/* * wsm interfaces for XRadio drivers * * Copyright (c) 2013 * Xradio Technology Co., Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #ifndef XRADIO_WSM_H_INCLUDED #define XRADIO_WSM_H_INCLUDED #include struct xradio_common; #define WSM_MSG_ID_MASK (0x0C3F) /* Bands */ /* Radio band 2.412 -2.484 GHz. */ #define WSM_PHY_BAND_2_4G (0) /* Radio band 4.9375-5.8250 GHz. */ #define WSM_PHY_BAND_5G (1) /* Transmit rates */ /* 1 Mbps ERP-DSSS */ #define WSM_TRANSMIT_RATE_1 (0) /* 2 Mbps ERP-DSSS */ #define WSM_TRANSMIT_RATE_2 (1) /* 5.5 Mbps ERP-CCK, ERP-PBCC (Not supported) */ /* #define WSM_TRANSMIT_RATE_5 (2) */ /* 11 Mbps ERP-CCK, ERP-PBCC (Not supported) */ /* #define WSM_TRANSMIT_RATE_11 (3) */ /* 22 Mbps ERP-PBCC (Not supported) */ /* #define WSM_TRANSMIT_RATE_22 (4) */ /* 33 Mbps ERP-PBCC (Not supported) */ /* #define WSM_TRANSMIT_RATE_33 (5) */ /* 6 Mbps (3 Mbps) ERP-OFDM, BPSK coding rate 1/2 */ #define WSM_TRANSMIT_RATE_6 (6) /* 9 Mbps (4.5 Mbps) ERP-OFDM, BPSK coding rate 3/4 */ #define WSM_TRANSMIT_RATE_9 (7) /* 12 Mbps (6 Mbps) ERP-OFDM, QPSK coding rate 1/2 */ #define WSM_TRANSMIT_RATE_12 (8) /* 18 Mbps (9 Mbps) ERP-OFDM, QPSK coding rate 3/4 */ #define WSM_TRANSMIT_RATE_18 (9) /* 24 Mbps (12 Mbps) ERP-OFDM, 16QAM coding rate 1/2 */ #define WSM_TRANSMIT_RATE_24 (10) /* 36 Mbps (18 Mbps) ERP-OFDM, 16QAM coding rate 3/4 */ #define WSM_TRANSMIT_RATE_36 (11) /* 48 Mbps (24 Mbps) ERP-OFDM, 64QAM coding rate 1/2 */ #define WSM_TRANSMIT_RATE_48 (12) /* 54 Mbps (27 Mbps) ERP-OFDM, 64QAM coding rate 3/4 */ #define WSM_TRANSMIT_RATE_54 (13) /* 6.5 Mbps HT-OFDM, BPSK coding rate 1/2 */ #define WSM_TRANSMIT_RATE_HT_6 (14) /* 13 Mbps HT-OFDM, QPSK coding rate 1/2 */ #define WSM_TRANSMIT_RATE_HT_13 (15) /* 19.5 Mbps HT-OFDM, QPSK coding rate 3/4 */ #define WSM_TRANSMIT_RATE_HT_19 (16) /* 26 Mbps HT-OFDM, 16QAM coding rate 1/2 */ #define WSM_TRANSMIT_RATE_HT_26 (17) /* 39 Mbps HT-OFDM, 16QAM coding rate 3/4 */ #define WSM_TRANSMIT_RATE_HT_39 (18) /* 52 Mbps HT-OFDM, 64QAM coding rate 2/3 */ #define WSM_TRANSMIT_RATE_HT_52 (19) /* 58.5 Mbps HT-OFDM, 64QAM coding rate 3/4 */ #define WSM_TRANSMIT_RATE_HT_58 (20) /* 65 Mbps HT-OFDM, 64QAM coding rate 5/6 */ #define WSM_TRANSMIT_RATE_HT_65 (21) /* Scan types */ /* Foreground scan */ #define WSM_SCAN_TYPE_FOREGROUND (0) /* Background scan */ #define WSM_SCAN_TYPE_BACKGROUND (1) /* Auto scan */ #define WSM_SCAN_TYPE_AUTO (2) /* Scan flags */ /* Forced background scan means if the station cannot */ /* enter the power-save mode, it shall force to perform a */ /* background scan. Only valid when ScanType is */ /* background scan. */ #define WSM_SCAN_FLAG_FORCE_BACKGROUND (BIT(0)) /* The WLAN device scans one channel at a time so */ /* that disturbance to the data traffic is minimized. */ #define WSM_SCAN_FLAG_SPLIT_METHOD (BIT(1)) /* Preamble Type. Long if not set. */ #define WSM_SCAN_FLAG_SHORT_PREAMBLE (BIT(2)) /* 11n Tx Mode. Mixed if not set. */ #define WSM_SCAN_FLAG_11N_GREENFIELD (BIT(3)) #define WSM_FLAG_MAC_INSTANCE_1 (BIT(4)) #define WSM_FLAG_MAC_INSTANCE_0 (~(BIT(4))) /* Scan constraints */ /* Maximum number of channels to be scanned. */ #define WSM_SCAN_MAX_NUM_OF_CHANNELS (48) /* The maximum number of SSIDs that the device can scan for. */ #define WSM_SCAN_MAX_NUM_OF_SSIDS (2) #ifdef CONFIG_XRADIO_TESTMODE /* Transmit flags */ /* Start Expiry time from the receipt of tx request */ #define WSM_TX_FLAG_EXPIRY_TIME (BIT(0)) #endif /*CONFIG_XRADIO_TESTMODE*/ /* Power management modes */ /* 802.11 Active mode */ #define WSM_PSM_ACTIVE (0) /* 802.11 PS mode */ #define WSM_PSM_PS BIT(0) /* Fast Power Save bit */ #define WSM_PSM_FAST_PS_FLAG BIT(7) /* IP ALLOCATED bit, used to control firmware power-save state */ #define WSM_PSM_IP_ALLOCATED BIT(2) /* Dynamic aka Fast power save */ #define WSM_PSM_FAST_PS (BIT(0) | BIT(7)) /* Undetermined */ /* Note : Undetermined status is reported when the */ /* NULL data frame used to advertise the PM mode to */ /* the AP at Pre or Post Background Scan is not Acknowledged */ #define WSM_PSM_UNKNOWN BIT(1) /* Queue IDs */ /* best effort/legacy */ #define WSM_QUEUE_BEST_EFFORT (0) /* background */ #define WSM_QUEUE_BACKGROUND (1) /* video */ #define WSM_QUEUE_VIDEO (2) /* voice */ #define WSM_QUEUE_VOICE (3) /* HT TX parameters */ /* Non-HT */ #define WSM_HT_TX_NON_HT (0) /* Mixed format */ #define WSM_HT_TX_MIXED (1) /* Greenfield format */ #define WSM_HT_TX_GREENFIELD (2) /* STBC allowed */ #define WSM_HT_TX_STBC (BIT(7)) /* EPTA prioirty flags for BT Coex */ /* default epta priority */ #define WSM_EPTA_PRIORITY_DEFAULT 4 /* use for normal data */ #define WSM_EPTA_PRIORITY_DATA 4 /* use for connect/disconnect/roaming*/ #define WSM_EPTA_PRIORITY_MGT 5 /* use for action frames */ #define WSM_EPTA_PRIORITY_ACTION 5 /* use for AC_VI data */ #define WSM_EPTA_PRIORITY_VIDEO 5 /* use for AC_VO data */ #define WSM_EPTA_PRIORITY_VOICE 6 /* use for EAPOL exchange */ #define WSM_EPTA_PRIORITY_EAPOL 7 /* TX status */ /* Frame was sent aggregated */ /* Only valid for WSM_SUCCESS status. */ #define WSM_TX_STATUS_AGGREGATION (BIT(0)) /* Host should requeue this frame later. */ /* Valid only when status is WSM_REQUEUE. */ #define WSM_TX_STATUS_REQUEUE (BIT(1)) /* Normal Ack */ #define WSM_TX_STATUS_NORMAL_ACK (0<<2) /* No Ack */ #define WSM_TX_STATUS_NO_ACK (1<<2) /* No explicit acknowledgement */ #define WSM_TX_STATUS_NO_EXPLICIT_ACK (2<<2) /* Block Ack */ /* Only valid for WSM_SUCCESS status. */ #define WSM_TX_STATUS_BLOCK_ACK (3<<2) /* RX status */ /* Unencrypted */ #define WSM_RX_STATUS_UNENCRYPTED (0<<0) /* WEP */ #define WSM_RX_STATUS_WEP (1<<0) /* TKIP */ #define WSM_RX_STATUS_TKIP (2<<0) /* AES */ #define WSM_RX_STATUS_AES (3<<0) /* WAPI */ #define WSM_RX_STATUS_WAPI (4<<0) /* Macro to fetch encryption subfield. */ #define WSM_RX_STATUS_ENCRYPTION(status) ((status) & 0x07) /* Frame was part of an aggregation */ #define WSM_RX_STATUS_AGGREGATE (BIT(3)) /* Frame was first in the aggregation */ #define WSM_RX_STATUS_AGGREGATE_FIRST (BIT(4)) /* Frame was last in the aggregation */ #define WSM_RX_STATUS_AGGREGATE_LAST (BIT(5)) /* Indicates a defragmented frame */ #define WSM_RX_STATUS_DEFRAGMENTED (BIT(6)) /* Indicates a Beacon frame */ #define WSM_RX_STATUS_BEACON (BIT(7)) /* Indicates STA bit beacon TIM field */ #define WSM_RX_STATUS_TIM (BIT(8)) /* Indicates Beacon frame's virtual bitmap contains multicast bit */ #define WSM_RX_STATUS_MULTICAST (BIT(9)) /* Indicates frame contains a matching SSID */ #define WSM_RX_STATUS_MATCHING_SSID (BIT(10)) /* Indicates frame contains a matching BSSI */ #define WSM_RX_STATUS_MATCHING_BSSI (BIT(11)) /* Indicates More bit set in Framectl field */ #define WSM_RX_STATUS_MORE_DATA (BIT(12)) /* Indicates frame received during a measurement process */ #define WSM_RX_STATUS_MEASUREMENT (BIT(13)) /* Indicates frame received as an HT packet */ #define WSM_RX_STATUS_HT (BIT(14)) /* Indicates frame received with STBC */ #define WSM_RX_STATUS_STBC (BIT(15)) /* Indicates Address 1 field matches dot11StationId */ #define WSM_RX_STATUS_ADDRESS1 (BIT(16)) /* Indicates Group address present in the Address 1 field */ #define WSM_RX_STATUS_GROUP (BIT(17)) /* Indicates Broadcast address present in the Address 1 field */ #define WSM_RX_STATUS_BROADCAST (BIT(18)) /* Indicates group key used with encrypted frames */ #define WSM_RX_STATUS_GROUP_KEY (BIT(19)) /* Macro to fetch encryption key index. */ #define WSM_RX_STATUS_KEY_IDX(status) (((status) >> 20) & 0x0F) #ifdef SUPPORT_HT40 #define WSM_RX_LINK_ID_GET(f) (((f) >> 25) & 0x0f) /* bit28:25 */ #define WSM_RX_BANDWIDTH_GET(f) (((f) >> 29) & 0x03) /* bit30:29 */ #define WSM_RX_BANDWIDTH_20M 0x0 #define WSM_RX_BANDWIDTH_40M 0x1 #define WSM_RX_BANDWIDTH_80M 0x2 #endif /* Frame Control field starts at Frame offset + 2 */ #define WSM_TX_2BYTES_SHIFT (BIT(7)) /* Join mode */ /* IBSS */ #define WSM_JOIN_MODE_IBSS (0) /* BSS */ #define WSM_JOIN_MODE_BSS (1) /* PLCP preamble type */ /* For long preamble */ #define WSM_JOIN_PREAMBLE_LONG (0) /* For short preamble (Long for 1Mbps) */ #define WSM_JOIN_PREAMBLE_SHORT (1) /* For short preamble (Long for 1 and 2Mbps) */ #define WSM_JOIN_PREAMBLE_SHORT_2 (2) /* Join flags */ /* Unsynchronized */ #define WSM_JOIN_FLAGS_UNSYNCRONIZED BIT(0) /* The BSS owner is a P2P GO */ #define WSM_JOIN_FLAGS_P2P_GO BIT(1) /* Force to join BSS with the BSSID and the * SSID specified without waiting for beacons. The * ProbeForJoin parameter is ignored. */ #define WSM_JOIN_FLAGS_FORCE BIT(2) /* Give probe request/response higher * priority over the BT traffic */ #define WSM_JOIN_FLAGS_PRIO BIT(3) /* Key types */ #define WSM_KEY_TYPE_WEP_DEFAULT (0) #define WSM_KEY_TYPE_WEP_PAIRWISE (1) #define WSM_KEY_TYPE_TKIP_GROUP (2) #define WSM_KEY_TYPE_TKIP_PAIRWISE (3) #define WSM_KEY_TYPE_AES_GROUP (4) #define WSM_KEY_TYPE_AES_PAIRWISE (5) #define WSM_KEY_TYPE_WAPI_GROUP (6) #define WSM_KEY_TYPE_WAPI_PAIRWISE (7) /* Key indexes */ #define WSM_KEY_MAX_INDEX (10) /* ACK policy */ #define WSM_ACK_POLICY_NORMAL (0) #define WSM_ACK_POLICY_NO_ACK (1) /* Start modes */ #define WSM_START_MODE_AP (0) /* Mini AP */ #define WSM_START_MODE_P2P_GO (1) /* P2P GO */ #define WSM_START_MODE_P2P_DEV (2) /* P2P device */ #define WSM_START_MODE_MONITOR (3) /* Monitor */ /* SetAssociationMode MIB flags */ #ifdef SUPPORT_HT40 #define WSM_ASSOCIATION_MODE_USE_PHY_MODE_CFG (BIT(0)) #define WSM_ASSOCIATION_MODE_USE_BASIC_RATE_SET (BIT(1)) #define WSM_ASSOCIATION_MODE_USE_MPDU_START_SPACING (BIT(2)) #else #define WSM_ASSOCIATION_MODE_USE_PREAMBLE_TYPE (BIT(0)) #define WSM_ASSOCIATION_MODE_USE_HT_MODE (BIT(1)) #define WSM_ASSOCIATION_MODE_USE_BASIC_RATE_SET (BIT(2)) #define WSM_ASSOCIATION_MODE_USE_MPDU_START_SPACING (BIT(3)) #define WSM_ASSOCIATION_MODE_SNOOP_ASSOC_FRAMES (BIT(4)) #endif /* RcpiRssiThreshold MIB flags */ #define WSM_RCPI_RSSI_THRESHOLD_ENABLE (BIT(0)) #define WSM_RCPI_RSSI_USE_RSSI (BIT(1)) #define WSM_RCPI_RSSI_DONT_USE_UPPER (BIT(2)) #define WSM_RCPI_RSSI_DONT_USE_LOWER (BIT(3)) /* Update-ie constants */ #define WSM_UPDATE_IE_BEACON (BIT(0)) #define WSM_UPDATE_IE_PROBE_RESP (BIT(1)) #define WSM_UPDATE_IE_PROBE_REQ (BIT(2)) /* BT defines */ #define BT_LINK_TPYE_INQUIRY 9 #define BT_LINK_TYPE_DEFAULT 73 #define BT_MAX_BLOCK_TIME 15000 /* ms */ /* WSM events */ /* Error */ #define WSM_EVENT_ERROR (0) /* BSS lost */ #define WSM_EVENT_BSS_LOST (1) /* BSS regained */ #define WSM_EVENT_BSS_REGAINED (2) /* Radar detected */ #define WSM_EVENT_RADAR_DETECTED (3) /* RCPI or RSSI threshold triggered */ #define WSM_EVENT_RCPI_RSSI (4) /* BT inactive */ #define WSM_EVENT_BT_INACTIVE (5) /* BT active */ #define WSM_EVENT_BT_ACTIVE (6) #define WSM_EVENT_PS_MODE_ERROR (7) #define WSM_EVENT_PAS_EVENT (8) #define WSM_EVENT_INACTIVITY (9) /* MAC Addr Filter */ #define WSM_MIB_ID_MAC_ADDR_FILTER 0x1030 /* MIB IDs */ /* 4.1 dot11StationId */ #define WSM_MIB_ID_DOT11_STATION_ID 0x0000 /* 4.2 dot11MaxtransmitMsduLifeTime */ #define WSM_MIB_ID_DOT11_MAX_TRANSMIT_LIFTIME 0x0001 /* 4.3 dot11MaxReceiveLifeTime */ #define WSM_MIB_ID_DOT11_MAX_RECEIVE_LIFETIME 0x0002 /* 4.4 dot11SlotTime */ #define WSM_MIB_ID_DOT11_SLOT_TIME 0x0003 /* 4.5 dot11GroupAddressesTable */ #define WSM_MIB_ID_DOT11_GROUP_ADDRESSES_TABLE 0x0004 #define WSM_MAX_GRP_ADDRTABLE_ENTRIES 8 /* 4.6 dot11WepDefaultKeyId */ #define WSM_MIB_ID_DOT11_WEP_DEFAULT_KEY_ID 0x0005 /* 4.7 dot11CurrentTxPowerLevel */ #define WSM_MIB_ID_DOT11_CURRENT_TX_POWER_LEVEL 0x0006 /* 4.8 dot11RTSThreshold */ #define WSM_MIB_ID_DOT11_RTS_THRESHOLD 0x0007 /* Huanglu add for firmware debug control */ #define WSM_MIB_ID_FW_DEBUG_CONTROL 0x0008 /* for read/write registers from firmware*/ #define WSM_MIB_ID_RW_FW_REG 0x0009 /* for Set max number of mpdus in a-mpdu*/ #define WSM_MIB_ID_SET_AMPDU_NUM 0x000a /* for tx-ampdu-len-adaption */ #define WSM_MIB_ID_SET_TALA_PARA 0x000b /* for set TPA param */ #define WSM_MIB_ID_SET_TPA_PARAM 0x000c /* 4.9 NonErpProtection */ #define WSM_MIB_ID_NON_ERP_PROTECTION 0x1000 /* 4.10 ArpIpAddressesTable */ #define WSM_MIB_ID_ARP_IP_ADDRESSES_TABLE 0x1001 #define WSM_MAX_ARP_IP_ADDRTABLE_ENTRIES 1 /* 4.11 TemplateFrame */ #define WSM_MIB_ID_TEMPLATE_FRAME 0x1002 /* 4.12 RxFilter */ #define WSM_MIB_ID_RX_FILTER 0x1003 /* 4.13 BeaconFilterTable */ #define WSM_MIB_ID_BEACON_FILTER_TABLE 0x1004 /* 4.14 BeaconFilterEnable */ #define WSM_MIB_ID_BEACON_FILTER_ENABLE 0x1005 /* 4.15 OperationalPowerMode */ #define WSM_MIB_ID_OPERATIONAL_POWER_MODE 0x1006 /* 4.16 BeaconWakeUpPeriod */ #define WSM_MIB_ID_BEACON_WAKEUP_PERIOD 0x1007 /* 4.17 RcpiRssiThreshold */ #define WSM_MIB_ID_RCPI_RSSI_THRESHOLD 0x1009 /* 4.18 StatisticsTable */ #define WSM_MIB_ID_STATISTICS_TABLE 0x100A /* 4.19 IbssPsConfig */ #define WSM_MIB_ID_IBSS_PS_CONFIG 0x100B /* 4.20 CountersTable */ #define WSM_MIB_ID_COUNTERS_TABLE 0x100C #define WSM_MIB_ID_AMPDUCOUNTERS_TABLE 0x1036 #define WSM_MIB_ID_TXPIPE_TABLE 0x1037 #define WSM_MIB_ID_BACKOFF_DBG 0x1038 #define WSM_MIB_ID_BACKOFF_CTRL 0x1039 /*requery packet status*/ #define WSM_MIB_ID_REQ_PKT_STATUS 0x1040 /*TPA debug informations*/ #define WSM_MIB_ID_TPA_DEBUG_INFO 0x1041 /*tx power informations*/ #define WSM_MIB_ID_TX_POWER_INFO 0x1042 /*some hardware information*/ #define WSM_MIB_ID_HW_INFO 0x1043 /*epta status information*/ #define WSM_MIB_ID_EPTA_STAT 0x1060 #define WSM_MIB_ID_EPTA_STAT_CTRL 0x1061 /*get device temperature*/ #define WSM_MIB_ID_GET_TEMPERATURE 0x1080 /* 4.21 BlockAckPolicy */ #define WSM_MIB_ID_BLOCK_ACK_POLICY 0x100E /* 4.22 OverrideInternalTxRate */ #define WSM_MIB_ID_OVERRIDE_INTERNAL_TX_RATE 0x100F /* 4.23 SetAssociationMode */ #define WSM_MIB_ID_SET_ASSOCIATION_MODE 0x1010 /* 4.24 UpdateEptaConfigData */ #define WSM_MIB_ID_UPDATE_EPTA_CONFIG_DATA 0x1011 /* 4.25 SelectCcaMethod */ #define WSM_MIB_ID_SELECT_CCA_METHOD 0x1012 /* 4.26 SetUpasdInformation */ #define WSM_MIB_ID_SET_UAPSD_INFORMATION 0x1013 /* 4.27 SetAutoCalibrationMode WBF00004073 */ #define WSM_MIB_ID_SET_AUTO_CALIBRATION_MODE 0x1015 /* 4.28 SetTxRateRetryPolicy */ #define WSM_MIB_ID_SET_TX_RATE_RETRY_POLICY 0x1016 /* 4.29 SetHostMessageTypeFilter */ #define WSM_MIB_ID_SET_HOST_MSG_TYPE_FILTER 0x1017 /* 4.30 P2PFindInfo */ #define WSM_MIB_ID_P2P_FIND_INFO 0x1018 /* 4.31 P2PPsModeInfo */ #define WSM_MIB_ID_P2P_PS_MODE_INFO 0x1019 /* 4.32 SetEtherTypeDataFrameFilter */ #define WSM_MIB_ID_SET_ETHERTYPE_DATAFRAME_FILTER 0x101A /* 4.33 SetUDPPortDataFrameFilter */ #define WSM_MIB_ID_SET_UDPPORT_DATAFRAME_FILTER 0x101B /* 4.34 SetMagicDataFrameFilter */ #define WSM_MIB_ID_SET_MAGIC_DATAFRAME_FILTER 0x101C #define WSM_MIB_ID_SET_HOST_SLEEP 0x1050 /* This is the end of specification. */ /* 4.35 P2PDeviceInfo */ #define WSM_MIB_ID_P2P_DEVICE_INFO 0x101D /* 4.36 SetWCDMABand */ #define WSM_MIB_ID_SET_WCDMA_BAND 0x101E /* 4.37 GroupTxSequenceCounter */ #define WSM_MIB_ID_GRP_SEQ_COUNTER 0x101F /* 4.38 ProtectedMgmtPolicy */ #define WSM_MIB_ID_PROTECTED_MGMT_POLICY 0x1020 /* 4.39 SetHtProtection */ #define WSM_MID_ID_SET_HT_PROTECTION 0x1021 /* 4.40 GPIO Command */ #define WSM_MIB_ID_GPIO_COMMAND 0x1022 /* 4.41 TSF Counter Value */ #define WSM_MIB_ID_TSF_COUNTER 0x1023 /* Test Purposes Only */ #define WSM_MIB_ID_BLOCK_ACK_INFO 0x100D /* 4.42 UseMultiTxConfMessage */ #define WSM_MIB_USE_MULTI_TX_CONF 0x1024 /* 4.43 Keep-alive period */ #define WSM_MIB_ID_KEEP_ALIVE_PERIOD 0x1025 /* 4.44 Disable BSSID filter */ #define WSM_MIB_ID_DISABLE_BSSID_FILTER 0x1026 /* Inactivity */ #define WSM_MIB_ID_SET_INACTIVITY 0x1035 /* MAC Addr Filter */ #define WSM_MIB_ID_MAC_ADDR_FILTER 0x1030 #ifdef MCAST_FWDING /* 4.51 Set Forwarding Offload */ #define WSM_MIB_ID_FORWARDING_OFFLOAD 0x1033 #endif #ifdef IPV6_FILTERING /* IpV6 Addr Filter */ /* 4.52 Neighbor solicitation IPv6 address table */ #define WSM_MIB_IP_IPV6_ADDR_FILTER 0x1032 #define WSM_MIB_ID_NS_IP_ADDRESSES_TABLE 0x1034 #define WSM_MAX_NDP_IP_ADDRTABLE_ENTRIES 1 #endif /*IPV6_FILTERING*/ /* Frame template types */ #define WSM_FRAME_TYPE_PROBE_REQUEST (0) #define WSM_FRAME_TYPE_BEACON (1) #define WSM_FRAME_TYPE_NULL (2) #define WSM_FRAME_TYPE_QOS_NULL (3) #define WSM_FRAME_TYPE_PS_POLL (4) #define WSM_FRAME_TYPE_PROBE_RESPONSE (5) #define WSM_FRAME_TYPE_ARP_REPLY (6) #ifdef IPV6_FILTERING #define WSM_FRAME_TYPE_NA (7) #endif /*IPV6_FILTERING*/ #define WSM_FRAME_GREENFIELD (0x80) /* See 4.11 */ /* Status */ /* The WSM firmware has completed a request */ /* successfully. */ #define WSM_STATUS_SUCCESS (0) /* This is a generic failure code if other error codes do */ /* not apply. */ #define WSM_STATUS_FAILURE (1) /* A request contains one or more invalid parameters. */ #define WSM_INVALID_PARAMETER (2) /* The request cannot perform because the device is in */ /* an inappropriate mode. */ #define WSM_ACCESS_DENIED (3) /* The frame received includes a decryption error. */ #define WSM_STATUS_DECRYPTFAILURE (4) /* A MIC failure is detected in the received packets. */ #define WSM_STATUS_MICFAILURE (5) /* The transmit request failed due to retry limit being */ /* exceeded. */ #define WSM_STATUS_RETRY_EXCEEDED (6) /* The transmit request failed due to MSDU life time */ /* being exceeded. */ #define WSM_STATUS_TX_LIFETIME_EXCEEDED (7) /* The link to the AP is lost. */ #define WSM_STATUS_LINK_LOST (8) /* No key was found for the encrypted frame */ #define WSM_STATUS_NO_KEY_FOUND (9) /* Jammer was detected when transmitting this frame */ #define WSM_STATUS_JAMMER_DETECTED (10) /* The message should be requeued later. */ /* This is applicable only to Transmit */ #define WSM_REQUEUE (11) /* Advanced filtering options */ #define WSM_MAX_FILTER_ELEMENTS (4) #define WSM_FILTER_ACTION_IGNORE (0) #define WSM_FILTER_ACTION_FILTER_IN (1) #define WSM_FILTER_ACTION_FILTER_OUT (2) #define WSM_FILTER_PORT_TYPE_DST (0) #define WSM_FILTER_PORT_TYPE_SRC (1) struct wsm_hdr { __le16 len; __le16 id; }; #define WSM_TX_SEQ_MAX (7) #define WSM_TX_SEQ(seq) \ ((seq & WSM_TX_SEQ_MAX) << 13) #define WSM_TX_LINK_ID_MAX (0x0F) #define WSM_TX_LINK_ID(link_id) \ ((link_id & WSM_TX_LINK_ID_MAX) << 6) #define WSM_TX_IF_ID_MAX (0x0F) #define WSM_TX_IF_ID(if_id) \ ((if_id & WSM_TX_IF_ID_MAX) << 6) #define MAX_BEACON_SKIP_TIME_MS 1000 #ifdef FPGA_SETUP #define WSM_CMD_LAST_CHANCE_TIMEOUT (HZ * 9 / 2) #else #define WSM_CMD_LAST_CHANCE_TIMEOUT (HZ * 15) #endif #define WSM_CMD_EXTENDED_TIMEOUT (HZ * 20 / 2) #define WSM_RI_GET_PEER_ID_FROM_FLAGS(_f) (((_f)&(0xF<<25)>>25)) /* ******************************************************************** */ #ifdef SUPPORT_HT40 #define MODEM_F_B_DSSS (0x01) #define MODEM_F_A_OFDM (0x02) #define MODEM_F_N_OFDM (0x04) #define MODEM_F_V_OFDM (0x08) #define PRIMARY_CH_1ST (0x00) #define PRIMARY_CH_2ND (0x01) #define PRIMARY_CH_3RD (0x02) #define PRIMARY_CH_4TH (0x03) #define PREAMBLE_L (0x00) #define PREAMBLE_S_L1 (0x01) #define PREAMBLE_S_L12 (0x02) #define CHAN_WIDTH_20MHz (0x00) #define CHAN_WIDTH_10MHz (0x01) #define CHAN_WIDTH_40MHz (0x02) struct phy_mode_cfg { u16 ModemFlags:4, ChWidthCfg:2, PriChCfg:2, BandCfg:1, Reserved:2, STBC_Enable:1, PreambleCfg:2, SGI_Enable:1, GF_Enable:1; }; #endif /* ******************************************************************** */ /* WSM capcbility */ #define WSM_FW_LABEL 128 struct wsm_caps { u16 numInpChBufs; u16 sizeInpChBuf; u16 hardwareId; u16 hardwareSubId; u16 firmwareCap; u16 firmwareType; u16 firmwareApiVer; u16 firmwareBuildNumber; u16 firmwareVersion; char fw_label[WSM_FW_LABEL+2]; u32 firmwareConfig[4]; int firmwareReady; }; static inline u32 wsm_version(u32 ver, u32 build) { return (u32)((ver<<16) | build); } #define GET_WSM_VERSION(wsm) wsm_version(wsm.firmwareVersion, wsm.firmwareBuildNumber) #define WSM_VERSION_BF(wsm, v, b) (GET_WSM_VERSION(wsm) < wsm_version(v, b)) #define WSM_VERSION_AF(wsm, v, b) (GET_WSM_VERSION(wsm) > wsm_version(v, b)) #define WSM_VERSION_EQ(wsm, v, b) (GET_WSM_VERSION(wsm) == wsm_version(v, b)) #define WSM_CAPS_2_4_GHZ(wsm) (wsm.firmwareCap & (1<<0)) #define WSM_CAPS_5_0_GHZ(wsm) (wsm.firmwareCap & (1<<1)) #define WSM_CAPS_11N_TO_11BG(wsm) (wsm.firmwareCap & (1<<5)) /* ******************************************************************** */ /* WSM commands */ struct wsm_tx_power_range { int min_power_level; int max_power_level; u32 stepping; }; /* 3.1 */ struct wsm_configuration { /* [in] */ u32 dot11MaxTransmitMsduLifeTime; /* [in] */ u32 dot11MaxReceiveLifeTime; /* [in] */ u32 dot11RtsThreshold; /* [in, out] */ u8 *dot11StationId; /* [in] */ const void *dpdData; /* [in] */ size_t dpdData_size; /* [out] */ u8 dot11FrequencyBandsSupported; /* [out] */ u32 supportedRateMask; /* [out] */ struct wsm_tx_power_range txPowerRange[2]; }; int wsm_configuration(struct xradio_common *hw_priv, struct wsm_configuration *arg, int if_id); /* 3.3 */ struct wsm_reset { /* [in] */ int link_id; /* [in] */ bool reset_statistics; }; int wsm_reset(struct xradio_common *hw_priv, const struct wsm_reset *arg, int if_id); void wsm_upper_restart(struct xradio_common *hw_priv); void wsm_query_work(struct work_struct *work); /* 3.5 */ int wsm_read_mib(struct xradio_common *hw_priv, u16 mibId, void *buf, size_t buf_size, size_t arg_size); /* 3.7 */ int wsm_write_mib(struct xradio_common *hw_priv, u16 mibId, void *buf, size_t buf_size, int if_id); /* 3.9 */ struct wsm_ssid { u8 ssid[32]; u32 length; }; struct wsm_scan_ch { u16 number; u32 minChannelTime; u32 maxChannelTime; u32 txPowerLevel; }; /* 3.13 */ struct wsm_scan_complete { /* WSM_STATUS_... */ u32 status; /* WSM_PSM_... */ u8 psm; /* Number of channels that the scan operation completed. */ u8 numChannels; #ifdef ROAM_OFFLOAD u16 reserved; #endif /*ROAM_OFFLOAD*/ }; typedef void (*wsm_scan_complete_cb) (struct xradio_common *hw_priv, struct wsm_scan_complete *arg); /* 3.9 */ #ifdef SUPPORT_HT40 #define SCANTYPE_MASK 0x03 #define SCANTYPE_SHIFT 6 #define SCANFLAG_MASK 0x3f static inline void SET_SCAN_TYPE(u8 *flag, u8 t) { *flag &= ~(SCANTYPE_MASK << SCANTYPE_SHIFT); *flag |= (t & SCANTYPE_MASK) << SCANTYPE_SHIFT; } static inline void SET_SCAN_FLAG(u8 *flag, u8 f) { *flag |= (f & SCANFLAG_MASK); } static inline void CLR_SCAN_FLAG(u8 *flag, u8 f) { *flag &= ~(f & SCANFLAG_MASK); } #endif #ifdef SUPPORT_HT40 struct wsm_scan { /* WSM_PHY_BAND_... */ /* [in] */ u8 band; /* bit7:6--WSM_SCAN_TYPE... */ /* bit5:0--WSM_SCAN_FLAG... */ /* [in] */ u8 scanFlags; /* WSM_TRANSMIT_RATE_... */ /* [in] */ u16 TransmitRateEntry; /* Interval period in TUs that the device shall the re- */ /* execute the requested scan. Max value supported by the device */ /* is 256s. */ /* [in] */ u32 autoScanInterval; /* Number of probe requests (per SSID) sent to one (1) */ /* channel. Zero (0) means that none is send, which */ /* means that a passive scan is to be done. Value */ /* greater than zero (0) means that an active scan is to */ /* be done. */ /* [in] */ u8 numOfProbeRequests; /* Number of channels to be scanned. */ /* Maximum value is WSM_SCAN_MAX_NUM_OF_CHANNELS. */ /* [in] */ u8 numOfChannels; /* Number of SSID provided in the scan command (this */ /* is zero (0) in broadcast scan) */ /* The maximum number of SSIDs is WSM_SCAN_MAX_NUM_OF_SSIDS. */ /* [in] */ u8 numOfSSIDs; /* The delay time (in microseconds) period */ /* before sending a probe-request. */ /* [in] */ u8 probeDelay; /* SSIDs to be scanned [numOfSSIDs]; */ /* [in] */ struct wsm_ssid *ssids; /* Channels to be scanned [numOfChannels]; */ /* [in] */ struct wsm_scan_ch *ch; }; #else struct wsm_scan { /* WSM_PHY_BAND_... */ /* [in] */ u8 band; /* WSM_SCAN_TYPE_... */ /* [in] */ u8 scanType; /* WSM_SCAN_FLAG_... */ /* [in] */ u8 scanFlags; /* WSM_TRANSMIT_RATE_... */ /* [in] */ u8 maxTransmitRate; /* Interval period in TUs that the device shall the re- */ /* execute the requested scan. Max value supported by the device */ /* is 256s. */ /* [in] */ u32 autoScanInterval; /* Number of probe requests (per SSID) sent to one (1) */ /* channel. Zero (0) means that none is send, which */ /* means that a passive scan is to be done. Value */ /* greater than zero (0) means that an active scan is to */ /* be done. */ /* [in] */ u32 numOfProbeRequests; /* Number of channels to be scanned. */ /* Maximum value is WSM_SCAN_MAX_NUM_OF_CHANNELS. */ /* [in] */ u8 numOfChannels; /* Number of SSID provided in the scan command (this */ /* is zero (0) in broadcast scan) */ /* The maximum number of SSIDs is WSM_SCAN_MAX_NUM_OF_SSIDS. */ /* [in] */ u8 numOfSSIDs; /* The delay time (in microseconds) period */ /* before sending a probe-request. */ /* [in] */ u8 probeDelay; /* SSIDs to be scanned [numOfSSIDs]; */ /* [in] */ struct wsm_ssid *ssids; /* Channels to be scanned [numOfChannels]; */ /* [in] */ struct wsm_scan_ch *ch; }; #endif int wsm_scan(struct xradio_common *hw_priv, const struct wsm_scan *arg, int if_id); /* 3.11 */ int wsm_stop_scan(struct xradio_common *hw_priv, int if_id); /* 3.14 */ #ifdef SUPPORT_HT40 struct wsm_tx_confirm { /* Packet identifier used in wsm_tx. */ /* [out] */ u32 packetID; /* WSM_STATUS_... */ /* [out] */ u32 status; /* WSM_TRANSMIT_RATE_... */ /* [out] */ u16 txedRateEntry; /* The number of times the frame was transmitted */ /* without receiving an acknowledgement. */ /* [out] */ u8 ackFailures; /* WSM_TX_STATUS_... */ /* [out] */ u8 flags; /* rate feed back */ /* [out] u32 rate_try[3]; */ u16 RateTry[6]; /* The total time in microseconds that the frame spent in */ /* the WLAN device before transmission as completed. */ /* [out] */ u32 mediaDelay; /* The total time in microseconds that the frame spent in */ /* the WLAN device before transmission was started. */ /* [out] */ u32 txQueueDelay; /* [out]*/ u32 link_id; /*[out]*/ int if_id; }; #else struct wsm_tx_confirm { /* Packet identifier used in wsm_tx. */ /* [out] */ u32 packetID; /* WSM_STATUS_... */ /* [out] */ u32 status; /* WSM_TRANSMIT_RATE_... */ /* [out] */ u8 txedRate; /* The number of times the frame was transmitted */ /* without receiving an acknowledgement. */ /* [out] */ u8 ackFailures; /* WSM_TX_STATUS_... */ /* [out] */ u16 flags; /*rate feed back*/ /* [out] */ u32 rate_try[3]; /* The total time in microseconds that the frame spent in */ /* the WLAN device before transmission as completed. */ /* [out] */ u32 mediaDelay; /* The total time in microseconds that the frame spent in */ /* the WLAN device before transmission was started. */ /* [out] */ u32 txQueueDelay; /* [out]*/ u32 link_id; /*[out]*/ int if_id; }; #endif /* 3.15 */ typedef void (*wsm_tx_confirm_cb) (struct xradio_common *hw_priv, struct wsm_tx_confirm *arg); /* Note that ideology of wsm_tx struct is different against the rest of * WSM API. wsm_hdr is /not/ a caller-adapted struct to be used as an input * argument for WSM call, but a prepared bytestream to be sent to firmware. * It is filled partly in xradio_tx, partly in low-level WSM code. * Please pay attention once again: ideology is different. * * Legend: * - [in]: xradio_tx must fill this field. * - [wsm]: the field is filled by low-level WSM. */ #ifdef SUPPORT_HT40 struct wsm_tx { /* common WSM header */ /* [in/wsm] */ struct wsm_hdr hdr; /* Packet identifier that meant to be used in completion. */ /* [in] */ __le32 packetID; /* WSM_QUEUE_... */ /* [in] */ u8 queueId; /* True: another packet is pending on the host for transmission. */ /* [wsm] */ u8 more; /* [in] */ u8 DataOffset; /* PTA Priority */ /* [in] */ u8 EptaPriority; /* WSM_TRANSMIT_RATE_... */ /* [in] */ u16 TxRateEntry; /* first rate entry. */ /* Tx Rate Retry Policy */ /* [in] */ u8 TxPolicyIndex; /* 0 - Start expiry time from first Tx attempt (default) */ /* 1 - Start expiry time from receipt of Tx Request */ /* [in] */ u8 ExpireTimeSetting; /* The elapsed time in TUs, after the initial transmission */ /* of an MSDU, after which further attempts to transmit */ /* the MSDU shall be terminated. Overrides the global */ /* dot11MaxTransmitMsduLifeTime setting [optional] */ /* Device will set the default value if this is 0. */ /* [wsm] */ __le32 expireTime; /* Should be 0. */ /* [in] */ __le32 reserved; }; #else struct wsm_tx { /* common WSM header */ /* [in/wsm] */ struct wsm_hdr hdr; /* Packet identifier that meant to be used in completion. */ /* [in] */ __le32 packetID; /* WSM_TRANSMIT_RATE_... */ /* [in] */ u8 maxTxRate; /* WSM_QUEUE_... */ /* [in] */ u8 queueId; /* True: another packet is pending on the host for transmission. */ /* [wsm] */ u8 more; /* Bit 0 = 0 - Start expiry time from first Tx attempt (default) */ /* Bit 0 = 1 - Start expiry time from receipt of Tx Request */ /* Bits 3:1 - PTA Priority */ /* Bits 6:4 - Tx Rate Retry Policy */ /* Bit 7 - Reserved */ /* [in] */ u8 flags; /* Should be 0. */ /* [in] */ __le32 reserved; /* The elapsed time in TUs, after the initial transmission */ /* of an MSDU, after which further attempts to transmit */ /* the MSDU shall be terminated. Overrides the global */ /* dot11MaxTransmitMsduLifeTime setting [optional] */ /* Device will set the default value if this is 0. */ /* [wsm] */ __le32 expireTime; /* WSM_HT_TX_... */ /* [in] */ __le32 htTxParameters; }; #endif /* = sizeof(generic hi hdr) + sizeof(wsm hdr) + sizeof(alignment) */ #define WSM_TX_EXTRA_HEADROOM (28) /* 3.16 */ struct wsm_rx { /* WSM_STATUS_... */ /* [out] */ u32 status; /* Specifies the channel of the received packet. */ /* [out] */ u16 channelNumber; #ifdef SUPPORT_HT40 /* WSM_TRANSMIT_RATE_... */ /* [out] */ u16 rxedRateEntry; u8 Reserved[3]; #else /* WSM_TRANSMIT_RATE_... */ /* [out] */ u8 rxedRate; #endif /* This value is expressed in signed Q8.0 format for */ /* RSSI and unsigned Q7.1 format for RCPI. */ /* [out] */ u8 rcpiRssi; /* WSM_RX_STATUS_... */ /* [out] */ u32 flags; /* An 802.11 frame. */ /* [out] */ void *frame; /* Size of the frame */ /* [out] */ size_t frame_size; /* Link ID */ /* [out] */ int link_id; /* [out] */ int if_id; }; /* = sizeof(generic hi hdr) + sizeof(wsm hdr) */ #define WSM_RX_EXTRA_HEADROOM (16) #ifdef USE_RSSI_OFFSET #define WSM_RSSI_OFFSET (-5) #endif typedef void (*wsm_rx_cb) (struct xradio_vif *priv, struct wsm_rx *arg, struct sk_buff **skb_p); /* 3.17 */ struct wsm_event { /* WSM_STATUS_... */ /* [out] */ u32 eventId; /* Indication parameters. */ /* For error indication, this shall be a 32-bit WSM status. */ /* For RCPI or RSSI indication, this should be an 8-bit */ /* RCPI or RSSI value. */ /* [out] */ u32 eventData; }; struct xradio_wsm_event { struct list_head link; struct wsm_event evt; u8 if_id; }; /* 3.18 - 3.22 */ /* Measurement. Skipped for now. Irrelevent. */ typedef void (*wsm_event_cb) (struct xradio_common *hw_priv, struct wsm_event *arg); /* 3.23 */ #ifdef SUPPORT_HT40 struct wsm_join { /* Phy Mode Configuraion */ /* [in] */struct phy_mode_cfg PhyModeCfg; /* Specifies the channel number to join. The channel */ /* number will be mapped to an actual frequency */ /* according to the band */ /* [in] */ u16 channelNumber; /* Specifies the BSSID of the BSS or IBSS to be joined */ /* or the IBSS to be started. */ /* [in] */ u8 bssid[6]; /* ATIM window of IBSS */ /* When ATIM window is zero the initiated IBSS does */ /* not support power saving. */ /* [in] */ u16 atimWindow; /* WSM_JOIN_MODE_... */ /* [in] */ u8 mode; /* Specifies if a probe request should be send with the */ /* specified SSID when joining to the network. */ /* [in] */ u8 probeForJoin; /* DTIM Period (In multiples of beacon interval) */ /* [in] */ u8 dtimPeriod; /* WSM_JOIN_FLAGS_... */ /* [in] */ u8 flags; /* Length of the SSID */ /* [in] */ u32 ssidLength; /* Specifies the SSID of the IBSS to join or start */ /* [in] */ u8 ssid[32]; /* Specifies the time between TBTTs in TUs */ /* [in] */ u32 beaconInterval; /* A bit mask that defines the BSS basic rate set. */ /* [in] */ u32 basicRateSet; /* Minimum transmission power level in units of 0.1dBm */ /* [out] */ int minPowerLevel; /* Maximum transmission power level in units of 0.1dBm */ /* [out] */ int maxPowerLevel; }; #else struct wsm_join { /* WSM_JOIN_MODE_... */ /* [in] */ u8 mode; /* WSM_PHY_BAND_... */ /* [in] */ u8 band; /* Specifies the channel number to join. The channel */ /* number will be mapped to an actual frequency */ /* according to the band */ /* [in] */ u16 channelNumber; /* Specifies the BSSID of the BSS or IBSS to be joined */ /* or the IBSS to be started. */ /* [in] */ u8 bssid[6]; /* ATIM window of IBSS */ /* When ATIM window is zero the initiated IBSS does */ /* not support power saving. */ /* [in] */ u16 atimWindow; /* WSM_JOIN_PREAMBLE_... */ /* [in] */ u8 preambleType; /* Specifies if a probe request should be send with the */ /* specified SSID when joining to the network. */ /* [in] */ u8 probeForJoin; /* DTIM Period (In multiples of beacon interval) */ /* [in] */ u8 dtimPeriod; /* WSM_JOIN_FLAGS_... */ /* [in] */ u8 flags; /* Length of the SSID */ /* [in] */ u32 ssidLength; /* Specifies the SSID of the IBSS to join or start */ /* [in] */ u8 ssid[32]; /* Specifies the time between TBTTs in TUs */ /* [in] */ u32 beaconInterval; /* A bit mask that defines the BSS basic rate set. */ /* [in] */ u32 basicRateSet; /* Minimum transmission power level in units of 0.1dBm */ /* [out] */ int minPowerLevel; /* Maximum transmission power level in units of 0.1dBm */ /* [out] */ int maxPowerLevel; }; #endif int wsm_join(struct xradio_common *hw_priv, struct wsm_join *arg, int if_id); /* 3.25 */ struct wsm_set_pm { /* WSM_PSM_... */ /* [in] */ u8 pmMode; /* in unit of 500us; 0 to use default */ /* [in] */ u8 fastPsmIdlePeriod; /* in unit of 500us; 0 to use default */ /* [in] */ u8 apPsmChangePeriod; /* in unit of 500us; 0 to disable auto-pspoll */ /* [in] */ u8 minAutoPsPollPeriod; }; int wsm_set_pm(struct xradio_common *hw_priv, const struct wsm_set_pm *arg, int if_id); /* 3.27 */ struct wsm_set_pm_complete { u8 psm; /* WSM_PSM_... */ }; typedef void (*wsm_set_pm_complete_cb) (struct xradio_common *hw_priv, struct wsm_set_pm_complete *arg); /* 3.28 */ struct wsm_set_bss_params { /* The number of lost consecutive beacons after which */ /* the WLAN device should indicate the BSS-Lost event */ /* to the WLAN host driver. */ u8 beaconLostCount; /* The AID received during the association process. */ u16 aid; /* The operational rate set mask */ u32 operationalRateSet; }; int wsm_set_bss_params(struct xradio_common *hw_priv, const struct wsm_set_bss_params *arg, int if_id); /* 3.30 */ struct wsm_add_key { u8 type; /* WSM_KEY_TYPE_... */ u8 entryIndex; /* Key entry index: 0 -- WSM_KEY_MAX_INDEX */ u16 reserved; union { struct { u8 peerAddress[6]; /* MAC address of the * peer station */ u8 reserved; u8 keyLength; /* Key length in bytes */ u8 keyData[16]; /* Key data */ } __packed wepPairwiseKey; struct { u8 keyId; /* Unique per key identifier * (0..3) */ u8 keyLength; /* Key length in bytes */ u16 reserved; u8 keyData[16]; /* Key data */ } __packed wepGroupKey; struct { u8 peerAddress[6]; /* MAC address of the * peer station */ u8 reserved[2]; u8 tkipKeyData[16]; /* TKIP key data */ u8 rxMicKey[8]; /* Rx MIC key */ u8 txMicKey[8]; /* Tx MIC key */ } __packed tkipPairwiseKey; struct { u8 tkipKeyData[16]; /* TKIP key data */ u8 rxMicKey[8]; /* Rx MIC key */ u8 keyId; /* Key ID */ u8 reserved[3]; u8 rxSeqCounter[8]; /* Receive Sequence Counter */ } __packed tkipGroupKey; struct { u8 peerAddress[6]; /* MAC address of the * peer station */ u16 reserved; u8 aesKeyData[16]; /* AES key data */ } __packed aesPairwiseKey; struct { u8 aesKeyData[16]; /* AES key data */ u8 keyId; /* Key ID */ u8 reserved[3]; u8 rxSeqCounter[8]; /* Receive Sequence Counter */ } __packed aesGroupKey; struct { u8 peerAddress[6]; /* MAC address of the * peer station */ u8 keyId; /* Key ID */ u8 reserved; u8 wapiKeyData[16]; /* WAPI key data */ u8 micKeyData[16]; /* MIC key data */ } __packed wapiPairwiseKey; struct { u8 wapiKeyData[16]; /* WAPI key data */ u8 micKeyData[16]; /* MIC key data */ u8 keyId; /* Key ID */ u8 reserved[3]; } __packed wapiGroupKey; } __packed; } __packed; int wsm_add_key(struct xradio_common *hw_priv, const struct wsm_add_key *arg, int if_id); /* 3.32 */ struct wsm_remove_key { /* Key entry index : 0-10 */ u8 entryIndex; }; int wsm_remove_key(struct xradio_common *hw_priv, const struct wsm_remove_key *arg, int if_id); /* 3.34 */ struct wsm_set_tx_queue_params { /* WSM_ACK_POLICY_... */ u8 ackPolicy; /* Medium Time of TSPEC (in 32us units) allowed per */ /* One Second Averaging Period for this queue. */ u16 allowedMediumTime; /* dot11MaxTransmitMsduLifetime to be used for the */ /* specified queue. */ u32 maxTransmitLifetime; }; struct wsm_tx_queue_params { /* NOTE: index is a linux queue id. */ struct wsm_set_tx_queue_params params[4]; }; #define WSM_TX_QUEUE_SET(queue_params, queue, ack_policy, allowed_time, \ max_life_time) \ do { \ struct wsm_set_tx_queue_params *p = &(queue_params)->params[queue]; \ p->ackPolicy = (ack_policy); \ p->allowedMediumTime = (allowed_time); \ p->maxTransmitLifetime = (max_life_time); \ } while (0) int wsm_set_tx_queue_params(struct xradio_common *hw_priv, const struct wsm_set_tx_queue_params *arg, u8 id, int if_id); /* 3.36 */ struct wsm_edca_queue_params { /* CWmin (in slots) for the access class. */ /* [in] */ u16 cwMin; /* CWmax (in slots) for the access class. */ /* [in] */ u16 cwMax; /* AIFS (in slots) for the access class. */ /* [in] */ u8 aifns; /* TX OP Limit (in microseconds) for the access class. */ /* [in] */ u16 txOpLimit; /* dot11MaxReceiveLifetime to be used for the specified */ /* the access class. Overrides the global */ /* dot11MaxReceiveLifetime value */ /* [in] */ u32 maxReceiveLifetime; /* UAPSD trigger support for the access class. */ /* [in] */ bool uapsdEnable; }; struct wsm_edca_params { /* NOTE: index is a linux queue id. */ struct wsm_edca_queue_params params[4]; }; #define TXOP_UNIT 32 #define WSM_EDCA_SET(edca, queue, aifs, cw_min, cw_max, txop, life_time,\ uapsd) \ do { \ struct wsm_edca_queue_params *p = &(edca)->params[queue]; \ p->cwMin = (cw_min); \ p->cwMax = (cw_max); \ p->aifns = (aifs); \ p->txOpLimit = ((txop) * TXOP_UNIT); \ p->maxReceiveLifetime = (life_time); \ p->uapsdEnable = (uapsd); \ } while (0) int wsm_set_edca_params(struct xradio_common *hw_priv, const struct wsm_edca_params *arg, int if_id); int wsm_set_uapsd_param(struct xradio_common *hw_priv, const struct wsm_edca_params *arg); /* 3.38 */ /* Set-System info. Skipped for now. Irrelevent. */ /* 3.40 */ struct wsm_switch_channel { /* 1 - means the STA shall not transmit any further */ /* frames until the channel switch has completed */ /* [in] */ u8 channelMode; /* Number of TBTTs until channel switch occurs. */ /* 0 - indicates switch shall occur at any time */ /* 1 - occurs immediately before the next TBTT */ /* [in] */ u8 channelSwitchCount; /* The new channel number to switch to. */ /* Note this is defined as per section 2.7. */ /* [in] */ u16 newChannelNumber; }; int wsm_switch_channel(struct xradio_common *hw_priv, const struct wsm_switch_channel *arg, int if_id); typedef void (*wsm_channel_switch_cb) (struct xradio_common *hw_priv); #ifdef SUPPORT_HT40 struct wsm_start { /* Phy Mode Configuraion */ /* [in] */ struct phy_mode_cfg PhyModeCfg; /* Channel number */ /* [in] */ u16 channelNumber; /* Client Traffic window in units of TU */ /* Valid only when mode == ..._P2P */ /* [in] */ u32 CTWindow; /* Interval between two consecutive */ /* beacon transmissions in TU. */ /* [in] */ u32 beaconInterval; /* WSM_START_MODE_... */ /* [in] */ u8 mode; /* DTIM period in terms of beacon intervals */ /* [in] */ u8 DTIMPeriod; /* The delay time (in microseconds) period */ /* before sending a probe-request. */ /* [in] */ u8 probeDelay; /* Length of the SSID */ /* [in] */ u8 ssidLength; /* SSID of the BSS or P2P_GO to be started now. */ /* [in] */ u8 ssid[32]; /* The basic supported rates for the MiniAP. */ /* [in] */ u32 basicRateSet; }; #else struct wsm_start { /* WSM_START_MODE_... */ /* [in] */ u8 mode; /* WSM_PHY_BAND_... */ /* [in] */ u8 band; /* Channel number */ /* [in] */ u16 channelNumber; /* Client Traffic window in units of TU */ /* Valid only when mode == ..._P2P */ /* [in] */ u32 CTWindow; /* Interval between two consecutive */ /* beacon transmissions in TU. */ /* [in] */ u32 beaconInterval; /* DTIM period in terms of beacon intervals */ /* [in] */ u8 DTIMPeriod; /* WSM_JOIN_PREAMBLE_... */ /* [in] */ u8 preambleType; /* The delay time (in microseconds) period */ /* before sending a probe-request. */ /* [in] */ u8 probeDelay; /* Length of the SSID */ /* [in] */ u8 ssidLength; /* SSID of the BSS or P2P_GO to be started now. */ /* [in] */ u8 ssid[32]; /* The basic supported rates for the MiniAP. */ /* [in] */ u32 basicRateSet; }; #endif int wsm_start(struct xradio_common *hw_priv, const struct wsm_start *arg, int if_id); #if 0 struct wsm_beacon_transmit { /* 1: enable; 0: disable */ /* [in] */ u8 enableBeaconing; }; int wsm_beacon_transmit(struct xradio_common *hw_priv, const struct wsm_beacon_transmit *arg, int if_id); #endif int wsm_start_find(struct xradio_common *hw_priv, int if_id); int wsm_stop_find(struct xradio_common *hw_priv, int if_id); typedef void (*wsm_find_complete_cb) (struct xradio_common *hw_priv, u32 status); struct wsm_suspend_resume { /* See 3.52 */ /* Link ID */ /* [out] */ int link_id; /* Stop sending further Tx requests down to device for this link */ /* [out] */ bool stop; /* Transmit multicast Frames */ /* [out] */ bool multicast; /* The AC on which Tx to be suspended /resumed. */ /* This is applicable only for U-APSD */ /* WSM_QUEUE_... */ /* [out] */ int queue; /* [out] */ int if_id; }; typedef void (*wsm_suspend_resume_cb) (struct xradio_vif *priv, struct wsm_suspend_resume *arg); /* 3.54 Update-IE request. */ struct wsm_update_ie { /* WSM_UPDATE_IE_... */ /* [in] */ u16 what; /* [in] */ u16 count; /* [in] */ u8 *ies; /* [in] */ size_t length; }; int wsm_update_ie(struct xradio_common *hw_priv, const struct wsm_update_ie *arg, int if_id); /* 3.56 */ struct wsm_map_link { /* MAC address of the remote device */ /* [in] */ u8 mac_addr[6]; /* [in] */ u8 unmap; /* [in] */ u8 link_id; }; int wsm_map_link(struct xradio_common *hw_priv, const struct wsm_map_link *arg, int if_id); struct wsm_cbc { wsm_scan_complete_cb scan_complete; wsm_tx_confirm_cb tx_confirm; wsm_rx_cb rx; wsm_event_cb event; wsm_set_pm_complete_cb set_pm_complete; wsm_channel_switch_cb channel_switch; wsm_find_complete_cb find_complete; wsm_suspend_resume_cb suspend_resume; }; #ifdef MCAST_FWDING /* 3.65 Give Buffer Request */ int wsm_init_release_buffer_request(struct xradio_common *priv); /* 3.65 fixed memory leakage*/ void wsm_deinit_release_buffer(struct xradio_common *hw_priv); /* 3.67 Request Buffer Request */ int wsm_request_buffer_request(struct xradio_vif *priv, u8 *arg); #endif /* ******************************************************************** */ /* MIB shortcats */ #define XR_RRM 1 #ifdef XR_RRM /*RadioResourceMeasurement*/ /* RadioResourceMeasurement Request*/ #define MEAS_CCA 0 #define MEAS_CHANNELLOAD 1 typedef struct LMAC_MEAS_CHANNEL_LOAD_PARAMS_S { u8 Reserved; u8 ChannelLoadCCA; u16 ChannelNum; u16 RandomInterval; u16 MeasurementDuration; u32 MeasurementStartTimel; u32 MeasurementStartTimeh; } LMAC_MEAS_CHANNEL_LOAD_PARAMS; #define MEAS_RPI 0 #define MEAS_IPI 1 typedef struct LMAC_MEAS_NOISE_HISTOGRAM_PARAMS_S { u8 Reserved; u8 IpiRpi; u16 ChannelNum; u16 RandomInterval; u16 MeasurementDuration; u32 MeasurementStartTimel; u32 MeasurementStartTimeh; } LMAC_MEAS_NOISE_HISTOGRAM_PARAMS; #define LMAC_MAX_SSIDS 16 #define LMAC_MAX_SSID_LENGTH 32 typedef struct LMAC_CHANNELS_S { u32 ChannelNum; u32 MinChannelTime; u32 MaxChannelTime; s32 TxPowerLevel; } LMAC_CHANNELS; typedef struct LMAC_SSIDS_S { u32 SSIDLength; u8 SSID[LMAC_MAX_SSID_LENGTH]; } LMAC_SSIDS; #ifdef SUPPORT_HT40 typedef struct LMAC_MEAS_BEACON_PARAMS_S { /*u8 RegulatoryClass;*/ /*u8 MeasurementMode;*/ /*u16 ChannelNum;*/ u16 RandomInterval; /*u16 MeasurementDuration;*/ /*u8 Bssid[6];*/ u16 Reserved; /*SCAN_PARAMETERS ScanParameters;*/ u8 Band; /* bit7:6--WSM_SCAN_TYPE... */ /* bit5:0--WSM_SCAN_FLAG... */ u8 ScanFlags; u16 TransmitRateEntry; u32 AutoScanInterval; u8 NumOfProbeRequests; u8 NumOfChannels; u8 NumOfSSIDs; u8 ProbeDelay; LMAC_CHANNELS Channels; LMAC_SSIDS Ssids; /*here for SCAN_PARAMETER sizing purposes*/ } LMAC_MEAS_BEACON_PARAMS; #else typedef struct LMAC_MEAS_BEACON_PARAMS_S { /*u8 RegulatoryClass;*/ /*u8 MeasurementMode;*/ /*u16 ChannelNum;*/ u16 RandomInterval; /*u16 MeasurementDuration;*/ /*u8 Bssid[6];*/ u16 Reserved; /*SCAN_PARAMETERS ScanParameters;*/ u8 Band; u8 ScanType; u8 ScanFlags; u8 MaxTransmitRate; u32 AutoScanInterval; u8 NumOfProbeRequests; u8 NumOfChannels; u8 NumOfSSIDs; u8 ProbeDelay; LMAC_CHANNELS Channels; LMAC_SSIDS Ssids; /*here for SCAN_PARAMETER sizing purposes*/ } LMAC_MEAS_BEACON_PARAMS; #endif typedef struct LMAC_MEAS_STA_STATS_PARAMS_S { u8 PeerMacAddress[6]; u16 RandomInterval; u16 MeasurementDuration; u8 GroupId; u8 Reserved; } LMAC_MEAS_STA_STATS_PARAMS; typedef struct LMAC_MEAS_LINK_MEASUREMENT_PARAMS_S { u8 Reserved[4]; } LMAC_MEAS_LINK_MEASUREMENT_PARAMS; typedef union LMAC_MEAS_REQUEST_U { LMAC_MEAS_CHANNEL_LOAD_PARAMS ChannelLoadParams; LMAC_MEAS_NOISE_HISTOGRAM_PARAMS NoisHistogramParams; LMAC_MEAS_BEACON_PARAMS BeaconParams; LMAC_MEAS_STA_STATS_PARAMS StaStatsParams; LMAC_MEAS_LINK_MEASUREMENT_PARAMS LinkMeasurementParams; } LMAC_MEAS_REQUEST; /* * This struct is a copy of WSM_HI_START_MEASUREMENT_REQ, * except that MsgLen and MsgId is not included. */ typedef struct MEASUREMENT_PARAMETERS_S { s32 TxPowerLevel; u8 DurationMandatory; u8 MeasurementType; u8 MeasurementRequestLength; u8 Reserved[5]; LMAC_MEAS_REQUEST MeasurementRequest; } MEASUREMENT_PARAMETERS; /* RadioResourceMeasurement Result*/ typedef struct LMAC_MEAS_CHANNEL_LOAD_RESULTS_S { u8 Reserved; u8 ChannelLoadCCA; u16 ChannelNum; u32 ActualMeasurementStartTimel; u32 ActualMeasurementStartTimeh; u16 MeasurementDuration; u8 CCAbusyFraction; u8 ChannelLoad; } LMAC_MEAS_CHANNEL_LOAD_RESULTS; typedef struct LMAC_MEAS_NOISE_HISTOGRAM_RESULTS_S { u16 Reserved; u16 ChannelNum; u32 ActualMeasurementStartTimel; u32 ActualMeasurementStartTimeh; u16 MeasurementDuration; u8 AntennaID; u8 IpiRpi; u8 PI_0_Density; u8 PI_1_Density; u8 PI_2_Density; u8 PI_3_Density; u8 PI_4_Density; u8 PI_5_Density; u8 PI_6_Density; u8 PI_7_Density; u8 PI_8_Density; u8 PI_9_Density; u8 PI_10_Density; u8 Reserved2; } LMAC_MEAS_NOISE_HISTOGRAM_RESULTS; #ifdef SUPPORT_HT40 typedef struct LMAC_MEAS_BEACON_RESULTS_S { u16 MeasurementDuration; u16 Reserved; u32 StartTsfl; u32 StartTsfh; u32 Durationl; u32 Durationh; /*SCAN_PARAMETERS ScanParameters;*/ u8 Band; /* bit7:6--WSM_SCAN_TYPE... */ /* bit5:0--WSM_SCAN_FLAG... */ u8 ScanFlags; u16 TransmitRateEntry; u32 AutoScanInterval; u8 NumOfProbeRequests; u8 NumOfChannels; u8 NumOfSSIDs; u8 ProbeDelay; LMAC_CHANNELS Channels; LMAC_SSIDS Ssids; } LMAC_MEAS_BEACON_RESULTS; #else typedef struct LMAC_MEAS_BEACON_RESULTS_S { u16 MeasurementDuration; u16 Reserved; u32 StartTsfl; u32 StartTsfh; u32 Durationl; u32 Durationh; /*SCAN_PARAMETERS ScanParameters;*/ u8 Band; u8 ScanType; u8 ScanFlags; u8 MaxTransmitRate; u32 AutoScanInterval; u8 NumOfProbeRequests; u8 NumOfChannels; u8 NumOfSSIDs; u8 ProbeDelay; LMAC_CHANNELS Channels; LMAC_SSIDS Ssids; } LMAC_MEAS_BEACON_RESULTS; #endif typedef struct LMAC_MEAS_STA_STATS_RESULTS_S { u16 MeasurementDuration; u8 GroupId; u8 StatisticsGroupDataLength; u8 StatisticsGroupData[52]; } LMAC_MEAS_STA_STATS_RESULTS; typedef struct LMAC_MEAS_LINK_MEASUREMENT_RESULTS_S { s16 TransmitPower; u8 RxAntennaID; u8 TxAntennaID; s32 NoiseLeveldBm; s8 LatestRssi; u8 Reserved1; u8 Reserved2; u8 Reserved3; } LMAC_MEAS_LINK_MEASUREMENT_RESULTS; typedef union LMAC_MEAS_REPORT_U { LMAC_MEAS_CHANNEL_LOAD_RESULTS ChannelLoadResults; LMAC_MEAS_NOISE_HISTOGRAM_RESULTS NoiseHistogramResults; LMAC_MEAS_BEACON_RESULTS BeaconResults; LMAC_MEAS_STA_STATS_RESULTS StaStatsResults; LMAC_MEAS_LINK_MEASUREMENT_RESULTS LinkMeasurementResults; } LMAC_MEAS_REPORT; /* * Note: eMeasurementTypes MUST match the * #define WSM_MEASURE_TYPE_XXX from wsm_api.h. */ typedef enum { ChannelLoadMeasurement = 0, NoiseHistrogramMeasurement, BeaconReport, STAstatisticsReport, LinkMeasurement } eMeasurementTypes; typedef struct MEASUREMENT_COMPLETE_S { /*u16 RandomInterval;*/ /*u16 Reserved0;*/ /* From here WSM_HI_MEASURE_CMPL_IND and * MEASUREMENT_COMPLETE_S must be identical. */ u8 Dot11PowerMgmtMode; u8 MeasurementType; /* Set to 1 if more indications are to follow * for this measurement, otherwise 0; */ u16 MoreInd; u32 Status; u8 MeasurementReportLength; u8 Reserved2[3]; LMAC_MEAS_REPORT MeasurementReport; } MEASUREMENT_COMPLETE; /*Note: must be 32 bit aligned*/ #endif int wsm_11k_measure_requset(struct xradio_common *hw_priv, u8 measure_type, u16 ChannelNum, u16 Duration); static inline int wsm_set_fw_debug_control(struct xradio_common *hw_priv, int debug_control, int if_id) { __le32 val = __cpu_to_le32(debug_control); return wsm_write_mib(hw_priv, WSM_MIB_ID_FW_DEBUG_CONTROL, &val, sizeof(val), if_id); } static inline int wsm_set_host_sleep(struct xradio_common *hw_priv, u8 host_sleep, int if_id) { return wsm_write_mib(hw_priv, WSM_MIB_ID_SET_HOST_SLEEP, &host_sleep, sizeof(host_sleep), if_id); } static inline int wsm_set_output_power(struct xradio_common *hw_priv, int power_level, int if_id) { __le32 val = __cpu_to_le32(power_level); return wsm_write_mib(hw_priv, WSM_MIB_ID_DOT11_CURRENT_TX_POWER_LEVEL, &val, sizeof(val), if_id); } static inline int wsm_set_beacon_wakeup_period(struct xradio_common *hw_priv, unsigned dtim_interval, unsigned listen_interval, int if_id) { struct { u8 numBeaconPeriods; u8 reserved; __le16 listenInterval; } val = { dtim_interval, 0, __cpu_to_le16(listen_interval)}; if (dtim_interval > 0xFF || listen_interval > 0xFFFF) return -EINVAL; else return wsm_write_mib(hw_priv, WSM_MIB_ID_BEACON_WAKEUP_PERIOD, &val, sizeof(val), if_id); } struct wsm_rcpi_rssi_threshold { u8 rssiRcpiMode; /* WSM_RCPI_RSSI_... */ u8 lowerThreshold; u8 upperThreshold; u8 rollingAverageCount; }; static inline int wsm_set_rcpi_rssi_threshold(struct xradio_common *hw_priv, struct wsm_rcpi_rssi_threshold *arg, int if_id) { return wsm_write_mib(hw_priv, WSM_MIB_ID_RCPI_RSSI_THRESHOLD, arg, sizeof(*arg), if_id); } struct wsm_counters_table { __le32 countPlcpErrors; __le32 countFcsErrors; __le32 countTxPackets; __le32 countRxPackets; __le32 countRxPacketErrors; __le32 countRtsSuccess; __le32 countRtsFailures; __le32 countRxFramesSuccess; __le32 countRxDecryptionFailures; __le32 countRxMicFailures; __le32 countRxNoKeyFailures; __le32 countTxMulticastFrames; __le32 countTxFramesSuccess; __le32 countTxFrameFailures; __le32 countTxFramesRetried; __le32 countTxFramesMultiRetried; __le32 countRxFrameDuplicates; __le32 countAckFailures; __le32 countRxMulticastFrames; __le32 countRxCMACICVErrors; __le32 countRxCMACReplays; __le32 countRxMgmtCCMPReplays; __le32 countRxBIPMICErrors; __le32 countAllBeacons; __le32 countScanBeacons; __le32 countScanProbeRsps; __le32 countOutChanBeacons; __le32 countOutChanProbeRsps; __le32 countBssBeacons; __le32 countHostBeacons; __le32 countMissBeacons; __le32 countDTIMBeacons; }; struct wsm_ampducounters_table { u32 countTxAMPDUs; u32 countTxMPDUsInAMPDUs; u32 countTxOctetsInAMPDUs_l32; u32 countTxOctetsInAMPDUs_h32; u32 countRxAMPDUs; u32 countRxMPDUsInAMPDUs; u32 countRxOctetsInAMPDUs_l32; u32 countRxOctetsInAMPDUs_h32; u32 countRxDelimeterCRCErrorCount; u32 countImplictBARFailures; u32 countExplictBARFailures; }; struct wsm_txpipe_counter { u32 count1; u32 count2; u32 count3; u32 count4; u32 count5; u32 count6; u32 count7; u32 count8; u32 count9; u32 counta; }; struct wsm_backoff_counter { u32 count0; u32 count1; u32 count2; u32 count3; u32 count4; u32 count5; u32 count6; u32 count7; u32 count8; u32 count9; }; #if (SUPPORT_EPTA) struct xradio_epta_bt_link_info { u8 link_id; u8 traffic_priority; u8 traffic_type; u8 master_or_slave; u8 curr_req_ongoing; u8 pad[3]; u32 time_diff_req_start; //refer to curr_req_ongoing u32 rt_si; u32 rt_sw; u32 msg_si; u32 msg_sw; u32 requests; u32 granted_requests; u32 bt_tx_retry_num; u32 bt_caton_num; } __packed; struct xradio_epta_wl_req_info { u32 cnt_win; u32 cnt_lose; u16 cnt_grant_med_ret; u16 cnt_grant_timeout; u16 cnt_abort_miss_rx; u16 cnt_abort_expired; u32 granted_time; u32 gr_used_time; } __packed; struct xradio_epta_stat { u16 msg_len; u16 msg_id; u32 status; u8 medium_state; u8 wlan_req_ongoing; u8 wlan_req_type; u8 wlan_req_priority; u32 wlan_req_request_dur; // u32 grant_or_wait_time; //refer to medium_state struct xradio_epta_wl_req_info wl_req_info[4]; u16 cnt_ex_grant_uapsd; u16 cnt_ex_abort_pspoll; u16 cnt_ex_abort_rx_bcn; u16 cnt_bt_abort; u16 cnt_bt_abort_tx; u16 cnt_bt_abort_tx_fix; // u8 pad1[2]; u32 nrt_wlan_quota_used; u32 nrt_bt_quota_used; u32 nrt_bt_requests; u32 nrt_bt_granted_requestd; u32 nrt_bt_granted_req_max_gap; u16 cnt_bt_tx_poll_pkt_req; u16 cnt_bt_tx_dm1_pkt_req; u16 cnt_bt_tx_br_pkt_req; u16 cnt_bt_tx_edr_pkt_req; u16 cnt_bt_tx_sco_pkt_req; u16 cnt_reserved; u8 num_active_rt_bt_links; u8 pad2[3]; struct xradio_epta_bt_link_info bt_link_info[7]; } __packed; extern struct xradio_epta_stat debug_epta_stat; #endif //SUPPORT_EPTA /*for read/write fw registers*/ #define WSM_REG_RW_F BIT(0) /*0:read, 1:write*/ #define WSM_REG_RET_F BIT(1) /*results is valid.*/ #define WSM_REG_BK_F BIT(4) /*operate in block mode.*/ struct reg_data { u32 reg_addr; u32 reg_val; }; typedef struct tag_wsm_reg_w { u16 flag; u16 data_size; struct reg_data arg[16]; } WSM_REG_W; typedef struct tag_wsm_reg_r { u16 flag; u16 data_size; u32 arg[16]; } WSM_REG_R; struct wsm_backoff_ctrl { u32 enable; u32 min; u32 max; }; struct wsm_tala_para { u32 para; u32 thresh; }; static inline int wsm_get_counters_table(struct xradio_common *hw_priv, struct wsm_counters_table *arg) { return wsm_read_mib(hw_priv, WSM_MIB_ID_COUNTERS_TABLE, arg, sizeof(*arg), 0); } static inline int wsm_get_ampducounters_table(struct xradio_common *hw_priv, struct wsm_ampducounters_table *arg) { return wsm_read_mib(hw_priv, WSM_MIB_ID_AMPDUCOUNTERS_TABLE, arg, sizeof(*arg), 0); } static inline int wsm_get_txpipe_table(struct xradio_common *hw_priv, struct wsm_txpipe_counter *arg) { return wsm_read_mib(hw_priv, WSM_MIB_ID_TXPIPE_TABLE, arg, sizeof(*arg), 0); } #if (SUPPORT_EPTA) static inline int wsm_get_epta_statistics(struct xradio_common *hw_priv, struct xradio_epta_stat *arg) { return wsm_read_mib(hw_priv, WSM_MIB_ID_EPTA_STAT, arg, sizeof(*arg), 0); } static inline int count_ones(int n) { int i = 0; while (n != 0) { i++; n = n & (n-1); } return i; } static inline int wsm_set_epta_stat_dbg_ctrl(struct xradio_common *hw_priv, int epta_stat_ctrl) { __le32 val = __cpu_to_le32(epta_stat_ctrl); return wsm_write_mib(hw_priv, WSM_MIB_ID_EPTA_STAT_CTRL, &val, sizeof(val), 0); } #endif static inline int wsm_get_backoff_dbg(struct xradio_common *hw_priv, struct wsm_backoff_counter *arg) { return wsm_read_mib(hw_priv, WSM_MIB_ID_BACKOFF_DBG, arg, sizeof(*arg), 0); } static inline int wsm_set_backoff_ctrl(struct xradio_common *hw_priv, struct wsm_backoff_ctrl *arg) { return wsm_write_mib(hw_priv, WSM_MIB_ID_BACKOFF_CTRL, arg, sizeof(*arg), 0); } static inline int wsm_set_tala(struct xradio_common *hw_priv, struct wsm_tala_para *arg) { return wsm_write_mib(hw_priv, WSM_MIB_ID_SET_TALA_PARA, arg, sizeof(*arg), 0); } static inline int wsm_get_station_id(struct xradio_common *hw_priv, u8 *mac) { return wsm_read_mib(hw_priv, WSM_MIB_ID_DOT11_STATION_ID, mac, ETH_ALEN, 0); } struct wsm_rx_filter { bool promiscuous; bool bssid; bool fcs; bool probeResponder; bool keepalive; }; static inline int wsm_set_rx_filter(struct xradio_common *hw_priv, const struct wsm_rx_filter *arg, int if_id) { __le32 val = 0; if (arg->promiscuous) val |= __cpu_to_le32(BIT(0)); if (arg->bssid) val |= __cpu_to_le32(BIT(1)); if (arg->fcs) val |= __cpu_to_le32(BIT(2)); if (arg->probeResponder) val |= __cpu_to_le32(BIT(3)); if (arg->keepalive) val |= __cpu_to_le32(BIT(4)); return wsm_write_mib(hw_priv, WSM_MIB_ID_RX_FILTER, &val, sizeof(val), if_id); } int wsm_set_probe_responder(struct xradio_vif *priv, bool enable); int wsm_set_keepalive_filter(struct xradio_vif *priv, bool enable); #define WSM_BEACON_FILTER_IE_HAS_CHANGED BIT(0) #define WSM_BEACON_FILTER_IE_NO_LONGER_PRESENT BIT(1) #define WSM_BEACON_FILTER_IE_HAS_APPEARED BIT(2) struct wsm_beacon_filter_table_entry { u8 ieId; u8 actionFlags; u8 oui[3]; u8 matchData[3]; } __packed; struct wsm_beacon_filter_table { __le32 numOfIEs; struct wsm_beacon_filter_table_entry entry[10]; } __packed; static inline int wsm_set_beacon_filter_table(struct xradio_common *hw_priv, struct wsm_beacon_filter_table *ft, int if_id) { size_t size = __le32_to_cpu(ft->numOfIEs) * sizeof(struct wsm_beacon_filter_table_entry) + sizeof(__le32); return wsm_write_mib(hw_priv, WSM_MIB_ID_BEACON_FILTER_TABLE, ft, size, if_id); } /* Enable/disable beacon filtering */ #define WSM_BEACON_FILTER_ENABLE BIT(0) /* If 1 FW will handle ERP IE changes internally */ #define WSM_BEACON_FILTER_AUTO_ERP BIT(1) #ifdef SUPPORT_HT40 #define WSM_BEACON_FILTER_AUTO_HT BIT(2) #endif struct wsm_beacon_filter_control { int enabled; int bcn_count; }; static inline int wsm_beacon_filter_control(struct xradio_common *hw_priv, struct wsm_beacon_filter_control *arg, int if_id) { struct { __le32 enabled; __le32 bcn_count; } val; val.enabled = __cpu_to_le32(arg->enabled); val.bcn_count = __cpu_to_le32(arg->bcn_count); return wsm_write_mib(hw_priv, WSM_MIB_ID_BEACON_FILTER_ENABLE, &val, sizeof(val), if_id); } enum wsm_power_mode { wsm_power_mode_active = 0, wsm_power_mode_doze = 1, wsm_power_mode_quiescent = 2, }; struct wsm_operational_mode { enum wsm_power_mode power_mode; int disableMoreFlagUsage; int performAntDiversity; }; #ifdef CONFIG_XRADIO_DEBUGFS extern u8 low_pwr_disable; #endif static inline int wsm_set_operational_mode(struct xradio_common *hw_priv, const struct wsm_operational_mode *arg, int if_id) { u32 val = arg->power_mode; #ifdef CONFIG_XRADIO_DEBUGFS if (low_pwr_disable) /*disable low_power mode.*/ val = wsm_power_mode_active; #endif if (arg->disableMoreFlagUsage) val |= BIT(4); if (arg->performAntDiversity) val |= BIT(5); return wsm_write_mib(hw_priv, WSM_MIB_ID_OPERATIONAL_POWER_MODE, &val, sizeof(val), if_id); } struct wsm_inactivity { u8 max_inactivity; u8 min_inactivity; }; static inline int wsm_set_inactivity(struct xradio_common *hw_priv, const struct wsm_inactivity *arg, int if_id) { struct { u8 min_inactive; u8 max_inactive; u16 reserved; } val; val.max_inactive = arg->max_inactivity; val.min_inactive = arg->min_inactivity; val.reserved = 0; return wsm_write_mib(hw_priv, WSM_MIB_ID_SET_INACTIVITY, &val, sizeof(val), if_id); } #ifdef SUPPORT_HT40 struct template_frame_hdr { u16 frame_type; u16 rate_entry; u32 frmlen; /* not include itself. */ }; #endif #ifdef SUPPORT_HT40 struct wsm_template_frame { u16 frame_type; u16 rate; bool disable; struct sk_buff *skb; }; #else struct wsm_template_frame { u8 frame_type; u8 rate; bool disable; struct sk_buff *skb; }; #endif #ifdef SUPPORT_HT40 static inline int wsm_set_template_frame(struct xradio_common *hw_priv, struct wsm_template_frame *arg, int if_id) { int ret; struct template_frame_hdr *tmp_hdr = NULL; tmp_hdr = (struct template_frame_hdr *) skb_push(arg->skb, sizeof(*tmp_hdr)); tmp_hdr->frame_type = arg->frame_type; tmp_hdr->rate_entry = arg->rate; if (arg->disable) tmp_hdr->frmlen = 0; else tmp_hdr->frmlen = __cpu_to_le32(arg->skb->len - sizeof(*tmp_hdr)); ret = wsm_write_mib(hw_priv, WSM_MIB_ID_TEMPLATE_FRAME, (void *)tmp_hdr, arg->skb->len, if_id); skb_pull(arg->skb, sizeof(*tmp_hdr)); return ret; } #else static inline int wsm_set_template_frame(struct xradio_common *hw_priv, struct wsm_template_frame *arg, int if_id) { int ret; u8 *p = skb_push(arg->skb, 4); p[0] = arg->frame_type; p[1] = arg->rate; if (arg->disable) ((u16 *) p)[1] = 0; else ((u16 *) p)[1] = __cpu_to_le16(arg->skb->len - 4); ret = wsm_write_mib(hw_priv, WSM_MIB_ID_TEMPLATE_FRAME, p, arg->skb->len, if_id); skb_pull(arg->skb, 4); return ret; } #endif struct wsm_protected_mgmt_policy { bool protectedMgmtEnable; bool unprotectedMgmtFramesAllowed; bool encryptionForAuthFrame; }; static inline int wsm_set_protected_mgmt_policy(struct xradio_common *hw_priv, struct wsm_protected_mgmt_policy *arg, int if_id) { __le32 val = 0; int ret; if (arg->protectedMgmtEnable) val |= __cpu_to_le32(BIT(0)); if (arg->unprotectedMgmtFramesAllowed) val |= __cpu_to_le32(BIT(1)); if (arg->encryptionForAuthFrame) val |= __cpu_to_le32(BIT(2)); ret = wsm_write_mib(hw_priv, WSM_MIB_ID_PROTECTED_MGMT_POLICY, &val, sizeof(val), if_id); return ret; } static inline int wsm_set_block_ack_policy(struct xradio_common *hw_priv, u8 blockAckTxTidPolicy, u8 blockAckRxTidPolicy, int if_id) { struct { u8 blockAckTxTidPolicy; u8 reserved1; u8 blockAckRxTidPolicy; u8 reserved2; } val = { .blockAckTxTidPolicy = blockAckTxTidPolicy, .blockAckRxTidPolicy = blockAckRxTidPolicy, }; return wsm_write_mib(hw_priv, WSM_MIB_ID_BLOCK_ACK_POLICY, &val, sizeof(val), if_id); } #ifdef SUPPORT_HT40 struct wsm_association_mode { u8 flags; /* WSM_ASSOCIATION_MODE_... */ /*u8 preambleType;*/ /* WSM_JOIN_PREAMBLE_... */ /*u8 greenfieldMode;*/ /* 1 for greenfield */ struct phy_mode_cfg PhyModeCfg; u8 mpduStartSpacing; __le32 basicRateSet; }; #else struct wsm_association_mode { u8 flags; /* WSM_ASSOCIATION_MODE_... */ u8 preambleType; /* WSM_JOIN_PREAMBLE_... */ u8 greenfieldMode; /* 1 for greenfield */ u8 mpduStartSpacing; __le32 basicRateSet; }; #endif static inline int wsm_set_association_mode(struct xradio_common *hw_priv, struct wsm_association_mode *arg, int if_id) { return wsm_write_mib(hw_priv, WSM_MIB_ID_SET_ASSOCIATION_MODE, arg, sizeof(*arg), if_id); } struct wsm_set_tx_rate_retry_policy_header { u8 numTxRatePolicies; u8 reserved[3]; } __packed; struct wsm_set_tx_rate_retry_policy_policy { u8 policyIndex; u8 shortRetryCount; u8 longRetryCount; u8 policyFlags; u8 rateRecoveryCount; u8 reserved[3]; #ifdef SUPPORT_HT40 /* [15,14]:ModemType, [13,12]:Bandwidth, [11,8]:FormatFlag, * [7,4]: RateIndex, [3:0]: MaxRetry*/ __le16 rate_entrys[MAX_RATES_STAGE]; #else __le32 rateCountIndices[3]; #endif } __packed; #ifdef SUPPORT_HT40 #define TX_POLICY_CACHE_SIZE (16) #else #define TX_POLICY_CACHE_SIZE (8) #endif struct wsm_set_tx_rate_retry_policy { struct wsm_set_tx_rate_retry_policy_header hdr; struct wsm_set_tx_rate_retry_policy_policy tbl[TX_POLICY_CACHE_SIZE]; } __packed; static inline int wsm_set_tx_rate_retry_policy(struct xradio_common *hw_priv, struct wsm_set_tx_rate_retry_policy *arg, int if_id) { size_t size = sizeof(struct wsm_set_tx_rate_retry_policy_header) + arg->hdr.numTxRatePolicies * sizeof(struct wsm_set_tx_rate_retry_policy_policy); return wsm_write_mib(hw_priv, WSM_MIB_ID_SET_TX_RATE_RETRY_POLICY, arg, size, if_id); } /* 4.32 SetEtherTypeDataFrameFilter */ struct wsm_ether_type_filter_hdr { u8 nrFilters; /* Up to WSM_MAX_FILTER_ELEMENTS */ u8 reserved[3]; } __packed; struct wsm_ether_type_filter { u8 filterAction; /* WSM_FILTER_ACTION_XXX */ u8 reserved; __le16 etherType; /* Type of ethernet frame */ } __packed; static inline int wsm_set_ether_type_filter(struct xradio_common *hw_priv, struct wsm_ether_type_filter_hdr *arg, int if_id) { size_t size = sizeof(struct wsm_ether_type_filter_hdr) + arg->nrFilters * sizeof(struct wsm_ether_type_filter); return wsm_write_mib(hw_priv, WSM_MIB_ID_SET_ETHERTYPE_DATAFRAME_FILTER, arg, size, if_id); } /* 4.33 SetUDPPortDataFrameFilter */ struct wsm_udp_port_filter_hdr { u8 nrFilters; /* Up to WSM_MAX_FILTER_ELEMENTS */ u8 reserved[3]; } __packed; struct wsm_udp_port_filter { u8 filterAction; /* WSM_FILTER_ACTION_XXX */ u8 portType; /* WSM_FILTER_PORT_TYPE_XXX */ __le16 udpPort; /* Port number */ } __packed; static inline int wsm_set_udp_port_filter(struct xradio_common *hw_priv, struct wsm_udp_port_filter_hdr *arg, int if_id) { size_t size = sizeof(struct wsm_udp_port_filter_hdr) + arg->nrFilters * sizeof(struct wsm_udp_port_filter); return wsm_write_mib(hw_priv, WSM_MIB_ID_SET_UDPPORT_DATAFRAME_FILTER, arg, size, if_id); } /* Undocumented MIBs: */ /* 4.35 P2PDeviceInfo */ #define D11_MAX_SSID_LEN (32) struct wsm_p2p_device_type { __le16 categoryId; u8 oui[4]; __le16 subCategoryId; } __packed; struct wsm_p2p_device_info { struct wsm_p2p_device_type primaryDevice; u8 reserved1[3]; u8 devNameSize; u8 localDevName[D11_MAX_SSID_LEN]; u8 reserved2[3]; u8 numSecDevSupported; struct wsm_p2p_device_type secondaryDevices[0]; } __packed; /* 4.36 SetWCDMABand - WO */ struct wsm_cdma_band { u8 WCDMA_Band; u8 reserved[3]; } __packed; /* 4.37 GroupTxSequenceCounter - RO */ struct wsm_group_tx_seq { __le32 bits_47_16; __le16 bits_15_00; __le16 reserved; } __packed; /* 4.39 SetHtProtection - WO */ #define WSM_DUAL_CTS_PROT_ENB (1 << 0) #define WSM_NON_GREENFIELD_STA (1 << 1) #define WSM_HT_PROT_MODE__NO_PROT (0 << 2) #define WSM_HT_PROT_MODE__NON_MEMBER (1 << 2) #define WSM_HT_PROT_MODE__20_MHZ (2 << 2) #define WSM_HT_PROT_MODE__NON_HT_MIXED (3 << 2) #define WSM_LSIG_TXOP_PROT_FULL (1 << 4) #define WSM_LARGE_L_LENGTH_PROT (1 << 5) struct wsm_ht_protection { __le32 flags; } __packed; /* 4.40 GPIO Command - R/W */ #define WSM_GPIO_COMMAND_SETUP 0 #define WSM_GPIO_COMMAND_READ 1 #define WSM_GPIO_COMMAND_WRITE 2 #define WSM_GPIO_COMMAND_RESET 3 #define WSM_GPIO_ALL_PINS 0xFF struct wsm_gpio_command { u8 GPIO_Command; u8 pin; __le16 config; } __packed; /* 4.41 TSFCounter - RO */ struct wsm_tsf_counter { __le64 TSF_Counter; } __packed; /* 4.43 Keep alive period */ struct wsm_keep_alive_period { __le16 keepAlivePeriod; u8 reserved[2]; } __packed; static inline int wsm_keep_alive_period(struct xradio_common *hw_priv, int period, int if_id) { struct wsm_keep_alive_period arg = { .keepAlivePeriod = __cpu_to_le16(period), }; return wsm_write_mib(hw_priv, WSM_MIB_ID_KEEP_ALIVE_PERIOD, &arg, sizeof(arg), if_id); }; /* BSSID filtering */ struct wsm_set_bssid_filtering { u8 filter; u8 reserved[3]; } __packed; static inline int wsm_set_bssid_filtering(struct xradio_common *hw_priv, bool enabled, int if_id) { struct wsm_set_bssid_filtering arg = { .filter = !enabled, }; return wsm_write_mib(hw_priv, WSM_MIB_ID_DISABLE_BSSID_FILTER, &arg, sizeof(arg), if_id); } /* Multicat filtering - 4.5 */ struct wsm_multicast_filter { __le32 enable; __le32 numOfAddresses; u8 macAddress[WSM_MAX_GRP_ADDRTABLE_ENTRIES][ETH_ALEN]; } __packed; /* Mac Addr Filter Info */ struct wsm_mac_addr_info { u8 filter_mode; u8 address_mode; u8 MacAddr[6]; } __packed; /* Mac Addr Filter */ struct wsm_mac_addr_filter { u8 numfilter; u8 action_mode; u8 Reserved[2]; struct wsm_mac_addr_info macaddrfilter[0]; } __packed; /* Broadcast Addr Filter */ struct wsm_broadcast_addr_filter { u8 action_mode; u8 nummacaddr; u8 filter_mode; u8 address_mode; u8 MacAddr[6]; } __packed; static inline int wsm_set_multicast_filter(struct xradio_common *hw_priv, struct wsm_multicast_filter *fp, int if_id) { return wsm_write_mib(hw_priv, WSM_MIB_ID_DOT11_GROUP_ADDRESSES_TABLE, fp, sizeof(*fp), if_id); } /* ARP IPv4 filtering - 4.10 */ struct wsm_arp_ipv4_filter { __le32 enable; __be32 ipv4Address[WSM_MAX_ARP_IP_ADDRTABLE_ENTRIES]; } __packed; #ifdef IPV6_FILTERING /* NDP IPv6 filtering */ struct wsm_ndp_ipv6_filter { __le32 enable; struct in6_addr ipv6Address[WSM_MAX_NDP_IP_ADDRTABLE_ENTRIES]; } __packed; /* IPV6 Addr Filter Info */ struct wsm_ip6_addr_info { u8 filter_mode; u8 address_mode; u8 Reserved[2]; u8 ipv6[16]; }; /* IPV6 Addr Filter */ struct wsm_ipv6_filter { u8 numfilter; u8 action_mode; u8 Reserved[2]; struct wsm_ip6_addr_info ipv6filter[0]; } __packed; #endif /*IPV6_FILTERING*/ static inline int wsm_set_arp_ipv4_filter(struct xradio_common *hw_priv, struct wsm_arp_ipv4_filter *fp, int if_id) { return wsm_write_mib(hw_priv, WSM_MIB_ID_ARP_IP_ADDRESSES_TABLE, fp, sizeof(*fp), if_id); } #ifdef IPV6_FILTERING static inline int wsm_set_ndp_ipv6_filter(struct xradio_common *priv, struct wsm_ndp_ipv6_filter *fp, int if_id) { return wsm_write_mib(priv, WSM_MIB_ID_NS_IP_ADDRESSES_TABLE, fp, sizeof(*fp), if_id); } #endif /*IPV6_FILTERING*/ /* P2P Power Save Mode Info - 4.31 */ struct wsm_p2p_ps_modeinfo { u8 oppPsCTWindow; u8 count; u8 reserved; u8 dtimCount; __le32 duration; __le32 interval; __le32 startTime; } __packed; static inline int wsm_set_p2p_ps_modeinfo(struct xradio_common *hw_priv, struct wsm_p2p_ps_modeinfo *mi, int if_id) { return wsm_write_mib(hw_priv, WSM_MIB_ID_P2P_PS_MODE_INFO, mi, sizeof(*mi), if_id); } static inline int wsm_get_p2p_ps_modeinfo(struct xradio_common *hw_priv, struct wsm_p2p_ps_modeinfo *mi) { return wsm_read_mib(hw_priv, WSM_MIB_ID_P2P_PS_MODE_INFO, mi, sizeof(*mi), 0); } /* UseMultiTxConfMessage */ static inline int wsm_use_multi_tx_conf(struct xradio_common *hw_priv, u32 enable, int if_id) { __le32 arg = enable; return wsm_write_mib(hw_priv, WSM_MIB_USE_MULTI_TX_CONF, &arg, sizeof(arg), if_id); } /* 4.26 SetUpasdInformation */ struct wsm_uapsd_info { __le16 uapsdFlags; __le16 minAutoTriggerInterval; __le16 maxAutoTriggerInterval; __le16 autoTriggerStep; }; static inline int wsm_set_uapsd_info(struct xradio_common *hw_priv, struct wsm_uapsd_info *arg, int if_id) { /* TODO:COMBO:UAPSD will be supported only on one interface */ return wsm_write_mib(hw_priv, WSM_MIB_ID_SET_UAPSD_INFORMATION, arg, sizeof(*arg), if_id); } /* 4.22 OverrideInternalTxRate */ #ifdef SUPPORT_HT40 struct wsm_override_internal_txrate { u16 internalTxRateEntry; u16 nonErpInterTxRateEntry; } __packed; #else struct wsm_override_internal_txrate { u8 internalTxRate; u8 nonErpInternalTxRate; u8 reserved[2]; } __packed; #endif static inline int wsm_set_override_internal_txrate(struct xradio_common *hw_priv, struct wsm_override_internal_txrate *arg, int if_id) { return wsm_write_mib(hw_priv, WSM_MIB_ID_OVERRIDE_INTERNAL_TX_RATE, arg, sizeof(*arg), if_id); } #ifdef MCAST_FWDING /* 4.51 SetForwardingOffload */ struct wsm_forwarding_offload { u8 fwenable; u8 flags; u8 reserved[2]; } __packed; static inline int wsm_set_forwarding_offlad(struct xradio_common *hw_priv, struct wsm_forwarding_offload *arg, int if_id) { return wsm_write_mib(hw_priv, WSM_MIB_ID_FORWARDING_OFFLOAD, arg, sizeof(*arg), if_id); } #endif /* ******************************************************************** */ /* WSM TX port control */ void wsm_lock_tx(struct xradio_common *hw_priv); void wsm_vif_lock_tx(struct xradio_vif *priv); void wsm_lock_tx_async(struct xradio_common *hw_priv); bool wsm_flush_tx(struct xradio_common *hw_priv); bool wsm_vif_flush_tx(struct xradio_vif *priv); void wsm_unlock_tx(struct xradio_common *hw_priv); /* ******************************************************************** */ /* WSM / BH API */ int wsm_handle_exception(struct xradio_common *hw_priv, u8 *data, size_t len); int wsm_handle_rx(struct xradio_common *hw_priv, u8 flags, struct sk_buff **skb_p); void wsm_send_deauth_to_self(struct xradio_common *hw_priv, struct xradio_vif *priv); void wsm_send_disassoc_to_self(struct xradio_common *hw_priv, struct xradio_vif *priv); /* ******************************************************************** */ /* wsm_buf API */ struct wsm_buf { u8 *begin; u8 *data; u8 *end; }; void wsm_buf_init(struct wsm_buf *buf, int size); void wsm_buf_deinit(struct wsm_buf *buf); /* ******************************************************************** */ /* wsm_cmd API */ struct wsm_cmd { spinlock_t lock; int done; u8 *ptr; size_t len; void *arg; int ret; u16 cmd; u16 seq; }; /* ******************************************************************** */ /* WSM TX buffer access */ int wsm_get_tx(struct xradio_common *hw_priv, u8 **data, size_t *tx_len, int *burst, int *vif_selected); void wsm_txed(struct xradio_common *hw_priv, u8 *data); /* ******************************************************************** */ /* Queue mapping: WSM <---> linux */ /* Linux: VO VI BE BK */ /* WSM: BE BK VI VO */ static inline u8 wsm_queue_id_to_linux(u8 queueId) { static const u8 queue_mapping[] = { 2, 3, 1, 0 }; return queue_mapping[queueId]; } static inline u8 wsm_queue_id_to_wsm(u8 queueId) { static const u8 queue_mapping[] = { 3, 2, 0, 1 }; return queue_mapping[queueId]; } #endif /* XRADIO_HWIO_H_INCLUDED */