/* * (C) Copyright 2016 * Allwinner Technology Co., Ltd. * zhouhuacai * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * SPDX-License-Identifier: GPL-2.0 */ #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; int enable_smp(void) { //SMP status is controlled by bit 6 of the CP15 Aux Ctrl Reg asm volatile("MRC p15, 0, r0, c1, c0, 1"); // Read ACTLR asm volatile("ORR r0, r0, #0x040"); // Set bit 6 asm volatile("MCR p15, 0, r0, c1, c0, 1"); // Write ACTLR return 0; } __s32 boot_set_gpio(void *user_gpio_list, __u32 group_count_max, __s32 set_gpio) { normal_gpio_set_t *tmp_user_gpio_data, *gpio_list; __u32 first_port; //保存真正有效的GPIO的个数 __u32 tmp_group_func_data; __u32 tmp_group_pull_data; __u32 tmp_group_dlevel_data; __u32 tmp_group_data_data; __u32 data_change = 0; // __u32 *tmp_group_port_addr; volatile __u32 *tmp_group_func_addr, *tmp_group_pull_addr; volatile __u32 *tmp_group_dlevel_addr, *tmp_group_data_addr; __u32 port, port_num, port_num_func, port_num_pull; __u32 pre_port, pre_port_num_func; __u32 pre_port_num_pull; __s32 i, tmp_val; gpio_list = (normal_gpio_set_t *)user_gpio_list; for(first_port = 0; first_port < group_count_max; first_port++) { tmp_user_gpio_data = gpio_list + first_port; port = tmp_user_gpio_data->port; //读出端口数值 port_num = tmp_user_gpio_data->port_num; //读出端口中的某一个GPIO if(!port) { continue; } port_num_func = (port_num >> 3); port_num_pull = (port_num >> 4); tmp_group_func_addr = PIO_REG_CFG(port, port_num_func); //更新功能寄存器地址 tmp_group_pull_addr = PIO_REG_PULL(port, port_num_pull); //更新pull寄存器 tmp_group_dlevel_addr = PIO_REG_DLEVEL(port, port_num_pull);//更新level寄存器 tmp_group_data_addr = PIO_REG_DATA(port); //更新data寄存器 tmp_group_func_data = GPIO_REG_READ(tmp_group_func_addr); tmp_group_pull_data = GPIO_REG_READ(tmp_group_pull_addr); tmp_group_dlevel_data = GPIO_REG_READ(tmp_group_dlevel_addr); tmp_group_data_data = GPIO_REG_READ(tmp_group_data_addr); pre_port = port; pre_port_num_func = port_num_func; pre_port_num_pull = port_num_pull; //更新功能寄存器 tmp_val = (port_num - (port_num_func << 3)) << 2; tmp_group_func_data &= ~(0x07 << tmp_val); if(set_gpio) { tmp_group_func_data |= (tmp_user_gpio_data->mul_sel & 0x07) << tmp_val; } //根据pull的值决定是否更新pull寄存器 tmp_val = (port_num - (port_num_pull << 4)) << 1; if(tmp_user_gpio_data->pull >= 0) { tmp_group_pull_data &= ~( 0x03 << tmp_val); tmp_group_pull_data |= (tmp_user_gpio_data->pull & 0x03) << tmp_val; } //根据driver level的值决定是否更新driver level寄存器 if(tmp_user_gpio_data->drv_level >= 0) { tmp_group_dlevel_data &= ~( 0x03 << tmp_val); tmp_group_dlevel_data |= (tmp_user_gpio_data->drv_level & 0x03) << tmp_val; } //根据用户输入,以及功能分配决定是否更新data寄存器 if(tmp_user_gpio_data->mul_sel == 1) { if(tmp_user_gpio_data->data >= 0) { tmp_val = tmp_user_gpio_data->data & 1; tmp_group_data_data &= ~(1 << port_num); tmp_group_data_data |= tmp_val << port_num; data_change = 1; } } break; } //检查是否有数据存在 if(first_port >= group_count_max) { return -1; } //保存用户数据 for(i = first_port + 1; i < group_count_max; i++) { tmp_user_gpio_data = gpio_list + i; //gpio_set依次指向用户的每个GPIO数组成员 port = tmp_user_gpio_data->port; //读出端口数值 port_num = tmp_user_gpio_data->port_num; //读出端口中的某一个GPIO if(!port) { break; } port_num_func = (port_num >> 3); port_num_pull = (port_num >> 4); if((port_num_pull != pre_port_num_pull) || (port != pre_port)) //如果发现当前引脚的端口不一致,或者所在的pull寄存器不一致 { GPIO_REG_WRITE(tmp_group_func_addr, tmp_group_func_data); //回写功能寄存器 GPIO_REG_WRITE(tmp_group_pull_addr, tmp_group_pull_data); //回写pull寄存器 GPIO_REG_WRITE(tmp_group_dlevel_addr, tmp_group_dlevel_data); //回写driver level寄存器 if(data_change) { data_change = 0; GPIO_REG_WRITE(tmp_group_data_addr, tmp_group_data_data); //回写data寄存器 } tmp_group_func_addr = PIO_REG_CFG(port, port_num_func); //更新功能寄存器地址 tmp_group_pull_addr = PIO_REG_PULL(port, port_num_pull); //更新pull寄存器 tmp_group_dlevel_addr = PIO_REG_DLEVEL(port, port_num_pull);//更新level寄存器 tmp_group_data_addr = PIO_REG_DATA(port); //更新data寄存器 tmp_group_func_data = GPIO_REG_READ(tmp_group_func_addr); tmp_group_pull_data = GPIO_REG_READ(tmp_group_pull_addr); tmp_group_dlevel_data = GPIO_REG_READ(tmp_group_dlevel_addr); tmp_group_data_data = GPIO_REG_READ(tmp_group_data_addr); } else if(pre_port_num_func != port_num_func) //如果发现当前引脚的功能寄存器不一致 { GPIO_REG_WRITE(tmp_group_func_addr, tmp_group_func_data); //则只回写功能寄存器 tmp_group_func_addr = PIO_REG_CFG(port, port_num_func); //更新功能寄存器地址 tmp_group_func_data = GPIO_REG_READ(tmp_group_func_addr); } //保存当前硬件寄存器数据 pre_port_num_pull = port_num_pull; //设置当前GPIO成为前一个GPIO pre_port_num_func = port_num_func; pre_port = port; //更新功能寄存器 tmp_val = (port_num - (port_num_func << 3)) << 2; if(tmp_user_gpio_data->mul_sel >= 0) { tmp_group_func_data &= ~( 0x07 << tmp_val); if(set_gpio) { tmp_group_func_data |= (tmp_user_gpio_data->mul_sel & 0x07) << tmp_val; } } //根据pull的值决定是否更新pull寄存器 tmp_val = (port_num - (port_num_pull << 4)) << 1; if(tmp_user_gpio_data->pull >= 0) { tmp_group_pull_data &= ~( 0x03 << tmp_val); tmp_group_pull_data |= (tmp_user_gpio_data->pull & 0x03) << tmp_val; } //根据driver level的值决定是否更新driver level寄存器 if(tmp_user_gpio_data->drv_level >= 0) { tmp_group_dlevel_data &= ~( 0x03 << tmp_val); tmp_group_dlevel_data |= (tmp_user_gpio_data->drv_level & 0x03) << tmp_val; } //根据用户输入,以及功能分配决定是否更新data寄存器 if(tmp_user_gpio_data->mul_sel == 1) { if(tmp_user_gpio_data->data >= 0) { tmp_val = tmp_user_gpio_data->data & 1; tmp_group_data_data &= ~(1 << port_num); tmp_group_data_data |= tmp_val << port_num; data_change = 1; } } } //for循环结束,如果存在还没有回写的寄存器,这里写回到硬件当中 if(tmp_group_func_addr) //只要更新过寄存器地址,就可以对硬件赋值 { //那么把所有的值全部回写到硬件寄存器 GPIO_REG_WRITE(tmp_group_func_addr, tmp_group_func_data); //回写功能寄存器 GPIO_REG_WRITE(tmp_group_pull_addr, tmp_group_pull_data); //回写pull寄存器 GPIO_REG_WRITE(tmp_group_dlevel_addr, tmp_group_dlevel_data); //回写driver level寄存器 if(data_change) { GPIO_REG_WRITE(tmp_group_data_addr, tmp_group_data_data); //回写data寄存器 } } return 0; } void Netease_gpio_init(void) { normal_gpio_set_t ldo_gpio[2] = { { 8, 4, 1, -1, -1, 1, {0}},//4v5_ldo_en = port:PH04<1><0> { 8, 5, 1, -1, -1, 1, {0}} //3v_ldo_en = port:PH05<1><0> }; boot_set_gpio(ldo_gpio,2,1); } int board_init(void) { //asm volatile("b ."); u32 reg_val; int cpu_status = 0; cpu_status = readl(SUNXI_CPUXCFG_BASE+0x80); cpu_status &= (0xf<<24); //note: //sbrom will enable smp bit when jmp to non-secure fel on AW1718. //but normal brom not do this operation. //so should enable smp when run uboot by normal fel mode. if(!cpu_status) enable_smp(); if (uboot_spare_head.boot_data.work_mode != WORK_MODE_USB_PRODUCT) { //VE SRAM:set sram to normal mode, default boot mode reg_val = readl(SUNXI_SYSCRL_BASE+0X0004); reg_val &= ~(0x1<<24); writel(reg_val, SUNXI_SYSCRL_BASE+0X0004); //VE gating&VE Bus Reset :brom set them, but not require now reg_val = readl(CCMU_VE_BGR_REG); reg_val &= ~(0x1<<0); reg_val &= ~(0x1<<16); writel(reg_val, CCMU_VE_BGR_REG); } printf("Enable GPIO PH04 PH05, by Netease!\n"); Netease_gpio_init(); return 0; } void dram_init_banksize(void) { gd->bd->bi_dram[0].start = PHYS_SDRAM_1; gd->bd->bi_dram[0].size = gd->ram_size; } int dram_init(void) { uint dram_size = 0; dram_size = uboot_spare_head.boot_data.dram_scan_size; if(dram_size) { gd->ram_size = dram_size * 1024 * 1024; } else { gd->ram_size = get_ram_size((long *)PHYS_SDRAM_1, PHYS_SDRAM_1_SIZE); } print_size(gd->ram_size, ""); putc('\n'); return 0; } #ifdef CONFIG_GENERIC_MMC extern int sunxi_mmc_init(int sdc_no); int board_mmc_init(bd_t *bis) { sunxi_mmc_init(bis->bi_card_num); return 0; } void board_mmc_pre_init(int card_num) { bd_t *bd; bd = gd->bd; gd->bd->bi_card_num = card_num; mmc_initialize(bd); } int board_mmc_get_num(void) { return gd->boot_card_num; } void board_mmc_set_num(int num) { gd->boot_card_num = num; } #endif #ifdef CONFIG_DISPLAY_BOARDINFO int checkboard(void) { printf("Board: SUN6I\n"); return 0; } #endif int cpu0_set_detected_paras(void) { return 0; } ulong get_spare_head_size(void) { return (ulong)sizeof(struct spare_boot_head_t); } extern int axp858_probe(void); extern int axp2585_probe(void); /** * platform_axp_probe -detect the pmu on board * @sunxi_axp_dev_pt: pointer to the axp array * @max_dev: offset of the property to retrieve * returns: * the num of pmu */ int platform_axp_probe(sunxi_axp_dev_t *sunxi_axp_dev_pt[], int max_dev) { u32 axp_num = 0; #ifdef CONFIG_SUNXI_MODULE_AXP if (!axp858_probe()) { tick_printf("PMU: AXP858 found\n"); sunxi_axp_dev_pt[0] = &sunxi_axp_858; axp_num++; } else { printf("probe axp858 failed\n"); sunxi_axp_dev_pt[0] = &sunxi_axp_null; } /*bmu probe*/ if (!axp2585_probe()) { sunxi_axp_dev_pt[1] = &sunxi_axp_2585; axp_num++; } else { printf("probe axp858 failed\n"); sunxi_axp_dev_pt[1] = &sunxi_axp_null; } #else sunxi_axp_dev_pt[0] = &sunxi_axp_null; sunxi_axp_dev_pt[1] = &sunxi_axp_null; #endif return axp_num; } char* board_hardware_info(void) { static char *hardware_info = "sun8iw15p1"; return hardware_info; } #ifdef CONFIG_CMD_NET #ifdef CONFIG_USB_ETHER extern int sunxi_udc_probe(void); #ifdef CONFIG_SUNXI_SERIAL extern int get_serial_num_from_chipid(char* serial); static int sunxi_serial_num_is_zero(char *serial) { int i = 0; get_serial_num_from_chipid(serial); while(i < 20) { if (serial[i] != '0') break; i++; } if (i == 20) return 0; else return 1; } #endif static void sunxi_random_ether_addr(void) { int i = 0; char serial[128] = {0}; ulong tmp = 0; char tmp_s[5] = ""; unsigned long long rand = 0; uchar usb_net_addr[6]; char mac[18] = ""; char tmp_mac = 0; int ret = 0; /* * get random mac address from serial num if it's not zero, or from timer. */ #ifdef CONFIG_SUNXI_SERIAL ret = sunxi_serial_num_is_zero(serial); #endif if (ret == 1) { for(i = 0; i < 6; i++) { if(i == 0) strncpy(tmp_s, serial+16, 4); else if ((i == 1) || (i == 4)) strncpy(tmp_s, serial+12, 4); else if (i == 2) strncpy(tmp_s, serial+8, 4); else strncpy(tmp_s,serial+4,4); tmp = simple_strtoul(tmp_s, NULL, 16); rand = (tmp) * 0xfedf4fd; rand = rand * 0xd263f967 + 0xea6f22ad8235; usb_net_addr[i] = (uchar)(rand % 0x100); } } else { for(i = 0; i < 6; i++) { rand = get_timer_masked() * 0xfedf4fd; rand = rand * 0xd263f967 + 0xea6f22ad8235; usb_net_addr[i] = (uchar)(rand % 0x100); } } /* * usbnet_hostaddr, usb_net_addr[0] = 0xxx xx10 */ tmp_mac = usb_net_addr[0] & 0x7e; tmp_mac = tmp_mac | 0x02; sprintf(mac, "%02x:%02x:%02x:%02x:%02x:%02x", tmp_mac, usb_net_addr[1],usb_net_addr[2], usb_net_addr[3],usb_net_addr[4],usb_net_addr[5]); setenv("usbnet_hostaddr", mac); /* * usbnet_devaddr, usb_net_addr[0] = 1xxx xx10 */ tmp_mac = usb_net_addr[0] & 0xfe; tmp_mac = tmp_mac | 0x82; sprintf(mac, "%02x:%02x:%02x:%02x:%02x:%02x", tmp_mac, usb_net_addr[1],usb_net_addr[2], usb_net_addr[3],usb_net_addr[4],usb_net_addr[5]); setenv("usbnet_devaddr", mac); } #endif int board_eth_init(bd_t *bis) { int rc = 0; #if defined(CONFIG_USB_ETHER) sunxi_random_ether_addr(); sunxi_udc_probe(); usb_eth_initialize(bis); #endif return rc; } #endif int update_fdt_dram_para(void *dtb_base) { /*fix dram para*/ int nodeoffset = 0; uint32_t *dram_para = NULL; dram_para = (uint32_t *)uboot_spare_head.boot_data.dram_para; pr_msg("(sunxi):update dtb dram start\n"); nodeoffset = fdt_path_offset(dtb_base, "/dram"); if (nodeoffset < 0) { printf("## error: %s : %s\n", __func__, fdt_strerror(nodeoffset)); return -1; } fdt_setprop_u32(dtb_base, nodeoffset, "dram_clk", dram_para[0]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_type", dram_para[1]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_dx_odt", dram_para[2]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_dx_dri", dram_para[3]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_ca_dri", dram_para[4]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_odt_en", dram_para[5]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_para1", dram_para[6]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_para2", dram_para[7]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr0", dram_para[8]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr1", dram_para[9]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr2", dram_para[10]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr3", dram_para[11]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr4", dram_para[12]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr5", dram_para[13]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr6", dram_para[14]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr11", dram_para[15]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr12", dram_para[16]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr13", dram_para[17]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr14", dram_para[18]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr16", dram_para[19]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr17", dram_para[20]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr22", dram_para[21]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_tpr0", dram_para[22]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_tpr1", dram_para[23]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_tpr2", dram_para[24]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_tpr3", dram_para[25]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_tpr6", dram_para[26]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_tpr10", dram_para[27]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_tpr11", dram_para[28]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_tpr12", dram_para[29]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_tpr13", dram_para[30]); fdt_setprop_u32(dtb_base, nodeoffset, "dram_tpr14", dram_para[31]); pr_msg("update dtb dram end\n"); return 0; }