/* * Test code implementation for XRadio drivers * * Copyright (c) 2013 * Xradio Technology Co., Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include "xradio.h" #include "itp.h" #include "sta.h" static int __xradio_itp_open(struct xradio_common *priv); static int __xradio_itp_close(struct xradio_common *priv); static void xradio_itp_rx_start(struct xradio_common *priv); static void xradio_itp_rx_stop(struct xradio_common *priv); static void xradio_itp_rx_stats(struct xradio_common *priv); static void xradio_itp_rx_reset(struct xradio_common *priv); static void xradio_itp_tx_stop(struct xradio_common *priv); static void xradio_itp_handle(struct xradio_common *priv, struct sk_buff *skb); static void xradio_itp_err(struct xradio_common *priv, int err, int arg); static void __xradio_itp_tx_stop(struct xradio_common *priv); static ssize_t xradio_itp_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct xradio_common *priv = file->private_data; struct xradio_itp *itp = &priv->debug->itp; struct sk_buff *skb; int ret; if (skb_queue_empty(&itp->log_queue)) return 0; skb = skb_dequeue(&itp->log_queue); ret = copy_to_user(user_buf, skb->data, skb->len); *ppos += skb->len; skb->data[skb->len] = 0; itp_printk(XRADIO_DBG_MSG, "[ITP] >>> %s", skb->data); consume_skb(skb); return skb->len - ret; } static ssize_t xradio_itp_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct xradio_common *priv = file->private_data; struct sk_buff *skb; if (!count || count > 1024) return -EINVAL; skb = xr_alloc_skb(count + 1); if (!skb) return -ENOMEM; skb_trim(skb, 0); skb_put(skb, count + 1); if (copy_from_user(skb->data, user_buf, count)) { kfree_skb(skb); return -EFAULT; } skb->data[count] = 0; xradio_itp_handle(priv, skb); consume_skb(skb); return count; } static unsigned int xradio_itp_poll(struct file *file, poll_table *wait) { struct xradio_common *priv = file->private_data; struct xradio_itp *itp = &priv->debug->itp; unsigned int mask = 0; poll_wait(file, &itp->read_wait, wait); if (!skb_queue_empty(&itp->log_queue)) mask |= POLLIN | POLLRDNORM; mask |= POLLOUT | POLLWRNORM; return mask; } static int xradio_itp_open(struct inode *inode, struct file *file) { struct xradio_common *priv = inode->i_private; struct xradio_itp *itp = &priv->debug->itp; int ret = 0; file->private_data = priv; if (atomic_inc_return(&itp->open_count) == 1) { ret = __xradio_itp_open(priv); if (ret && !atomic_dec_return(&itp->open_count)) __xradio_itp_close(priv); } else { atomic_dec(&itp->open_count); ret = -EBUSY; } return ret; } static int xradio_itp_close(struct inode *inode, struct file *file) { struct xradio_common *priv = file->private_data; struct xradio_itp *itp = &priv->debug->itp; if (!atomic_dec_return(&itp->open_count)) { __xradio_itp_close(priv); wake_up(&itp->close_wait); } return 0; } static const struct file_operations fops_itp = { .open = xradio_itp_open, .read = xradio_itp_read, .write = xradio_itp_write, .poll = xradio_itp_poll, .release = xradio_itp_close, .llseek = default_llseek, .owner = THIS_MODULE, }; static void xradio_itp_fill_pattern(u8 *data, int size, enum xradio_itp_data_modes mode) { u8 *p = data; if (size <= 0) return; switch (mode) { default: case ITP_DATA_ZEROS: memset(data, 0x0, size); break; case ITP_DATA_ONES: memset(data, 0xff, size); break; case ITP_DATA_ZERONES: memset(data, 0x55, size); break; case ITP_DATA_RANDOM: while (p < data+size-sizeof(u32)) { (*(u32 *)p) = random32(); p += sizeof(u32); } while (p < data+size) { (*p) = random32() & 0xFF; p++; } break; } return; } static void xradio_itp_tx_work(struct work_struct *work) { struct xradio_itp *itp = container_of(work, struct xradio_itp, tx_work.work); struct xradio_common *priv = itp->priv; atomic_set(&priv->bh_tx, 1); #ifdef BH_USE_SEMAPHORE up(&priv->bh_sem); #else wake_up(&priv->bh_wq); #endif } static void xradio_itp_tx_finish(struct work_struct *work) { struct xradio_itp *itp = container_of(work, struct xradio_itp, tx_finish.work); __xradio_itp_tx_stop(itp->priv); } int xradio_itp_init(struct xradio_common *priv) { struct xradio_itp *itp = &priv->debug->itp; itp->priv = priv; atomic_set(&itp->open_count, 0); atomic_set(&itp->stop_tx, 0); atomic_set(&itp->awaiting_confirm, 0); skb_queue_head_init(&itp->log_queue); spin_lock_init(&itp->tx_lock); init_waitqueue_head(&itp->read_wait); init_waitqueue_head(&itp->write_wait); init_waitqueue_head(&itp->close_wait); INIT_DELAYED_WORK(&itp->tx_work, xradio_itp_tx_work); INIT_DELAYED_WORK(&itp->tx_finish, xradio_itp_tx_finish); itp->data = NULL; itp->hdr_len = WSM_TX_EXTRA_HEADROOM + sizeof(struct ieee80211_hdr_3addr); itp->id = 0; if (!debugfs_create_file("itp", S_IRUSR | S_IWUSR, priv->debug->debugfs_phy, priv, &fops_itp)) return -ENOMEM; return 0; } void xradio_itp_release(struct xradio_common *priv) { struct xradio_itp *itp = &priv->debug->itp; wait_event_interruptible(itp->close_wait, !atomic_read(&itp->open_count)); SYS_WARN(atomic_read(&itp->open_count)); skb_queue_purge(&itp->log_queue); xradio_itp_tx_stop(priv); } static int __xradio_itp_open(struct xradio_common *priv) { struct xradio_itp *itp = &priv->debug->itp; if (!priv->vif) return -EINVAL; if (priv->join_status) return -EINVAL; itp->saved_channel = priv->channel; if (!priv->channel) priv->channel = &priv->hw-> wiphy->bands[NL80211_BAND_2GHZ]->channels[0]; wsm_set_bssid_filtering(priv, false); xradio_itp_rx_reset(priv); return 0; } static int __xradio_itp_close(struct xradio_common *priv) { struct xradio_itp *itp = &priv->debug->itp; if (atomic_read(&itp->test_mode) == TEST_MODE_RX_TEST) xradio_itp_rx_stop(priv); xradio_itp_tx_stop(priv); xradio_disable_listening(priv); xradio_update_filtering(priv); priv->channel = itp->saved_channel; return 0; } bool xradio_is_itp(struct xradio_common *priv) { struct xradio_itp *itp = &priv->debug->itp; return atomic_read(&itp->open_count) != 0; } static void xradio_itp_rx_reset(struct xradio_common *priv) { struct xradio_itp *itp = &priv->debug->itp; itp->rx_cnt = 0; itp->rx_rssi = 0; itp->rx_rssi_max = -1000; itp->rx_rssi_min = 1000; } static void xradio_itp_rx_start(struct xradio_common *priv) { struct xradio_itp *itp = &priv->debug->itp; itp_printk(XRADIO_DBG_MSG, "[ITP] RX start, band = %d, ch = %d\n", itp->band, itp->ch); atomic_set(&itp->test_mode, TEST_MODE_RX_TEST); xradio_disable_listening(priv, false); priv->channel = &priv->hw-> wiphy->bands[itp->band]->channels[itp->ch]; xradio_enable_listening(priv, priv->channel); wsm_set_bssid_filtering(priv, false); } static void xradio_itp_rx_stop(struct xradio_common *priv) { struct xradio_itp *itp = &priv->debug->itp; itp_printk(XRADIO_DBG_MSG, "[ITP] RX stop\n"); atomic_set(&itp->test_mode, TEST_MODE_NO_TEST); xradio_itp_rx_reset(priv); } static void xradio_itp_rx_stats(struct xradio_common *priv) { struct xradio_itp *itp = &priv->debug->itp; struct sk_buff *skb; char buf[128]; int len, ret; struct wsm_counters_table counters; ret = wsm_get_counters_table(priv, &counters); if (ret) xradio_itp_err(priv, -EBUSY, 20); if (!itp->rx_cnt) len = snprintf(buf, sizeof(buf), "1,0,0,0,0,%d\n", counters.countRxPacketErrors); else len = snprintf(buf, sizeof(buf), "1,%d,%ld,%d,%d,%d\n", itp->rx_cnt, itp->rx_cnt ? itp->rx_rssi / itp->rx_cnt : 0, itp->rx_rssi_min, itp->rx_rssi_max, counters.countRxPacketErrors); if (len <= 0) { xradio_itp_err(priv, -EBUSY, 21); return; } skb = xr_alloc_skb(len); if (!skb) { xradio_itp_err(priv, -ENOMEM, 22); return; } itp->rx_cnt = 0; itp->rx_rssi = 0; itp->rx_rssi_max = -1000; itp->rx_rssi_min = 1000; skb_trim(skb, 0); skb_put(skb, len); memcpy(skb->data, buf, len); skb_queue_tail(&itp->log_queue, skb); wake_up(&itp->read_wait); } static void xradio_itp_tx_start(struct xradio_common *priv) { struct wsm_tx *tx; struct ieee80211_hdr_3addr *hdr; struct xradio_itp *itp = &priv->debug->itp; struct wsm_association_mode assoc_mode = { .flags = WSM_ASSOCIATION_MODE_USE_PREAMBLE_TYPE, .preambleType = itp->preamble, }; int len; u8 da_addr[6] = ITP_DEFAULT_DA_ADDR; /* Rates index 4 and 5 are not supported */ if (itp->rate > 3) itp->rate += 2; itp_printk(XRADIO_DBG_MSG, "[ITP] TX start: band = %d, ch = %d, rate = %d," " preamble = %d, number = %d, data_mode = %d," " interval = %d, power = %d, data_len = %d\n", itp->band, itp->ch, itp->rate, itp->preamble, itp->number, itp->data_mode, itp->interval_us, itp->power, itp->data_len); len = itp->hdr_len + itp->data_len; itp->data = xr_kmalloc(len, false); tx = (struct wsm_tx *)itp->data; tx->hdr.len = itp->data_len + itp->hdr_len; tx->hdr.id = __cpu_to_le16(0x0004 | 1 << 6); tx->maxTxRate = itp->rate; tx->queueId = 3; tx->more = 0; tx->flags = 0xc; tx->packetID = 0; tx->reserved = 0; tx->expireTime = 0; if (itp->preamble == ITP_PREAMBLE_GREENFIELD) tx->htTxParameters = WSM_HT_TX_GREENFIELD; else if (itp->preamble == ITP_PREAMBLE_MIXED) tx->htTxParameters = WSM_HT_TX_MIXED; hdr = (struct ieee80211_hdr_3addr *)&itp->data[sizeof(struct wsm_tx)]; memset(hdr, 0, sizeof(*hdr)); hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_FCTL_TODS); memcpy(hdr->addr1, da_addr, ETH_ALEN); memcpy(hdr->addr2, priv->vif->addr, ETH_ALEN); memcpy(hdr->addr3, da_addr, ETH_ALEN); xradio_itp_fill_pattern(&itp->data[itp->hdr_len], itp->data_len, itp->data_mode); xradio_disable_listening(priv); priv->channel = &priv->hw-> wiphy->bands[itp->band]->channels[itp->ch]; SYS_WARN(wsm_set_output_power(priv, itp->power)); if (itp->preamble == ITP_PREAMBLE_SHORT || itp->preamble == ITP_PREAMBLE_LONG) SYS_WARN(wsm_set_association_mode(priv, &assoc_mode)); wsm_set_bssid_filtering(priv, false); xradio_enable_listening(priv, priv->channel); spin_lock_bh(&itp->tx_lock); atomic_set(&itp->test_mode, TEST_MODE_TX_TEST); atomic_set(&itp->awaiting_confirm, 0); atomic_set(&itp->stop_tx, 0); atomic_set(&priv->bh_tx, 1); ktime_get_ts(&itp->last_sent); #ifdef BH_USE_SEMAPHORE up(&priv->bh_sem); #else wake_up(&priv->bh_wq); #endif spin_unlock_bh(&itp->tx_lock); } void __xradio_itp_tx_stop(struct xradio_common *priv) { struct xradio_itp *itp = &priv->debug->itp; spin_lock_bh(&itp->tx_lock); kfree(itp->data); itp->data = NULL; atomic_set(&itp->test_mode, TEST_MODE_NO_TEST); spin_unlock_bh(&itp->tx_lock); } static void xradio_itp_tx_stop(struct xradio_common *priv) { struct xradio_itp *itp = &priv->debug->itp; itp_printk(XRADIO_DBG_MSG, "[ITP] TX stop\n"); atomic_set(&itp->stop_tx, 1); flush_workqueue(priv->workqueue); flush_workqueue(priv->spare_workqueue); /* time for FW to confirm all tx requests */ msleep(500); __xradio_itp_tx_stop(priv); } static void xradio_itp_get_version(struct xradio_common *priv, enum xradio_itp_version_type type) { struct xradio_itp *itp = &priv->debug->itp; struct sk_buff *skb; char buf[ITP_BUF_SIZE]; size_t size = 0; int len; itp_printk(XRADIO_DBG_MSG, "[ITP] print %s version\n", type == ITP_CHIP_ID ? "chip" : "firmware"); len = snprintf(buf, ITP_BUF_SIZE, "2,"); if (len <= 0) { xradio_itp_err(priv, -EINVAL, 40); return; } size += len; switch (type) { case ITP_CHIP_ID: len = xradio_print_fw_version(priv, buf+size, ITP_BUF_SIZE - size); if (len <= 0) { xradio_itp_err(priv, -EINVAL, 41); return; } size += len; break; case ITP_FW_VER: len = snprintf(buf+size, ITP_BUF_SIZE - size, "%d.%d", priv->wsm_caps.hardwareId, priv->wsm_caps.hardwareSubId); if (len <= 0) { xradio_itp_err(priv, -EINVAL, 42); return; } size += len; break; default: xradio_itp_err(priv, -EINVAL, 43); break; } len = snprintf(buf+size, ITP_BUF_SIZE-size, "\n"); if (len <= 0) { xradio_itp_err(priv, -EINVAL, 44); return; } size += len; skb = xr_alloc_skb(size); if (!skb) { xradio_itp_err(priv, -ENOMEM, 45); return; } skb_trim(skb, 0); skb_put(skb, size); memcpy(skb->data, buf, size); skb_queue_tail(&itp->log_queue, skb); wake_up(&itp->read_wait); } int xradio_itp_get_tx(struct xradio_common *priv, u8 **data, size_t *tx_len, int *burst) { struct xradio_itp *itp; struct wsm_tx *tx; struct timespec now; int time_left_us; if (!priv->debug) return 0; itp = &priv->debug->itp; if (!itp) return 0; spin_lock_bh(&itp->tx_lock); if (atomic_read(&itp->test_mode) != TEST_MODE_TX_TEST) goto out; if (atomic_read(&itp->stop_tx)) goto out; if (itp->number == 0) { atomic_set(&itp->stop_tx, 1); queue_delayed_work(priv->workqueue, &itp->tx_finish, HZ/10); goto out; } if (!itp->data) goto out; if (priv->hw_bufs_used >= 2) { if (!atomic_read(&priv->bh_rx)) atomic_set(&priv->bh_rx, 1); atomic_set(&priv->bh_tx, 1); goto out; } ktime_get_ts(&now); time_left_us = (itp->last_sent.tv_sec - now.tv_sec)*1000000 + (itp->last_sent.tv_nsec - now.tv_nsec)/1000 + itp->interval_us; if (time_left_us > ITP_TIME_THRES_US) { queue_delayed_work(priv->workqueue, &itp->tx_work, ITP_US_TO_MS(time_left_us)*HZ/1000); goto out; } if (time_left_us > 50) udelay(time_left_us); if (itp->number > 0) itp->number--; *data = itp->data; *tx_len = itp->data_len + itp->hdr_len; if (itp->data_mode == ITP_DATA_RANDOM) xradio_itp_fill_pattern(&itp->data[itp->hdr_len], itp->data_len, itp->data_mode); tx = (struct wsm_tx *)itp->data; tx->packetID = __cpu_to_le32(itp->id++); *burst = 2; atomic_set(&priv->bh_tx, 1); ktime_get_ts(&itp->last_sent); atomic_add(1, &itp->awaiting_confirm); spin_unlock_bh(&itp->tx_lock); return 1; out: spin_unlock_bh(&itp->tx_lock); return 0; } bool xradio_itp_rxed(struct xradio_common *priv, struct sk_buff *skb) { struct xradio_itp *itp = &priv->debug->itp; struct ieee80211_rx_status *rx = IEEE80211_SKB_RXCB(skb); int signal; if (atomic_read(&itp->test_mode) != TEST_MODE_RX_TEST) return xradio_is_itp(priv); if (rx->freq != priv->channel->center_freq) return true; signal = rx->signal; itp->rx_cnt++; itp->rx_rssi += signal; if (itp->rx_rssi_min > rx->signal) itp->rx_rssi_min = rx->signal; if (itp->rx_rssi_max < rx->signal) itp->rx_rssi_max = rx->signal; return true; } void xradio_itp_wake_up_tx(struct xradio_common *priv) { wake_up(&priv->debug->itp.write_wait); } bool xradio_itp_tx_running(struct xradio_common *priv) { if (atomic_read(&priv->debug->itp.awaiting_confirm) || atomic_read(&priv->debug->itp.test_mode) == TEST_MODE_TX_TEST) { atomic_sub(1, &priv->debug->itp.awaiting_confirm); return true; } return false; } static void xradio_itp_handle(struct xradio_common *priv, struct sk_buff *skb) { struct xradio_itp *itp = &priv->debug->itp; const struct wiphy *wiphy = priv->hw->wiphy; int cmd; int ret; itp_printk(XRADIO_DBG_MSG, "[ITP] <<< %s", skb->data); if (sscanf(skb->data, "%d", &cmd) != 1) { xradio_itp_err(priv, -EINVAL, 1); return; } switch (cmd) { case 1: /* RX test */ if (atomic_read(&itp->test_mode)) { xradio_itp_err(priv, -EBUSY, 0); return; } ret = sscanf(skb->data, "%d,%u,%u", &cmd, &itp->band, &itp->ch); if (ret != 3) { xradio_itp_err(priv, -EINVAL, ret + 1); return; } if (itp->band >= 2) xradio_itp_err(priv, -EINVAL, 2); else if (!wiphy->bands[itp->band]) xradio_itp_err(priv, -EINVAL, 2); else if (itp->ch >= wiphy->bands[itp->band]->n_channels) xradio_itp_err(priv, -EINVAL, 3); else { xradio_itp_rx_stats(priv); xradio_itp_rx_start(priv); } break; case 2: /* RX stat */ xradio_itp_rx_stats(priv); break; case 3: /* RX/TX stop */ if (atomic_read(&itp->test_mode) == TEST_MODE_RX_TEST) { xradio_itp_rx_stats(priv); xradio_itp_rx_stop(priv); } else if (atomic_read(&itp->test_mode) == TEST_MODE_TX_TEST) { xradio_itp_tx_stop(priv); } else xradio_itp_err(priv, -EBUSY, 0); break; case 4: /* TX start */ if (atomic_read(&itp->test_mode) != TEST_MODE_NO_TEST) { xradio_itp_err(priv, -EBUSY, 0); return; } ret = sscanf(skb->data, "%d,%u,%u,%u,%u,%u,%u,%d,%d,%d", &cmd, &itp->band, &itp->ch, &itp->rate, &itp->preamble, &itp->number, &itp->data_mode, &itp->interval_us, &itp->power, &itp->data_len); if (ret != 10) { xradio_itp_err(priv, -EINVAL, ret + 1); return; } if (itp->band >= 2) xradio_itp_err(priv, -EINVAL, 2); else if (!wiphy->bands[itp->band]) xradio_itp_err(priv, -EINVAL, 2); else if (itp->ch >= wiphy->bands[itp->band]->n_channels) xradio_itp_err(priv, -EINVAL, 3); else if (itp->rate >= 20) xradio_itp_err(priv, -EINVAL, 4); else if (itp->preamble >= ITP_PREAMBLE_MAX) xradio_itp_err(priv, -EINVAL, 5); else if (itp->data_mode >= ITP_DATA_MAX_MODE) xradio_itp_err(priv, -EINVAL, 7); else if (itp->data_len < ITP_MIN_DATA_SIZE || itp->data_len > priv->wsm_caps.sizeInpChBuf - itp->hdr_len) xradio_itp_err(priv, -EINVAL, 8); else { xradio_itp_tx_start(priv); } break; case 5: xradio_itp_get_version(priv, ITP_CHIP_ID); break; case 6: xradio_itp_get_version(priv, ITP_FW_VER); break; } } static void xradio_itp_err(struct xradio_common *priv, int err, int arg) { struct xradio_itp *itp = &priv->debug->itp; struct sk_buff *skb; static char buf[255]; int len; len = snprintf(buf, sizeof(buf), "%d,%d\n", err, arg); if (len <= 0) return; skb = xr_alloc_skb(len); if (!skb) return; skb_trim(skb, 0); skb_put(skb, len); memcpy(skb->data, buf, len); skb_queue_tail(&itp->log_queue, skb); wake_up(&itp->read_wait); len = sprint_symbol(buf, (unsigned long)__builtin_return_address(0)); if (len <= 0) return; itp_printk(XRADIO_DBG_MSG, "[ITP] error %d,%d from %s\n", err, arg, buf); }