/* * Misc utility routines used by kernel or app-level. * Contents are wifi-specific, used by any kernel or app-level * software that might want wifi things as it grows. * * Copyright (C) 1999-2017, Broadcom Corporation * * Unless you and Broadcom execute a separate written software license * agreement governing use of this software, this software is licensed to you * under the terms of the GNU General Public License version 2 (the "GPL"), * available at http://www.broadcom.com/licenses/GPLv2.php, with the * following added to such license: * * As a special exception, the copyright holders of this software give you * permission to link this software with independent modules, and to copy and * distribute the resulting executable under terms of your choice, provided that * you also meet, for each linked independent module, the terms and conditions of * the license of that module. An independent module is a module which is not * derived from this software. The special exception does not apply to any * modifications of the software. * * Notwithstanding the above, under no circumstances may you combine this * software in any way with any other Broadcom software provided under a license * other than the GPL, without Broadcom's express prior written consent. * * * <> * * $Id: bcmwifi_channels.c 612483 2016-01-14 03:44:27Z $ */ #include #include #include #ifdef BCMDRIVER #include #define strtoul(nptr, endptr, base) bcm_strtoul((nptr), (endptr), (base)) #define tolower(c) (bcm_isupper((c)) ? ((c) + 'a' - 'A') : (c)) #else #include #include #include #ifndef ASSERT #define ASSERT(exp) #endif #endif /* BCMDRIVER */ #include #if defined(WIN32) && (defined(BCMDLL) || defined(WLMDLL)) #include /* For wl/exe/GNUmakefile.brcm_wlu and GNUmakefile.wlm_dll */ #endif /* Definitions for D11AC capable Chanspec type */ /* Chanspec ASCII representation with 802.11ac capability: * [ 'g'] ['/' []['/'<1st80channel>'-'<2nd80channel>]] * * : * (optional) 2, 3, 4, 5 for 2.4GHz, 3GHz, 4GHz, and 5GHz respectively. * Default value is 2g if channel <= 14, otherwise 5g. * : * channel number of the 5MHz, 10MHz, 20MHz channel, * or primary channel of 40MHz, 80MHz, 160MHz, or 80+80MHz channel. * : * (optional) 5, 10, 20, 40, 80, 160, or 80+80. Default value is 20. * : * (only for 2.4GHz band 40MHz) U for upper sideband primary, L for lower. * * For 2.4GHz band 40MHz channels, the same primary channel may be the * upper sideband for one 40MHz channel, and the lower sideband for an * overlapping 40MHz channel. The U/L disambiguates which 40MHz channel * is being specified. * * For 40MHz in the 5GHz band and all channel bandwidths greater than * 40MHz, the U/L specificaion is not allowed since the channels are * non-overlapping and the primary sub-band is derived from its * position in the wide bandwidth channel. * * <1st80Channel>: * <2nd80Channel>: * Required for 80+80, otherwise not allowed. * Specifies the center channel of the first and second 80MHz band. * * In its simplest form, it is a 20MHz channel number, with the implied band * of 2.4GHz if channel number <= 14, and 5GHz otherwise. * * To allow for backward compatibility with scripts, the old form for * 40MHz channels is also allowed: * * : * primary channel of 40MHz, channel <= 14 is 2GHz, otherwise 5GHz * : * "U" for upper, "L" for lower (or lower case "u" "l") * * 5 GHz Examples: * Chanspec BW Center Ch Channel Range Primary Ch * 5g8 20MHz 8 - - * 52 20MHz 52 - - * 52/40 40MHz 54 52-56 52 * 56/40 40MHz 54 52-56 56 * 52/80 80MHz 58 52-64 52 * 56/80 80MHz 58 52-64 56 * 60/80 80MHz 58 52-64 60 * 64/80 80MHz 58 52-64 64 * 52/160 160MHz 50 36-64 52 * 36/160 160MGz 50 36-64 36 * 36/80+80/42-106 80+80MHz 42,106 36-48,100-112 36 * * 2 GHz Examples: * Chanspec BW Center Ch Channel Range Primary Ch * 2g8 20MHz 8 - - * 8 20MHz 8 - - * 6 20MHz 6 - - * 6/40l 40MHz 8 6-10 6 * 6l 40MHz 8 6-10 6 * 6/40u 40MHz 4 2-6 6 * 6u 40MHz 4 2-6 6 */ /* bandwidth ASCII string */ static const char *wf_chspec_bw_str[] = { "5", "10", "20", "40", "80", "160", "80+80", #ifdef WL11ULB "2.5" #else /* WL11ULB */ "na" #endif /* WL11ULB */ }; static const uint8 wf_chspec_bw_mhz[] = {5, 10, 20, 40, 80, 160, 160}; #define WF_NUM_BW \ (sizeof(wf_chspec_bw_mhz)/sizeof(uint8)) /* 40MHz channels in 5GHz band */ static const uint8 wf_5g_40m_chans[] = {38, 46, 54, 62, 102, 110, 118, 126, 134, 142, 151, 159}; #define WF_NUM_5G_40M_CHANS \ (sizeof(wf_5g_40m_chans)/sizeof(uint8)) /* 80MHz channels in 5GHz band */ static const uint8 wf_5g_80m_chans[] = {42, 58, 106, 122, 138, 155}; #define WF_NUM_5G_80M_CHANS \ (sizeof(wf_5g_80m_chans)/sizeof(uint8)) /* 160MHz channels in 5GHz band */ static const uint8 wf_5g_160m_chans[] = {50, 114}; #define WF_NUM_5G_160M_CHANS \ (sizeof(wf_5g_160m_chans)/sizeof(uint8)) /* opclass and channel information for US. Table E-1 */ static const uint16 opclass_data[] = { (WL_CHANSPEC_BAND_5G |((WL_CHANSPEC_BW_20)&WL_CHANSPEC_BW_MASK)), (WL_CHANSPEC_BAND_5G |((WL_CHANSPEC_BW_20)&WL_CHANSPEC_BW_MASK)), (WL_CHANSPEC_BAND_5G |((WL_CHANSPEC_BW_20)&WL_CHANSPEC_BW_MASK)), (WL_CHANSPEC_BAND_5G |((WL_CHANSPEC_BW_20)&WL_CHANSPEC_BW_MASK)), (WL_CHANSPEC_BAND_5G |((WL_CHANSPEC_BW_20)&WL_CHANSPEC_BW_MASK)), (WL_CHANSPEC_BAND_5G |((WL_CHANSPEC_BW_5)&WL_CHANSPEC_BW_MASK)), (WL_CHANSPEC_BAND_5G |((WL_CHANSPEC_BW_5)&WL_CHANSPEC_BW_MASK)), (WL_CHANSPEC_BAND_5G |((WL_CHANSPEC_BW_10)&WL_CHANSPEC_BW_MASK)), (WL_CHANSPEC_BAND_5G |((WL_CHANSPEC_BW_10)&WL_CHANSPEC_BW_MASK)), (WL_CHANSPEC_BAND_5G |((WL_CHANSPEC_BW_20)&WL_CHANSPEC_BW_MASK)), (WL_CHANSPEC_BAND_5G |((WL_CHANSPEC_BW_20)&WL_CHANSPEC_BW_MASK)), (WL_CHANSPEC_BAND_2G |((WL_CHANSPEC_BW_20)&WL_CHANSPEC_BW_MASK)), (WL_CHANSPEC_BAND_3G |((WL_CHANSPEC_BW_20)&WL_CHANSPEC_BW_MASK)), (WL_CHANSPEC_BAND_3G |((WL_CHANSPEC_BW_10)&WL_CHANSPEC_BW_MASK)), (WL_CHANSPEC_BAND_3G |((WL_CHANSPEC_BW_5)&WL_CHANSPEC_BW_MASK)), (WL_CHANSPEC_BAND_5G |((WL_CHANSPEC_BW_5)&WL_CHANSPEC_BW_MASK)), (WL_CHANSPEC_BAND_5G |((WL_CHANSPEC_BW_10)&WL_CHANSPEC_BW_MASK)), (WL_CHANSPEC_BAND_5G |((WL_CHANSPEC_BW_20)&WL_CHANSPEC_BW_MASK)), 0, 0, 0, (WL_CHANSPEC_BAND_5G |((WL_CHANSPEC_BW_40)&WL_CHANSPEC_BW_MASK)|WL_CHANSPEC_CTL_SB_LOWER), (WL_CHANSPEC_BAND_5G |((WL_CHANSPEC_BW_40)&WL_CHANSPEC_BW_MASK)|WL_CHANSPEC_CTL_SB_LOWER), (WL_CHANSPEC_BAND_5G |((WL_CHANSPEC_BW_40)&WL_CHANSPEC_BW_MASK)|WL_CHANSPEC_CTL_SB_LOWER), (WL_CHANSPEC_BAND_5G |((WL_CHANSPEC_BW_40)&WL_CHANSPEC_BW_MASK)|WL_CHANSPEC_CTL_SB_LOWER), (WL_CHANSPEC_BAND_5G |((WL_CHANSPEC_BW_40)&WL_CHANSPEC_BW_MASK)|WL_CHANSPEC_CTL_SB_LOWER), (WL_CHANSPEC_BAND_5G |((WL_CHANSPEC_BW_40)&WL_CHANSPEC_BW_MASK)|WL_CHANSPEC_CTL_SB_UPPER), (WL_CHANSPEC_BAND_5G |((WL_CHANSPEC_BW_40)&WL_CHANSPEC_BW_MASK)|WL_CHANSPEC_CTL_SB_UPPER), (WL_CHANSPEC_BAND_5G |((WL_CHANSPEC_BW_40)&WL_CHANSPEC_BW_MASK)|WL_CHANSPEC_CTL_SB_UPPER), (WL_CHANSPEC_BAND_5G |((WL_CHANSPEC_BW_40)&WL_CHANSPEC_BW_MASK)|WL_CHANSPEC_CTL_SB_UPPER), (WL_CHANSPEC_BAND_5G |((WL_CHANSPEC_BW_40)&WL_CHANSPEC_BW_MASK)|WL_CHANSPEC_CTL_SB_UPPER), (WL_CHANSPEC_BAND_2G |((WL_CHANSPEC_BW_40)&WL_CHANSPEC_BW_MASK)|WL_CHANSPEC_CTL_SB_LOWER), (WL_CHANSPEC_BAND_2G |((WL_CHANSPEC_BW_40)&WL_CHANSPEC_BW_MASK)|WL_CHANSPEC_CTL_SB_UPPER), }; /* convert bandwidth from chanspec to MHz */ static uint bw_chspec_to_mhz(chanspec_t chspec) { uint bw; bw = (chspec & WL_CHANSPEC_BW_MASK) >> WL_CHANSPEC_BW_SHIFT; return (bw >= WF_NUM_BW ? 0 : wf_chspec_bw_mhz[bw]); } /* bw in MHz, return the channel count from the center channel to the * the channel at the edge of the band */ static uint8 center_chan_to_edge(uint bw) { /* edge channels separated by BW - 10MHz on each side * delta from cf to edge is half of that, * MHz to channel num conversion is 5MHz/channel */ return (uint8)(((bw - 20) / 2) / 5); } /* return channel number of the low edge of the band * given the center channel and BW */ static uint8 channel_low_edge(uint center_ch, uint bw) { return (uint8)(center_ch - center_chan_to_edge(bw)); } /* return side band number given center channel and control channel * return -1 on error */ static int channel_to_sb(uint center_ch, uint ctl_ch, uint bw) { uint lowest = channel_low_edge(center_ch, bw); uint sb; if ((ctl_ch - lowest) % 4) { /* bad ctl channel, not mult 4 */ return -1; } sb = ((ctl_ch - lowest) / 4); /* sb must be a index to a 20MHz channel in range */ if (sb >= (bw / 20)) { /* ctl_ch must have been too high for the center_ch */ return -1; } return sb; } /* return control channel given center channel and side band */ static uint8 channel_to_ctl_chan(uint center_ch, uint bw, uint sb) { return (uint8)(channel_low_edge(center_ch, bw) + sb * 4); } /* return index of 80MHz channel from channel number * return -1 on error */ static int channel_80mhz_to_id(uint ch) { uint i; for (i = 0; i < WF_NUM_5G_80M_CHANS; i ++) { if (ch == wf_5g_80m_chans[i]) return i; } return -1; } /* wrapper function for wf_chspec_ntoa. In case of an error it puts * the original chanspec in the output buffer, prepended with "invalid". * Can be directly used in print routines as it takes care of null */ char * wf_chspec_ntoa_ex(chanspec_t chspec, char *buf) { if (wf_chspec_ntoa(chspec, buf) == NULL) snprintf(buf, CHANSPEC_STR_LEN, "invalid 0x%04x", chspec); return buf; } /* given a chanspec and a string buffer, format the chanspec as a * string, and return the original pointer a. * Min buffer length must be CHANSPEC_STR_LEN. * On error return NULL */ char * wf_chspec_ntoa(chanspec_t chspec, char *buf) { const char *band; uint ctl_chan; if (wf_chspec_malformed(chspec)) return NULL; band = ""; /* check for non-default band spec */ if ((CHSPEC_IS2G(chspec) && CHSPEC_CHANNEL(chspec) > CH_MAX_2G_CHANNEL) || (CHSPEC_IS5G(chspec) && CHSPEC_CHANNEL(chspec) <= CH_MAX_2G_CHANNEL)) band = (CHSPEC_IS2G(chspec)) ? "2g" : "5g"; /* ctl channel */ ctl_chan = wf_chspec_ctlchan(chspec); /* bandwidth and ctl sideband */ if (CHSPEC_IS20(chspec)) { snprintf(buf, CHANSPEC_STR_LEN, "%s%d", band, ctl_chan); } else if (!CHSPEC_IS8080(chspec)) { const char *bw; const char *sb = ""; bw = wf_chspec_bw_str[(chspec & WL_CHANSPEC_BW_MASK) >> WL_CHANSPEC_BW_SHIFT]; #ifdef CHANSPEC_NEW_40MHZ_FORMAT /* ctl sideband string if needed for 2g 40MHz */ if (CHSPEC_IS40(chspec) && CHSPEC_IS2G(chspec)) { sb = CHSPEC_SB_UPPER(chspec) ? "u" : "l"; } snprintf(buf, CHANSPEC_STR_LEN, "%s%d/%s%s", band, ctl_chan, bw, sb); #else /* ctl sideband string instead of BW for 40MHz */ if (CHSPEC_IS40(chspec)) { sb = CHSPEC_SB_UPPER(chspec) ? "u" : "l"; snprintf(buf, CHANSPEC_STR_LEN, "%s%d%s", band, ctl_chan, sb); } else { snprintf(buf, CHANSPEC_STR_LEN, "%s%d/%s", band, ctl_chan, bw); } #endif /* CHANSPEC_NEW_40MHZ_FORMAT */ } else { /* 80+80 */ uint chan1 = (chspec & WL_CHANSPEC_CHAN1_MASK) >> WL_CHANSPEC_CHAN1_SHIFT; uint chan2 = (chspec & WL_CHANSPEC_CHAN2_MASK) >> WL_CHANSPEC_CHAN2_SHIFT; /* convert to channel number */ chan1 = (chan1 < WF_NUM_5G_80M_CHANS) ? wf_5g_80m_chans[chan1] : 0; chan2 = (chan2 < WF_NUM_5G_80M_CHANS) ? wf_5g_80m_chans[chan2] : 0; /* Outputs a max of CHANSPEC_STR_LEN chars including '\0' */ snprintf(buf, CHANSPEC_STR_LEN, "%d/80+80/%d-%d", ctl_chan, chan1, chan2); } return (buf); } static int read_uint(const char **p, unsigned int *num) { unsigned long val; char *endp = NULL; val = strtoul(*p, &endp, 10); /* if endp is the initial pointer value, then a number was not read */ if (endp == *p) return 0; /* advance the buffer pointer to the end of the integer string */ *p = endp; /* return the parsed integer */ *num = (unsigned int)val; return 1; } /* given a chanspec string, convert to a chanspec. * On error return 0 */ chanspec_t wf_chspec_aton(const char *a) { chanspec_t chspec; uint chspec_ch, chspec_band, bw, chspec_bw, chspec_sb; uint num, ctl_ch; uint ch1, ch2; char c, sb_ul = '\0'; int i; bw = 20; chspec_sb = 0; chspec_ch = ch1 = ch2 = 0; /* parse channel num or band */ if (!read_uint(&a, &num)) return 0; /* if we are looking at a 'g', then the first number was a band */ c = tolower((int)a[0]); if (c == 'g') { a++; /* consume the char */ /* band must be "2" or "5" */ if (num == 2) chspec_band = WL_CHANSPEC_BAND_2G; else if (num == 5) chspec_band = WL_CHANSPEC_BAND_5G; else return 0; /* read the channel number */ if (!read_uint(&a, &ctl_ch)) return 0; c = tolower((int)a[0]); } else { /* first number is channel, use default for band */ ctl_ch = num; chspec_band = ((ctl_ch <= CH_MAX_2G_CHANNEL) ? WL_CHANSPEC_BAND_2G : WL_CHANSPEC_BAND_5G); } if (c == '\0') { /* default BW of 20MHz */ chspec_bw = WL_CHANSPEC_BW_20; goto done_read; } a ++; /* consume the 'u','l', or '/' */ /* check 'u'/'l' */ if (c == 'u' || c == 'l') { sb_ul = c; chspec_bw = WL_CHANSPEC_BW_40; goto done_read; } /* next letter must be '/' */ if (c != '/') return 0; /* read bandwidth */ if (!read_uint(&a, &bw)) return 0; /* convert to chspec value */ if (bw == 2) { chspec_bw = WL_CHANSPEC_BW_2P5; } else if (bw == 5) { chspec_bw = WL_CHANSPEC_BW_5; } else if (bw == 10) { chspec_bw = WL_CHANSPEC_BW_10; } else if (bw == 20) { chspec_bw = WL_CHANSPEC_BW_20; } else if (bw == 40) { chspec_bw = WL_CHANSPEC_BW_40; } else if (bw == 80) { chspec_bw = WL_CHANSPEC_BW_80; } else if (bw == 160) { chspec_bw = WL_CHANSPEC_BW_160; } else { return 0; } /* So far we have g/ * Can now be followed by u/l if bw = 40, * or '+80' if bw = 80, to make '80+80' bw, * or '.5' if bw = 2.5 to make '2.5' bw . */ c = tolower((int)a[0]); /* if we have a 2g/40 channel, we should have a l/u spec now */ if (chspec_band == WL_CHANSPEC_BAND_2G && bw == 40) { if (c == 'u' || c == 'l') { a ++; /* consume the u/l char */ sb_ul = c; goto done_read; } } /* check for 80+80 */ if (c == '+') { /* 80+80 */ const char plus80[] = "80/"; /* must be looking at '+80/' * check and consume this string. */ chspec_bw = WL_CHANSPEC_BW_8080; a ++; /* consume the char '+' */ /* consume the '80/' string */ for (i = 0; i < 3; i++) { if (*a++ != plus80[i]) { return 0; } } /* read primary 80MHz channel */ if (!read_uint(&a, &ch1)) return 0; /* must followed by '-' */ if (a[0] != '-') return 0; a ++; /* consume the char */ /* read secondary 80MHz channel */ if (!read_uint(&a, &ch2)) return 0; } else if (c == '.') { /* 2.5 */ /* must be looking at '.5' * check and consume this string. */ chspec_bw = WL_CHANSPEC_BW_2P5; a ++; /* consume the char '.' */ /* consume the '5' string */ if (*a++ != '5') { return 0; } } done_read: /* skip trailing white space */ while (a[0] == ' ') { a ++; } /* must be end of string */ if (a[0] != '\0') return 0; /* Now have all the chanspec string parts read; * chspec_band, ctl_ch, chspec_bw, sb_ul, ch1, ch2. * chspec_band and chspec_bw are chanspec values. * Need to convert ctl_ch, sb_ul, and ch1,ch2 into * a center channel (or two) and sideband. */ /* if a sb u/l string was given, just use that, * guaranteed to be bw = 40 by sting parse. */ if (sb_ul != '\0') { if (sb_ul == 'l') { chspec_ch = UPPER_20_SB(ctl_ch); chspec_sb = WL_CHANSPEC_CTL_SB_LLL; } else if (sb_ul == 'u') { chspec_ch = LOWER_20_SB(ctl_ch); chspec_sb = WL_CHANSPEC_CTL_SB_LLU; } } /* if the bw is 20, center and sideband are trivial */ else if (BW_LE20(chspec_bw)) { chspec_ch = ctl_ch; chspec_sb = WL_CHANSPEC_CTL_SB_NONE; } /* if the bw is 40/80/160, not 80+80, a single method * can be used to to find the center and sideband */ else if (chspec_bw != WL_CHANSPEC_BW_8080) { /* figure out ctl sideband based on ctl channel and bandwidth */ const uint8 *center_ch = NULL; int num_ch = 0; int sb = -1; if (chspec_bw == WL_CHANSPEC_BW_40) { center_ch = wf_5g_40m_chans; num_ch = WF_NUM_5G_40M_CHANS; } else if (chspec_bw == WL_CHANSPEC_BW_80) { center_ch = wf_5g_80m_chans; num_ch = WF_NUM_5G_80M_CHANS; } else if (chspec_bw == WL_CHANSPEC_BW_160) { center_ch = wf_5g_160m_chans; num_ch = WF_NUM_5G_160M_CHANS; } else { return 0; } for (i = 0; i < num_ch; i ++) { sb = channel_to_sb(center_ch[i], ctl_ch, bw); if (sb >= 0) { chspec_ch = center_ch[i]; chspec_sb = sb << WL_CHANSPEC_CTL_SB_SHIFT; break; } } /* check for no matching sb/center */ if (sb < 0) { return 0; } } /* Otherwise, bw is 80+80. Figure out channel pair and sb */ else { int ch1_id = 0, ch2_id = 0; int sb; /* look up the channel ID for the specified channel numbers */ ch1_id = channel_80mhz_to_id(ch1); ch2_id = channel_80mhz_to_id(ch2); /* validate channels */ if (ch1_id < 0 || ch2_id < 0) return 0; /* combine 2 channel IDs in channel field of chspec */ chspec_ch = (((uint)ch1_id << WL_CHANSPEC_CHAN1_SHIFT) | ((uint)ch2_id << WL_CHANSPEC_CHAN2_SHIFT)); /* figure out primary 20 MHz sideband */ /* is the primary channel contained in the 1st 80MHz channel? */ sb = channel_to_sb(ch1, ctl_ch, bw); if (sb < 0) { /* no match for primary channel 'ctl_ch' in segment0 80MHz channel */ return 0; } chspec_sb = sb << WL_CHANSPEC_CTL_SB_SHIFT; } chspec = (chspec_ch | chspec_band | chspec_bw | chspec_sb); if (wf_chspec_malformed(chspec)) return 0; return chspec; } /* * Verify the chanspec is using a legal set of parameters, i.e. that the * chanspec specified a band, bw, ctl_sb and channel and that the * combination could be legal given any set of circumstances. * RETURNS: TRUE is the chanspec is malformed, false if it looks good. */ bool wf_chspec_malformed(chanspec_t chanspec) { uint chspec_bw = CHSPEC_BW(chanspec); uint chspec_ch = CHSPEC_CHANNEL(chanspec); /* must be 2G or 5G band */ if (CHSPEC_IS2G(chanspec)) { /* must be valid bandwidth */ if (!BW_LE40(chspec_bw)) { return TRUE; } } else if (CHSPEC_IS5G(chanspec)) { if (chspec_bw == WL_CHANSPEC_BW_8080) { uint ch1_id, ch2_id; /* channel IDs in 80+80 must be in range */ ch1_id = CHSPEC_CHAN1(chanspec); ch2_id = CHSPEC_CHAN2(chanspec); if (ch1_id >= WF_NUM_5G_80M_CHANS || ch2_id >= WF_NUM_5G_80M_CHANS) return TRUE; } else if (BW_LE160(chspec_bw)) { if (chspec_ch > MAXCHANNEL) { return TRUE; } } else { /* invalid bandwidth */ return TRUE; } } else { /* must be 2G or 5G band */ return TRUE; } /* side band needs to be consistent with bandwidth */ if (BW_LE20(chspec_bw)) { if (CHSPEC_CTL_SB(chanspec) != WL_CHANSPEC_CTL_SB_LLL) return TRUE; } else if (chspec_bw == WL_CHANSPEC_BW_40) { if (CHSPEC_CTL_SB(chanspec) > WL_CHANSPEC_CTL_SB_LLU) return TRUE; } else if (chspec_bw == WL_CHANSPEC_BW_80 || chspec_bw == WL_CHANSPEC_BW_8080) { if (CHSPEC_CTL_SB(chanspec) > WL_CHANSPEC_CTL_SB_LUU) return TRUE; } else if (chspec_bw == WL_CHANSPEC_BW_160) { ASSERT(CHSPEC_CTL_SB(chanspec) <= WL_CHANSPEC_CTL_SB_UUU); } return FALSE; } /* * Verify the chanspec specifies a valid channel according to 802.11. * RETURNS: TRUE if the chanspec is a valid 802.11 channel */ bool wf_chspec_valid(chanspec_t chanspec) { uint chspec_bw = CHSPEC_BW(chanspec); uint chspec_ch = CHSPEC_CHANNEL(chanspec); if (wf_chspec_malformed(chanspec)) return FALSE; if (CHSPEC_IS2G(chanspec)) { /* must be valid bandwidth and channel range */ if (BW_LE20(chspec_bw)) { if (chspec_ch >= 1 && chspec_ch <= 14) return TRUE; } else if (chspec_bw == WL_CHANSPEC_BW_40) { if (chspec_ch >= 3 && chspec_ch <= 11) return TRUE; } } else if (CHSPEC_IS5G(chanspec)) { if (chspec_bw == WL_CHANSPEC_BW_8080) { uint16 ch1, ch2; ch1 = wf_5g_80m_chans[CHSPEC_CHAN1(chanspec)]; ch2 = wf_5g_80m_chans[CHSPEC_CHAN2(chanspec)]; /* the two channels must be separated by more than 80MHz by VHT req */ if ((ch2 > ch1 + CH_80MHZ_APART) || (ch1 > ch2 + CH_80MHZ_APART)) return TRUE; } else { const uint8 *center_ch; uint num_ch, i; if (BW_LE40(chspec_bw)) { center_ch = wf_5g_40m_chans; num_ch = WF_NUM_5G_40M_CHANS; } else if (chspec_bw == WL_CHANSPEC_BW_80) { center_ch = wf_5g_80m_chans; num_ch = WF_NUM_5G_80M_CHANS; } else if (chspec_bw == WL_CHANSPEC_BW_160) { center_ch = wf_5g_160m_chans; num_ch = WF_NUM_5G_160M_CHANS; } else { /* invalid bandwidth */ return FALSE; } /* check for a valid center channel */ if (BW_LE20(chspec_bw)) { /* We don't have an array of legal 20MHz 5G channels, but they are * each side of the legal 40MHz channels. Check the chanspec * channel against either side of the 40MHz channels. */ for (i = 0; i < num_ch; i ++) { if (chspec_ch == (uint)LOWER_20_SB(center_ch[i]) || chspec_ch == (uint)UPPER_20_SB(center_ch[i])) break; /* match found */ } if (i == num_ch) { /* check for channel 165 which is not the side band * of 40MHz 5G channel */ if (chspec_ch == 165) i = 0; /* check for legacy JP channels on failure */ if (chspec_ch == 34 || chspec_ch == 38 || chspec_ch == 42 || chspec_ch == 46) i = 0; } } else { /* check the chanspec channel to each legal channel */ for (i = 0; i < num_ch; i ++) { if (chspec_ch == center_ch[i]) break; /* match found */ } } if (i < num_ch) { /* match found */ return TRUE; } } } return FALSE; } /* * This function returns the channel number that control traffic is being sent on, for 20MHz * channels this is just the channel number, for 40MHZ, 80MHz, 160MHz channels it is the 20MHZ * sideband depending on the chanspec selected */ uint8 wf_chspec_ctlchan(chanspec_t chspec) { uint center_chan; uint bw_mhz; uint sb; ASSERT(!wf_chspec_malformed(chspec)); /* Is there a sideband ? */ if (CHSPEC_BW_LE20(chspec)) { return CHSPEC_CHANNEL(chspec); } else { sb = CHSPEC_CTL_SB(chspec) >> WL_CHANSPEC_CTL_SB_SHIFT; if (CHSPEC_IS8080(chspec)) { /* For an 80+80 MHz channel, the sideband 'sb' field is an 80 MHz sideband * (LL, LU, UL, LU) for the 80 MHz frequency segment 0. */ uint chan_id = CHSPEC_CHAN1(chspec); bw_mhz = 80; /* convert from channel index to channel number */ center_chan = wf_5g_80m_chans[chan_id]; } else { bw_mhz = bw_chspec_to_mhz(chspec); center_chan = CHSPEC_CHANNEL(chspec) >> WL_CHANSPEC_CHAN_SHIFT; } return (channel_to_ctl_chan(center_chan, bw_mhz, sb)); } } /* given a chanspec, return the bandwidth string */ const char * wf_chspec_to_bw_str(chanspec_t chspec) { return wf_chspec_bw_str[(CHSPEC_BW(chspec) >> WL_CHANSPEC_BW_SHIFT)]; } /* * This function returns the chanspec of the control channel of a given chanspec */ chanspec_t wf_chspec_ctlchspec(chanspec_t chspec) { chanspec_t ctl_chspec = chspec; uint8 ctl_chan; ASSERT(!wf_chspec_malformed(chspec)); /* Is there a sideband ? */ if (!CHSPEC_BW_LE20(chspec)) { ctl_chan = wf_chspec_ctlchan(chspec); ctl_chspec = ctl_chan | WL_CHANSPEC_BW_20; ctl_chspec |= CHSPEC_BAND(chspec); } return ctl_chspec; } /* return chanspec given control channel and bandwidth * return 0 on error */ uint16 wf_channel2chspec(uint ctl_ch, uint bw) { uint16 chspec; const uint8 *center_ch = NULL; int num_ch = 0; int sb = -1; int i = 0; chspec = ((ctl_ch <= CH_MAX_2G_CHANNEL) ? WL_CHANSPEC_BAND_2G : WL_CHANSPEC_BAND_5G); chspec |= bw; if (bw == WL_CHANSPEC_BW_40) { center_ch = wf_5g_40m_chans; num_ch = WF_NUM_5G_40M_CHANS; bw = 40; } else if (bw == WL_CHANSPEC_BW_80) { center_ch = wf_5g_80m_chans; num_ch = WF_NUM_5G_80M_CHANS; bw = 80; } else if (bw == WL_CHANSPEC_BW_160) { center_ch = wf_5g_160m_chans; num_ch = WF_NUM_5G_160M_CHANS; bw = 160; } else if (BW_LE20(bw)) { chspec |= ctl_ch; return chspec; } else { return 0; } for (i = 0; i < num_ch; i ++) { sb = channel_to_sb(center_ch[i], ctl_ch, bw); if (sb >= 0) { chspec |= center_ch[i]; chspec |= (sb << WL_CHANSPEC_CTL_SB_SHIFT); break; } } /* check for no matching sb/center */ if (sb < 0) { return 0; } return chspec; } /* * This function returns the chanspec for the primary 40MHz of an 80MHz channel. * The control sideband specifies the same 20MHz channel that the 80MHz channel is using * as the primary 20MHz channel. */ extern chanspec_t wf_chspec_primary40_chspec(chanspec_t chspec) { chanspec_t chspec40 = chspec; uint center_chan; uint sb; ASSERT(!wf_chspec_malformed(chspec)); /* if the chanspec is > 80MHz, use the helper routine to find the primary 80 MHz channel */ if (CHSPEC_IS8080(chspec) || CHSPEC_IS160(chspec)) { chspec = wf_chspec_primary80_chspec(chspec); } /* determine primary 40 MHz sub-channel of an 80 MHz chanspec */ if (CHSPEC_IS80(chspec)) { center_chan = CHSPEC_CHANNEL(chspec); sb = CHSPEC_CTL_SB(chspec); if (sb < WL_CHANSPEC_CTL_SB_UL) { /* Primary 40MHz is on lower side */ center_chan -= CH_20MHZ_APART; /* sideband bits are the same for LL/LU and L/U */ } else { /* Primary 40MHz is on upper side */ center_chan += CH_20MHZ_APART; /* sideband bits need to be adjusted by UL offset */ sb -= WL_CHANSPEC_CTL_SB_UL; } /* Create primary 40MHz chanspec */ chspec40 = (WL_CHANSPEC_BAND_5G | WL_CHANSPEC_BW_40 | sb | center_chan); } return chspec40; } /* * Return the channel number for a given frequency and base frequency. * The returned channel number is relative to the given base frequency. * If the given base frequency is zero, a base frequency of 5 GHz is assumed for * frequencies from 5 - 6 GHz, and 2.407 GHz is assumed for 2.4 - 2.5 GHz. * * Frequency is specified in MHz. * The base frequency is specified as (start_factor * 500 kHz). * Constants WF_CHAN_FACTOR_2_4_G, WF_CHAN_FACTOR_5_G are defined for * 2.4 GHz and 5 GHz bands. * * The returned channel will be in the range [1, 14] in the 2.4 GHz band * and [0, 200] otherwise. * -1 is returned if the start_factor is WF_CHAN_FACTOR_2_4_G and the * frequency is not a 2.4 GHz channel, or if the frequency is not and even * multiple of 5 MHz from the base frequency to the base plus 1 GHz. * * Reference 802.11 REVma, section 17.3.8.3, and 802.11B section 18.4.6.2 */ int wf_mhz2channel(uint freq, uint start_factor) { int ch = -1; uint base; int offset; /* take the default channel start frequency */ if (start_factor == 0) { if (freq >= 2400 && freq <= 2500) start_factor = WF_CHAN_FACTOR_2_4_G; else if (freq >= 5000 && freq <= 6000) start_factor = WF_CHAN_FACTOR_5_G; } if (freq == 2484 && start_factor == WF_CHAN_FACTOR_2_4_G) return 14; base = start_factor / 2; /* check that the frequency is in 1GHz range of the base */ if ((freq < base) || (freq > base + 1000)) return -1; offset = freq - base; ch = offset / 5; /* check that frequency is a 5MHz multiple from the base */ if (offset != (ch * 5)) return -1; /* restricted channel range check for 2.4G */ if (start_factor == WF_CHAN_FACTOR_2_4_G && (ch < 1 || ch > 13)) return -1; return ch; } /* * Return the center frequency in MHz of the given channel and base frequency. * The channel number is interpreted relative to the given base frequency. * * The valid channel range is [1, 14] in the 2.4 GHz band and [0, 200] otherwise. * The base frequency is specified as (start_factor * 500 kHz). * Constants WF_CHAN_FACTOR_2_4_G, WF_CHAN_FACTOR_4_G, and WF_CHAN_FACTOR_5_G * are defined for 2.4 GHz, 4 GHz, and 5 GHz bands. * The channel range of [1, 14] is only checked for a start_factor of * WF_CHAN_FACTOR_2_4_G (4814 = 2407 * 2). * Odd start_factors produce channels on .5 MHz boundaries, in which case * the answer is rounded down to an integral MHz. * -1 is returned for an out of range channel. * * Reference 802.11 REVma, section 17.3.8.3, and 802.11B section 18.4.6.2 */ int wf_channel2mhz(uint ch, uint start_factor) { int freq; if ((start_factor == WF_CHAN_FACTOR_2_4_G && (ch < 1 || ch > 14)) || (ch > 200)) freq = -1; else if ((start_factor == WF_CHAN_FACTOR_2_4_G) && (ch == 14)) freq = 2484; else freq = ch * 5 + start_factor / 2; return freq; } static const uint16 sidebands[] = { WL_CHANSPEC_CTL_SB_LLL, WL_CHANSPEC_CTL_SB_LLU, WL_CHANSPEC_CTL_SB_LUL, WL_CHANSPEC_CTL_SB_LUU, WL_CHANSPEC_CTL_SB_ULL, WL_CHANSPEC_CTL_SB_ULU, WL_CHANSPEC_CTL_SB_UUL, WL_CHANSPEC_CTL_SB_UUU }; /* * Returns the chanspec 80Mhz channel corresponding to the following input * parameters * * primary_channel - primary 20Mhz channel * center_channel - center frequecny of the 80Mhz channel * * The center_channel can be one of {42, 58, 106, 122, 138, 155} * * returns INVCHANSPEC in case of error */ chanspec_t wf_chspec_80(uint8 center_channel, uint8 primary_channel) { chanspec_t chanspec = INVCHANSPEC; chanspec_t chanspec_cur; uint i; for (i = 0; i < WF_NUM_SIDEBANDS_80MHZ; i++) { chanspec_cur = CH80MHZ_CHSPEC(center_channel, sidebands[i]); if (primary_channel == wf_chspec_ctlchan(chanspec_cur)) { chanspec = chanspec_cur; break; } } /* If the loop ended early, we are good, otherwise we did not * find a 80MHz chanspec with the given center_channel that had a primary channel *matching the given primary_channel. */ return chanspec; } /* * Returns the 80+80 chanspec corresponding to the following input parameters * * primary_20mhz - Primary 20 MHz channel * chan0 - center channel number of one frequency segment * chan1 - center channel number of the other frequency segment * * Parameters chan0 and chan1 are channel numbers in {42, 58, 106, 122, 138, 155}. * The primary channel must be contained in one of the 80MHz channels. This routine * will determine which frequency segment is the primary 80 MHz segment. * * Returns INVCHANSPEC in case of error. * * Refer to IEEE802.11ac section 22.3.14 "Channelization". */ chanspec_t wf_chspec_get8080_chspec(uint8 primary_20mhz, uint8 chan0, uint8 chan1) { int sb = 0; uint16 chanspec = 0; int chan0_id = 0, chan1_id = 0; int seg0, seg1; chan0_id = channel_80mhz_to_id(chan0); chan1_id = channel_80mhz_to_id(chan1); /* make sure the channel numbers were valid */ if (chan0_id == -1 || chan1_id == -1) return INVCHANSPEC; /* does the primary channel fit with the 1st 80MHz channel ? */ sb = channel_to_sb(chan0, primary_20mhz, 80); if (sb >= 0) { /* yes, so chan0 is frequency segment 0, and chan1 is seg 1 */ seg0 = chan0_id; seg1 = chan1_id; } else { /* no, so does the primary channel fit with the 2nd 80MHz channel ? */ sb = channel_to_sb(chan1, primary_20mhz, 80); if (sb < 0) { /* no match for ctl_ch to either 80MHz center channel */ return INVCHANSPEC; } /* swapped, so chan1 is frequency segment 0, and chan0 is seg 1 */ seg0 = chan1_id; seg1 = chan0_id; } chanspec = ((seg0 << WL_CHANSPEC_CHAN1_SHIFT) | (seg1 << WL_CHANSPEC_CHAN2_SHIFT) | (sb << WL_CHANSPEC_CTL_SB_SHIFT) | WL_CHANSPEC_BW_8080 | WL_CHANSPEC_BAND_5G); return chanspec; } /* * This function returns the 80Mhz channel for the given id. */ static uint8 wf_chspec_get80Mhz_ch(uint8 chan_80Mhz_id) { if (chan_80Mhz_id < WF_NUM_5G_80M_CHANS) return wf_5g_80m_chans[chan_80Mhz_id]; return 0; } /* * Returns the primary 80 Mhz channel for the provided chanspec * * chanspec - Input chanspec for which the 80MHz primary channel has to be retrieved * * returns -1 in case the provided channel is 20/40 Mhz chanspec */ uint8 wf_chspec_primary80_channel(chanspec_t chanspec) { uint8 primary80_chan; if (CHSPEC_IS80(chanspec)) { primary80_chan = CHSPEC_CHANNEL(chanspec); } else if (CHSPEC_IS8080(chanspec)) { /* Channel ID 1 corresponds to frequency segment 0, the primary 80 MHz segment */ primary80_chan = wf_chspec_get80Mhz_ch(CHSPEC_CHAN1(chanspec)); } else if (CHSPEC_IS160(chanspec)) { uint8 center_chan = CHSPEC_CHANNEL(chanspec); uint sb = CHSPEC_CTL_SB(chanspec) >> WL_CHANSPEC_CTL_SB_SHIFT; /* based on the sb value primary 80 channel can be retrieved * if sb is in range 0 to 3 the lower band is the 80Mhz primary band */ if (sb < 4) { primary80_chan = center_chan - CH_40MHZ_APART; } /* if sb is in range 4 to 7 the upper band is the 80Mhz primary band */ else { primary80_chan = center_chan + CH_40MHZ_APART; } } else { /* for 20 and 40 Mhz */ primary80_chan = -1; } return primary80_chan; } /* * Returns the secondary 80 Mhz channel for the provided chanspec * * chanspec - Input chanspec for which the 80MHz secondary channel has to be retrieved * * returns -1 in case the provided channel is 20/40/80 Mhz chanspec */ uint8 wf_chspec_secondary80_channel(chanspec_t chanspec) { uint8 secondary80_chan; if (CHSPEC_IS8080(chanspec)) { secondary80_chan = wf_chspec_get80Mhz_ch(CHSPEC_CHAN2(chanspec)); } else if (CHSPEC_IS160(chanspec)) { uint8 center_chan = CHSPEC_CHANNEL(chanspec); uint sb = CHSPEC_CTL_SB(chanspec) >> WL_CHANSPEC_CTL_SB_SHIFT; /* based on the sb value secondary 80 channel can be retrieved * if sb is in range 0 to 3 upper band is the secondary 80Mhz band */ if (sb < 4) { secondary80_chan = center_chan + CH_40MHZ_APART; } /* if sb is in range 4 to 7 the lower band is the secondary 80Mhz band */ else { secondary80_chan = center_chan - CH_40MHZ_APART; } } else { /* for 20, 40, and 80 Mhz */ secondary80_chan = -1; } return secondary80_chan; } /* * This function returns the chanspec for the primary 80MHz of an 160MHz or 80+80 channel. * * chanspec - Input chanspec for which the primary 80Mhz chanspec has to be retreived * * returns the input chanspec in case the provided chanspec is an 80 MHz chanspec * returns INVCHANSPEC in case the provided channel is 20/40 MHz chanspec */ chanspec_t wf_chspec_primary80_chspec(chanspec_t chspec) { chanspec_t chspec80; uint center_chan; uint sb; ASSERT(!wf_chspec_malformed(chspec)); if (CHSPEC_IS80(chspec)) { chspec80 = chspec; } else if (CHSPEC_IS8080(chspec)) { /* Channel ID 1 corresponds to frequency segment 0, the primary 80 MHz segment */ center_chan = wf_chspec_get80Mhz_ch(CHSPEC_CHAN1(chspec)); sb = CHSPEC_CTL_SB(chspec); /* Create primary 80MHz chanspec */ chspec80 = (WL_CHANSPEC_BAND_5G | WL_CHANSPEC_BW_80 | sb | center_chan); } else if (CHSPEC_IS160(chspec)) { center_chan = CHSPEC_CHANNEL(chspec); sb = CHSPEC_CTL_SB(chspec); if (sb < WL_CHANSPEC_CTL_SB_ULL) { /* Primary 80MHz is on lower side */ center_chan -= CH_40MHZ_APART; } else { /* Primary 80MHz is on upper side */ center_chan += CH_40MHZ_APART; sb -= WL_CHANSPEC_CTL_SB_ULL; } /* Create primary 80MHz chanspec */ chspec80 = (WL_CHANSPEC_BAND_5G | WL_CHANSPEC_BW_80 | sb | center_chan); } else { chspec80 = INVCHANSPEC; } return chspec80; } #ifdef WL11AC_80P80 uint8 wf_chspec_channel(chanspec_t chspec) { if (CHSPEC_IS8080(chspec)) { return wf_chspec_primary80_channel(chspec); } else { return ((uint8)((chspec) & WL_CHANSPEC_CHAN_MASK)); } } #endif /* WL11AC_80P80 */ /* This routine returns the chanspec for a given operating class and * channel number */ chanspec_t wf_channel_create_chspec_frm_opclass(uint8 opclass, uint8 channel) { chanspec_t chanspec = 0; uint16 opclass_info = 0; uint16 lookupindex = 0; switch (opclass) { case 115: lookupindex = 1; break; case 124: lookupindex = 3; break; case 125: lookupindex = 5; break; case 81: lookupindex = 12; break; case 116: lookupindex = 22; break; case 119: lookupindex = 23; break; case 126: lookupindex = 25; break; case 83: lookupindex = 32; break; case 84: lookupindex = 33; break; default: lookupindex = 12; } if (lookupindex < 33) { opclass_info = opclass_data[lookupindex-1]; } else { opclass_info = opclass_data[11]; } chanspec = opclass_info | (uint16)channel; return chanspec; } /* This routine returns the opclass for a given chanspec */ int wf_channel_create_opclass_frm_chspec(chanspec_t chspec) { BCM_REFERENCE(chspec); /* TODO: Implement this function ! */ return 12; /* opclass 12 for basic 2G channels */ }