1990 lines
59 KiB
C
1990 lines
59 KiB
C
|
/******************************************************************************
|
||
|
*
|
||
|
* Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
|
||
|
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
|
||
|
* Copyright(c) 2016 Intel Deutschland GmbH
|
||
|
*
|
||
|
* Portions of this file are derived from the ipw3945 project, as well
|
||
|
* as portions of the ieee80211 subsystem header files.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of version 2 of the GNU General Public License as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
||
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||
|
* more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License along with
|
||
|
* this program; if not, write to the Free Software Foundation, Inc.,
|
||
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
|
||
|
*
|
||
|
* The full GNU General Public License is included in this distribution in the
|
||
|
* file called LICENSE.
|
||
|
*
|
||
|
* Contact Information:
|
||
|
* Intel Linux Wireless <linuxwifi@intel.com>
|
||
|
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
||
|
*
|
||
|
*****************************************************************************/
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/wait.h>
|
||
|
#include <linux/gfp.h>
|
||
|
|
||
|
#include "iwl-prph.h"
|
||
|
#include "iwl-io.h"
|
||
|
#include "internal.h"
|
||
|
#include "iwl-op-mode.h"
|
||
|
|
||
|
/******************************************************************************
|
||
|
*
|
||
|
* RX path functions
|
||
|
*
|
||
|
******************************************************************************/
|
||
|
|
||
|
/*
|
||
|
* Rx theory of operation
|
||
|
*
|
||
|
* Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
|
||
|
* each of which point to Receive Buffers to be filled by the NIC. These get
|
||
|
* used not only for Rx frames, but for any command response or notification
|
||
|
* from the NIC. The driver and NIC manage the Rx buffers by means
|
||
|
* of indexes into the circular buffer.
|
||
|
*
|
||
|
* Rx Queue Indexes
|
||
|
* The host/firmware share two index registers for managing the Rx buffers.
|
||
|
*
|
||
|
* The READ index maps to the first position that the firmware may be writing
|
||
|
* to -- the driver can read up to (but not including) this position and get
|
||
|
* good data.
|
||
|
* The READ index is managed by the firmware once the card is enabled.
|
||
|
*
|
||
|
* The WRITE index maps to the last position the driver has read from -- the
|
||
|
* position preceding WRITE is the last slot the firmware can place a packet.
|
||
|
*
|
||
|
* The queue is empty (no good data) if WRITE = READ - 1, and is full if
|
||
|
* WRITE = READ.
|
||
|
*
|
||
|
* During initialization, the host sets up the READ queue position to the first
|
||
|
* INDEX position, and WRITE to the last (READ - 1 wrapped)
|
||
|
*
|
||
|
* When the firmware places a packet in a buffer, it will advance the READ index
|
||
|
* and fire the RX interrupt. The driver can then query the READ index and
|
||
|
* process as many packets as possible, moving the WRITE index forward as it
|
||
|
* resets the Rx queue buffers with new memory.
|
||
|
*
|
||
|
* The management in the driver is as follows:
|
||
|
* + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
|
||
|
* When the interrupt handler is called, the request is processed.
|
||
|
* The page is either stolen - transferred to the upper layer
|
||
|
* or reused - added immediately to the iwl->rxq->rx_free list.
|
||
|
* + When the page is stolen - the driver updates the matching queue's used
|
||
|
* count, detaches the RBD and transfers it to the queue used list.
|
||
|
* When there are two used RBDs - they are transferred to the allocator empty
|
||
|
* list. Work is then scheduled for the allocator to start allocating
|
||
|
* eight buffers.
|
||
|
* When there are another 6 used RBDs - they are transferred to the allocator
|
||
|
* empty list and the driver tries to claim the pre-allocated buffers and
|
||
|
* add them to iwl->rxq->rx_free. If it fails - it continues to claim them
|
||
|
* until ready.
|
||
|
* When there are 8+ buffers in the free list - either from allocation or from
|
||
|
* 8 reused unstolen pages - restock is called to update the FW and indexes.
|
||
|
* + In order to make sure the allocator always has RBDs to use for allocation
|
||
|
* the allocator has initial pool in the size of num_queues*(8-2) - the
|
||
|
* maximum missing RBDs per allocation request (request posted with 2
|
||
|
* empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
|
||
|
* The queues supplies the recycle of the rest of the RBDs.
|
||
|
* + A received packet is processed and handed to the kernel network stack,
|
||
|
* detached from the iwl->rxq. The driver 'processed' index is updated.
|
||
|
* + If there are no allocated buffers in iwl->rxq->rx_free,
|
||
|
* the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
|
||
|
* If there were enough free buffers and RX_STALLED is set it is cleared.
|
||
|
*
|
||
|
*
|
||
|
* Driver sequence:
|
||
|
*
|
||
|
* iwl_rxq_alloc() Allocates rx_free
|
||
|
* iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls
|
||
|
* iwl_pcie_rxq_restock.
|
||
|
* Used only during initialization.
|
||
|
* iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx
|
||
|
* queue, updates firmware pointers, and updates
|
||
|
* the WRITE index.
|
||
|
* iwl_pcie_rx_allocator() Background work for allocating pages.
|
||
|
*
|
||
|
* -- enable interrupts --
|
||
|
* ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
|
||
|
* READ INDEX, detaching the SKB from the pool.
|
||
|
* Moves the packet buffer from queue to rx_used.
|
||
|
* Posts and claims requests to the allocator.
|
||
|
* Calls iwl_pcie_rxq_restock to refill any empty
|
||
|
* slots.
|
||
|
*
|
||
|
* RBD life-cycle:
|
||
|
*
|
||
|
* Init:
|
||
|
* rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
|
||
|
*
|
||
|
* Regular Receive interrupt:
|
||
|
* Page Stolen:
|
||
|
* rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
|
||
|
* allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
|
||
|
* Page not Stolen:
|
||
|
* rxq.queue -> rxq.rx_free -> rxq.queue
|
||
|
* ...
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* iwl_rxq_space - Return number of free slots available in queue.
|
||
|
*/
|
||
|
static int iwl_rxq_space(const struct iwl_rxq *rxq)
|
||
|
{
|
||
|
/* Make sure rx queue size is a power of 2 */
|
||
|
WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
|
||
|
|
||
|
/*
|
||
|
* There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
|
||
|
* between empty and completely full queues.
|
||
|
* The following is equivalent to modulo by RX_QUEUE_SIZE and is well
|
||
|
* defined for negative dividends.
|
||
|
*/
|
||
|
return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
|
||
|
*/
|
||
|
static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
|
||
|
{
|
||
|
return cpu_to_le32((u32)(dma_addr >> 8));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_pcie_rx_stop - stops the Rx DMA
|
||
|
*/
|
||
|
int iwl_pcie_rx_stop(struct iwl_trans *trans)
|
||
|
{
|
||
|
if (trans->cfg->mq_rx_supported) {
|
||
|
iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
|
||
|
return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
|
||
|
RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
|
||
|
} else {
|
||
|
iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
|
||
|
return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
|
||
|
FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
|
||
|
1000);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
|
||
|
*/
|
||
|
static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
|
||
|
struct iwl_rxq *rxq)
|
||
|
{
|
||
|
u32 reg;
|
||
|
|
||
|
lockdep_assert_held(&rxq->lock);
|
||
|
|
||
|
/*
|
||
|
* explicitly wake up the NIC if:
|
||
|
* 1. shadow registers aren't enabled
|
||
|
* 2. there is a chance that the NIC is asleep
|
||
|
*/
|
||
|
if (!trans->cfg->base_params->shadow_reg_enable &&
|
||
|
test_bit(STATUS_TPOWER_PMI, &trans->status)) {
|
||
|
reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
|
||
|
|
||
|
if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
|
||
|
IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
|
||
|
reg);
|
||
|
iwl_set_bit(trans, CSR_GP_CNTRL,
|
||
|
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
|
||
|
rxq->need_update = true;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
rxq->write_actual = round_down(rxq->write, 8);
|
||
|
if (trans->cfg->mq_rx_supported)
|
||
|
iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
|
||
|
rxq->write_actual);
|
||
|
else
|
||
|
iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
|
||
|
}
|
||
|
|
||
|
static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < trans->num_rx_queues; i++) {
|
||
|
struct iwl_rxq *rxq = &trans_pcie->rxq[i];
|
||
|
|
||
|
if (!rxq->need_update)
|
||
|
continue;
|
||
|
spin_lock(&rxq->lock);
|
||
|
iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
|
||
|
rxq->need_update = false;
|
||
|
spin_unlock(&rxq->lock);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
|
||
|
*/
|
||
|
static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
|
||
|
struct iwl_rxq *rxq)
|
||
|
{
|
||
|
struct iwl_rx_mem_buffer *rxb;
|
||
|
|
||
|
/*
|
||
|
* If the device isn't enabled - no need to try to add buffers...
|
||
|
* This can happen when we stop the device and still have an interrupt
|
||
|
* pending. We stop the APM before we sync the interrupts because we
|
||
|
* have to (see comment there). On the other hand, since the APM is
|
||
|
* stopped, we cannot access the HW (in particular not prph).
|
||
|
* So don't try to restock if the APM has been already stopped.
|
||
|
*/
|
||
|
if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
|
||
|
return;
|
||
|
|
||
|
spin_lock(&rxq->lock);
|
||
|
while (rxq->free_count) {
|
||
|
__le64 *bd = (__le64 *)rxq->bd;
|
||
|
|
||
|
/* Get next free Rx buffer, remove from free list */
|
||
|
rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
|
||
|
list);
|
||
|
list_del(&rxb->list);
|
||
|
rxb->invalid = false;
|
||
|
/* 12 first bits are expected to be empty */
|
||
|
WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
|
||
|
/* Point to Rx buffer via next RBD in circular buffer */
|
||
|
bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
|
||
|
rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
|
||
|
rxq->free_count--;
|
||
|
}
|
||
|
spin_unlock(&rxq->lock);
|
||
|
|
||
|
/*
|
||
|
* If we've added more space for the firmware to place data, tell it.
|
||
|
* Increment device's write pointer in multiples of 8.
|
||
|
*/
|
||
|
if (rxq->write_actual != (rxq->write & ~0x7)) {
|
||
|
spin_lock(&rxq->lock);
|
||
|
iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
|
||
|
spin_unlock(&rxq->lock);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_pcie_rxsq_restock - restock implementation for single queue rx
|
||
|
*/
|
||
|
static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
|
||
|
struct iwl_rxq *rxq)
|
||
|
{
|
||
|
struct iwl_rx_mem_buffer *rxb;
|
||
|
|
||
|
/*
|
||
|
* If the device isn't enabled - not need to try to add buffers...
|
||
|
* This can happen when we stop the device and still have an interrupt
|
||
|
* pending. We stop the APM before we sync the interrupts because we
|
||
|
* have to (see comment there). On the other hand, since the APM is
|
||
|
* stopped, we cannot access the HW (in particular not prph).
|
||
|
* So don't try to restock if the APM has been already stopped.
|
||
|
*/
|
||
|
if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
|
||
|
return;
|
||
|
|
||
|
spin_lock(&rxq->lock);
|
||
|
while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
|
||
|
__le32 *bd = (__le32 *)rxq->bd;
|
||
|
/* The overwritten rxb must be a used one */
|
||
|
rxb = rxq->queue[rxq->write];
|
||
|
BUG_ON(rxb && rxb->page);
|
||
|
|
||
|
/* Get next free Rx buffer, remove from free list */
|
||
|
rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
|
||
|
list);
|
||
|
list_del(&rxb->list);
|
||
|
rxb->invalid = false;
|
||
|
|
||
|
/* Point to Rx buffer via next RBD in circular buffer */
|
||
|
bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
|
||
|
rxq->queue[rxq->write] = rxb;
|
||
|
rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
|
||
|
rxq->free_count--;
|
||
|
}
|
||
|
spin_unlock(&rxq->lock);
|
||
|
|
||
|
/* If we've added more space for the firmware to place data, tell it.
|
||
|
* Increment device's write pointer in multiples of 8. */
|
||
|
if (rxq->write_actual != (rxq->write & ~0x7)) {
|
||
|
spin_lock(&rxq->lock);
|
||
|
iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
|
||
|
spin_unlock(&rxq->lock);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
|
||
|
*
|
||
|
* If there are slots in the RX queue that need to be restocked,
|
||
|
* and we have free pre-allocated buffers, fill the ranks as much
|
||
|
* as we can, pulling from rx_free.
|
||
|
*
|
||
|
* This moves the 'write' index forward to catch up with 'processed', and
|
||
|
* also updates the memory address in the firmware to reference the new
|
||
|
* target buffer.
|
||
|
*/
|
||
|
static
|
||
|
void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
|
||
|
{
|
||
|
if (trans->cfg->mq_rx_supported)
|
||
|
iwl_pcie_rxmq_restock(trans, rxq);
|
||
|
else
|
||
|
iwl_pcie_rxsq_restock(trans, rxq);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_pcie_rx_alloc_page - allocates and returns a page.
|
||
|
*
|
||
|
*/
|
||
|
static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
|
||
|
gfp_t priority)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
struct page *page;
|
||
|
gfp_t gfp_mask = priority;
|
||
|
|
||
|
if (trans_pcie->rx_page_order > 0)
|
||
|
gfp_mask |= __GFP_COMP;
|
||
|
|
||
|
/* Alloc a new receive buffer */
|
||
|
page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
|
||
|
if (!page) {
|
||
|
if (net_ratelimit())
|
||
|
IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
|
||
|
trans_pcie->rx_page_order);
|
||
|
/*
|
||
|
* Issue an error if we don't have enough pre-allocated
|
||
|
* buffers.
|
||
|
` */
|
||
|
if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
|
||
|
IWL_CRIT(trans,
|
||
|
"Failed to alloc_pages\n");
|
||
|
return NULL;
|
||
|
}
|
||
|
return page;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
|
||
|
*
|
||
|
* A used RBD is an Rx buffer that has been given to the stack. To use it again
|
||
|
* a page must be allocated and the RBD must point to the page. This function
|
||
|
* doesn't change the HW pointer but handles the list of pages that is used by
|
||
|
* iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
|
||
|
* allocated buffers.
|
||
|
*/
|
||
|
static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
|
||
|
struct iwl_rxq *rxq)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
struct iwl_rx_mem_buffer *rxb;
|
||
|
struct page *page;
|
||
|
|
||
|
while (1) {
|
||
|
spin_lock(&rxq->lock);
|
||
|
if (list_empty(&rxq->rx_used)) {
|
||
|
spin_unlock(&rxq->lock);
|
||
|
return;
|
||
|
}
|
||
|
spin_unlock(&rxq->lock);
|
||
|
|
||
|
/* Alloc a new receive buffer */
|
||
|
page = iwl_pcie_rx_alloc_page(trans, priority);
|
||
|
if (!page)
|
||
|
return;
|
||
|
|
||
|
spin_lock(&rxq->lock);
|
||
|
|
||
|
if (list_empty(&rxq->rx_used)) {
|
||
|
spin_unlock(&rxq->lock);
|
||
|
__free_pages(page, trans_pcie->rx_page_order);
|
||
|
return;
|
||
|
}
|
||
|
rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
|
||
|
list);
|
||
|
list_del(&rxb->list);
|
||
|
spin_unlock(&rxq->lock);
|
||
|
|
||
|
BUG_ON(rxb->page);
|
||
|
rxb->page = page;
|
||
|
/* Get physical address of the RB */
|
||
|
rxb->page_dma =
|
||
|
dma_map_page(trans->dev, page, 0,
|
||
|
PAGE_SIZE << trans_pcie->rx_page_order,
|
||
|
DMA_FROM_DEVICE);
|
||
|
if (dma_mapping_error(trans->dev, rxb->page_dma)) {
|
||
|
rxb->page = NULL;
|
||
|
spin_lock(&rxq->lock);
|
||
|
list_add(&rxb->list, &rxq->rx_used);
|
||
|
spin_unlock(&rxq->lock);
|
||
|
__free_pages(page, trans_pcie->rx_page_order);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
spin_lock(&rxq->lock);
|
||
|
|
||
|
list_add_tail(&rxb->list, &rxq->rx_free);
|
||
|
rxq->free_count++;
|
||
|
|
||
|
spin_unlock(&rxq->lock);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < RX_POOL_SIZE; i++) {
|
||
|
if (!trans_pcie->rx_pool[i].page)
|
||
|
continue;
|
||
|
dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
|
||
|
PAGE_SIZE << trans_pcie->rx_page_order,
|
||
|
DMA_FROM_DEVICE);
|
||
|
__free_pages(trans_pcie->rx_pool[i].page,
|
||
|
trans_pcie->rx_page_order);
|
||
|
trans_pcie->rx_pool[i].page = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
|
||
|
*
|
||
|
* Allocates for each received request 8 pages
|
||
|
* Called as a scheduled work item.
|
||
|
*/
|
||
|
static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
struct iwl_rb_allocator *rba = &trans_pcie->rba;
|
||
|
struct list_head local_empty;
|
||
|
int pending = atomic_xchg(&rba->req_pending, 0);
|
||
|
|
||
|
IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending);
|
||
|
|
||
|
/* If we were scheduled - there is at least one request */
|
||
|
spin_lock(&rba->lock);
|
||
|
/* swap out the rba->rbd_empty to a local list */
|
||
|
list_replace_init(&rba->rbd_empty, &local_empty);
|
||
|
spin_unlock(&rba->lock);
|
||
|
|
||
|
while (pending) {
|
||
|
int i;
|
||
|
LIST_HEAD(local_allocated);
|
||
|
gfp_t gfp_mask = GFP_KERNEL;
|
||
|
|
||
|
/* Do not post a warning if there are only a few requests */
|
||
|
if (pending < RX_PENDING_WATERMARK)
|
||
|
gfp_mask |= __GFP_NOWARN;
|
||
|
|
||
|
for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
|
||
|
struct iwl_rx_mem_buffer *rxb;
|
||
|
struct page *page;
|
||
|
|
||
|
/* List should never be empty - each reused RBD is
|
||
|
* returned to the list, and initial pool covers any
|
||
|
* possible gap between the time the page is allocated
|
||
|
* to the time the RBD is added.
|
||
|
*/
|
||
|
BUG_ON(list_empty(&local_empty));
|
||
|
/* Get the first rxb from the rbd list */
|
||
|
rxb = list_first_entry(&local_empty,
|
||
|
struct iwl_rx_mem_buffer, list);
|
||
|
BUG_ON(rxb->page);
|
||
|
|
||
|
/* Alloc a new receive buffer */
|
||
|
page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
|
||
|
if (!page)
|
||
|
continue;
|
||
|
rxb->page = page;
|
||
|
|
||
|
/* Get physical address of the RB */
|
||
|
rxb->page_dma = dma_map_page(trans->dev, page, 0,
|
||
|
PAGE_SIZE << trans_pcie->rx_page_order,
|
||
|
DMA_FROM_DEVICE);
|
||
|
if (dma_mapping_error(trans->dev, rxb->page_dma)) {
|
||
|
rxb->page = NULL;
|
||
|
__free_pages(page, trans_pcie->rx_page_order);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* move the allocated entry to the out list */
|
||
|
list_move(&rxb->list, &local_allocated);
|
||
|
i++;
|
||
|
}
|
||
|
|
||
|
pending--;
|
||
|
if (!pending) {
|
||
|
pending = atomic_xchg(&rba->req_pending, 0);
|
||
|
IWL_DEBUG_RX(trans,
|
||
|
"Pending allocation requests = %d\n",
|
||
|
pending);
|
||
|
}
|
||
|
|
||
|
spin_lock(&rba->lock);
|
||
|
/* add the allocated rbds to the allocator allocated list */
|
||
|
list_splice_tail(&local_allocated, &rba->rbd_allocated);
|
||
|
/* get more empty RBDs for current pending requests */
|
||
|
list_splice_tail_init(&rba->rbd_empty, &local_empty);
|
||
|
spin_unlock(&rba->lock);
|
||
|
|
||
|
atomic_inc(&rba->req_ready);
|
||
|
}
|
||
|
|
||
|
spin_lock(&rba->lock);
|
||
|
/* return unused rbds to the allocator empty list */
|
||
|
list_splice_tail(&local_empty, &rba->rbd_empty);
|
||
|
spin_unlock(&rba->lock);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_pcie_rx_allocator_get - returns the pre-allocated pages
|
||
|
.*
|
||
|
.* Called by queue when the queue posted allocation request and
|
||
|
* has freed 8 RBDs in order to restock itself.
|
||
|
* This function directly moves the allocated RBs to the queue's ownership
|
||
|
* and updates the relevant counters.
|
||
|
*/
|
||
|
static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
|
||
|
struct iwl_rxq *rxq)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
struct iwl_rb_allocator *rba = &trans_pcie->rba;
|
||
|
int i;
|
||
|
|
||
|
lockdep_assert_held(&rxq->lock);
|
||
|
|
||
|
/*
|
||
|
* atomic_dec_if_positive returns req_ready - 1 for any scenario.
|
||
|
* If req_ready is 0 atomic_dec_if_positive will return -1 and this
|
||
|
* function will return early, as there are no ready requests.
|
||
|
* atomic_dec_if_positive will perofrm the *actual* decrement only if
|
||
|
* req_ready > 0, i.e. - there are ready requests and the function
|
||
|
* hands one request to the caller.
|
||
|
*/
|
||
|
if (atomic_dec_if_positive(&rba->req_ready) < 0)
|
||
|
return;
|
||
|
|
||
|
spin_lock(&rba->lock);
|
||
|
for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
|
||
|
/* Get next free Rx buffer, remove it from free list */
|
||
|
struct iwl_rx_mem_buffer *rxb =
|
||
|
list_first_entry(&rba->rbd_allocated,
|
||
|
struct iwl_rx_mem_buffer, list);
|
||
|
|
||
|
list_move(&rxb->list, &rxq->rx_free);
|
||
|
}
|
||
|
spin_unlock(&rba->lock);
|
||
|
|
||
|
rxq->used_count -= RX_CLAIM_REQ_ALLOC;
|
||
|
rxq->free_count += RX_CLAIM_REQ_ALLOC;
|
||
|
}
|
||
|
|
||
|
static void iwl_pcie_rx_allocator_work(struct work_struct *data)
|
||
|
{
|
||
|
struct iwl_rb_allocator *rba_p =
|
||
|
container_of(data, struct iwl_rb_allocator, rx_alloc);
|
||
|
struct iwl_trans_pcie *trans_pcie =
|
||
|
container_of(rba_p, struct iwl_trans_pcie, rba);
|
||
|
|
||
|
iwl_pcie_rx_allocator(trans_pcie->trans);
|
||
|
}
|
||
|
|
||
|
static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
struct iwl_rb_allocator *rba = &trans_pcie->rba;
|
||
|
struct device *dev = trans->dev;
|
||
|
int i;
|
||
|
int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
|
||
|
sizeof(__le32);
|
||
|
|
||
|
if (WARN_ON(trans_pcie->rxq))
|
||
|
return -EINVAL;
|
||
|
|
||
|
trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
|
||
|
GFP_KERNEL);
|
||
|
if (!trans_pcie->rxq)
|
||
|
return -EINVAL;
|
||
|
|
||
|
spin_lock_init(&rba->lock);
|
||
|
|
||
|
for (i = 0; i < trans->num_rx_queues; i++) {
|
||
|
struct iwl_rxq *rxq = &trans_pcie->rxq[i];
|
||
|
|
||
|
spin_lock_init(&rxq->lock);
|
||
|
if (trans->cfg->mq_rx_supported)
|
||
|
rxq->queue_size = MQ_RX_TABLE_SIZE;
|
||
|
else
|
||
|
rxq->queue_size = RX_QUEUE_SIZE;
|
||
|
|
||
|
/*
|
||
|
* Allocate the circular buffer of Read Buffer Descriptors
|
||
|
* (RBDs)
|
||
|
*/
|
||
|
rxq->bd = dma_zalloc_coherent(dev,
|
||
|
free_size * rxq->queue_size,
|
||
|
&rxq->bd_dma, GFP_KERNEL);
|
||
|
if (!rxq->bd)
|
||
|
goto err;
|
||
|
|
||
|
if (trans->cfg->mq_rx_supported) {
|
||
|
rxq->used_bd = dma_zalloc_coherent(dev,
|
||
|
sizeof(__le32) *
|
||
|
rxq->queue_size,
|
||
|
&rxq->used_bd_dma,
|
||
|
GFP_KERNEL);
|
||
|
if (!rxq->used_bd)
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
/*Allocate the driver's pointer to receive buffer status */
|
||
|
rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
|
||
|
&rxq->rb_stts_dma,
|
||
|
GFP_KERNEL);
|
||
|
if (!rxq->rb_stts)
|
||
|
goto err;
|
||
|
}
|
||
|
return 0;
|
||
|
|
||
|
err:
|
||
|
for (i = 0; i < trans->num_rx_queues; i++) {
|
||
|
struct iwl_rxq *rxq = &trans_pcie->rxq[i];
|
||
|
|
||
|
if (rxq->bd)
|
||
|
dma_free_coherent(dev, free_size * rxq->queue_size,
|
||
|
rxq->bd, rxq->bd_dma);
|
||
|
rxq->bd_dma = 0;
|
||
|
rxq->bd = NULL;
|
||
|
|
||
|
if (rxq->rb_stts)
|
||
|
dma_free_coherent(trans->dev,
|
||
|
sizeof(struct iwl_rb_status),
|
||
|
rxq->rb_stts, rxq->rb_stts_dma);
|
||
|
|
||
|
if (rxq->used_bd)
|
||
|
dma_free_coherent(dev, sizeof(__le32) * rxq->queue_size,
|
||
|
rxq->used_bd, rxq->used_bd_dma);
|
||
|
rxq->used_bd_dma = 0;
|
||
|
rxq->used_bd = NULL;
|
||
|
}
|
||
|
kfree(trans_pcie->rxq);
|
||
|
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
u32 rb_size;
|
||
|
unsigned long flags;
|
||
|
const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
|
||
|
|
||
|
switch (trans_pcie->rx_buf_size) {
|
||
|
case IWL_AMSDU_4K:
|
||
|
rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
|
||
|
break;
|
||
|
case IWL_AMSDU_8K:
|
||
|
rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
|
||
|
break;
|
||
|
case IWL_AMSDU_12K:
|
||
|
rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
|
||
|
break;
|
||
|
default:
|
||
|
WARN_ON(1);
|
||
|
rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
|
||
|
}
|
||
|
|
||
|
if (!iwl_trans_grab_nic_access(trans, &flags))
|
||
|
return;
|
||
|
|
||
|
/* Stop Rx DMA */
|
||
|
iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
|
||
|
/* reset and flush pointers */
|
||
|
iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
|
||
|
iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
|
||
|
iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
|
||
|
|
||
|
/* Reset driver's Rx queue write index */
|
||
|
iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
|
||
|
|
||
|
/* Tell device where to find RBD circular buffer in DRAM */
|
||
|
iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
|
||
|
(u32)(rxq->bd_dma >> 8));
|
||
|
|
||
|
/* Tell device where in DRAM to update its Rx status */
|
||
|
iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
|
||
|
rxq->rb_stts_dma >> 4);
|
||
|
|
||
|
/* Enable Rx DMA
|
||
|
* FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
|
||
|
* the credit mechanism in 5000 HW RX FIFO
|
||
|
* Direct rx interrupts to hosts
|
||
|
* Rx buffer size 4 or 8k or 12k
|
||
|
* RB timeout 0x10
|
||
|
* 256 RBDs
|
||
|
*/
|
||
|
iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
|
||
|
FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
|
||
|
FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
|
||
|
FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
|
||
|
rb_size |
|
||
|
(RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
|
||
|
(rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
|
||
|
|
||
|
iwl_trans_release_nic_access(trans, &flags);
|
||
|
|
||
|
/* Set interrupt coalescing timer to default (2048 usecs) */
|
||
|
iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
|
||
|
|
||
|
/* W/A for interrupt coalescing bug in 7260 and 3160 */
|
||
|
if (trans->cfg->host_interrupt_operation_mode)
|
||
|
iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
|
||
|
}
|
||
|
|
||
|
void iwl_pcie_enable_rx_wake(struct iwl_trans *trans, bool enable)
|
||
|
{
|
||
|
/*
|
||
|
* Turn on the chicken-bits that cause MAC wakeup for RX-related
|
||
|
* values.
|
||
|
* This costs some power, but needed for W/A 9000 integrated A-step
|
||
|
* bug where shadow registers are not in the retention list and their
|
||
|
* value is lost when NIC powers down
|
||
|
*/
|
||
|
if (trans->cfg->integrated) {
|
||
|
iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL,
|
||
|
CSR_MAC_SHADOW_REG_CTRL_RX_WAKE);
|
||
|
iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTL2,
|
||
|
CSR_MAC_SHADOW_REG_CTL2_RX_WAKE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
u32 rb_size, enabled = 0;
|
||
|
unsigned long flags;
|
||
|
int i;
|
||
|
|
||
|
switch (trans_pcie->rx_buf_size) {
|
||
|
case IWL_AMSDU_4K:
|
||
|
rb_size = RFH_RXF_DMA_RB_SIZE_4K;
|
||
|
break;
|
||
|
case IWL_AMSDU_8K:
|
||
|
rb_size = RFH_RXF_DMA_RB_SIZE_8K;
|
||
|
break;
|
||
|
case IWL_AMSDU_12K:
|
||
|
rb_size = RFH_RXF_DMA_RB_SIZE_12K;
|
||
|
break;
|
||
|
default:
|
||
|
WARN_ON(1);
|
||
|
rb_size = RFH_RXF_DMA_RB_SIZE_4K;
|
||
|
}
|
||
|
|
||
|
if (!iwl_trans_grab_nic_access(trans, &flags))
|
||
|
return;
|
||
|
|
||
|
/* Stop Rx DMA */
|
||
|
iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
|
||
|
/* disable free amd used rx queue operation */
|
||
|
iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
|
||
|
|
||
|
for (i = 0; i < trans->num_rx_queues; i++) {
|
||
|
/* Tell device where to find RBD free table in DRAM */
|
||
|
iwl_write_prph64_no_grab(trans,
|
||
|
RFH_Q_FRBDCB_BA_LSB(i),
|
||
|
trans_pcie->rxq[i].bd_dma);
|
||
|
/* Tell device where to find RBD used table in DRAM */
|
||
|
iwl_write_prph64_no_grab(trans,
|
||
|
RFH_Q_URBDCB_BA_LSB(i),
|
||
|
trans_pcie->rxq[i].used_bd_dma);
|
||
|
/* Tell device where in DRAM to update its Rx status */
|
||
|
iwl_write_prph64_no_grab(trans,
|
||
|
RFH_Q_URBD_STTS_WPTR_LSB(i),
|
||
|
trans_pcie->rxq[i].rb_stts_dma);
|
||
|
/* Reset device indice tables */
|
||
|
iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
|
||
|
iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
|
||
|
iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
|
||
|
|
||
|
enabled |= BIT(i) | BIT(i + 16);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Enable Rx DMA
|
||
|
* Rx buffer size 4 or 8k or 12k
|
||
|
* Min RB size 4 or 8
|
||
|
* Drop frames that exceed RB size
|
||
|
* 512 RBDs
|
||
|
*/
|
||
|
iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
|
||
|
RFH_DMA_EN_ENABLE_VAL | rb_size |
|
||
|
RFH_RXF_DMA_MIN_RB_4_8 |
|
||
|
RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
|
||
|
RFH_RXF_DMA_RBDCB_SIZE_512);
|
||
|
|
||
|
/*
|
||
|
* Activate DMA snooping.
|
||
|
* Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
|
||
|
* Default queue is 0
|
||
|
*/
|
||
|
iwl_write_prph_no_grab(trans, RFH_GEN_CFG, RFH_GEN_CFG_RFH_DMA_SNOOP |
|
||
|
(DEFAULT_RXQ_NUM <<
|
||
|
RFH_GEN_CFG_DEFAULT_RXQ_NUM_POS) |
|
||
|
RFH_GEN_CFG_SERVICE_DMA_SNOOP |
|
||
|
(trans->cfg->integrated ?
|
||
|
RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
|
||
|
RFH_GEN_CFG_RB_CHUNK_SIZE_128) <<
|
||
|
RFH_GEN_CFG_RB_CHUNK_SIZE_POS);
|
||
|
/* Enable the relevant rx queues */
|
||
|
iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
|
||
|
|
||
|
iwl_trans_release_nic_access(trans, &flags);
|
||
|
|
||
|
/* Set interrupt coalescing timer to default (2048 usecs) */
|
||
|
iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
|
||
|
|
||
|
iwl_pcie_enable_rx_wake(trans, true);
|
||
|
}
|
||
|
|
||
|
static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
|
||
|
{
|
||
|
lockdep_assert_held(&rxq->lock);
|
||
|
|
||
|
INIT_LIST_HEAD(&rxq->rx_free);
|
||
|
INIT_LIST_HEAD(&rxq->rx_used);
|
||
|
rxq->free_count = 0;
|
||
|
rxq->used_count = 0;
|
||
|
}
|
||
|
|
||
|
static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
|
||
|
{
|
||
|
WARN_ON(1);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int iwl_pcie_rx_init(struct iwl_trans *trans)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
struct iwl_rxq *def_rxq;
|
||
|
struct iwl_rb_allocator *rba = &trans_pcie->rba;
|
||
|
int i, err, queue_size, allocator_pool_size, num_alloc;
|
||
|
|
||
|
if (!trans_pcie->rxq) {
|
||
|
err = iwl_pcie_rx_alloc(trans);
|
||
|
if (err)
|
||
|
return err;
|
||
|
}
|
||
|
def_rxq = trans_pcie->rxq;
|
||
|
if (!rba->alloc_wq)
|
||
|
rba->alloc_wq = alloc_workqueue("rb_allocator",
|
||
|
WQ_HIGHPRI | WQ_UNBOUND, 1);
|
||
|
INIT_WORK(&rba->rx_alloc, iwl_pcie_rx_allocator_work);
|
||
|
|
||
|
spin_lock(&rba->lock);
|
||
|
atomic_set(&rba->req_pending, 0);
|
||
|
atomic_set(&rba->req_ready, 0);
|
||
|
INIT_LIST_HEAD(&rba->rbd_allocated);
|
||
|
INIT_LIST_HEAD(&rba->rbd_empty);
|
||
|
spin_unlock(&rba->lock);
|
||
|
|
||
|
/* free all first - we might be reconfigured for a different size */
|
||
|
iwl_pcie_free_rbs_pool(trans);
|
||
|
|
||
|
for (i = 0; i < RX_QUEUE_SIZE; i++)
|
||
|
def_rxq->queue[i] = NULL;
|
||
|
|
||
|
for (i = 0; i < trans->num_rx_queues; i++) {
|
||
|
struct iwl_rxq *rxq = &trans_pcie->rxq[i];
|
||
|
|
||
|
rxq->id = i;
|
||
|
|
||
|
spin_lock(&rxq->lock);
|
||
|
/*
|
||
|
* Set read write pointer to reflect that we have processed
|
||
|
* and used all buffers, but have not restocked the Rx queue
|
||
|
* with fresh buffers
|
||
|
*/
|
||
|
rxq->read = 0;
|
||
|
rxq->write = 0;
|
||
|
rxq->write_actual = 0;
|
||
|
memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
|
||
|
|
||
|
iwl_pcie_rx_init_rxb_lists(rxq);
|
||
|
|
||
|
if (!rxq->napi.poll)
|
||
|
netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
|
||
|
iwl_pcie_dummy_napi_poll, 64);
|
||
|
|
||
|
spin_unlock(&rxq->lock);
|
||
|
}
|
||
|
|
||
|
/* move the pool to the default queue and allocator ownerships */
|
||
|
queue_size = trans->cfg->mq_rx_supported ?
|
||
|
MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
|
||
|
allocator_pool_size = trans->num_rx_queues *
|
||
|
(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
|
||
|
num_alloc = queue_size + allocator_pool_size;
|
||
|
BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
|
||
|
ARRAY_SIZE(trans_pcie->rx_pool));
|
||
|
for (i = 0; i < num_alloc; i++) {
|
||
|
struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
|
||
|
|
||
|
if (i < allocator_pool_size)
|
||
|
list_add(&rxb->list, &rba->rbd_empty);
|
||
|
else
|
||
|
list_add(&rxb->list, &def_rxq->rx_used);
|
||
|
trans_pcie->global_table[i] = rxb;
|
||
|
rxb->vid = (u16)(i + 1);
|
||
|
rxb->invalid = true;
|
||
|
}
|
||
|
|
||
|
iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
|
||
|
|
||
|
if (trans->cfg->mq_rx_supported)
|
||
|
iwl_pcie_rx_mq_hw_init(trans);
|
||
|
else
|
||
|
iwl_pcie_rx_hw_init(trans, def_rxq);
|
||
|
|
||
|
iwl_pcie_rxq_restock(trans, def_rxq);
|
||
|
|
||
|
spin_lock(&def_rxq->lock);
|
||
|
iwl_pcie_rxq_inc_wr_ptr(trans, def_rxq);
|
||
|
spin_unlock(&def_rxq->lock);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void iwl_pcie_rx_free(struct iwl_trans *trans)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
struct iwl_rb_allocator *rba = &trans_pcie->rba;
|
||
|
int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
|
||
|
sizeof(__le32);
|
||
|
int i;
|
||
|
|
||
|
/*
|
||
|
* if rxq is NULL, it means that nothing has been allocated,
|
||
|
* exit now
|
||
|
*/
|
||
|
if (!trans_pcie->rxq) {
|
||
|
IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
cancel_work_sync(&rba->rx_alloc);
|
||
|
if (rba->alloc_wq) {
|
||
|
destroy_workqueue(rba->alloc_wq);
|
||
|
rba->alloc_wq = NULL;
|
||
|
}
|
||
|
|
||
|
iwl_pcie_free_rbs_pool(trans);
|
||
|
|
||
|
for (i = 0; i < trans->num_rx_queues; i++) {
|
||
|
struct iwl_rxq *rxq = &trans_pcie->rxq[i];
|
||
|
|
||
|
if (rxq->bd)
|
||
|
dma_free_coherent(trans->dev,
|
||
|
free_size * rxq->queue_size,
|
||
|
rxq->bd, rxq->bd_dma);
|
||
|
rxq->bd_dma = 0;
|
||
|
rxq->bd = NULL;
|
||
|
|
||
|
if (rxq->rb_stts)
|
||
|
dma_free_coherent(trans->dev,
|
||
|
sizeof(struct iwl_rb_status),
|
||
|
rxq->rb_stts, rxq->rb_stts_dma);
|
||
|
else
|
||
|
IWL_DEBUG_INFO(trans,
|
||
|
"Free rxq->rb_stts which is NULL\n");
|
||
|
|
||
|
if (rxq->used_bd)
|
||
|
dma_free_coherent(trans->dev,
|
||
|
sizeof(__le32) * rxq->queue_size,
|
||
|
rxq->used_bd, rxq->used_bd_dma);
|
||
|
rxq->used_bd_dma = 0;
|
||
|
rxq->used_bd = NULL;
|
||
|
|
||
|
if (rxq->napi.poll)
|
||
|
netif_napi_del(&rxq->napi);
|
||
|
}
|
||
|
kfree(trans_pcie->rxq);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_pcie_rx_reuse_rbd - Recycle used RBDs
|
||
|
*
|
||
|
* Called when a RBD can be reused. The RBD is transferred to the allocator.
|
||
|
* When there are 2 empty RBDs - a request for allocation is posted
|
||
|
*/
|
||
|
static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
|
||
|
struct iwl_rx_mem_buffer *rxb,
|
||
|
struct iwl_rxq *rxq, bool emergency)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
struct iwl_rb_allocator *rba = &trans_pcie->rba;
|
||
|
|
||
|
/* Move the RBD to the used list, will be moved to allocator in batches
|
||
|
* before claiming or posting a request*/
|
||
|
list_add_tail(&rxb->list, &rxq->rx_used);
|
||
|
|
||
|
if (unlikely(emergency))
|
||
|
return;
|
||
|
|
||
|
/* Count the allocator owned RBDs */
|
||
|
rxq->used_count++;
|
||
|
|
||
|
/* If we have RX_POST_REQ_ALLOC new released rx buffers -
|
||
|
* issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
|
||
|
* used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
|
||
|
* after but we still need to post another request.
|
||
|
*/
|
||
|
if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
|
||
|
/* Move the 2 RBDs to the allocator ownership.
|
||
|
Allocator has another 6 from pool for the request completion*/
|
||
|
spin_lock(&rba->lock);
|
||
|
list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
|
||
|
spin_unlock(&rba->lock);
|
||
|
|
||
|
atomic_inc(&rba->req_pending);
|
||
|
queue_work(rba->alloc_wq, &rba->rx_alloc);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
|
||
|
struct iwl_rxq *rxq,
|
||
|
struct iwl_rx_mem_buffer *rxb,
|
||
|
bool emergency)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
|
||
|
bool page_stolen = false;
|
||
|
int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
|
||
|
u32 offset = 0;
|
||
|
|
||
|
if (WARN_ON(!rxb))
|
||
|
return;
|
||
|
|
||
|
dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
|
||
|
|
||
|
while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
|
||
|
struct iwl_rx_packet *pkt;
|
||
|
u16 sequence;
|
||
|
bool reclaim;
|
||
|
int index, cmd_index, len;
|
||
|
struct iwl_rx_cmd_buffer rxcb = {
|
||
|
._offset = offset,
|
||
|
._rx_page_order = trans_pcie->rx_page_order,
|
||
|
._page = rxb->page,
|
||
|
._page_stolen = false,
|
||
|
.truesize = max_len,
|
||
|
};
|
||
|
|
||
|
pkt = rxb_addr(&rxcb);
|
||
|
|
||
|
if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
|
||
|
break;
|
||
|
|
||
|
WARN_ON((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
|
||
|
FH_RSCSR_RXQ_POS != rxq->id);
|
||
|
|
||
|
IWL_DEBUG_RX(trans,
|
||
|
"cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
|
||
|
rxcb._offset,
|
||
|
iwl_get_cmd_string(trans,
|
||
|
iwl_cmd_id(pkt->hdr.cmd,
|
||
|
pkt->hdr.group_id,
|
||
|
0)),
|
||
|
pkt->hdr.group_id, pkt->hdr.cmd,
|
||
|
le16_to_cpu(pkt->hdr.sequence));
|
||
|
|
||
|
len = iwl_rx_packet_len(pkt);
|
||
|
len += sizeof(u32); /* account for status word */
|
||
|
trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
|
||
|
trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
|
||
|
|
||
|
/* Reclaim a command buffer only if this packet is a response
|
||
|
* to a (driver-originated) command.
|
||
|
* If the packet (e.g. Rx frame) originated from uCode,
|
||
|
* there is no command buffer to reclaim.
|
||
|
* Ucode should set SEQ_RX_FRAME bit if ucode-originated,
|
||
|
* but apparently a few don't get set; catch them here. */
|
||
|
reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
|
||
|
if (reclaim) {
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
|
||
|
if (trans_pcie->no_reclaim_cmds[i] ==
|
||
|
pkt->hdr.cmd) {
|
||
|
reclaim = false;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
sequence = le16_to_cpu(pkt->hdr.sequence);
|
||
|
index = SEQ_TO_INDEX(sequence);
|
||
|
cmd_index = get_cmd_index(txq, index);
|
||
|
|
||
|
if (rxq->id == 0)
|
||
|
iwl_op_mode_rx(trans->op_mode, &rxq->napi,
|
||
|
&rxcb);
|
||
|
else
|
||
|
iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
|
||
|
&rxcb, rxq->id);
|
||
|
|
||
|
if (reclaim) {
|
||
|
kzfree(txq->entries[cmd_index].free_buf);
|
||
|
txq->entries[cmd_index].free_buf = NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* After here, we should always check rxcb._page_stolen,
|
||
|
* if it is true then one of the handlers took the page.
|
||
|
*/
|
||
|
|
||
|
if (reclaim) {
|
||
|
/* Invoke any callbacks, transfer the buffer to caller,
|
||
|
* and fire off the (possibly) blocking
|
||
|
* iwl_trans_send_cmd()
|
||
|
* as we reclaim the driver command queue */
|
||
|
if (!rxcb._page_stolen)
|
||
|
iwl_pcie_hcmd_complete(trans, &rxcb);
|
||
|
else
|
||
|
IWL_WARN(trans, "Claim null rxb?\n");
|
||
|
}
|
||
|
|
||
|
page_stolen |= rxcb._page_stolen;
|
||
|
offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
|
||
|
}
|
||
|
|
||
|
/* page was stolen from us -- free our reference */
|
||
|
if (page_stolen) {
|
||
|
__free_pages(rxb->page, trans_pcie->rx_page_order);
|
||
|
rxb->page = NULL;
|
||
|
}
|
||
|
|
||
|
/* Reuse the page if possible. For notification packets and
|
||
|
* SKBs that fail to Rx correctly, add them back into the
|
||
|
* rx_free list for reuse later. */
|
||
|
if (rxb->page != NULL) {
|
||
|
rxb->page_dma =
|
||
|
dma_map_page(trans->dev, rxb->page, 0,
|
||
|
PAGE_SIZE << trans_pcie->rx_page_order,
|
||
|
DMA_FROM_DEVICE);
|
||
|
if (dma_mapping_error(trans->dev, rxb->page_dma)) {
|
||
|
/*
|
||
|
* free the page(s) as well to not break
|
||
|
* the invariant that the items on the used
|
||
|
* list have no page(s)
|
||
|
*/
|
||
|
__free_pages(rxb->page, trans_pcie->rx_page_order);
|
||
|
rxb->page = NULL;
|
||
|
iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
|
||
|
} else {
|
||
|
list_add_tail(&rxb->list, &rxq->rx_free);
|
||
|
rxq->free_count++;
|
||
|
}
|
||
|
} else
|
||
|
iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_pcie_rx_handle - Main entry function for receiving responses from fw
|
||
|
*/
|
||
|
static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
struct iwl_rxq *rxq = &trans_pcie->rxq[queue];
|
||
|
u32 r, i, count = 0;
|
||
|
bool emergency = false;
|
||
|
|
||
|
restart:
|
||
|
spin_lock(&rxq->lock);
|
||
|
/* uCode's read index (stored in shared DRAM) indicates the last Rx
|
||
|
* buffer that the driver may process (last buffer filled by ucode). */
|
||
|
r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
|
||
|
i = rxq->read;
|
||
|
|
||
|
/* W/A 9000 device step A0 wrap-around bug */
|
||
|
r &= (rxq->queue_size - 1);
|
||
|
|
||
|
/* Rx interrupt, but nothing sent from uCode */
|
||
|
if (i == r)
|
||
|
IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
|
||
|
|
||
|
while (i != r) {
|
||
|
struct iwl_rx_mem_buffer *rxb;
|
||
|
|
||
|
if (unlikely(rxq->used_count == rxq->queue_size / 2))
|
||
|
emergency = true;
|
||
|
|
||
|
if (trans->cfg->mq_rx_supported) {
|
||
|
/*
|
||
|
* used_bd is a 32 bit but only 12 are used to retrieve
|
||
|
* the vid
|
||
|
*/
|
||
|
u16 vid = le32_to_cpu(rxq->used_bd[i]) & 0x0FFF;
|
||
|
|
||
|
if (WARN(!vid ||
|
||
|
vid > ARRAY_SIZE(trans_pcie->global_table),
|
||
|
"Invalid rxb index from HW %u\n", (u32)vid)) {
|
||
|
iwl_force_nmi(trans);
|
||
|
goto out;
|
||
|
}
|
||
|
rxb = trans_pcie->global_table[vid - 1];
|
||
|
if (WARN(rxb->invalid,
|
||
|
"Invalid rxb from HW %u\n", (u32)vid)) {
|
||
|
iwl_force_nmi(trans);
|
||
|
goto out;
|
||
|
}
|
||
|
rxb->invalid = true;
|
||
|
} else {
|
||
|
rxb = rxq->queue[i];
|
||
|
rxq->queue[i] = NULL;
|
||
|
}
|
||
|
|
||
|
IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
|
||
|
iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency);
|
||
|
|
||
|
i = (i + 1) & (rxq->queue_size - 1);
|
||
|
|
||
|
/*
|
||
|
* If we have RX_CLAIM_REQ_ALLOC released rx buffers -
|
||
|
* try to claim the pre-allocated buffers from the allocator.
|
||
|
* If not ready - will try to reclaim next time.
|
||
|
* There is no need to reschedule work - allocator exits only
|
||
|
* on success
|
||
|
*/
|
||
|
if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
|
||
|
iwl_pcie_rx_allocator_get(trans, rxq);
|
||
|
|
||
|
if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
|
||
|
struct iwl_rb_allocator *rba = &trans_pcie->rba;
|
||
|
|
||
|
/* Add the remaining empty RBDs for allocator use */
|
||
|
spin_lock(&rba->lock);
|
||
|
list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
|
||
|
spin_unlock(&rba->lock);
|
||
|
} else if (emergency) {
|
||
|
count++;
|
||
|
if (count == 8) {
|
||
|
count = 0;
|
||
|
if (rxq->used_count < rxq->queue_size / 3)
|
||
|
emergency = false;
|
||
|
|
||
|
rxq->read = i;
|
||
|
spin_unlock(&rxq->lock);
|
||
|
iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
|
||
|
iwl_pcie_rxq_restock(trans, rxq);
|
||
|
goto restart;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
out:
|
||
|
/* Backtrack one entry */
|
||
|
rxq->read = i;
|
||
|
spin_unlock(&rxq->lock);
|
||
|
|
||
|
/*
|
||
|
* handle a case where in emergency there are some unallocated RBDs.
|
||
|
* those RBDs are in the used list, but are not tracked by the queue's
|
||
|
* used_count which counts allocator owned RBDs.
|
||
|
* unallocated emergency RBDs must be allocated on exit, otherwise
|
||
|
* when called again the function may not be in emergency mode and
|
||
|
* they will be handed to the allocator with no tracking in the RBD
|
||
|
* allocator counters, which will lead to them never being claimed back
|
||
|
* by the queue.
|
||
|
* by allocating them here, they are now in the queue free list, and
|
||
|
* will be restocked by the next call of iwl_pcie_rxq_restock.
|
||
|
*/
|
||
|
if (unlikely(emergency && count))
|
||
|
iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
|
||
|
|
||
|
if (rxq->napi.poll)
|
||
|
napi_gro_flush(&rxq->napi, false);
|
||
|
|
||
|
iwl_pcie_rxq_restock(trans, rxq);
|
||
|
}
|
||
|
|
||
|
static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
|
||
|
{
|
||
|
u8 queue = entry->entry;
|
||
|
struct msix_entry *entries = entry - queue;
|
||
|
|
||
|
return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
|
||
|
}
|
||
|
|
||
|
static inline void iwl_pcie_clear_irq(struct iwl_trans *trans,
|
||
|
struct msix_entry *entry)
|
||
|
{
|
||
|
/*
|
||
|
* Before sending the interrupt the HW disables it to prevent
|
||
|
* a nested interrupt. This is done by writing 1 to the corresponding
|
||
|
* bit in the mask register. After handling the interrupt, it should be
|
||
|
* re-enabled by clearing this bit. This register is defined as
|
||
|
* write 1 clear (W1C) register, meaning that it's being clear
|
||
|
* by writing 1 to the bit.
|
||
|
*/
|
||
|
iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(entry->entry));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
|
||
|
* This interrupt handler should be used with RSS queue only.
|
||
|
*/
|
||
|
irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
|
||
|
{
|
||
|
struct msix_entry *entry = dev_id;
|
||
|
struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
|
||
|
struct iwl_trans *trans = trans_pcie->trans;
|
||
|
|
||
|
if (WARN_ON(entry->entry >= trans->num_rx_queues))
|
||
|
return IRQ_NONE;
|
||
|
|
||
|
lock_map_acquire(&trans->sync_cmd_lockdep_map);
|
||
|
|
||
|
local_bh_disable();
|
||
|
iwl_pcie_rx_handle(trans, entry->entry);
|
||
|
local_bh_enable();
|
||
|
|
||
|
iwl_pcie_clear_irq(trans, entry);
|
||
|
|
||
|
lock_map_release(&trans->sync_cmd_lockdep_map);
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
|
||
|
*/
|
||
|
static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
int i;
|
||
|
|
||
|
/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
|
||
|
if (trans->cfg->internal_wimax_coex &&
|
||
|
!trans->cfg->apmg_not_supported &&
|
||
|
(!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
|
||
|
APMS_CLK_VAL_MRB_FUNC_MODE) ||
|
||
|
(iwl_read_prph(trans, APMG_PS_CTRL_REG) &
|
||
|
APMG_PS_CTRL_VAL_RESET_REQ))) {
|
||
|
clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
|
||
|
iwl_op_mode_wimax_active(trans->op_mode);
|
||
|
wake_up(&trans_pcie->wait_command_queue);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
iwl_pcie_dump_csr(trans);
|
||
|
iwl_dump_fh(trans, NULL);
|
||
|
|
||
|
local_bh_disable();
|
||
|
/* The STATUS_FW_ERROR bit is set in this function. This must happen
|
||
|
* before we wake up the command caller, to ensure a proper cleanup. */
|
||
|
iwl_trans_fw_error(trans);
|
||
|
local_bh_enable();
|
||
|
|
||
|
for (i = 0; i < trans->cfg->base_params->num_of_queues; i++)
|
||
|
del_timer(&trans_pcie->txq[i].stuck_timer);
|
||
|
|
||
|
clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
|
||
|
wake_up(&trans_pcie->wait_command_queue);
|
||
|
}
|
||
|
|
||
|
static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
|
||
|
{
|
||
|
u32 inta;
|
||
|
|
||
|
lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
|
||
|
|
||
|
trace_iwlwifi_dev_irq(trans->dev);
|
||
|
|
||
|
/* Discover which interrupts are active/pending */
|
||
|
inta = iwl_read32(trans, CSR_INT);
|
||
|
|
||
|
/* the thread will service interrupts and re-enable them */
|
||
|
return inta;
|
||
|
}
|
||
|
|
||
|
/* a device (PCI-E) page is 4096 bytes long */
|
||
|
#define ICT_SHIFT 12
|
||
|
#define ICT_SIZE (1 << ICT_SHIFT)
|
||
|
#define ICT_COUNT (ICT_SIZE / sizeof(u32))
|
||
|
|
||
|
/* interrupt handler using ict table, with this interrupt driver will
|
||
|
* stop using INTA register to get device's interrupt, reading this register
|
||
|
* is expensive, device will write interrupts in ICT dram table, increment
|
||
|
* index then will fire interrupt to driver, driver will OR all ICT table
|
||
|
* entries from current index up to table entry with 0 value. the result is
|
||
|
* the interrupt we need to service, driver will set the entries back to 0 and
|
||
|
* set index.
|
||
|
*/
|
||
|
static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
u32 inta;
|
||
|
u32 val = 0;
|
||
|
u32 read;
|
||
|
|
||
|
trace_iwlwifi_dev_irq(trans->dev);
|
||
|
|
||
|
/* Ignore interrupt if there's nothing in NIC to service.
|
||
|
* This may be due to IRQ shared with another device,
|
||
|
* or due to sporadic interrupts thrown from our NIC. */
|
||
|
read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
|
||
|
trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
|
||
|
if (!read)
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* Collect all entries up to the first 0, starting from ict_index;
|
||
|
* note we already read at ict_index.
|
||
|
*/
|
||
|
do {
|
||
|
val |= read;
|
||
|
IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
|
||
|
trans_pcie->ict_index, read);
|
||
|
trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
|
||
|
trans_pcie->ict_index =
|
||
|
((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
|
||
|
|
||
|
read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
|
||
|
trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
|
||
|
read);
|
||
|
} while (read);
|
||
|
|
||
|
/* We should not get this value, just ignore it. */
|
||
|
if (val == 0xffffffff)
|
||
|
val = 0;
|
||
|
|
||
|
/*
|
||
|
* this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
|
||
|
* (bit 15 before shifting it to 31) to clear when using interrupt
|
||
|
* coalescing. fortunately, bits 18 and 19 stay set when this happens
|
||
|
* so we use them to decide on the real state of the Rx bit.
|
||
|
* In order words, bit 15 is set if bit 18 or bit 19 are set.
|
||
|
*/
|
||
|
if (val & 0xC0000)
|
||
|
val |= 0x8000;
|
||
|
|
||
|
inta = (0xff & val) | ((0xff00 & val) << 16);
|
||
|
return inta;
|
||
|
}
|
||
|
|
||
|
irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
|
||
|
{
|
||
|
struct iwl_trans *trans = dev_id;
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
|
||
|
u32 inta = 0;
|
||
|
u32 handled = 0;
|
||
|
|
||
|
lock_map_acquire(&trans->sync_cmd_lockdep_map);
|
||
|
|
||
|
spin_lock(&trans_pcie->irq_lock);
|
||
|
|
||
|
/* dram interrupt table not set yet,
|
||
|
* use legacy interrupt.
|
||
|
*/
|
||
|
if (likely(trans_pcie->use_ict))
|
||
|
inta = iwl_pcie_int_cause_ict(trans);
|
||
|
else
|
||
|
inta = iwl_pcie_int_cause_non_ict(trans);
|
||
|
|
||
|
if (iwl_have_debug_level(IWL_DL_ISR)) {
|
||
|
IWL_DEBUG_ISR(trans,
|
||
|
"ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
|
||
|
inta, trans_pcie->inta_mask,
|
||
|
iwl_read32(trans, CSR_INT_MASK),
|
||
|
iwl_read32(trans, CSR_FH_INT_STATUS));
|
||
|
if (inta & (~trans_pcie->inta_mask))
|
||
|
IWL_DEBUG_ISR(trans,
|
||
|
"We got a masked interrupt (0x%08x)\n",
|
||
|
inta & (~trans_pcie->inta_mask));
|
||
|
}
|
||
|
|
||
|
inta &= trans_pcie->inta_mask;
|
||
|
|
||
|
/*
|
||
|
* Ignore interrupt if there's nothing in NIC to service.
|
||
|
* This may be due to IRQ shared with another device,
|
||
|
* or due to sporadic interrupts thrown from our NIC.
|
||
|
*/
|
||
|
if (unlikely(!inta)) {
|
||
|
IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
|
||
|
/*
|
||
|
* Re-enable interrupts here since we don't
|
||
|
* have anything to service
|
||
|
*/
|
||
|
if (test_bit(STATUS_INT_ENABLED, &trans->status))
|
||
|
_iwl_enable_interrupts(trans);
|
||
|
spin_unlock(&trans_pcie->irq_lock);
|
||
|
lock_map_release(&trans->sync_cmd_lockdep_map);
|
||
|
return IRQ_NONE;
|
||
|
}
|
||
|
|
||
|
if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
|
||
|
/*
|
||
|
* Hardware disappeared. It might have
|
||
|
* already raised an interrupt.
|
||
|
*/
|
||
|
IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
|
||
|
spin_unlock(&trans_pcie->irq_lock);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* Ack/clear/reset pending uCode interrupts.
|
||
|
* Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
|
||
|
*/
|
||
|
/* There is a hardware bug in the interrupt mask function that some
|
||
|
* interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
|
||
|
* they are disabled in the CSR_INT_MASK register. Furthermore the
|
||
|
* ICT interrupt handling mechanism has another bug that might cause
|
||
|
* these unmasked interrupts fail to be detected. We workaround the
|
||
|
* hardware bugs here by ACKing all the possible interrupts so that
|
||
|
* interrupt coalescing can still be achieved.
|
||
|
*/
|
||
|
iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
|
||
|
|
||
|
if (iwl_have_debug_level(IWL_DL_ISR))
|
||
|
IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
|
||
|
inta, iwl_read32(trans, CSR_INT_MASK));
|
||
|
|
||
|
spin_unlock(&trans_pcie->irq_lock);
|
||
|
|
||
|
/* Now service all interrupt bits discovered above. */
|
||
|
if (inta & CSR_INT_BIT_HW_ERR) {
|
||
|
IWL_ERR(trans, "Hardware error detected. Restarting.\n");
|
||
|
|
||
|
/* Tell the device to stop sending interrupts */
|
||
|
iwl_disable_interrupts(trans);
|
||
|
|
||
|
isr_stats->hw++;
|
||
|
iwl_pcie_irq_handle_error(trans);
|
||
|
|
||
|
handled |= CSR_INT_BIT_HW_ERR;
|
||
|
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (iwl_have_debug_level(IWL_DL_ISR)) {
|
||
|
/* NIC fires this, but we don't use it, redundant with WAKEUP */
|
||
|
if (inta & CSR_INT_BIT_SCD) {
|
||
|
IWL_DEBUG_ISR(trans,
|
||
|
"Scheduler finished to transmit the frame/frames.\n");
|
||
|
isr_stats->sch++;
|
||
|
}
|
||
|
|
||
|
/* Alive notification via Rx interrupt will do the real work */
|
||
|
if (inta & CSR_INT_BIT_ALIVE) {
|
||
|
IWL_DEBUG_ISR(trans, "Alive interrupt\n");
|
||
|
isr_stats->alive++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Safely ignore these bits for debug checks below */
|
||
|
inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
|
||
|
|
||
|
/* HW RF KILL switch toggled */
|
||
|
if (inta & CSR_INT_BIT_RF_KILL) {
|
||
|
bool hw_rfkill;
|
||
|
|
||
|
hw_rfkill = iwl_is_rfkill_set(trans);
|
||
|
IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
|
||
|
hw_rfkill ? "disable radio" : "enable radio");
|
||
|
|
||
|
isr_stats->rfkill++;
|
||
|
|
||
|
mutex_lock(&trans_pcie->mutex);
|
||
|
iwl_trans_pcie_rf_kill(trans, hw_rfkill);
|
||
|
mutex_unlock(&trans_pcie->mutex);
|
||
|
if (hw_rfkill) {
|
||
|
set_bit(STATUS_RFKILL, &trans->status);
|
||
|
if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
|
||
|
&trans->status))
|
||
|
IWL_DEBUG_RF_KILL(trans,
|
||
|
"Rfkill while SYNC HCMD in flight\n");
|
||
|
wake_up(&trans_pcie->wait_command_queue);
|
||
|
} else {
|
||
|
clear_bit(STATUS_RFKILL, &trans->status);
|
||
|
}
|
||
|
|
||
|
handled |= CSR_INT_BIT_RF_KILL;
|
||
|
}
|
||
|
|
||
|
/* Chip got too hot and stopped itself */
|
||
|
if (inta & CSR_INT_BIT_CT_KILL) {
|
||
|
IWL_ERR(trans, "Microcode CT kill error detected.\n");
|
||
|
isr_stats->ctkill++;
|
||
|
handled |= CSR_INT_BIT_CT_KILL;
|
||
|
}
|
||
|
|
||
|
/* Error detected by uCode */
|
||
|
if (inta & CSR_INT_BIT_SW_ERR) {
|
||
|
IWL_ERR(trans, "Microcode SW error detected. "
|
||
|
" Restarting 0x%X.\n", inta);
|
||
|
isr_stats->sw++;
|
||
|
iwl_pcie_irq_handle_error(trans);
|
||
|
handled |= CSR_INT_BIT_SW_ERR;
|
||
|
}
|
||
|
|
||
|
/* uCode wakes up after power-down sleep */
|
||
|
if (inta & CSR_INT_BIT_WAKEUP) {
|
||
|
IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
|
||
|
iwl_pcie_rxq_check_wrptr(trans);
|
||
|
iwl_pcie_txq_check_wrptrs(trans);
|
||
|
|
||
|
isr_stats->wakeup++;
|
||
|
|
||
|
handled |= CSR_INT_BIT_WAKEUP;
|
||
|
}
|
||
|
|
||
|
/* All uCode command responses, including Tx command responses,
|
||
|
* Rx "responses" (frame-received notification), and other
|
||
|
* notifications from uCode come through here*/
|
||
|
if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
|
||
|
CSR_INT_BIT_RX_PERIODIC)) {
|
||
|
IWL_DEBUG_ISR(trans, "Rx interrupt\n");
|
||
|
if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
|
||
|
handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
|
||
|
iwl_write32(trans, CSR_FH_INT_STATUS,
|
||
|
CSR_FH_INT_RX_MASK);
|
||
|
}
|
||
|
if (inta & CSR_INT_BIT_RX_PERIODIC) {
|
||
|
handled |= CSR_INT_BIT_RX_PERIODIC;
|
||
|
iwl_write32(trans,
|
||
|
CSR_INT, CSR_INT_BIT_RX_PERIODIC);
|
||
|
}
|
||
|
/* Sending RX interrupt require many steps to be done in the
|
||
|
* the device:
|
||
|
* 1- write interrupt to current index in ICT table.
|
||
|
* 2- dma RX frame.
|
||
|
* 3- update RX shared data to indicate last write index.
|
||
|
* 4- send interrupt.
|
||
|
* This could lead to RX race, driver could receive RX interrupt
|
||
|
* but the shared data changes does not reflect this;
|
||
|
* periodic interrupt will detect any dangling Rx activity.
|
||
|
*/
|
||
|
|
||
|
/* Disable periodic interrupt; we use it as just a one-shot. */
|
||
|
iwl_write8(trans, CSR_INT_PERIODIC_REG,
|
||
|
CSR_INT_PERIODIC_DIS);
|
||
|
|
||
|
/*
|
||
|
* Enable periodic interrupt in 8 msec only if we received
|
||
|
* real RX interrupt (instead of just periodic int), to catch
|
||
|
* any dangling Rx interrupt. If it was just the periodic
|
||
|
* interrupt, there was no dangling Rx activity, and no need
|
||
|
* to extend the periodic interrupt; one-shot is enough.
|
||
|
*/
|
||
|
if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
|
||
|
iwl_write8(trans, CSR_INT_PERIODIC_REG,
|
||
|
CSR_INT_PERIODIC_ENA);
|
||
|
|
||
|
isr_stats->rx++;
|
||
|
|
||
|
local_bh_disable();
|
||
|
iwl_pcie_rx_handle(trans, 0);
|
||
|
local_bh_enable();
|
||
|
}
|
||
|
|
||
|
/* This "Tx" DMA channel is used only for loading uCode */
|
||
|
if (inta & CSR_INT_BIT_FH_TX) {
|
||
|
iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
|
||
|
IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
|
||
|
isr_stats->tx++;
|
||
|
handled |= CSR_INT_BIT_FH_TX;
|
||
|
/* Wake up uCode load routine, now that load is complete */
|
||
|
trans_pcie->ucode_write_complete = true;
|
||
|
wake_up(&trans_pcie->ucode_write_waitq);
|
||
|
}
|
||
|
|
||
|
if (inta & ~handled) {
|
||
|
IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
|
||
|
isr_stats->unhandled++;
|
||
|
}
|
||
|
|
||
|
if (inta & ~(trans_pcie->inta_mask)) {
|
||
|
IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
|
||
|
inta & ~trans_pcie->inta_mask);
|
||
|
}
|
||
|
|
||
|
spin_lock(&trans_pcie->irq_lock);
|
||
|
/* only Re-enable all interrupt if disabled by irq */
|
||
|
if (test_bit(STATUS_INT_ENABLED, &trans->status))
|
||
|
_iwl_enable_interrupts(trans);
|
||
|
/* we are loading the firmware, enable FH_TX interrupt only */
|
||
|
else if (handled & CSR_INT_BIT_FH_TX)
|
||
|
iwl_enable_fw_load_int(trans);
|
||
|
/* Re-enable RF_KILL if it occurred */
|
||
|
else if (handled & CSR_INT_BIT_RF_KILL)
|
||
|
iwl_enable_rfkill_int(trans);
|
||
|
spin_unlock(&trans_pcie->irq_lock);
|
||
|
|
||
|
out:
|
||
|
lock_map_release(&trans->sync_cmd_lockdep_map);
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
*
|
||
|
* ICT functions
|
||
|
*
|
||
|
******************************************************************************/
|
||
|
|
||
|
/* Free dram table */
|
||
|
void iwl_pcie_free_ict(struct iwl_trans *trans)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
|
||
|
if (trans_pcie->ict_tbl) {
|
||
|
dma_free_coherent(trans->dev, ICT_SIZE,
|
||
|
trans_pcie->ict_tbl,
|
||
|
trans_pcie->ict_tbl_dma);
|
||
|
trans_pcie->ict_tbl = NULL;
|
||
|
trans_pcie->ict_tbl_dma = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* allocate dram shared table, it is an aligned memory
|
||
|
* block of ICT_SIZE.
|
||
|
* also reset all data related to ICT table interrupt.
|
||
|
*/
|
||
|
int iwl_pcie_alloc_ict(struct iwl_trans *trans)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
|
||
|
trans_pcie->ict_tbl =
|
||
|
dma_zalloc_coherent(trans->dev, ICT_SIZE,
|
||
|
&trans_pcie->ict_tbl_dma,
|
||
|
GFP_KERNEL);
|
||
|
if (!trans_pcie->ict_tbl)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
/* just an API sanity check ... it is guaranteed to be aligned */
|
||
|
if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
|
||
|
iwl_pcie_free_ict(trans);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Device is going up inform it about using ICT interrupt table,
|
||
|
* also we need to tell the driver to start using ICT interrupt.
|
||
|
*/
|
||
|
void iwl_pcie_reset_ict(struct iwl_trans *trans)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
u32 val;
|
||
|
|
||
|
if (!trans_pcie->ict_tbl)
|
||
|
return;
|
||
|
|
||
|
spin_lock(&trans_pcie->irq_lock);
|
||
|
_iwl_disable_interrupts(trans);
|
||
|
|
||
|
memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
|
||
|
|
||
|
val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
|
||
|
|
||
|
val |= CSR_DRAM_INT_TBL_ENABLE |
|
||
|
CSR_DRAM_INIT_TBL_WRAP_CHECK |
|
||
|
CSR_DRAM_INIT_TBL_WRITE_POINTER;
|
||
|
|
||
|
IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
|
||
|
|
||
|
iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
|
||
|
trans_pcie->use_ict = true;
|
||
|
trans_pcie->ict_index = 0;
|
||
|
iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
|
||
|
_iwl_enable_interrupts(trans);
|
||
|
spin_unlock(&trans_pcie->irq_lock);
|
||
|
}
|
||
|
|
||
|
/* Device is going down disable ict interrupt usage */
|
||
|
void iwl_pcie_disable_ict(struct iwl_trans *trans)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
|
||
|
spin_lock(&trans_pcie->irq_lock);
|
||
|
trans_pcie->use_ict = false;
|
||
|
spin_unlock(&trans_pcie->irq_lock);
|
||
|
}
|
||
|
|
||
|
irqreturn_t iwl_pcie_isr(int irq, void *data)
|
||
|
{
|
||
|
struct iwl_trans *trans = data;
|
||
|
|
||
|
if (!trans)
|
||
|
return IRQ_NONE;
|
||
|
|
||
|
/* Disable (but don't clear!) interrupts here to avoid
|
||
|
* back-to-back ISRs and sporadic interrupts from our NIC.
|
||
|
* If we have something to service, the tasklet will re-enable ints.
|
||
|
* If we *don't* have something, we'll re-enable before leaving here.
|
||
|
*/
|
||
|
iwl_write32(trans, CSR_INT_MASK, 0x00000000);
|
||
|
|
||
|
return IRQ_WAKE_THREAD;
|
||
|
}
|
||
|
|
||
|
irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
|
||
|
{
|
||
|
return IRQ_WAKE_THREAD;
|
||
|
}
|
||
|
|
||
|
irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
|
||
|
{
|
||
|
struct msix_entry *entry = dev_id;
|
||
|
struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
|
||
|
struct iwl_trans *trans = trans_pcie->trans;
|
||
|
struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
|
||
|
u32 inta_fh, inta_hw;
|
||
|
|
||
|
lock_map_acquire(&trans->sync_cmd_lockdep_map);
|
||
|
|
||
|
spin_lock(&trans_pcie->irq_lock);
|
||
|
inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
|
||
|
inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
|
||
|
/*
|
||
|
* Clear causes registers to avoid being handling the same cause.
|
||
|
*/
|
||
|
iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
|
||
|
iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
|
||
|
spin_unlock(&trans_pcie->irq_lock);
|
||
|
|
||
|
if (unlikely(!(inta_fh | inta_hw))) {
|
||
|
IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
|
||
|
lock_map_release(&trans->sync_cmd_lockdep_map);
|
||
|
return IRQ_NONE;
|
||
|
}
|
||
|
|
||
|
if (iwl_have_debug_level(IWL_DL_ISR))
|
||
|
IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
|
||
|
inta_fh,
|
||
|
iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
|
||
|
|
||
|
if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
|
||
|
inta_fh & MSIX_FH_INT_CAUSES_Q0) {
|
||
|
local_bh_disable();
|
||
|
iwl_pcie_rx_handle(trans, 0);
|
||
|
local_bh_enable();
|
||
|
}
|
||
|
|
||
|
if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
|
||
|
inta_fh & MSIX_FH_INT_CAUSES_Q1) {
|
||
|
local_bh_disable();
|
||
|
iwl_pcie_rx_handle(trans, 1);
|
||
|
local_bh_enable();
|
||
|
}
|
||
|
|
||
|
/* This "Tx" DMA channel is used only for loading uCode */
|
||
|
if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
|
||
|
IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
|
||
|
isr_stats->tx++;
|
||
|
/*
|
||
|
* Wake up uCode load routine,
|
||
|
* now that load is complete
|
||
|
*/
|
||
|
trans_pcie->ucode_write_complete = true;
|
||
|
wake_up(&trans_pcie->ucode_write_waitq);
|
||
|
}
|
||
|
|
||
|
/* Error detected by uCode */
|
||
|
if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
|
||
|
(inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
|
||
|
IWL_ERR(trans,
|
||
|
"Microcode SW error detected. Restarting 0x%X.\n",
|
||
|
inta_fh);
|
||
|
isr_stats->sw++;
|
||
|
iwl_pcie_irq_handle_error(trans);
|
||
|
}
|
||
|
|
||
|
/* After checking FH register check HW register */
|
||
|
if (iwl_have_debug_level(IWL_DL_ISR))
|
||
|
IWL_DEBUG_ISR(trans,
|
||
|
"ISR inta_hw 0x%08x, enabled 0x%08x\n",
|
||
|
inta_hw,
|
||
|
iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
|
||
|
|
||
|
/* Alive notification via Rx interrupt will do the real work */
|
||
|
if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
|
||
|
IWL_DEBUG_ISR(trans, "Alive interrupt\n");
|
||
|
isr_stats->alive++;
|
||
|
}
|
||
|
|
||
|
/* uCode wakes up after power-down sleep */
|
||
|
if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
|
||
|
IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
|
||
|
iwl_pcie_rxq_check_wrptr(trans);
|
||
|
iwl_pcie_txq_check_wrptrs(trans);
|
||
|
|
||
|
isr_stats->wakeup++;
|
||
|
}
|
||
|
|
||
|
/* Chip got too hot and stopped itself */
|
||
|
if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
|
||
|
IWL_ERR(trans, "Microcode CT kill error detected.\n");
|
||
|
isr_stats->ctkill++;
|
||
|
}
|
||
|
|
||
|
/* HW RF KILL switch toggled */
|
||
|
if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) {
|
||
|
bool hw_rfkill;
|
||
|
|
||
|
hw_rfkill = iwl_is_rfkill_set(trans);
|
||
|
IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
|
||
|
hw_rfkill ? "disable radio" : "enable radio");
|
||
|
|
||
|
isr_stats->rfkill++;
|
||
|
|
||
|
mutex_lock(&trans_pcie->mutex);
|
||
|
iwl_trans_pcie_rf_kill(trans, hw_rfkill);
|
||
|
mutex_unlock(&trans_pcie->mutex);
|
||
|
if (hw_rfkill) {
|
||
|
set_bit(STATUS_RFKILL, &trans->status);
|
||
|
if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
|
||
|
&trans->status))
|
||
|
IWL_DEBUG_RF_KILL(trans,
|
||
|
"Rfkill while SYNC HCMD in flight\n");
|
||
|
wake_up(&trans_pcie->wait_command_queue);
|
||
|
} else {
|
||
|
clear_bit(STATUS_RFKILL, &trans->status);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
|
||
|
IWL_ERR(trans,
|
||
|
"Hardware error detected. Restarting.\n");
|
||
|
|
||
|
isr_stats->hw++;
|
||
|
iwl_pcie_irq_handle_error(trans);
|
||
|
}
|
||
|
|
||
|
iwl_pcie_clear_irq(trans, entry);
|
||
|
|
||
|
lock_map_release(&trans->sync_cmd_lockdep_map);
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|