SmartAudio/lichee/linux-4.9/drivers/media/rc/st_rc.c

411 lines
11 KiB
C
Raw Normal View History

2018-07-13 01:31:50 +00:00
/*
* Copyright (C) 2013 STMicroelectronics Limited
* Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <media/rc-core.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_wakeirq.h>
struct st_rc_device {
struct device *dev;
int irq;
int irq_wake;
struct clk *sys_clock;
void __iomem *base; /* Register base address */
void __iomem *rx_base;/* RX Register base address */
struct rc_dev *rdev;
bool overclocking;
int sample_mult;
int sample_div;
bool rxuhfmode;
struct reset_control *rstc;
};
/* Registers */
#define IRB_SAMPLE_RATE_COMM 0x64 /* sample freq divisor*/
#define IRB_CLOCK_SEL 0x70 /* clock select */
#define IRB_CLOCK_SEL_STATUS 0x74 /* clock status */
/* IRB IR/UHF receiver registers */
#define IRB_RX_ON 0x40 /* pulse time capture */
#define IRB_RX_SYS 0X44 /* sym period capture */
#define IRB_RX_INT_EN 0x48 /* IRQ enable (R/W) */
#define IRB_RX_INT_STATUS 0x4c /* IRQ status (R/W) */
#define IRB_RX_EN 0x50 /* Receive enable */
#define IRB_MAX_SYM_PERIOD 0x54 /* max sym value */
#define IRB_RX_INT_CLEAR 0x58 /* overrun status */
#define IRB_RX_STATUS 0x6c /* receive status */
#define IRB_RX_NOISE_SUPPR 0x5c /* noise suppression */
#define IRB_RX_POLARITY_INV 0x68 /* polarity inverter */
/**
* IRQ set: Enable full FIFO 1 -> bit 3;
* Enable overrun IRQ 1 -> bit 2;
* Enable last symbol IRQ 1 -> bit 1:
* Enable RX interrupt 1 -> bit 0;
*/
#define IRB_RX_INTS 0x0f
#define IRB_RX_OVERRUN_INT 0x04
/* maximum symbol period (microsecs),timeout to detect end of symbol train */
#define MAX_SYMB_TIME 0x5000
#define IRB_SAMPLE_FREQ 10000000
#define IRB_FIFO_NOT_EMPTY 0xff00
#define IRB_OVERFLOW 0x4
#define IRB_TIMEOUT 0xffff
#define IR_ST_NAME "st-rc"
static void st_rc_send_lirc_timeout(struct rc_dev *rdev)
{
DEFINE_IR_RAW_EVENT(ev);
ev.timeout = true;
ir_raw_event_store(rdev, &ev);
}
/**
* RX graphical example to better understand the difference between ST IR block
* output and standard definition used by LIRC (and most of the world!)
*
* mark mark
* |-IRB_RX_ON-| |-IRB_RX_ON-|
* ___ ___ ___ ___ ___ ___ _
* | | | | | | | | | | | | |
* | | | | | | space 0 | | | | | | space 1 |
* _____| |__| |__| |____________________________| |__| |__| |_____________|
*
* |--------------- IRB_RX_SYS -------------|------ IRB_RX_SYS -------|
*
* |------------- encoding bit 0 -----------|---- encoding bit 1 -----|
*
* ST hardware returns mark (IRB_RX_ON) and total symbol time (IRB_RX_SYS), so
* convert to standard mark/space we have to calculate space=(IRB_RX_SYS-mark)
* The mark time represents the amount of time the carrier (usually 36-40kHz)
* is detected.The above examples shows Pulse Width Modulation encoding where
* bit 0 is represented by space>mark.
*/
static irqreturn_t st_rc_rx_interrupt(int irq, void *data)
{
unsigned int symbol, mark = 0;
struct st_rc_device *dev = data;
int last_symbol = 0;
u32 status;
DEFINE_IR_RAW_EVENT(ev);
if (dev->irq_wake)
pm_wakeup_event(dev->dev, 0);
status = readl(dev->rx_base + IRB_RX_STATUS);
while (status & (IRB_FIFO_NOT_EMPTY | IRB_OVERFLOW)) {
u32 int_status = readl(dev->rx_base + IRB_RX_INT_STATUS);
if (unlikely(int_status & IRB_RX_OVERRUN_INT)) {
/* discard the entire collection in case of errors! */
ir_raw_event_reset(dev->rdev);
dev_info(dev->dev, "IR RX overrun\n");
writel(IRB_RX_OVERRUN_INT,
dev->rx_base + IRB_RX_INT_CLEAR);
continue;
}
symbol = readl(dev->rx_base + IRB_RX_SYS);
mark = readl(dev->rx_base + IRB_RX_ON);
if (symbol == IRB_TIMEOUT)
last_symbol = 1;
/* Ignore any noise */
if ((mark > 2) && (symbol > 1)) {
symbol -= mark;
if (dev->overclocking) { /* adjustments to timings */
symbol *= dev->sample_mult;
symbol /= dev->sample_div;
mark *= dev->sample_mult;
mark /= dev->sample_div;
}
ev.duration = US_TO_NS(mark);
ev.pulse = true;
ir_raw_event_store(dev->rdev, &ev);
if (!last_symbol) {
ev.duration = US_TO_NS(symbol);
ev.pulse = false;
ir_raw_event_store(dev->rdev, &ev);
} else {
st_rc_send_lirc_timeout(dev->rdev);
}
}
last_symbol = 0;
status = readl(dev->rx_base + IRB_RX_STATUS);
}
writel(IRB_RX_INTS, dev->rx_base + IRB_RX_INT_CLEAR);
/* Empty software fifo */
ir_raw_event_handle(dev->rdev);
return IRQ_HANDLED;
}
static void st_rc_hardware_init(struct st_rc_device *dev)
{
int baseclock, freqdiff;
unsigned int rx_max_symbol_per = MAX_SYMB_TIME;
unsigned int rx_sampling_freq_div;
/* Enable the IP */
if (dev->rstc)
reset_control_deassert(dev->rstc);
clk_prepare_enable(dev->sys_clock);
baseclock = clk_get_rate(dev->sys_clock);
/* IRB input pins are inverted internally from high to low. */
writel(1, dev->rx_base + IRB_RX_POLARITY_INV);
rx_sampling_freq_div = baseclock / IRB_SAMPLE_FREQ;
writel(rx_sampling_freq_div, dev->base + IRB_SAMPLE_RATE_COMM);
freqdiff = baseclock - (rx_sampling_freq_div * IRB_SAMPLE_FREQ);
if (freqdiff) { /* over clocking, workout the adjustment factors */
dev->overclocking = true;
dev->sample_mult = 1000;
dev->sample_div = baseclock / (10000 * rx_sampling_freq_div);
rx_max_symbol_per = (rx_max_symbol_per * 1000)/dev->sample_div;
}
writel(rx_max_symbol_per, dev->rx_base + IRB_MAX_SYM_PERIOD);
}
static int st_rc_remove(struct platform_device *pdev)
{
struct st_rc_device *rc_dev = platform_get_drvdata(pdev);
dev_pm_clear_wake_irq(&pdev->dev);
device_init_wakeup(&pdev->dev, false);
clk_disable_unprepare(rc_dev->sys_clock);
rc_unregister_device(rc_dev->rdev);
return 0;
}
static int st_rc_open(struct rc_dev *rdev)
{
struct st_rc_device *dev = rdev->priv;
unsigned long flags;
local_irq_save(flags);
/* enable interrupts and receiver */
writel(IRB_RX_INTS, dev->rx_base + IRB_RX_INT_EN);
writel(0x01, dev->rx_base + IRB_RX_EN);
local_irq_restore(flags);
return 0;
}
static void st_rc_close(struct rc_dev *rdev)
{
struct st_rc_device *dev = rdev->priv;
/* disable interrupts and receiver */
writel(0x00, dev->rx_base + IRB_RX_EN);
writel(0x00, dev->rx_base + IRB_RX_INT_EN);
}
static int st_rc_probe(struct platform_device *pdev)
{
int ret = -EINVAL;
struct rc_dev *rdev;
struct device *dev = &pdev->dev;
struct resource *res;
struct st_rc_device *rc_dev;
struct device_node *np = pdev->dev.of_node;
const char *rx_mode;
rc_dev = devm_kzalloc(dev, sizeof(struct st_rc_device), GFP_KERNEL);
if (!rc_dev)
return -ENOMEM;
rdev = rc_allocate_device();
if (!rdev)
return -ENOMEM;
if (np && !of_property_read_string(np, "rx-mode", &rx_mode)) {
if (!strcmp(rx_mode, "uhf")) {
rc_dev->rxuhfmode = true;
} else if (!strcmp(rx_mode, "infrared")) {
rc_dev->rxuhfmode = false;
} else {
dev_err(dev, "Unsupported rx mode [%s]\n", rx_mode);
goto err;
}
} else {
goto err;
}
rc_dev->sys_clock = devm_clk_get(dev, NULL);
if (IS_ERR(rc_dev->sys_clock)) {
dev_err(dev, "System clock not found\n");
ret = PTR_ERR(rc_dev->sys_clock);
goto err;
}
rc_dev->irq = platform_get_irq(pdev, 0);
if (rc_dev->irq < 0) {
ret = rc_dev->irq;
goto err;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
rc_dev->base = devm_ioremap_resource(dev, res);
if (IS_ERR(rc_dev->base)) {
ret = PTR_ERR(rc_dev->base);
goto err;
}
if (rc_dev->rxuhfmode)
rc_dev->rx_base = rc_dev->base + 0x40;
else
rc_dev->rx_base = rc_dev->base;
rc_dev->rstc = reset_control_get_optional(dev, NULL);
if (IS_ERR(rc_dev->rstc))
rc_dev->rstc = NULL;
rc_dev->dev = dev;
platform_set_drvdata(pdev, rc_dev);
st_rc_hardware_init(rc_dev);
rdev->driver_type = RC_DRIVER_IR_RAW;
rdev->allowed_protocols = RC_BIT_ALL;
/* rx sampling rate is 10Mhz */
rdev->rx_resolution = 100;
rdev->timeout = US_TO_NS(MAX_SYMB_TIME);
rdev->priv = rc_dev;
rdev->open = st_rc_open;
rdev->close = st_rc_close;
rdev->driver_name = IR_ST_NAME;
rdev->map_name = RC_MAP_LIRC;
rdev->input_name = "ST Remote Control Receiver";
ret = rc_register_device(rdev);
if (ret < 0)
goto clkerr;
rc_dev->rdev = rdev;
if (devm_request_irq(dev, rc_dev->irq, st_rc_rx_interrupt,
0, IR_ST_NAME, rc_dev) < 0) {
dev_err(dev, "IRQ %d register failed\n", rc_dev->irq);
ret = -EINVAL;
goto rcerr;
}
/* enable wake via this device */
device_init_wakeup(dev, true);
dev_pm_set_wake_irq(dev, rc_dev->irq);
/**
* for LIRC_MODE_MODE2 or LIRC_MODE_PULSE or LIRC_MODE_RAW
* lircd expects a long space first before a signal train to sync.
*/
st_rc_send_lirc_timeout(rdev);
dev_info(dev, "setup in %s mode\n", rc_dev->rxuhfmode ? "UHF" : "IR");
return ret;
rcerr:
rc_unregister_device(rdev);
rdev = NULL;
clkerr:
clk_disable_unprepare(rc_dev->sys_clock);
err:
rc_free_device(rdev);
dev_err(dev, "Unable to register device (%d)\n", ret);
return ret;
}
#ifdef CONFIG_PM_SLEEP
static int st_rc_suspend(struct device *dev)
{
struct st_rc_device *rc_dev = dev_get_drvdata(dev);
if (device_may_wakeup(dev)) {
if (!enable_irq_wake(rc_dev->irq))
rc_dev->irq_wake = 1;
else
return -EINVAL;
} else {
pinctrl_pm_select_sleep_state(dev);
writel(0x00, rc_dev->rx_base + IRB_RX_EN);
writel(0x00, rc_dev->rx_base + IRB_RX_INT_EN);
clk_disable_unprepare(rc_dev->sys_clock);
if (rc_dev->rstc)
reset_control_assert(rc_dev->rstc);
}
return 0;
}
static int st_rc_resume(struct device *dev)
{
struct st_rc_device *rc_dev = dev_get_drvdata(dev);
struct rc_dev *rdev = rc_dev->rdev;
if (rc_dev->irq_wake) {
disable_irq_wake(rc_dev->irq);
rc_dev->irq_wake = 0;
} else {
pinctrl_pm_select_default_state(dev);
st_rc_hardware_init(rc_dev);
if (rdev->users) {
writel(IRB_RX_INTS, rc_dev->rx_base + IRB_RX_INT_EN);
writel(0x01, rc_dev->rx_base + IRB_RX_EN);
}
}
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(st_rc_pm_ops, st_rc_suspend, st_rc_resume);
#ifdef CONFIG_OF
static const struct of_device_id st_rc_match[] = {
{ .compatible = "st,comms-irb", },
{},
};
MODULE_DEVICE_TABLE(of, st_rc_match);
#endif
static struct platform_driver st_rc_driver = {
.driver = {
.name = IR_ST_NAME,
.of_match_table = of_match_ptr(st_rc_match),
.pm = &st_rc_pm_ops,
},
.probe = st_rc_probe,
.remove = st_rc_remove,
};
module_platform_driver(st_rc_driver);
MODULE_DESCRIPTION("RC Transceiver driver for STMicroelectronics platforms");
MODULE_AUTHOR("STMicroelectronics (R&D) Ltd");
MODULE_LICENSE("GPL");