/* * arch/arm64/kernel/topology.c * * Copyright (C) 2011,2013,2014 Linaro Limited. * * Based on the arm32 version written by Vincent Guittot in turn based on * arch/sh/kernel/topology.c * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE; unsigned long scale_cpu_capacity(struct sched_domain *sd, int cpu) { return per_cpu(cpu_scale, cpu); } static void set_capacity_scale(unsigned int cpu, unsigned long capacity) { per_cpu(cpu_scale, cpu) = capacity; } static int __init get_cpu_for_node(struct device_node *node) { struct device_node *cpu_node; int cpu; cpu_node = of_parse_phandle(node, "cpu", 0); if (!cpu_node) return -1; for_each_possible_cpu(cpu) { if (of_get_cpu_node(cpu, NULL) == cpu_node) { of_node_put(cpu_node); return cpu; } } pr_crit("Unable to find CPU node for %s\n", cpu_node->full_name); of_node_put(cpu_node); return -1; } static int __init parse_core(struct device_node *core, int cluster_id, int core_id) { char name[10]; bool leaf = true; int i = 0; int cpu; struct device_node *t; do { snprintf(name, sizeof(name), "thread%d", i); t = of_get_child_by_name(core, name); if (t) { leaf = false; cpu = get_cpu_for_node(t); if (cpu >= 0) { cpu_topology[cpu].cluster_id = cluster_id; cpu_topology[cpu].core_id = core_id; cpu_topology[cpu].thread_id = i; } else { pr_err("%s: Can't get CPU for thread\n", t->full_name); of_node_put(t); return -EINVAL; } of_node_put(t); } i++; } while (t); cpu = get_cpu_for_node(core); if (cpu >= 0) { if (!leaf) { pr_err("%s: Core has both threads and CPU\n", core->full_name); return -EINVAL; } cpu_topology[cpu].cluster_id = cluster_id; cpu_topology[cpu].core_id = core_id; } else if (leaf) { pr_err("%s: Can't get CPU for leaf core\n", core->full_name); return -EINVAL; } return 0; } static int __init parse_cluster(struct device_node *cluster, int depth) { char name[10]; bool leaf = true; bool has_cores = false; struct device_node *c; static int cluster_id __initdata; int core_id = 0; int i, ret; /* * First check for child clusters; we currently ignore any * information about the nesting of clusters and present the * scheduler with a flat list of them. */ i = 0; do { snprintf(name, sizeof(name), "cluster%d", i); c = of_get_child_by_name(cluster, name); if (c) { leaf = false; ret = parse_cluster(c, depth + 1); of_node_put(c); if (ret != 0) return ret; } i++; } while (c); /* Now check for cores */ i = 0; do { snprintf(name, sizeof(name), "core%d", i); c = of_get_child_by_name(cluster, name); if (c) { has_cores = true; if (depth == 0) { pr_err("%s: cpu-map children should be clusters\n", c->full_name); of_node_put(c); return -EINVAL; } if (leaf) { ret = parse_core(c, cluster_id, core_id++); } else { pr_err("%s: Non-leaf cluster with core %s\n", cluster->full_name, name); ret = -EINVAL; } of_node_put(c); if (ret != 0) return ret; } i++; } while (c); if (leaf && !has_cores) pr_warn("%s: empty cluster\n", cluster->full_name); if (leaf) cluster_id++; return 0; } static int __init parse_dt_topology(void) { struct device_node *cn, *map; int ret = 0; int cpu; cn = of_find_node_by_path("/cpus"); if (!cn) { pr_err("No CPU information found in DT\n"); return 0; } /* * When topology is provided cpu-map is essentially a root * cluster with restricted subnodes. */ map = of_get_child_by_name(cn, "cpu-map"); if (!map) goto out; ret = parse_cluster(map, 0); if (ret != 0) goto out_map; /* * Check that all cores are in the topology; the SMP code will * only mark cores described in the DT as possible. */ for_each_possible_cpu(cpu) if (cpu_topology[cpu].cluster_id == -1) ret = -EINVAL; out_map: of_node_put(map); out: of_node_put(cn); return ret; } /* * cpu topology table */ struct cpu_topology cpu_topology[NR_CPUS]; EXPORT_SYMBOL_GPL(cpu_topology); /* sd energy functions */ static inline const struct sched_group_energy * const cpu_cluster_energy(int cpu) { struct sched_group_energy *sge = sge_array[cpu][SD_LEVEL1]; if (!sge) { pr_warn("Invalid sched_group_energy for Cluster%d\n", cpu); return NULL; } return sge; } static inline const struct sched_group_energy * const cpu_core_energy(int cpu) { struct sched_group_energy *sge = sge_array[cpu][SD_LEVEL0]; if (!sge) { pr_warn("Invalid sched_group_energy for CPU%d\n", cpu); return NULL; } return sge; } const struct cpumask *cpu_coregroup_mask(int cpu) { return &cpu_topology[cpu].core_sibling; } static int cpu_cpu_flags(void) { return SD_ASYM_CPUCAPACITY; } static inline int cpu_corepower_flags(void) { return SD_SHARE_PKG_RESOURCES | SD_SHARE_POWERDOMAIN | \ SD_SHARE_CAP_STATES; } static struct sched_domain_topology_level arm64_topology[] = { #ifdef CONFIG_SCHED_MC { cpu_coregroup_mask, cpu_corepower_flags, cpu_core_energy, SD_INIT_NAME(MC) }, #endif { cpu_cpu_mask, cpu_cpu_flags, cpu_cluster_energy, SD_INIT_NAME(DIE) }, { NULL, }, }; static void update_cpu_capacity(unsigned int cpu) { unsigned long capacity = SCHED_CAPACITY_SCALE; if (cpu_core_energy(cpu)) { int max_cap_idx = cpu_core_energy(cpu)->nr_cap_states - 1; capacity = cpu_core_energy(cpu)->cap_states[max_cap_idx].cap; } set_capacity_scale(cpu, capacity); pr_info("CPU%d: update cpu_capacity %lu\n", cpu, arch_scale_cpu_capacity(NULL, cpu)); } static void update_siblings_masks(unsigned int cpuid) { struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; int cpu; /* update core and thread sibling masks */ for_each_possible_cpu(cpu) { cpu_topo = &cpu_topology[cpu]; if (cpuid_topo->cluster_id != cpu_topo->cluster_id) continue; cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); if (cpu != cpuid) cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); if (cpuid_topo->core_id != cpu_topo->core_id) continue; cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); if (cpu != cpuid) cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); } } void store_cpu_topology(unsigned int cpuid) { struct cpu_topology *cpuid_topo = &cpu_topology[cpuid]; u64 mpidr; if (cpuid_topo->cluster_id != -1) goto topology_populated; mpidr = read_cpuid_mpidr(); /* Uniprocessor systems can rely on default topology values */ if (mpidr & MPIDR_UP_BITMASK) return; /* Create cpu topology mapping based on MPIDR. */ if (mpidr & MPIDR_MT_BITMASK) { /* Multiprocessor system : Multi-threads per core */ cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1); cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 2) | MPIDR_AFFINITY_LEVEL(mpidr, 3) << 8; } else { /* Multiprocessor system : Single-thread per core */ cpuid_topo->thread_id = -1; cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 1) | MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8 | MPIDR_AFFINITY_LEVEL(mpidr, 3) << 16; } pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n", cpuid, cpuid_topo->cluster_id, cpuid_topo->core_id, cpuid_topo->thread_id, mpidr); topology_populated: update_siblings_masks(cpuid); update_cpu_capacity(cpuid); } static void __init reset_cpu_topology(void) { unsigned int cpu; for_each_possible_cpu(cpu) { struct cpu_topology *cpu_topo = &cpu_topology[cpu]; cpu_topo->thread_id = -1; cpu_topo->core_id = 0; cpu_topo->cluster_id = -1; cpumask_clear(&cpu_topo->core_sibling); cpumask_set_cpu(cpu, &cpu_topo->core_sibling); cpumask_clear(&cpu_topo->thread_sibling); cpumask_set_cpu(cpu, &cpu_topo->thread_sibling); } } void __init init_cpu_topology(void) { reset_cpu_topology(); /* * Discard anything that was parsed if we hit an error so we * don't use partial information. */ if (of_have_populated_dt() && parse_dt_topology()) reset_cpu_topology(); else set_sched_topology(arm64_topology); init_sched_energy_costs(); }