sensor_g_autogain(struct v4l2_subdev *sd, __s32 *value) { return -EINVAL; } static int sensor_s_autogain(struct v4l2_subdev *sd, int value) { return -EINVAL; } static int sensor_g_autoexp(struct v4l2_subdev *sd, __s32 *value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_write(sd, 0xfe, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_g_autoexp!\n"); return ret; } ret = sensor_read(sd, 0xd2, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_g_autoexp!\n"); return ret; } val &= 0x80; if (val == 0x80) *value = V4L2_EXPOSURE_AUTO; else *value = V4L2_EXPOSURE_MANUAL; info->autoexp = *value; return 0; } static int sensor_s_autoexp(struct v4l2_subdev *sd, enum v4l2_exposure_auto_type value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_write(sd, 0xfe, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_autoexp!\n"); return ret; } ret = sensor_read(sd, 0xd2, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_s_autoexp!\n"); return ret; } switch (value) { case V4L2_EXPOSURE_AUTO: val |= 0x80; break; case V4L2_EXPOSURE_MANUAL: val &= 0x7f; break; case V4L2_EXPOSURE_SHUTTER_PRIORITY: return -EINVAL; case V4L2_EXPOSURE_APERTURE_PRIORITY: return -EINVAL; default: return -EINVAL; } /* ret = sensor_write(sd, 0xd2, val); */ if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_autoexp!\n"); return ret; } usleep_range(10000, 12000); info->autoexp = value; return 0; } static int sensor_g_autowb(struct v4l2_subdev *sd, int *value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_write(sd, 0xfe, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_g_autowb!\n"); return ret; } ret = sensor_read(sd, 0x42, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_g_autowb!\n"); return ret; } val &= (1<<1); val = val>>1; /* 0x22 bit1 is awb enable */ *value = val; info->autowb = *value; return 0; } static int sensor_s_autowb(struct v4l2_subdev *sd, int value) { int ret; struct sensor_info *info = to_state(sd); data_type val; ret = sensor_write_array(sd, sensor_wb_auto_regs, ARRAY_SIZE(sensor_wb_auto_regs)); if (ret < 0) { vfe_dev_err("sensor_write_array err at sensor_s_autowb!\n"); return ret; } ret = sensor_write(sd, 0xfe, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_autowb!\n"); return ret; } ret = sensor_read(sd, 0x42, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_s_autowb!\n"); return ret; } switch (value) { case 0: val &= 0xfd; break; case 1: val |= 0x02; break; default: break; } ret = sensor_write(sd, 0x42, val); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_s_autowb!\n"); return ret; } usleep_range(10000, 12000); info->autowb = value; return 0; } static int sensor_g_hue(struct v4l2_subdev *sd, __s32 *value) { return -EINVAL; } static int sensor_s_hue(struct v4l2_subdev *sd, int value) { return -EINVAL; } static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value) { return -EINVAL; } static int sensor_s_gain(struct v4l2_subdev *sd, int value) { return -EINVAL; } /* ******************************end of **************************** */ static int sensor_g_brightness(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->brightness; return 0; } static int sensor_s_brightness(struct v4l2_subdev *sd, int value) { struct sensor_info *info = to_state(sd); if (info->brightness == value) return 0; if (value < 0 || value > 8) return -ERANGE; LOG_ERR_RET(sensor_write_array(sd, sensor_brightness[value].regs, sensor_brightness[value].size)); info->brightness = value; return 0; } static int sensor_g_contrast(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->contrast; return 0; } static int sensor_s_contrast(struct v4l2_subdev *sd, int value) { struct sensor_info *info = to_state(sd); if (info->contrast == value) return 0; if (value < 0 || value > 8) return -ERANGE; LOG_ERR_RET(sensor_write_array(sd, sensor_contrast[value].regs, sensor_contrast[value].size)); info->contrast = value; return 0; } static int sensor_g_saturation(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->saturation; return 0; } static int sensor_s_saturation(struct v4l2_subdev *sd, int value) { struct sensor_info *info = to_state(sd); if (info->saturation == value) return 0; if (value < 0 || value > 8) return -ERANGE; LOG_ERR_RET(sensor_write_array(sd, sensor_saturation[value].regs, sensor_saturation[value].size)); info->saturation = value; return 0; } static int sensor_g_exp_bias(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); *value = info->exp_bias; return 0; } static int sensor_s_exp_bias(struct v4l2_subdev *sd, int value) { struct sensor_info *info = to_state(sd); if (info->exp_bias == value) return 0; if (value < 0 || value > 8) return -ERANGE; LOG_ERR_RET(sensor_write_array(sd, sensor_ev[value].regs, sensor_ev[value].size)); info->exp_bias = value; return 0; } static int sensor_g_wb(struct v4l2_subdev *sd, int *value) { struct sensor_info *info = to_state(sd); enum v4l2_auto_n_preset_white_balance *wb_type = (enum v4l2_auto_n_preset_white_balance *)value; *wb_type = info->wb; return 0; } static int sensor_s_wb(struct v4l2_subdev *sd, enum v4l2_auto_n_preset_white_balance value) { struct sensor_info *info = to_state(sd); if (info->capture_mode == V4L2_MODE_IMAGE) return 0; LOG_ERR_RET(sensor_write_array(sd, sensor_wb[value].regs, sensor_wb[value].size)); if (value == V4L2_WHITE_BALANCE_AUTO) info->autowb = 1; else info->autowb = 0; info->wb = value; return 0; } static int sensor_g_colorfx(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); enum v4l2_colorfx *clrfx_type = (enum v4l2_colorfx *)value; *clrfx_type = info->clrfx; return 0; } static int sensor_s_colorfx(struct v4l2_subdev *sd, enum v4l2_colorfx value) { struct sensor_info *info = to_state(sd); if (info->clrfx == value) return 0; LOG_ERR_RET(sensor_write_array(sd, sensor_colorfx[value].regs, sensor_colorfx[value].size)); info->clrfx = value; return 0; } static int sensor_g_flash_mode(struct v4l2_subdev *sd, __s32 *value) { struct sensor_info *info = to_state(sd); enum v4l2_flash_led_mode *flash_mode = (enum v4l2_flash_led_mode *)value; *flash_mode = info->flash_mode; return 0; } static int sensor_s_flash_mode(struct v4l2_subdev *sd, enum v4l2_flash_led_mode value) { struct sensor_info *info = to_state(sd); info->flash_mode = value; return 0; } /* * Stuff that knows about the sensor. */ static int sensor_power(struct v4l2_subdev *sd, int on) { cci_lock(sd); switch (on) { case CSI_SUBDEV_STBY_ON: vfe_dev_dbg("CSI_SUBDEV_STBY_ON\n"); vfe_gpio_write(sd, PWDN, CSI_GPIO_HIGH); usleep_range(30000, 31000); vfe_set_mclk(sd, OFF); break; case CSI_SUBDEV_STBY_OFF: vfe_dev_dbg("CSI_SUBDEV_STBY_OFF\n"); vfe_set_mclk_freq(sd, MCLK); vfe_set_mclk(sd, ON); usleep_range(30000, 31000); vfe_gpio_write(sd, PWDN, CSI_GPIO_LOW); usleep_range(10000, 12000); break; case CSI_SUBDEV_PWR_ON: vfe_dev_dbg("CSI_SUBDEV_PWR_ON\n"); vfe_gpio_set_status(sd, PWDN, 1); /* set the gpio to output */ vfe_gpio_set_status(sd, RESET, 1); /* set the gpio to output */ usleep_range(10000, 12000); vfe_gpio_write(sd, PWDN, CSI_GPIO_HIGH); vfe_gpio_write(sd, RESET, CSI_GPIO_LOW); vfe_gpio_write(sd, POWER_EN, CSI_GPIO_HIGH); vfe_set_pmu_channel(sd, IOVDD, ON); vfe_set_pmu_channel(sd, AVDD, ON); vfe_set_pmu_channel(sd, DVDD, ON); vfe_set_pmu_channel(sd, AFVDD, ON); usleep_range(20000, 22000); vfe_gpio_write(sd, PWDN, CSI_GPIO_LOW); usleep_range(10000, 12000); vfe_set_mclk_freq(sd, MCLK); vfe_set_mclk(sd, ON); usleep_range(10000, 12000); vfe_gpio_write(sd, RESET, CSI_GPIO_LOW); usleep_range(30000, 31000); vfe_gpio_write(sd, RESET, CSI_GPIO_HIGH); usleep_range(30000, 31000); break; case CSI_SUBDEV_PWR_OFF: vfe_dev_dbg("CSI_SUBDEV_PWR_OFF\n"); usleep_range(10000, 12000); vfe_gpio_write(sd, RESET, CSI_GPIO_LOW); usleep_range(10000, 12000); vfe_set_mclk(sd, OFF); vfe_gpio_write(sd, POWER_EN, CSI_GPIO_LOW); vfe_set_pmu_channel(sd, AFVDD, OFF); vfe_set_pmu_channel(sd, DVDD, OFF); vfe_set_pmu_channel(sd, AVDD, OFF); vfe_set_pmu_channel(sd, IOVDD, OFF); usleep_range(10000, 12000); vfe_gpio_write(sd, PWDN, CSI_GPIO_HIGH); usleep_range(10000, 12000); vfe_gpio_set_status(sd, RESET, 0); /* set the gpio to input */ vfe_gpio_set_status(sd, PWDN, 0); /* set the gpio to input */ break; default: return -EINVAL; } cci_unlock(sd); return 0; } static int sensor_reset(struct v4l2_subdev *sd, u32 val) { switch (val) { case 0: vfe_gpio_write(sd, RESET, CSI_GPIO_HIGH); usleep_range(10000, 12000); break; case 1: vfe_gpio_write(sd, RESET, CSI_GPIO_LOW); usleep_range(10000, 12000); break; default: return -EINVAL; } return 0; } static int sensor_detect(struct v4l2_subdev *sd) { int ret; data_type val; ret = sensor_write(sd, 0xfe, 0x00); if (ret < 0) { vfe_dev_err("sensor_write err at sensor_detect!\n"); return ret; } ret = sensor_read(sd, 0xf0, &val); if (ret < 0) { vfe_dev_err("sensor_read err at sensor_detect!\n"); return ret; } /* if(val != 0x9b) */ /* return -ENODEV; */ return 0; } static int sensor_init(struct v4l2_subdev *sd, u32 val) { int ret; vfe_dev_dbg("sensor_init\n"); /*Make sure it is a target sensor*/ ret = sensor_detect(sd); if (ret) { vfe_dev_err("chip found is not an target chip.\n"); return ret; } sensor_write_array(sd, sensor_default_regs, ARRAY_SIZE(sensor_default_regs)); return 0; } static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg) { int ret = 0; switch (cmd) { case GET_FLASH_FLAG: /* sensor_g_flash_flag(sd,(unsigned int *)arg); */ /* break; */ default: return -EINVAL; } return ret; } /* * Store information about the video data format. */ static struct sensor_format_struct { __u8 *desc; /* __u32 pixelformat; */ u32 mbus_code; /* linux-4.4 */ struct regval_list *regs; int regs_size; int bpp; /* Bytes per pixel */ } sensor_formats[] = { { .desc = "YUYV 4:2:2", .mbus_code = MEDIA_BUS_FMT_YUYV8_2X8, /* linux-4.4 */ .regs = sensor_fmt_yuv422_yuyv, .regs_size = ARRAY_SIZE(sensor_fmt_yuv422_yuyv), .bpp = 2, }, { .desc = "YVYU 4:2:2", .mbus_code = MEDIA_BUS_FMT_YVYU8_2X8, /* linux-4.4 */ .regs = sensor_fmt_yuv422_yvyu, .regs_size = ARRAY_SIZE(sensor_fmt_yuv422_yvyu), .bpp = 2, }, { .desc = "UYVY 4:2:2", .mbus_code = MEDIA_BUS_FMT_UYVY8_2X8, /* linux-4.4 */ .regs = sensor_fmt_yuv422_uyvy, .regs_size = ARRAY_SIZE(sensor_fmt_yuv422_uyvy), .bpp = 2, }, { .desc = "VYUY 4:2:2", .mbus_code = MEDIA_BUS_FMT_VYUY8_2X8, /* linux-4.4 */ .regs = sensor_fmt_yuv422_vyuy, .regs_size = ARRAY_SIZE(sensor_fmt_yuv422_vyuy), .bpp = 2, }, { .desc = "Raw RGB Bayer", .mbus_code = MEDIA_BUS_FMT_SBGGR8_1X8, /* linux-4.4 */ .regs = sensor_fmt_raw, .regs_size = ARRAY_SIZE(sensor_fmt_raw), .bpp = 1 }, }; #define N_FMTS ARRAY_SIZE(sensor_formats) /* * Then there is the issue of window sizes. Try to capture the info here. */ static struct sensor_win_size sensor_win_sizes[] = { /* VGA */ { .width = VGA_WIDTH, .height = VGA_HEIGHT, .hoffset = 0, .voffset = 0, .regs = NULL, .regs_size = 0, .set_size = NULL, }, }; #define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes)) static int sensor_enum_code(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_mbus_code_enum *code) { if (code->index >= N_FMTS) return -EINVAL; code->code = sensor_formats[code->index].mbus_code; return 0; } static int sensor_enum_frame_size(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_frame_size_enum *fse) { if (fse->index > N_WIN_SIZES-1) return -EINVAL; fse->min_width = sensor_win_sizes[fse->index].width; fse->max_width = fse->min_width; fse->min_height = sensor_win_sizes[fse->index].height; fse->max_height = fse->min_height; return 0; } static int sensor_try_fmt_internal(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt, struct sensor_format_struct **ret_fmt, struct sensor_win_size **ret_wsize) { int index; struct sensor_win_size *wsize; for (index = 0; index < N_FMTS; index++) if (sensor_formats[index].mbus_code == fmt->code) break; if (index >= N_FMTS) return -EINVAL; if (ret_fmt != NULL) *ret_fmt = sensor_formats + index; /* * Fields: the sensor devices claim to be progressive. */ fmt->field = V4L2_FIELD_NONE; /* * Round requested image size down to the nearest * we support, but not below the smallest. */ for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES; wsize++) if (fmt->width >= wsize->width && fmt->height >= wsize->height) break; if (wsize >= sensor_win_sizes + N_WIN_SIZES) wsize--; /* Take the smallest one */ if (ret_wsize != NULL) *ret_wsize = wsize; /* * Note the size we'll actually handle. */ fmt->width = wsize->width; fmt->height = wsize->height; return 0; } static int sensor_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_format *fmat) /* linux-4.4 */ { struct v4l2_mbus_framefmt *fmt = &fmat->format; return sensor_try_fmt_internal(sd, fmt, NULL, NULL); } static int sensor_g_mbus_config(struct v4l2_subdev *sd, struct v4l2_mbus_config *cfg) { cfg->type = V4L2_MBUS_PARALLEL; cfg->flags = V4L2_MBUS_MASTER | VREF_POL | HREF_POL | CLK_POL; return 0; } /* * Set a format. */ static int sensor_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_format *fmat) /* linux-4.4 */ { int ret; struct v4l2_mbus_framefmt *fmt = &fmat->format; struct sensor_format_struct *sensor_fmt; struct sensor_win_size *wsize; struct sensor_info *info = to_state(sd); vfe_dev_dbg("sensor_s_fmt\n"); ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize); if (ret) return ret; /* *if (info->capture_mode == V4L2_MODE_VIDEO) * //video */ if (info->capture_mode == V4L2_MODE_IMAGE) { ret = sensor_s_autowb(sd, 0); /* lock wb */ if (ret < 0) vfe_dev_err("sensor_s_autowb off err when capturing image!\n"); } sensor_write_array(sd, sensor_fmt->regs, sensor_fmt->regs_size); ret = 0; if (wsize->regs) { ret = sensor_write_array(sd, wsize->regs, wsize->regs_size); if (ret < 0) return ret; } if (wsize->set_size) { ret = wsize->set_size(sd); if (ret < 0) return ret; } info->fmt = sensor_fmt; info->width = wsize->width; info->height = wsize->height; return 0; } /* * Implement G/S_PARM. There is a "high quality" mode we could try * to do someday; for now, we just do the frame rate tweak. */ static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; /* struct sensor_info *info = to_state(sd); */ if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; memset(cp, 0, sizeof(struct v4l2_captureparm)); cp->capability = V4L2_CAP_TIMEPERFRAME; cp->timeperframe.numerator = 1; cp->timeperframe.denominator = SENSOR_FRAME_RATE; return 0; } static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) { struct v4l2_captureparm *cp = &parms->parm.capture; /* struct v4l2_fract *tpf = &cp->timeperframe; */ struct sensor_info *info = to_state(sd); /* unsigned char div; */ vfe_dev_dbg("sensor_s_parm\n"); if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) { vfe_dev_dbg("parms->type!=V4L2_BUF_TYPE_VIDEO_CAPTURE\n"); return -EINVAL; } info->capture_mode = cp->capturemode; if (info->capture_mode == V4L2_MODE_IMAGE) { vfe_dev_dbg("capture mode is not video mode,can not set frame rate!\n"); return 0; } return 0; } /* * Code for dealing with controls. * fill with different sensor module * different sensor module has different settings here * if not support the follow function ,retrun -EINVAL */ /* ********************************begin of ****************************** */ static int sensor_g_ctrl(struct v4l2_ctrl *ctrl) { struct sensor_info *info = container_of(ctrl->handler, struct sensor_info, handler); struct v4l2_subdev *sd = &info->sd; switch (ctrl->id) { case V4L2_CID_BRIGHTNESS: return sensor_g_brightness(sd, &ctrl->val); case V4L2_CID_CONTRAST: return sensor_g_contrast(sd, &ctrl->val); case V4L2_CID_SATURATION: return sensor_g_saturation(sd, &ctrl->val); case V4L2_CID_HUE: return sensor_g_hue(sd, &ctrl->val); case V4L2_CID_VFLIP: return sensor_g_vflip(sd, &ctrl->val); case V4L2_CID_HFLIP: return sensor_g_hflip(sd, &ctrl->val); case V4L2_CID_GAIN: return sensor_g_gain(sd, &ctrl->val); case V4L2_CID_AUTOGAIN: return sensor_g_autogain(sd, &ctrl->val); case V4L2_CID_EXPOSURE: case V4L2_CID_AUTO_EXPOSURE_BIAS: return sensor_g_exp_bias(sd, &ctrl->val); case V4L2_CID_EXPOSURE_AUTO: return sensor_g_autoexp(sd, &ctrl->val); case V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE: return sensor_g_wb(sd, &ctrl->val); case V4L2_CID_AUTO_WHITE_BALANCE: return sensor_g_autowb(sd, &ctrl->val); case V4L2_CID_COLORFX: return sensor_g_colorfx(sd, &ctrl->val); case V4L2_CID_FLASH_LED_MODE: return sensor_g_flash_mode(sd, &ctrl->val); } return -EINVAL; } static int sensor_s_ctrl(struct v4l2_ctrl *ctrl) { struct sensor_info *info = container_of(ctrl->handler, struct sensor_info, handler); struct v4l2_subdev *sd = &info->sd; switch (ctrl->id) { case V4L2_CID_BRIGHTNESS: return sensor_s_brightness(sd, ctrl->val); case V4L2_CID_CONTRAST: return sensor_s_contrast(sd, ctrl->val); case V4L2_CID_SATURATION: return sensor_s_saturation(sd, ctrl->val); case V4L2_CID_HUE: return sensor_s_hue(sd, ctrl->val); case V4L2_CID_VFLIP: return sensor_s_vflip(sd, ctrl->val); case V4L2_CID_HFLIP: return sensor_s_hflip(sd, ctrl->val); case V4L2_CID_GAIN: return sensor_s_gain(sd, ctrl->val); case V4L2_CID_AUTOGAIN: return sensor_s_autogain(sd, ctrl->val); case V4L2_CID_EXPOSURE: case V4L2_CID_AUTO_EXPOSURE_BIAS: return sensor_s_exp_bias(sd, ctrl->val); case V4L2_CID_EXPOSURE_AUTO: return sensor_s_autoexp(sd, (enum v4l2_exposure_auto_type) ctrl->val); case V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE: return sensor_s_wb(sd, (enum v4l2_auto_n_preset_white_balance) ctrl->val); case V4L2_CID_AUTO_WHITE_BALANCE: return sensor_s_autowb(sd, ctrl->val); case V4L2_CID_COLORFX: return sensor_s_colorfx(sd, (enum v4l2_colorfx) ctrl->val); case V4L2_CID_FLASH_LED_MODE: return sensor_s_flash_mode(sd, (enum v4l2_flash_led_mode) ctrl->val); } return -EINVAL; } /* ------------------------------------------------------------------- */ static const struct v4l2_ctrl_ops sensor_ctrl_ops = { .g_volatile_ctrl = sensor_g_ctrl, .s_ctrl = sensor_s_ctrl, }; static const struct v4l2_subdev_core_ops sensor_core_ops = { .reset = sensor_reset, .init = sensor_init, .s_power = sensor_power, .ioctl = sensor_ioctl, }; static const struct v4l2_subdev_video_ops sensor_video_ops = { .s_parm = sensor_s_parm, .g_parm = sensor_g_parm, .g_mbus_config = sensor_g_mbus_config, }; static const struct v4l2_subdev_pad_ops sensor_pad_ops = { .enum_mbus_code = sensor_enum_code, .enum_frame_size = sensor_enum_frame_size, .get_fmt = sensor_get_fmt, .set_fmt = sensor_set_fmt, }; static const struct v4l2_subdev_ops sensor_ops = { .core = &sensor_core_ops, .video = &sensor_video_ops, .pad = &sensor_pad_ops, }; /* -------------------------------------------------------------------- */ static struct cci_driver cci_drv = { .name = SENSOR_NAME, .addr_width = CCI_BITS_8, .data_width = CCI_BITS_8, }; static const s64 exp_bias_qmenu[] = { -4, -3, -2, -1, 0, 1, 2, 3, 4, }; static int sensor_init_controls(struct v4l2_subdev *sd, const struct v4l2_ctrl_ops *ops) { struct sensor_info *info = to_state(sd); struct v4l2_ctrl_handler *handler = &info->handler; struct v4l2_ctrl *ctrl; int ret = 0; v4l2_ctrl_handler_init(handler, 15); v4l2_ctrl_new_std(handler, ops, V4L2_CID_BRIGHTNESS, 0, 255, 1, 128); v4l2_ctrl_new_std(handler, ops, V4L2_CID_CONTRAST, 0, 128, 1, 0); v4l2_ctrl_new_std(handler, ops, V4L2_CID_SATURATION, -4, 4, 1, 1); v4l2_ctrl_new_std(handler, ops, V4L2_CID_HUE, -180, 180, 1, 0); v4l2_ctrl_new_std(handler, ops, V4L2_CID_VFLIP, 0, 1, 1, 0); v4l2_ctrl_new_std(handler, ops, V4L2_CID_HFLIP, 0, 1, 1, 0); ctrl = v4l2_ctrl_new_std(handler, ops, V4L2_CID_GAIN, 1*16, 64*16-1, 1, 1*16); if (ctrl != NULL) ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE; v4l2_ctrl_new_std(handler, ops, V4L2_CID_AUTOGAIN, 0, 1, 1, 1); ctrl = v4l2_ctrl_new_std(handler, ops, V4L2_CID_EXPOSURE, 0, 65536*16, 1, 0); if (ctrl != NULL) ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE; v4l2_ctrl_new_int_menu(handler, ops, V4L2_CID_AUTO_EXPOSURE_BIAS, ARRAY_SIZE(exp_bias_qmenu) - 1, ARRAY_SIZE(exp_bias_qmenu)/2, exp_bias_qmenu); v4l2_ctrl_new_std_menu(handler, ops, V4L2_CID_EXPOSURE_AUTO, V4L2_EXPOSURE_APERTURE_PRIORITY, 0, V4L2_EXPOSURE_AUTO); v4l2_ctrl_new_std_menu(handler, ops, V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE, V4L2_WHITE_BALANCE_SHADE, 0, V4L2_WHITE_BALANCE_AUTO); v4l2_ctrl_new_std(handler, ops, V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1); v4l2_ctrl_new_std_menu(handler, ops, V4L2_CID_COLORFX, V4L2_COLORFX_SET_CBCR, 0, V4L2_COLORFX_NONE); v4l2_ctrl_new_std_menu(handler, ops, V4L2_CID_FLASH_LED_MODE, V4L2_FLASH_LED_MODE_RED_EYE, 0, V4L2_FLASH_LED_MODE_NONE); if (handler->error) { ret = handler->error; v4l2_ctrl_handler_free(handler); } sd->ctrl_handler = handler; return ret; } static int sensor_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct v4l2_subdev *sd; struct sensor_info *info; info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL); if (info == NULL) return -ENOMEM; sd = &info->sd; sensor_init_controls(sd, &sensor_ctrl_ops); cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv); info->fmt = &sensor_formats[0]; info->brightness = 0; info->contrast = 0; info->saturation = 0; info->hue = 0; info->hflip = 0; info->vflip = 0; info->gain = 0; info->autogain = 1; info->exp = 0; info->autoexp = 0; info->autowb = 1; info->wb = 0; info->clrfx = 0; return 0; } static int sensor_remove(struct i2c_client *client) { struct v4l2_subdev *sd; sd = cci_dev_remove_helper(client, &cci_drv); kfree(to_state(sd)); return 0; } static const struct i2c_device_id sensor_id[] = { { SENSOR_NAME, 0 }, { } }; MODULE_DEVICE_TABLE(i2c, sensor_id); static struct i2c_driver sensor_driver = { .driver = { .owner = THIS_MODULE, .name = SENSOR_NAME, }, .probe = sensor_probe, .remove = sensor_remove, .id_table = sensor_id, }; static __init int init_sensor(void) { return cci_dev_init_helper(&sensor_driver); } static __exit void exit_sensor(void) { cci_dev_exit_helper(&sensor_driver); } module_init(init_sensor); module_exit(exit_sensor);