1811 lines
47 KiB
C
1811 lines
47 KiB
C
|
/*
|
||
|
* Misc utility routines for accessing chip-specific features
|
||
|
* of the SiliconBackplane-based Broadcom chips.
|
||
|
*
|
||
|
* Copyright (C) 1999-2017, Broadcom Corporation
|
||
|
*
|
||
|
* Unless you and Broadcom execute a separate written software license
|
||
|
* agreement governing use of this software, this software is licensed to you
|
||
|
* under the terms of the GNU General Public License version 2 (the "GPL"),
|
||
|
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
|
||
|
* following added to such license:
|
||
|
*
|
||
|
* As a special exception, the copyright holders of this software give you
|
||
|
* permission to link this software with independent modules, and to copy and
|
||
|
* distribute the resulting executable under terms of your choice, provided that
|
||
|
* you also meet, for each linked independent module, the terms and conditions of
|
||
|
* the license of that module. An independent module is a module which is not
|
||
|
* derived from this software. The special exception does not apply to any
|
||
|
* modifications of the software.
|
||
|
*
|
||
|
* Notwithstanding the above, under no circumstances may you combine this
|
||
|
* software in any way with any other Broadcom software provided under a license
|
||
|
* other than the GPL, without Broadcom's express prior written consent.
|
||
|
*
|
||
|
*
|
||
|
* <<Broadcom-WL-IPTag/Open:>>
|
||
|
*
|
||
|
* $Id: aiutils.c 625027 2016-03-15 08:20:18Z $
|
||
|
*/
|
||
|
#include <bcm_cfg.h>
|
||
|
#include <typedefs.h>
|
||
|
#include <bcmdefs.h>
|
||
|
#include <osl.h>
|
||
|
#include <bcmutils.h>
|
||
|
#include <siutils.h>
|
||
|
#include <hndsoc.h>
|
||
|
#include <sbchipc.h>
|
||
|
#include <pcicfg.h>
|
||
|
|
||
|
#include "siutils_priv.h"
|
||
|
#include <bcmdevs.h>
|
||
|
|
||
|
#define BCM5357_DMP() (0)
|
||
|
#define BCM53573_DMP() (0)
|
||
|
#define BCM4707_DMP() (0)
|
||
|
#define PMU_DMP() (0)
|
||
|
#define GCI_DMP() (0)
|
||
|
#define remap_coreid(sih, coreid) (coreid)
|
||
|
#define remap_corerev(sih, corerev) (corerev)
|
||
|
|
||
|
/* EROM parsing */
|
||
|
|
||
|
static uint32
|
||
|
get_erom_ent(si_t *sih, uint32 **eromptr, uint32 mask, uint32 match)
|
||
|
{
|
||
|
uint32 ent;
|
||
|
uint inv = 0, nom = 0;
|
||
|
uint32 size = 0;
|
||
|
|
||
|
while (TRUE) {
|
||
|
ent = R_REG(si_osh(sih), *eromptr);
|
||
|
(*eromptr)++;
|
||
|
|
||
|
if (mask == 0)
|
||
|
break;
|
||
|
|
||
|
if ((ent & ER_VALID) == 0) {
|
||
|
inv++;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (ent == (ER_END | ER_VALID))
|
||
|
break;
|
||
|
|
||
|
if ((ent & mask) == match)
|
||
|
break;
|
||
|
|
||
|
/* escape condition related EROM size if it has invalid values */
|
||
|
size += sizeof(*eromptr);
|
||
|
if (size >= ER_SZ_MAX) {
|
||
|
SI_ERROR(("Failed to find end of EROM marker\n"));
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
nom++;
|
||
|
}
|
||
|
|
||
|
SI_VMSG(("%s: Returning ent 0x%08x\n", __FUNCTION__, ent));
|
||
|
if (inv + nom) {
|
||
|
SI_VMSG((" after %d invalid and %d non-matching entries\n", inv, nom));
|
||
|
}
|
||
|
return ent;
|
||
|
}
|
||
|
|
||
|
static uint32
|
||
|
get_asd(si_t *sih, uint32 **eromptr, uint sp, uint ad, uint st, uint32 *addrl, uint32 *addrh,
|
||
|
uint32 *sizel, uint32 *sizeh)
|
||
|
{
|
||
|
uint32 asd, sz, szd;
|
||
|
|
||
|
BCM_REFERENCE(ad);
|
||
|
|
||
|
asd = get_erom_ent(sih, eromptr, ER_VALID, ER_VALID);
|
||
|
if (((asd & ER_TAG1) != ER_ADD) ||
|
||
|
(((asd & AD_SP_MASK) >> AD_SP_SHIFT) != sp) ||
|
||
|
((asd & AD_ST_MASK) != st)) {
|
||
|
/* This is not what we want, "push" it back */
|
||
|
(*eromptr)--;
|
||
|
return 0;
|
||
|
}
|
||
|
*addrl = asd & AD_ADDR_MASK;
|
||
|
if (asd & AD_AG32)
|
||
|
*addrh = get_erom_ent(sih, eromptr, 0, 0);
|
||
|
else
|
||
|
*addrh = 0;
|
||
|
*sizeh = 0;
|
||
|
sz = asd & AD_SZ_MASK;
|
||
|
if (sz == AD_SZ_SZD) {
|
||
|
szd = get_erom_ent(sih, eromptr, 0, 0);
|
||
|
*sizel = szd & SD_SZ_MASK;
|
||
|
if (szd & SD_SG32)
|
||
|
*sizeh = get_erom_ent(sih, eromptr, 0, 0);
|
||
|
} else
|
||
|
*sizel = AD_SZ_BASE << (sz >> AD_SZ_SHIFT);
|
||
|
|
||
|
SI_VMSG((" SP %d, ad %d: st = %d, 0x%08x_0x%08x @ 0x%08x_0x%08x\n",
|
||
|
sp, ad, st, *sizeh, *sizel, *addrh, *addrl));
|
||
|
|
||
|
return asd;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* parse the enumeration rom to identify all cores */
|
||
|
void
|
||
|
ai_scan(si_t *sih, void *regs, uint devid)
|
||
|
{
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
|
||
|
chipcregs_t *cc = (chipcregs_t *)regs;
|
||
|
uint32 erombase, *eromptr, *eromlim;
|
||
|
axi_wrapper_t * axi_wrapper = sii->axi_wrapper;
|
||
|
|
||
|
BCM_REFERENCE(devid);
|
||
|
|
||
|
erombase = R_REG(sii->osh, &cc->eromptr);
|
||
|
|
||
|
switch (BUSTYPE(sih->bustype)) {
|
||
|
case SI_BUS:
|
||
|
eromptr = (uint32 *)REG_MAP(erombase, SI_CORE_SIZE);
|
||
|
break;
|
||
|
|
||
|
case PCI_BUS:
|
||
|
/* Set wrappers address */
|
||
|
sii->curwrap = (void *)((uintptr)regs + SI_CORE_SIZE);
|
||
|
|
||
|
/* Now point the window at the erom */
|
||
|
OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, erombase);
|
||
|
eromptr = regs;
|
||
|
break;
|
||
|
|
||
|
#ifdef BCMSDIO
|
||
|
case SPI_BUS:
|
||
|
case SDIO_BUS:
|
||
|
eromptr = (uint32 *)(uintptr)erombase;
|
||
|
break;
|
||
|
#endif /* BCMSDIO */
|
||
|
|
||
|
case PCMCIA_BUS:
|
||
|
default:
|
||
|
SI_ERROR(("Don't know how to do AXI enumertion on bus %d\n", sih->bustype));
|
||
|
ASSERT(0);
|
||
|
return;
|
||
|
}
|
||
|
eromlim = eromptr + (ER_REMAPCONTROL / sizeof(uint32));
|
||
|
sii->axi_num_wrappers = 0;
|
||
|
|
||
|
SI_VMSG(("ai_scan: regs = 0x%p, erombase = 0x%08x, eromptr = 0x%p, eromlim = 0x%p\n",
|
||
|
OSL_OBFUSCATE_BUF(regs), erombase,
|
||
|
OSL_OBFUSCATE_BUF(eromptr), OSL_OBFUSATE_BUF(eromlim)));
|
||
|
while (eromptr < eromlim) {
|
||
|
uint32 cia, cib, cid, mfg, crev, nmw, nsw, nmp, nsp;
|
||
|
uint32 mpd, asd, addrl, addrh, sizel, sizeh;
|
||
|
uint i, j, idx;
|
||
|
bool br;
|
||
|
|
||
|
br = FALSE;
|
||
|
|
||
|
/* Grok a component */
|
||
|
cia = get_erom_ent(sih, &eromptr, ER_TAG, ER_CI);
|
||
|
if (cia == (ER_END | ER_VALID)) {
|
||
|
SI_VMSG(("Found END of erom after %d cores\n", sii->numcores));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
cib = get_erom_ent(sih, &eromptr, 0, 0);
|
||
|
|
||
|
if ((cib & ER_TAG) != ER_CI) {
|
||
|
SI_ERROR(("CIA not followed by CIB\n"));
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
cid = (cia & CIA_CID_MASK) >> CIA_CID_SHIFT;
|
||
|
mfg = (cia & CIA_MFG_MASK) >> CIA_MFG_SHIFT;
|
||
|
crev = (cib & CIB_REV_MASK) >> CIB_REV_SHIFT;
|
||
|
nmw = (cib & CIB_NMW_MASK) >> CIB_NMW_SHIFT;
|
||
|
nsw = (cib & CIB_NSW_MASK) >> CIB_NSW_SHIFT;
|
||
|
nmp = (cib & CIB_NMP_MASK) >> CIB_NMP_SHIFT;
|
||
|
nsp = (cib & CIB_NSP_MASK) >> CIB_NSP_SHIFT;
|
||
|
|
||
|
#ifdef BCMDBG_SI
|
||
|
SI_VMSG(("Found component 0x%04x/0x%04x rev %d at erom addr 0x%p, with nmw = %d, "
|
||
|
"nsw = %d, nmp = %d & nsp = %d\n",
|
||
|
mfg, cid, crev, OSL_OBFUSCATE_BUF(eromptr - 1), nmw, nsw, nmp, nsp));
|
||
|
#else
|
||
|
BCM_REFERENCE(crev);
|
||
|
#endif
|
||
|
|
||
|
if (CHIPID(sih->chip) == BCM4347_CHIP_ID) {
|
||
|
/* 4347 has more entries for ARM core
|
||
|
* This should apply to all chips but crashes on router
|
||
|
* This is a temp fix to be further analyze
|
||
|
*/
|
||
|
if (nsp == 0)
|
||
|
continue;
|
||
|
} else {
|
||
|
/* Include Default slave wrapper for timeout monitoring */
|
||
|
if ((nsp == 0) ||
|
||
|
#if !defined(AXI_TIMEOUTS) && !defined(BCM_BACKPLANE_TIMEOUT)
|
||
|
((mfg == MFGID_ARM) && (cid == DEF_AI_COMP)) ||
|
||
|
#endif /* !defined(AXI_TIMEOUTS) && !defined(BCM_BACKPLANE_TIMEOUT) */
|
||
|
FALSE) {
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ((nmw + nsw == 0)) {
|
||
|
/* A component which is not a core */
|
||
|
if (cid == OOB_ROUTER_CORE_ID) {
|
||
|
asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE,
|
||
|
&addrl, &addrh, &sizel, &sizeh);
|
||
|
if (asd != 0) {
|
||
|
sii->oob_router = addrl;
|
||
|
}
|
||
|
}
|
||
|
if (cid != GMAC_COMMON_4706_CORE_ID && cid != NS_CCB_CORE_ID &&
|
||
|
cid != PMU_CORE_ID && cid != GCI_CORE_ID)
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
idx = sii->numcores;
|
||
|
|
||
|
cores_info->cia[idx] = cia;
|
||
|
cores_info->cib[idx] = cib;
|
||
|
cores_info->coreid[idx] = remap_coreid(sih, cid);
|
||
|
|
||
|
for (i = 0; i < nmp; i++) {
|
||
|
mpd = get_erom_ent(sih, &eromptr, ER_VALID, ER_VALID);
|
||
|
if ((mpd & ER_TAG) != ER_MP) {
|
||
|
SI_ERROR(("Not enough MP entries for component 0x%x\n", cid));
|
||
|
goto error;
|
||
|
}
|
||
|
SI_VMSG((" Master port %d, mp: %d id: %d\n", i,
|
||
|
(mpd & MPD_MP_MASK) >> MPD_MP_SHIFT,
|
||
|
(mpd & MPD_MUI_MASK) >> MPD_MUI_SHIFT));
|
||
|
}
|
||
|
|
||
|
/* First Slave Address Descriptor should be port 0:
|
||
|
* the main register space for the core
|
||
|
*/
|
||
|
asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE, &addrl, &addrh, &sizel, &sizeh);
|
||
|
if (asd == 0) {
|
||
|
do {
|
||
|
/* Try again to see if it is a bridge */
|
||
|
asd = get_asd(sih, &eromptr, 0, 0, AD_ST_BRIDGE, &addrl, &addrh,
|
||
|
&sizel, &sizeh);
|
||
|
if (asd != 0)
|
||
|
br = TRUE;
|
||
|
else {
|
||
|
if (br == TRUE) {
|
||
|
break;
|
||
|
}
|
||
|
else if ((addrh != 0) || (sizeh != 0) ||
|
||
|
(sizel != SI_CORE_SIZE)) {
|
||
|
SI_ERROR(("addrh = 0x%x\t sizeh = 0x%x\t size1 ="
|
||
|
"0x%x\n", addrh, sizeh, sizel));
|
||
|
SI_ERROR(("First Slave ASD for"
|
||
|
"core 0x%04x malformed "
|
||
|
"(0x%08x)\n", cid, asd));
|
||
|
goto error;
|
||
|
}
|
||
|
}
|
||
|
} while (1);
|
||
|
}
|
||
|
cores_info->coresba[idx] = addrl;
|
||
|
cores_info->coresba_size[idx] = sizel;
|
||
|
/* Get any more ASDs in port 0 */
|
||
|
j = 1;
|
||
|
do {
|
||
|
asd = get_asd(sih, &eromptr, 0, j, AD_ST_SLAVE, &addrl, &addrh,
|
||
|
&sizel, &sizeh);
|
||
|
if ((asd != 0) && (j == 1) && (sizel == SI_CORE_SIZE)) {
|
||
|
cores_info->coresba2[idx] = addrl;
|
||
|
cores_info->coresba2_size[idx] = sizel;
|
||
|
}
|
||
|
j++;
|
||
|
} while (asd != 0);
|
||
|
|
||
|
/* Go through the ASDs for other slave ports */
|
||
|
for (i = 1; i < nsp; i++) {
|
||
|
j = 0;
|
||
|
do {
|
||
|
asd = get_asd(sih, &eromptr, i, j, AD_ST_SLAVE, &addrl, &addrh,
|
||
|
&sizel, &sizeh);
|
||
|
|
||
|
if (asd == 0)
|
||
|
break;
|
||
|
j++;
|
||
|
} while (1);
|
||
|
if (j == 0) {
|
||
|
SI_ERROR((" SP %d has no address descriptors\n", i));
|
||
|
goto error;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Now get master wrappers */
|
||
|
for (i = 0; i < nmw; i++) {
|
||
|
asd = get_asd(sih, &eromptr, i, 0, AD_ST_MWRAP, &addrl, &addrh,
|
||
|
&sizel, &sizeh);
|
||
|
if (asd == 0) {
|
||
|
SI_ERROR(("Missing descriptor for MW %d\n", i));
|
||
|
goto error;
|
||
|
}
|
||
|
if ((sizeh != 0) || (sizel != SI_CORE_SIZE)) {
|
||
|
SI_ERROR(("Master wrapper %d is not 4KB\n", i));
|
||
|
goto error;
|
||
|
}
|
||
|
if (i == 0)
|
||
|
cores_info->wrapba[idx] = addrl;
|
||
|
else if (i == 1)
|
||
|
cores_info->wrapba2[idx] = addrl;
|
||
|
|
||
|
|
||
|
ASSERT(sii->axi_num_wrappers < SI_MAX_AXI_WRAPPERS);
|
||
|
axi_wrapper[sii->axi_num_wrappers].mfg = mfg;
|
||
|
axi_wrapper[sii->axi_num_wrappers].cid = cid;
|
||
|
axi_wrapper[sii->axi_num_wrappers].rev = crev;
|
||
|
axi_wrapper[sii->axi_num_wrappers].wrapper_type = AI_MASTER_WRAPPER;
|
||
|
axi_wrapper[sii->axi_num_wrappers].wrapper_addr = addrl;
|
||
|
sii->axi_num_wrappers++;
|
||
|
SI_VMSG(("MASTER WRAPPER: %d, mfg:%x, cid:%x, rev:%x, addr:%x, size:%x\n",
|
||
|
sii->axi_num_wrappers, mfg, cid, crev, addrl, sizel));
|
||
|
}
|
||
|
|
||
|
/* And finally slave wrappers */
|
||
|
for (i = 0; i < nsw; i++) {
|
||
|
uint fwp = (nsp == 1) ? 0 : 1;
|
||
|
asd = get_asd(sih, &eromptr, fwp + i, 0, AD_ST_SWRAP, &addrl, &addrh,
|
||
|
&sizel, &sizeh);
|
||
|
|
||
|
/* cache APB bridge wrapper address for set/clear timeout */
|
||
|
if ((mfg == MFGID_ARM) && (cid == APB_BRIDGE_ID)) {
|
||
|
ASSERT(sii->num_br < SI_MAXBR);
|
||
|
sii->br_wrapba[sii->num_br++] = addrl;
|
||
|
}
|
||
|
|
||
|
if (asd == 0) {
|
||
|
SI_ERROR(("Missing descriptor for SW %d\n", i));
|
||
|
goto error;
|
||
|
}
|
||
|
if ((sizeh != 0) || (sizel != SI_CORE_SIZE)) {
|
||
|
SI_ERROR(("Slave wrapper %d is not 4KB\n", i));
|
||
|
goto error;
|
||
|
}
|
||
|
if ((nmw == 0) && (i == 0))
|
||
|
cores_info->wrapba[idx] = addrl;
|
||
|
else if ((nmw == 0) && (i == 1))
|
||
|
cores_info->wrapba2[idx] = addrl;
|
||
|
|
||
|
/* Include all slave wrappers to the list to
|
||
|
* enable and monitor watchdog timeouts
|
||
|
*/
|
||
|
|
||
|
ASSERT(sii->axi_num_wrappers < SI_MAX_AXI_WRAPPERS);
|
||
|
axi_wrapper[sii->axi_num_wrappers].mfg = mfg;
|
||
|
axi_wrapper[sii->axi_num_wrappers].cid = cid;
|
||
|
axi_wrapper[sii->axi_num_wrappers].rev = crev;
|
||
|
axi_wrapper[sii->axi_num_wrappers].wrapper_type = AI_SLAVE_WRAPPER;
|
||
|
axi_wrapper[sii->axi_num_wrappers].wrapper_addr = addrl;
|
||
|
sii->axi_num_wrappers++;
|
||
|
|
||
|
SI_VMSG(("SLAVE WRAPPER: %d, mfg:%x, cid:%x, rev:%x, addr:%x, size:%x\n",
|
||
|
sii->axi_num_wrappers, mfg, cid, crev, addrl, sizel));
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifndef BCM_BACKPLANE_TIMEOUT
|
||
|
/* Don't record bridges */
|
||
|
if (br)
|
||
|
continue;
|
||
|
#endif
|
||
|
|
||
|
/* Done with core */
|
||
|
sii->numcores++;
|
||
|
}
|
||
|
|
||
|
SI_ERROR(("Reached end of erom without finding END\n"));
|
||
|
|
||
|
error:
|
||
|
sii->numcores = 0;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
#define AI_SETCOREIDX_MAPSIZE(coreid) \
|
||
|
(((coreid) == NS_CCB_CORE_ID) ? 15 * SI_CORE_SIZE : SI_CORE_SIZE)
|
||
|
|
||
|
/* This function changes the logical "focus" to the indicated core.
|
||
|
* Return the current core's virtual address.
|
||
|
*/
|
||
|
static volatile void *
|
||
|
_ai_setcoreidx(si_t *sih, uint coreidx, uint use_wrap2)
|
||
|
{
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
|
||
|
uint32 addr, wrap, wrap2;
|
||
|
volatile void *regs;
|
||
|
|
||
|
if (coreidx >= MIN(sii->numcores, SI_MAXCORES))
|
||
|
return (NULL);
|
||
|
|
||
|
addr = cores_info->coresba[coreidx];
|
||
|
wrap = cores_info->wrapba[coreidx];
|
||
|
wrap2 = cores_info->wrapba2[coreidx];
|
||
|
|
||
|
#ifdef BCM_BACKPLANE_TIMEOUT
|
||
|
/* No need to disable interrupts while entering/exiting APB bridge core */
|
||
|
if ((cores_info->coreid[coreidx] != APB_BRIDGE_CORE_ID) &&
|
||
|
(cores_info->coreid[sii->curidx] != APB_BRIDGE_CORE_ID))
|
||
|
#endif /* BCM_BACKPLANE_TIMEOUT */
|
||
|
{
|
||
|
/*
|
||
|
* If the user has provided an interrupt mask enabled function,
|
||
|
* then assert interrupts are disabled before switching the core.
|
||
|
*/
|
||
|
ASSERT((sii->intrsenabled_fn == NULL) ||
|
||
|
!(*(sii)->intrsenabled_fn)((sii)->intr_arg));
|
||
|
}
|
||
|
|
||
|
switch (BUSTYPE(sih->bustype)) {
|
||
|
case SI_BUS:
|
||
|
/* map new one */
|
||
|
if (!cores_info->regs[coreidx]) {
|
||
|
cores_info->regs[coreidx] = REG_MAP(addr,
|
||
|
AI_SETCOREIDX_MAPSIZE(cores_info->coreid[coreidx]));
|
||
|
ASSERT(GOODREGS(cores_info->regs[coreidx]));
|
||
|
}
|
||
|
sii->curmap = regs = cores_info->regs[coreidx];
|
||
|
if (!cores_info->wrappers[coreidx] && (wrap != 0)) {
|
||
|
cores_info->wrappers[coreidx] = REG_MAP(wrap, SI_CORE_SIZE);
|
||
|
ASSERT(GOODREGS(cores_info->wrappers[coreidx]));
|
||
|
}
|
||
|
if (!cores_info->wrappers2[coreidx] && (wrap2 != 0)) {
|
||
|
cores_info->wrappers2[coreidx] = REG_MAP(wrap2, SI_CORE_SIZE);
|
||
|
ASSERT(GOODREGS(cores_info->wrappers2[coreidx]));
|
||
|
}
|
||
|
if (use_wrap2)
|
||
|
sii->curwrap = cores_info->wrappers2[coreidx];
|
||
|
else
|
||
|
sii->curwrap = cores_info->wrappers[coreidx];
|
||
|
break;
|
||
|
|
||
|
case PCI_BUS:
|
||
|
#ifdef BCM_BACKPLANE_TIMEOUT
|
||
|
/* No need to set the BAR0 if core is APB Bridge.
|
||
|
* This is to reduce 2 PCI writes while checkng for errlog
|
||
|
*/
|
||
|
if (cores_info->coreid[coreidx] != APB_BRIDGE_CORE_ID)
|
||
|
#endif /* BCM_BACKPLANE_TIMEOUT */
|
||
|
{
|
||
|
/* point bar0 window */
|
||
|
OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, addr);
|
||
|
}
|
||
|
|
||
|
regs = sii->curmap;
|
||
|
/* point bar0 2nd 4KB window to the primary wrapper */
|
||
|
if (use_wrap2)
|
||
|
wrap = wrap2;
|
||
|
if (PCIE_GEN2(sii))
|
||
|
OSL_PCI_WRITE_CONFIG(sii->osh, PCIE2_BAR0_WIN2, 4, wrap);
|
||
|
else
|
||
|
OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN2, 4, wrap);
|
||
|
break;
|
||
|
|
||
|
#ifdef BCMSDIO
|
||
|
case SPI_BUS:
|
||
|
case SDIO_BUS:
|
||
|
sii->curmap = regs = (void *)((uintptr)addr);
|
||
|
if (use_wrap2)
|
||
|
sii->curwrap = (void *)((uintptr)wrap2);
|
||
|
else
|
||
|
sii->curwrap = (void *)((uintptr)wrap);
|
||
|
break;
|
||
|
#endif /* BCMSDIO */
|
||
|
|
||
|
case PCMCIA_BUS:
|
||
|
default:
|
||
|
ASSERT(0);
|
||
|
regs = NULL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
sii->curmap = regs;
|
||
|
sii->curidx = coreidx;
|
||
|
|
||
|
return regs;
|
||
|
}
|
||
|
|
||
|
volatile void *
|
||
|
ai_setcoreidx(si_t *sih, uint coreidx)
|
||
|
{
|
||
|
return _ai_setcoreidx(sih, coreidx, 0);
|
||
|
}
|
||
|
|
||
|
volatile void *
|
||
|
ai_setcoreidx_2ndwrap(si_t *sih, uint coreidx)
|
||
|
{
|
||
|
return _ai_setcoreidx(sih, coreidx, 1);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
ai_coreaddrspaceX(si_t *sih, uint asidx, uint32 *addr, uint32 *size)
|
||
|
{
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
|
||
|
chipcregs_t *cc = NULL;
|
||
|
uint32 erombase, *eromptr, *eromlim;
|
||
|
uint i, j, cidx;
|
||
|
uint32 cia, cib, nmp, nsp;
|
||
|
uint32 asd, addrl, addrh, sizel, sizeh;
|
||
|
|
||
|
for (i = 0; i < sii->numcores; i++) {
|
||
|
if (cores_info->coreid[i] == CC_CORE_ID) {
|
||
|
cc = (chipcregs_t *)cores_info->regs[i];
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (cc == NULL)
|
||
|
goto error;
|
||
|
|
||
|
erombase = R_REG(sii->osh, &cc->eromptr);
|
||
|
eromptr = (uint32 *)REG_MAP(erombase, SI_CORE_SIZE);
|
||
|
eromlim = eromptr + (ER_REMAPCONTROL / sizeof(uint32));
|
||
|
|
||
|
cidx = sii->curidx;
|
||
|
cia = cores_info->cia[cidx];
|
||
|
cib = cores_info->cib[cidx];
|
||
|
|
||
|
nmp = (cib & CIB_NMP_MASK) >> CIB_NMP_SHIFT;
|
||
|
nsp = (cib & CIB_NSP_MASK) >> CIB_NSP_SHIFT;
|
||
|
|
||
|
/* scan for cores */
|
||
|
while (eromptr < eromlim) {
|
||
|
if ((get_erom_ent(sih, &eromptr, ER_TAG, ER_CI) == cia) &&
|
||
|
(get_erom_ent(sih, &eromptr, 0, 0) == cib)) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* skip master ports */
|
||
|
for (i = 0; i < nmp; i++)
|
||
|
get_erom_ent(sih, &eromptr, ER_VALID, ER_VALID);
|
||
|
|
||
|
/* Skip ASDs in port 0 */
|
||
|
asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE, &addrl, &addrh, &sizel, &sizeh);
|
||
|
if (asd == 0) {
|
||
|
/* Try again to see if it is a bridge */
|
||
|
asd = get_asd(sih, &eromptr, 0, 0, AD_ST_BRIDGE, &addrl, &addrh,
|
||
|
&sizel, &sizeh);
|
||
|
}
|
||
|
|
||
|
j = 1;
|
||
|
do {
|
||
|
asd = get_asd(sih, &eromptr, 0, j, AD_ST_SLAVE, &addrl, &addrh,
|
||
|
&sizel, &sizeh);
|
||
|
j++;
|
||
|
} while (asd != 0);
|
||
|
|
||
|
/* Go through the ASDs for other slave ports */
|
||
|
for (i = 1; i < nsp; i++) {
|
||
|
j = 0;
|
||
|
do {
|
||
|
asd = get_asd(sih, &eromptr, i, j, AD_ST_SLAVE, &addrl, &addrh,
|
||
|
&sizel, &sizeh);
|
||
|
if (asd == 0)
|
||
|
break;
|
||
|
|
||
|
if (!asidx--) {
|
||
|
*addr = addrl;
|
||
|
*size = sizel;
|
||
|
return;
|
||
|
}
|
||
|
j++;
|
||
|
} while (1);
|
||
|
|
||
|
if (j == 0) {
|
||
|
SI_ERROR((" SP %d has no address descriptors\n", i));
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
error:
|
||
|
*size = 0;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Return the number of address spaces in current core */
|
||
|
int
|
||
|
ai_numaddrspaces(si_t *sih)
|
||
|
{
|
||
|
|
||
|
BCM_REFERENCE(sih);
|
||
|
|
||
|
return 2;
|
||
|
}
|
||
|
|
||
|
/* Return the address of the nth address space in the current core */
|
||
|
uint32
|
||
|
ai_addrspace(si_t *sih, uint asidx)
|
||
|
{
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
|
||
|
uint cidx;
|
||
|
|
||
|
cidx = sii->curidx;
|
||
|
|
||
|
if (asidx == 0)
|
||
|
return cores_info->coresba[cidx];
|
||
|
else if (asidx == 1)
|
||
|
return cores_info->coresba2[cidx];
|
||
|
else {
|
||
|
SI_ERROR(("%s: Need to parse the erom again to find addr space %d\n",
|
||
|
__FUNCTION__, asidx));
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Return the size of the nth address space in the current core */
|
||
|
uint32
|
||
|
ai_addrspacesize(si_t *sih, uint asidx)
|
||
|
{
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
|
||
|
uint cidx;
|
||
|
|
||
|
cidx = sii->curidx;
|
||
|
|
||
|
if (asidx == 0)
|
||
|
return cores_info->coresba_size[cidx];
|
||
|
else if (asidx == 1)
|
||
|
return cores_info->coresba2_size[cidx];
|
||
|
else {
|
||
|
SI_ERROR(("%s: Need to parse the erom again to find addr space %d\n",
|
||
|
__FUNCTION__, asidx));
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
uint
|
||
|
ai_flag(si_t *sih)
|
||
|
{
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
aidmp_t *ai;
|
||
|
|
||
|
if (BCM5357_DMP()) {
|
||
|
SI_ERROR(("%s: Attempting to read USB20H DMP registers on 5357b0\n", __FUNCTION__));
|
||
|
return sii->curidx;
|
||
|
}
|
||
|
if (BCM4707_DMP()) {
|
||
|
SI_ERROR(("%s: Attempting to read CHIPCOMMONB DMP registers on 4707\n",
|
||
|
__FUNCTION__));
|
||
|
return sii->curidx;
|
||
|
}
|
||
|
if (BCM53573_DMP()) {
|
||
|
SI_ERROR(("%s: Attempting to read DMP registers on 53573\n", __FUNCTION__));
|
||
|
return sii->curidx;
|
||
|
}
|
||
|
#ifdef REROUTE_OOBINT
|
||
|
if (PMU_DMP()) {
|
||
|
SI_ERROR(("%s: Attempting to read PMU DMP registers\n",
|
||
|
__FUNCTION__));
|
||
|
return PMU_OOB_BIT;
|
||
|
}
|
||
|
#else
|
||
|
if (PMU_DMP()) {
|
||
|
uint idx, flag;
|
||
|
idx = sii->curidx;
|
||
|
ai_setcoreidx(sih, SI_CC_IDX);
|
||
|
flag = ai_flag_alt(sih);
|
||
|
ai_setcoreidx(sih, idx);
|
||
|
return flag;
|
||
|
}
|
||
|
#endif /* REROUTE_OOBINT */
|
||
|
|
||
|
ai = sii->curwrap;
|
||
|
ASSERT(ai != NULL);
|
||
|
|
||
|
return (R_REG(sii->osh, &ai->oobselouta30) & 0x1f);
|
||
|
}
|
||
|
|
||
|
uint
|
||
|
ai_flag_alt(si_t *sih)
|
||
|
{
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
aidmp_t *ai;
|
||
|
|
||
|
if (BCM5357_DMP()) {
|
||
|
SI_ERROR(("%s: Attempting to read USB20H DMP registers on 5357b0\n", __FUNCTION__));
|
||
|
return sii->curidx;
|
||
|
}
|
||
|
if (BCM4707_DMP()) {
|
||
|
SI_ERROR(("%s: Attempting to read CHIPCOMMONB DMP registers on 4707\n",
|
||
|
__FUNCTION__));
|
||
|
return sii->curidx;
|
||
|
}
|
||
|
#ifdef REROUTE_OOBINT
|
||
|
if (PMU_DMP()) {
|
||
|
SI_ERROR(("%s: Attempting to read PMU DMP registers\n",
|
||
|
__FUNCTION__));
|
||
|
return PMU_OOB_BIT;
|
||
|
}
|
||
|
#endif /* REROUTE_OOBINT */
|
||
|
|
||
|
ai = sii->curwrap;
|
||
|
|
||
|
return ((R_REG(sii->osh, &ai->oobselouta30) >> AI_OOBSEL_1_SHIFT) & AI_OOBSEL_MASK);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
ai_setint(si_t *sih, int siflag)
|
||
|
{
|
||
|
BCM_REFERENCE(sih);
|
||
|
BCM_REFERENCE(siflag);
|
||
|
|
||
|
}
|
||
|
|
||
|
uint
|
||
|
ai_wrap_reg(si_t *sih, uint32 offset, uint32 mask, uint32 val)
|
||
|
{
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
uint32 *map = (uint32 *) sii->curwrap;
|
||
|
|
||
|
if (mask || val) {
|
||
|
uint32 w = R_REG(sii->osh, map+(offset/4));
|
||
|
w &= ~mask;
|
||
|
w |= val;
|
||
|
W_REG(sii->osh, map+(offset/4), w);
|
||
|
}
|
||
|
|
||
|
return (R_REG(sii->osh, map+(offset/4)));
|
||
|
}
|
||
|
|
||
|
uint
|
||
|
ai_corevendor(si_t *sih)
|
||
|
{
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
|
||
|
uint32 cia;
|
||
|
|
||
|
cia = cores_info->cia[sii->curidx];
|
||
|
return ((cia & CIA_MFG_MASK) >> CIA_MFG_SHIFT);
|
||
|
}
|
||
|
|
||
|
uint
|
||
|
ai_corerev(si_t *sih)
|
||
|
{
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
|
||
|
uint32 cib;
|
||
|
|
||
|
|
||
|
cib = cores_info->cib[sii->curidx];
|
||
|
return remap_corerev(sih, (cib & CIB_REV_MASK) >> CIB_REV_SHIFT);
|
||
|
}
|
||
|
|
||
|
bool
|
||
|
ai_iscoreup(si_t *sih)
|
||
|
{
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
aidmp_t *ai;
|
||
|
|
||
|
ai = sii->curwrap;
|
||
|
|
||
|
return (((R_REG(sii->osh, &ai->ioctrl) & (SICF_FGC | SICF_CLOCK_EN)) == SICF_CLOCK_EN) &&
|
||
|
((R_REG(sii->osh, &ai->resetctrl) & AIRC_RESET) == 0));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation,
|
||
|
* switch back to the original core, and return the new value.
|
||
|
*
|
||
|
* When using the silicon backplane, no fiddling with interrupts or core switches is needed.
|
||
|
*
|
||
|
* Also, when using pci/pcie, we can optimize away the core switching for pci registers
|
||
|
* and (on newer pci cores) chipcommon registers.
|
||
|
*/
|
||
|
uint
|
||
|
ai_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val)
|
||
|
{
|
||
|
uint origidx = 0;
|
||
|
volatile uint32 *r = NULL;
|
||
|
uint w;
|
||
|
uint intr_val = 0;
|
||
|
bool fast = FALSE;
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
|
||
|
|
||
|
|
||
|
ASSERT(GOODIDX(coreidx));
|
||
|
ASSERT(regoff < SI_CORE_SIZE);
|
||
|
ASSERT((val & ~mask) == 0);
|
||
|
|
||
|
if (coreidx >= SI_MAXCORES)
|
||
|
return 0;
|
||
|
|
||
|
if (BUSTYPE(sih->bustype) == SI_BUS) {
|
||
|
/* If internal bus, we can always get at everything */
|
||
|
fast = TRUE;
|
||
|
/* map if does not exist */
|
||
|
if (!cores_info->regs[coreidx]) {
|
||
|
cores_info->regs[coreidx] = REG_MAP(cores_info->coresba[coreidx],
|
||
|
SI_CORE_SIZE);
|
||
|
ASSERT(GOODREGS(cores_info->regs[coreidx]));
|
||
|
}
|
||
|
r = (volatile uint32 *)((volatile uchar *)cores_info->regs[coreidx] + regoff);
|
||
|
} else if (BUSTYPE(sih->bustype) == PCI_BUS) {
|
||
|
/* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */
|
||
|
|
||
|
if ((cores_info->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) {
|
||
|
/* Chipc registers are mapped at 12KB */
|
||
|
|
||
|
fast = TRUE;
|
||
|
r = (volatile uint32 *)((volatile char *)sii->curmap +
|
||
|
PCI_16KB0_CCREGS_OFFSET + regoff);
|
||
|
} else if (sii->pub.buscoreidx == coreidx) {
|
||
|
/* pci registers are at either in the last 2KB of an 8KB window
|
||
|
* or, in pcie and pci rev 13 at 8KB
|
||
|
*/
|
||
|
fast = TRUE;
|
||
|
if (SI_FAST(sii))
|
||
|
r = (volatile uint32 *)((volatile char *)sii->curmap +
|
||
|
PCI_16KB0_PCIREGS_OFFSET + regoff);
|
||
|
else
|
||
|
r = (volatile uint32 *)((volatile char *)sii->curmap +
|
||
|
((regoff >= SBCONFIGOFF) ?
|
||
|
PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) +
|
||
|
regoff);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!fast) {
|
||
|
INTR_OFF(sii, intr_val);
|
||
|
|
||
|
/* save current core index */
|
||
|
origidx = si_coreidx(&sii->pub);
|
||
|
|
||
|
/* switch core */
|
||
|
r = (volatile uint32*) ((volatile uchar*) ai_setcoreidx(&sii->pub, coreidx) +
|
||
|
regoff);
|
||
|
}
|
||
|
ASSERT(r != NULL);
|
||
|
|
||
|
/* mask and set */
|
||
|
if (mask || val) {
|
||
|
w = (R_REG(sii->osh, r) & ~mask) | val;
|
||
|
W_REG(sii->osh, r, w);
|
||
|
}
|
||
|
|
||
|
/* readback */
|
||
|
w = R_REG(sii->osh, r);
|
||
|
|
||
|
if (!fast) {
|
||
|
/* restore core index */
|
||
|
if (origidx != coreidx)
|
||
|
ai_setcoreidx(&sii->pub, origidx);
|
||
|
|
||
|
INTR_RESTORE(sii, intr_val);
|
||
|
}
|
||
|
|
||
|
return (w);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If there is no need for fiddling with interrupts or core switches (typically silicon
|
||
|
* back plane registers, pci registers and chipcommon registers), this function
|
||
|
* returns the register offset on this core to a mapped address. This address can
|
||
|
* be used for W_REG/R_REG directly.
|
||
|
*
|
||
|
* For accessing registers that would need a core switch, this function will return
|
||
|
* NULL.
|
||
|
*/
|
||
|
volatile uint32 *
|
||
|
ai_corereg_addr(si_t *sih, uint coreidx, uint regoff)
|
||
|
{
|
||
|
volatile uint32 *r = NULL;
|
||
|
bool fast = FALSE;
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
|
||
|
|
||
|
|
||
|
ASSERT(GOODIDX(coreidx));
|
||
|
ASSERT(regoff < SI_CORE_SIZE);
|
||
|
|
||
|
if (coreidx >= SI_MAXCORES)
|
||
|
return 0;
|
||
|
|
||
|
if (BUSTYPE(sih->bustype) == SI_BUS) {
|
||
|
/* If internal bus, we can always get at everything */
|
||
|
fast = TRUE;
|
||
|
/* map if does not exist */
|
||
|
if (!cores_info->regs[coreidx]) {
|
||
|
cores_info->regs[coreidx] = REG_MAP(cores_info->coresba[coreidx],
|
||
|
SI_CORE_SIZE);
|
||
|
ASSERT(GOODREGS(cores_info->regs[coreidx]));
|
||
|
}
|
||
|
r = (volatile uint32 *)((volatile uchar *)cores_info->regs[coreidx] + regoff);
|
||
|
} else if (BUSTYPE(sih->bustype) == PCI_BUS) {
|
||
|
/* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */
|
||
|
|
||
|
if ((cores_info->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) {
|
||
|
/* Chipc registers are mapped at 12KB */
|
||
|
|
||
|
fast = TRUE;
|
||
|
r = (volatile uint32 *)((volatile char *)sii->curmap +
|
||
|
PCI_16KB0_CCREGS_OFFSET + regoff);
|
||
|
} else if (sii->pub.buscoreidx == coreidx) {
|
||
|
/* pci registers are at either in the last 2KB of an 8KB window
|
||
|
* or, in pcie and pci rev 13 at 8KB
|
||
|
*/
|
||
|
fast = TRUE;
|
||
|
if (SI_FAST(sii))
|
||
|
r = (volatile uint32 *)((volatile char *)sii->curmap +
|
||
|
PCI_16KB0_PCIREGS_OFFSET + regoff);
|
||
|
else
|
||
|
r = (volatile uint32 *)((volatile char *)sii->curmap +
|
||
|
((regoff >= SBCONFIGOFF) ?
|
||
|
PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) +
|
||
|
regoff);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!fast) {
|
||
|
ASSERT(sii->curidx == coreidx);
|
||
|
r = (volatile uint32*) ((volatile uchar*)sii->curmap + regoff);
|
||
|
}
|
||
|
|
||
|
return (r);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
ai_core_disable(si_t *sih, uint32 bits)
|
||
|
{
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
volatile uint32 dummy;
|
||
|
uint32 status;
|
||
|
aidmp_t *ai;
|
||
|
|
||
|
|
||
|
ASSERT(GOODREGS(sii->curwrap));
|
||
|
ai = sii->curwrap;
|
||
|
|
||
|
/* if core is already in reset, just return */
|
||
|
if (R_REG(sii->osh, &ai->resetctrl) & AIRC_RESET) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* ensure there are no pending backplane operations */
|
||
|
SPINWAIT(((status = R_REG(sii->osh, &ai->resetstatus)) != 0), 300);
|
||
|
|
||
|
/* if pending backplane ops still, try waiting longer */
|
||
|
if (status != 0) {
|
||
|
/* 300usecs was sufficient to allow backplane ops to clear for big hammer */
|
||
|
/* during driver load we may need more time */
|
||
|
SPINWAIT(((status = R_REG(sii->osh, &ai->resetstatus)) != 0), 10000);
|
||
|
/* if still pending ops, continue on and try disable anyway */
|
||
|
/* this is in big hammer path, so don't call wl_reinit in this case... */
|
||
|
}
|
||
|
|
||
|
W_REG(sii->osh, &ai->resetctrl, AIRC_RESET);
|
||
|
dummy = R_REG(sii->osh, &ai->resetctrl);
|
||
|
BCM_REFERENCE(dummy);
|
||
|
OSL_DELAY(1);
|
||
|
|
||
|
W_REG(sii->osh, &ai->ioctrl, bits);
|
||
|
dummy = R_REG(sii->osh, &ai->ioctrl);
|
||
|
BCM_REFERENCE(dummy);
|
||
|
OSL_DELAY(10);
|
||
|
}
|
||
|
|
||
|
/* reset and re-enable a core
|
||
|
* inputs:
|
||
|
* bits - core specific bits that are set during and after reset sequence
|
||
|
* resetbits - core specific bits that are set only during reset sequence
|
||
|
*/
|
||
|
static void
|
||
|
_ai_core_reset(si_t *sih, uint32 bits, uint32 resetbits)
|
||
|
{
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
aidmp_t *ai;
|
||
|
volatile uint32 dummy;
|
||
|
uint loop_counter = 10;
|
||
|
|
||
|
ASSERT(GOODREGS(sii->curwrap));
|
||
|
ai = sii->curwrap;
|
||
|
|
||
|
/* if core is already out of reset, just return */
|
||
|
|
||
|
/* ensure there are no pending backplane operations */
|
||
|
SPINWAIT(((dummy = R_REG(sii->osh, &ai->resetstatus)) != 0), 300);
|
||
|
|
||
|
|
||
|
/* put core into reset state */
|
||
|
W_REG(sii->osh, &ai->resetctrl, AIRC_RESET);
|
||
|
OSL_DELAY(10);
|
||
|
|
||
|
/* ensure there are no pending backplane operations */
|
||
|
SPINWAIT((R_REG(sii->osh, &ai->resetstatus) != 0), 300);
|
||
|
|
||
|
W_REG(sii->osh, &ai->ioctrl, (bits | resetbits | SICF_FGC | SICF_CLOCK_EN));
|
||
|
dummy = R_REG(sii->osh, &ai->ioctrl);
|
||
|
BCM_REFERENCE(dummy);
|
||
|
|
||
|
/* ensure there are no pending backplane operations */
|
||
|
SPINWAIT(((dummy = R_REG(sii->osh, &ai->resetstatus)) != 0), 300);
|
||
|
|
||
|
|
||
|
while (R_REG(sii->osh, &ai->resetctrl) != 0 && --loop_counter != 0) {
|
||
|
/* ensure there are no pending backplane operations */
|
||
|
SPINWAIT(((dummy = R_REG(sii->osh, &ai->resetstatus)) != 0), 300);
|
||
|
|
||
|
|
||
|
/* take core out of reset */
|
||
|
W_REG(sii->osh, &ai->resetctrl, 0);
|
||
|
|
||
|
/* ensure there are no pending backplane operations */
|
||
|
SPINWAIT((R_REG(sii->osh, &ai->resetstatus) != 0), 300);
|
||
|
}
|
||
|
|
||
|
|
||
|
W_REG(sii->osh, &ai->ioctrl, (bits | SICF_CLOCK_EN));
|
||
|
dummy = R_REG(sii->osh, &ai->ioctrl);
|
||
|
BCM_REFERENCE(dummy);
|
||
|
OSL_DELAY(1);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
ai_core_reset(si_t *sih, uint32 bits, uint32 resetbits)
|
||
|
{
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
|
||
|
uint idx = sii->curidx;
|
||
|
|
||
|
if (cores_info->wrapba2[idx] != 0) {
|
||
|
ai_setcoreidx_2ndwrap(sih, idx);
|
||
|
_ai_core_reset(sih, bits, resetbits);
|
||
|
ai_setcoreidx(sih, idx);
|
||
|
}
|
||
|
|
||
|
_ai_core_reset(sih, bits, resetbits);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
ai_core_cflags_wo(si_t *sih, uint32 mask, uint32 val)
|
||
|
{
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
aidmp_t *ai;
|
||
|
uint32 w;
|
||
|
|
||
|
if (BCM5357_DMP()) {
|
||
|
SI_ERROR(("%s: Accessing USB20H DMP register (ioctrl) on 5357\n",
|
||
|
__FUNCTION__));
|
||
|
return;
|
||
|
}
|
||
|
if (BCM4707_DMP()) {
|
||
|
SI_ERROR(("%s: Accessing CHIPCOMMONB DMP register (ioctrl) on 4707\n",
|
||
|
__FUNCTION__));
|
||
|
return;
|
||
|
}
|
||
|
if (PMU_DMP()) {
|
||
|
SI_ERROR(("%s: Accessing PMU DMP register (ioctrl)\n",
|
||
|
__FUNCTION__));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
ASSERT(GOODREGS(sii->curwrap));
|
||
|
ai = sii->curwrap;
|
||
|
|
||
|
ASSERT((val & ~mask) == 0);
|
||
|
|
||
|
if (mask || val) {
|
||
|
w = ((R_REG(sii->osh, &ai->ioctrl) & ~mask) | val);
|
||
|
W_REG(sii->osh, &ai->ioctrl, w);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
uint32
|
||
|
ai_core_cflags(si_t *sih, uint32 mask, uint32 val)
|
||
|
{
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
aidmp_t *ai;
|
||
|
uint32 w;
|
||
|
|
||
|
if (BCM5357_DMP()) {
|
||
|
SI_ERROR(("%s: Accessing USB20H DMP register (ioctrl) on 5357\n",
|
||
|
__FUNCTION__));
|
||
|
return 0;
|
||
|
}
|
||
|
if (BCM4707_DMP()) {
|
||
|
SI_ERROR(("%s: Accessing CHIPCOMMONB DMP register (ioctrl) on 4707\n",
|
||
|
__FUNCTION__));
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (PMU_DMP()) {
|
||
|
SI_ERROR(("%s: Accessing PMU DMP register (ioctrl)\n",
|
||
|
__FUNCTION__));
|
||
|
return 0;
|
||
|
}
|
||
|
ASSERT(GOODREGS(sii->curwrap));
|
||
|
ai = sii->curwrap;
|
||
|
|
||
|
ASSERT((val & ~mask) == 0);
|
||
|
|
||
|
if (mask || val) {
|
||
|
w = ((R_REG(sii->osh, &ai->ioctrl) & ~mask) | val);
|
||
|
W_REG(sii->osh, &ai->ioctrl, w);
|
||
|
}
|
||
|
|
||
|
return R_REG(sii->osh, &ai->ioctrl);
|
||
|
}
|
||
|
|
||
|
uint32
|
||
|
ai_core_sflags(si_t *sih, uint32 mask, uint32 val)
|
||
|
{
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
aidmp_t *ai;
|
||
|
uint32 w;
|
||
|
|
||
|
if (BCM5357_DMP()) {
|
||
|
SI_ERROR(("%s: Accessing USB20H DMP register (iostatus) on 5357\n",
|
||
|
__FUNCTION__));
|
||
|
return 0;
|
||
|
}
|
||
|
if (BCM4707_DMP()) {
|
||
|
SI_ERROR(("%s: Accessing CHIPCOMMONB DMP register (ioctrl) on 4707\n",
|
||
|
__FUNCTION__));
|
||
|
return 0;
|
||
|
}
|
||
|
if (PMU_DMP()) {
|
||
|
SI_ERROR(("%s: Accessing PMU DMP register (ioctrl)\n",
|
||
|
__FUNCTION__));
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
ASSERT(GOODREGS(sii->curwrap));
|
||
|
ai = sii->curwrap;
|
||
|
|
||
|
ASSERT((val & ~mask) == 0);
|
||
|
ASSERT((mask & ~SISF_CORE_BITS) == 0);
|
||
|
|
||
|
if (mask || val) {
|
||
|
w = ((R_REG(sii->osh, &ai->iostatus) & ~mask) | val);
|
||
|
W_REG(sii->osh, &ai->iostatus, w);
|
||
|
}
|
||
|
|
||
|
return R_REG(sii->osh, &ai->iostatus);
|
||
|
}
|
||
|
|
||
|
#if defined(BCMDBG_PHYDUMP)
|
||
|
/* print interesting aidmp registers */
|
||
|
void
|
||
|
ai_dumpregs(si_t *sih, struct bcmstrbuf *b)
|
||
|
{
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
osl_t *osh;
|
||
|
aidmp_t *ai;
|
||
|
uint i;
|
||
|
uint32 prev_value = 0;
|
||
|
axi_wrapper_t * axi_wrapper = sii->axi_wrapper;
|
||
|
uint32 cfg_reg = 0;
|
||
|
uint bar0_win_offset = 0;
|
||
|
|
||
|
osh = sii->osh;
|
||
|
|
||
|
|
||
|
/* Save and restore wrapper access window */
|
||
|
if (BUSTYPE(sii->pub.bustype) == PCI_BUS) {
|
||
|
if (PCIE_GEN2(sii)) {
|
||
|
cfg_reg = PCIE2_BAR0_CORE2_WIN2;
|
||
|
bar0_win_offset = PCIE2_BAR0_CORE2_WIN2_OFFSET;
|
||
|
} else {
|
||
|
cfg_reg = PCI_BAR0_WIN2;
|
||
|
bar0_win_offset = PCI_BAR0_WIN2_OFFSET;
|
||
|
}
|
||
|
|
||
|
prev_value = OSL_PCI_READ_CONFIG(osh, cfg_reg, 4);
|
||
|
|
||
|
if (prev_value == ID32_INVALID) {
|
||
|
SI_PRINT(("%s, PCI_BAR0_WIN2 - %x\n", __FUNCTION__, prev_value));
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bcm_bprintf(b, "ChipNum:%x, ChipRev;%x, BusType:%x, BoardType:%x, BoardVendor:%x\n\n",
|
||
|
sih->chip, sih->chiprev, sih->bustype, sih->boardtype, sih->boardvendor);
|
||
|
|
||
|
for (i = 0; i < sii->axi_num_wrappers; i++) {
|
||
|
|
||
|
if (BUSTYPE(sii->pub.bustype) == PCI_BUS) {
|
||
|
/* Set BAR0 window to bridge wapper base address */
|
||
|
OSL_PCI_WRITE_CONFIG(osh,
|
||
|
cfg_reg, 4, axi_wrapper[i].wrapper_addr);
|
||
|
|
||
|
ai = (aidmp_t *) ((volatile uint8*)sii->curmap + bar0_win_offset);
|
||
|
} else {
|
||
|
ai = (aidmp_t *)(uintptr) axi_wrapper[i].wrapper_addr;
|
||
|
}
|
||
|
|
||
|
bcm_bprintf(b, "core 0x%x: core_rev:%d, %s_WR ADDR:%x \n", axi_wrapper[i].cid,
|
||
|
axi_wrapper[i].rev,
|
||
|
axi_wrapper[i].wrapper_type == AI_SLAVE_WRAPPER ? "SLAVE" : "MASTER",
|
||
|
axi_wrapper[i].wrapper_addr);
|
||
|
|
||
|
/* BCM5357_DMP() */
|
||
|
if (((CHIPID(sih->chip) == BCM5357_CHIP_ID) ||
|
||
|
(CHIPID(sih->chip) == BCM4749_CHIP_ID)) &&
|
||
|
(sih->chippkg == BCM5357_PKG_ID) &&
|
||
|
(axi_wrapper[i].cid == USB20H_CORE_ID)) {
|
||
|
bcm_bprintf(b, "Skipping usb20h in 5357\n");
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* BCM4707_DMP() */
|
||
|
if (BCM4707_CHIP(CHIPID(sih->chip)) &&
|
||
|
(axi_wrapper[i].cid == NS_CCB_CORE_ID)) {
|
||
|
bcm_bprintf(b, "Skipping chipcommonb in 4707\n");
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
bcm_bprintf(b, "ioctrlset 0x%x ioctrlclear 0x%x ioctrl 0x%x iostatus 0x%x "
|
||
|
"ioctrlwidth 0x%x iostatuswidth 0x%x\n"
|
||
|
"resetctrl 0x%x resetstatus 0x%x resetreadid 0x%x resetwriteid 0x%x\n"
|
||
|
"errlogctrl 0x%x errlogdone 0x%x errlogstatus 0x%x "
|
||
|
"errlogaddrlo 0x%x errlogaddrhi 0x%x\n"
|
||
|
"errlogid 0x%x errloguser 0x%x errlogflags 0x%x\n"
|
||
|
"intstatus 0x%x config 0x%x itcr 0x%x\n\n",
|
||
|
R_REG(osh, &ai->ioctrlset),
|
||
|
R_REG(osh, &ai->ioctrlclear),
|
||
|
R_REG(osh, &ai->ioctrl),
|
||
|
R_REG(osh, &ai->iostatus),
|
||
|
R_REG(osh, &ai->ioctrlwidth),
|
||
|
R_REG(osh, &ai->iostatuswidth),
|
||
|
R_REG(osh, &ai->resetctrl),
|
||
|
R_REG(osh, &ai->resetstatus),
|
||
|
R_REG(osh, &ai->resetreadid),
|
||
|
R_REG(osh, &ai->resetwriteid),
|
||
|
R_REG(osh, &ai->errlogctrl),
|
||
|
R_REG(osh, &ai->errlogdone),
|
||
|
R_REG(osh, &ai->errlogstatus),
|
||
|
R_REG(osh, &ai->errlogaddrlo),
|
||
|
R_REG(osh, &ai->errlogaddrhi),
|
||
|
R_REG(osh, &ai->errlogid),
|
||
|
R_REG(osh, &ai->errloguser),
|
||
|
R_REG(osh, &ai->errlogflags),
|
||
|
R_REG(osh, &ai->intstatus),
|
||
|
R_REG(osh, &ai->config),
|
||
|
R_REG(osh, &ai->itcr));
|
||
|
}
|
||
|
|
||
|
/* Restore the initial wrapper space */
|
||
|
if (prev_value && cfg_reg) {
|
||
|
OSL_PCI_WRITE_CONFIG(osh, cfg_reg, 4, prev_value);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
void
|
||
|
ai_enable_backplane_timeouts(si_t *sih)
|
||
|
{
|
||
|
#if defined(AXI_TIMEOUTS) || defined(BCM_BACKPLANE_TIMEOUT)
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
aidmp_t *ai;
|
||
|
uint32 i;
|
||
|
axi_wrapper_t * axi_wrapper = sii->axi_wrapper;
|
||
|
|
||
|
#ifdef BCM_BACKPLANE_TIMEOUT
|
||
|
uint32 prev_value = 0;
|
||
|
osl_t *osh = sii->osh;
|
||
|
uint32 cfg_reg = 0;
|
||
|
uint32 offset = 0;
|
||
|
#endif /* BCM_BACKPLANE_TIMEOUT */
|
||
|
|
||
|
if ((sii->axi_num_wrappers == 0) ||
|
||
|
#ifdef BCM_BACKPLANE_TIMEOUT
|
||
|
(!PCIE(sii)) ||
|
||
|
#endif /* BCM_BACKPLANE_TIMEOUT */
|
||
|
FALSE) {
|
||
|
SI_VMSG((" %s, axi_num_wrappers:%d, Is_PCIE:%d, BUS_TYPE:%d, ID:%x\n",
|
||
|
__FUNCTION__, sii->axi_num_wrappers, PCIE(sii),
|
||
|
BUSTYPE(sii->pub.bustype), sii->pub.buscoretype));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
#ifdef BCM_BACKPLANE_TIMEOUT
|
||
|
/* Save and restore the wrapper access window */
|
||
|
if (BUSTYPE(sii->pub.bustype) == PCI_BUS) {
|
||
|
if (PCIE_GEN1(sii)) {
|
||
|
cfg_reg = PCI_BAR0_WIN2;
|
||
|
offset = PCI_BAR0_WIN2_OFFSET;
|
||
|
} else if (PCIE_GEN2(sii)) {
|
||
|
cfg_reg = PCIE2_BAR0_CORE2_WIN2;
|
||
|
offset = PCIE2_BAR0_CORE2_WIN2_OFFSET;
|
||
|
}
|
||
|
else {
|
||
|
osl_panic("!PCIE_GEN1 && !PCIE_GEN2\n");
|
||
|
}
|
||
|
|
||
|
prev_value = OSL_PCI_READ_CONFIG(osh, cfg_reg, 4);
|
||
|
if (prev_value == ID32_INVALID) {
|
||
|
SI_PRINT(("%s, PCI_BAR0_WIN2 - %x\n", __FUNCTION__, prev_value));
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* BCM_BACKPLANE_TIMEOUT */
|
||
|
|
||
|
for (i = 0; i < sii->axi_num_wrappers; ++i) {
|
||
|
|
||
|
if (axi_wrapper[i].wrapper_type != AI_SLAVE_WRAPPER) {
|
||
|
SI_VMSG(("SKIP ENABLE BPT: MFG:%x, CID:%x, ADDR:%x\n",
|
||
|
axi_wrapper[i].mfg,
|
||
|
axi_wrapper[i].cid,
|
||
|
axi_wrapper[i].wrapper_addr));
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
#ifdef BCM_BACKPLANE_TIMEOUT
|
||
|
if (BUSTYPE(sii->pub.bustype) == PCI_BUS) {
|
||
|
/* Set BAR0_CORE2_WIN2 to wapper base address */
|
||
|
OSL_PCI_WRITE_CONFIG(osh,
|
||
|
cfg_reg, 4, axi_wrapper[i].wrapper_addr);
|
||
|
|
||
|
/* set AI to BAR0 + Offset corresponding to Gen1 or gen2 */
|
||
|
ai = (aidmp_t *) ((uint8*)sii->curmap + offset);
|
||
|
}
|
||
|
else
|
||
|
#endif /* BCM_BACKPLANE_TIMEOUT */
|
||
|
{
|
||
|
ai = (aidmp_t *)(uintptr) axi_wrapper[i].wrapper_addr;
|
||
|
}
|
||
|
|
||
|
W_REG(sii->osh, &ai->errlogctrl, (1 << AIELC_TO_ENAB_SHIFT) |
|
||
|
((AXI_TO_VAL << AIELC_TO_EXP_SHIFT) & AIELC_TO_EXP_MASK));
|
||
|
|
||
|
SI_VMSG(("ENABLED BPT: MFG:%x, CID:%x, ADDR:%x, ERR_CTRL:%x\n",
|
||
|
axi_wrapper[i].mfg,
|
||
|
axi_wrapper[i].cid,
|
||
|
axi_wrapper[i].wrapper_addr,
|
||
|
R_REG(sii->osh, &ai->errlogctrl)));
|
||
|
}
|
||
|
|
||
|
#ifdef BCM_BACKPLANE_TIMEOUT
|
||
|
/* Restore the initial wrapper space */
|
||
|
if (prev_value) {
|
||
|
OSL_PCI_WRITE_CONFIG(osh, cfg_reg, 4, prev_value);
|
||
|
}
|
||
|
#endif /* BCM_BACKPLANE_TIMEOUT */
|
||
|
|
||
|
#endif /* AXI_TIMEOUTS || BCM_BACKPLANE_TIMEOUT */
|
||
|
}
|
||
|
|
||
|
#if defined(AXI_TIMEOUTS) || defined(BCM_BACKPLANE_TIMEOUT)
|
||
|
|
||
|
/* slave error is ignored, so account for those cases */
|
||
|
static uint32 si_ignore_errlog_cnt = 0;
|
||
|
|
||
|
static bool
|
||
|
ai_ignore_errlog(si_info_t *sii, uint32 lo_addr, uint32 hi_addr, uint32 err_axi_id, uint32 errsts)
|
||
|
{
|
||
|
uint32 axi_id;
|
||
|
|
||
|
/* ignore the BT slave errors if the errlog is to chipcommon addr 0x190 */
|
||
|
switch (CHIPID(sii->pub.chip)) {
|
||
|
case BCM4350_CHIP_ID:
|
||
|
axi_id = BCM4350_BT_AXI_ID;
|
||
|
break;
|
||
|
case BCM4345_CHIP_ID:
|
||
|
axi_id = BCM4345_BT_AXI_ID;
|
||
|
break;
|
||
|
default:
|
||
|
return FALSE;
|
||
|
}
|
||
|
|
||
|
/* AXI ID check */
|
||
|
if ((err_axi_id & AI_ERRLOGID_AXI_ID_MASK) != axi_id)
|
||
|
return FALSE;
|
||
|
|
||
|
/* slave errors */
|
||
|
if ((errsts & AIELS_TIMEOUT_MASK) != AIELS_SLAVE_ERR)
|
||
|
return FALSE;
|
||
|
|
||
|
/* chipc reg 0x190 */
|
||
|
if ((hi_addr != BT_CC_SPROM_BADREG_HI) || (lo_addr != BT_CC_SPROM_BADREG_LO))
|
||
|
return FALSE;
|
||
|
|
||
|
return TRUE;
|
||
|
}
|
||
|
#endif /* defined (AXI_TIMEOUTS) || defined (BCM_BACKPLANE_TIMEOUT) */
|
||
|
|
||
|
#ifdef BCM_BACKPLANE_TIMEOUT
|
||
|
|
||
|
/* Function to return the APB bridge details corresponding to the core */
|
||
|
bool
|
||
|
ai_get_apb_bridge(si_t * sih, uint32 coreidx, uint32 *apb_id, uint32 * apb_coreuinit)
|
||
|
{
|
||
|
uint i;
|
||
|
uint32 core_base, core_end;
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
static uint32 coreidx_cached = 0, apb_id_cached = 0, apb_coreunit_cached = 0;
|
||
|
uint32 tmp_coreunit = 0;
|
||
|
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
|
||
|
|
||
|
if (coreidx >= MIN(sii->numcores, SI_MAXCORES))
|
||
|
return FALSE;
|
||
|
|
||
|
/* Most of the time apb bridge query will be for d11 core.
|
||
|
* Maintain the last cache and return if found rather than iterating the table
|
||
|
*/
|
||
|
if (coreidx_cached == coreidx) {
|
||
|
*apb_id = apb_id_cached;
|
||
|
*apb_coreuinit = apb_coreunit_cached;
|
||
|
return TRUE;
|
||
|
}
|
||
|
|
||
|
core_base = cores_info->coresba[coreidx];
|
||
|
core_end = core_base + cores_info->coresba_size[coreidx];
|
||
|
|
||
|
for (i = 0; i < sii->numcores; i++) {
|
||
|
if (cores_info->coreid[i] == APB_BRIDGE_ID) {
|
||
|
uint32 apb_base;
|
||
|
uint32 apb_end;
|
||
|
|
||
|
apb_base = cores_info->coresba[i];
|
||
|
apb_end = apb_base + cores_info->coresba_size[i];
|
||
|
|
||
|
if ((core_base >= apb_base) &&
|
||
|
(core_end <= apb_end)) {
|
||
|
/* Current core is attached to this APB bridge */
|
||
|
*apb_id = apb_id_cached = APB_BRIDGE_ID;
|
||
|
*apb_coreuinit = apb_coreunit_cached = tmp_coreunit;
|
||
|
coreidx_cached = coreidx;
|
||
|
return TRUE;
|
||
|
}
|
||
|
/* Increment the coreunit */
|
||
|
tmp_coreunit++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return FALSE;
|
||
|
}
|
||
|
|
||
|
uint32
|
||
|
ai_clear_backplane_to_fast(si_t *sih, void * addr)
|
||
|
{
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
void * curmap = sii->curmap;
|
||
|
bool core_reg = FALSE;
|
||
|
|
||
|
/* Use fast path only for core register access */
|
||
|
if ((addr >= curmap) && (addr < (curmap + SI_CORE_SIZE))) {
|
||
|
/* address being accessed is within current core reg map */
|
||
|
core_reg = TRUE;
|
||
|
}
|
||
|
|
||
|
if (core_reg) {
|
||
|
uint32 apb_id, apb_coreuinit;
|
||
|
|
||
|
if (ai_get_apb_bridge(sih, si_coreidx(&sii->pub),
|
||
|
&apb_id, &apb_coreuinit) == TRUE) {
|
||
|
/* Found the APB bridge corresponding to current core,
|
||
|
* Check for bus errors in APB wrapper
|
||
|
*/
|
||
|
return ai_clear_backplane_to_per_core(sih,
|
||
|
apb_id, apb_coreuinit, NULL);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Default is to poll for errors on all slave wrappers */
|
||
|
return si_clear_backplane_to(sih);
|
||
|
}
|
||
|
#endif /* BCM_BACKPLANE_TIMEOUT */
|
||
|
|
||
|
#if defined(AXI_TIMEOUTS) || defined(BCM_BACKPLANE_TIMEOUT)
|
||
|
/*
|
||
|
* API to clear the back plane timeout per core.
|
||
|
* Caller may passs optional wrapper address. If present this will be used as
|
||
|
* the wrapper base address. If wrapper base address is provided then caller
|
||
|
* must provide the coreid also.
|
||
|
* If both coreid and wrapper is zero, then err status of current bridge
|
||
|
* will be verified.
|
||
|
*/
|
||
|
uint32
|
||
|
ai_clear_backplane_to_per_core(si_t *sih, uint coreid, uint coreunit, void * wrap)
|
||
|
{
|
||
|
int ret = AXI_WRAP_STS_NONE;
|
||
|
aidmp_t *ai = NULL;
|
||
|
uint32 errlog_status = 0;
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
uint32 errlog_lo = 0, errlog_hi = 0, errlog_id = 0, errlog_flags = 0;
|
||
|
uint32 current_coreidx = si_coreidx(sih);
|
||
|
uint32 target_coreidx = si_findcoreidx(sih, coreid, coreunit);
|
||
|
|
||
|
#if defined(BCM_BACKPLANE_TIMEOUT)
|
||
|
si_axi_error_t * axi_error = &sih->err_info->axi_error[sih->err_info->count];
|
||
|
#endif /* BCM_BACKPLANE_TIMEOUT */
|
||
|
bool restore_core = FALSE;
|
||
|
|
||
|
if ((sii->axi_num_wrappers == 0) ||
|
||
|
#ifdef BCM_BACKPLANE_TIMEOUT
|
||
|
(!PCIE(sii)) ||
|
||
|
#endif /* BCM_BACKPLANE_TIMEOUT */
|
||
|
FALSE) {
|
||
|
SI_VMSG((" %s, axi_num_wrappers:%d, Is_PCIE:%d, BUS_TYPE:%d, ID:%x\n",
|
||
|
__FUNCTION__, sii->axi_num_wrappers, PCIE(sii),
|
||
|
BUSTYPE(sii->pub.bustype), sii->pub.buscoretype));
|
||
|
return AXI_WRAP_STS_NONE;
|
||
|
}
|
||
|
|
||
|
if (wrap != NULL) {
|
||
|
ai = (aidmp_t *)wrap;
|
||
|
} else if (coreid && (target_coreidx != current_coreidx)) {
|
||
|
|
||
|
if (ai_setcoreidx(sih, target_coreidx) == NULL) {
|
||
|
/* Unable to set the core */
|
||
|
SI_PRINT(("Set Code Failed: coreid:%x, unit:%d, target_coreidx:%d\n",
|
||
|
coreid, coreunit, target_coreidx));
|
||
|
errlog_lo = target_coreidx;
|
||
|
ret = AXI_WRAP_STS_SET_CORE_FAIL;
|
||
|
goto end;
|
||
|
}
|
||
|
|
||
|
restore_core = TRUE;
|
||
|
ai = (aidmp_t *)si_wrapperregs(sih);
|
||
|
} else {
|
||
|
/* Read error status of current wrapper */
|
||
|
ai = (aidmp_t *)si_wrapperregs(sih);
|
||
|
|
||
|
/* Update CoreID to current Code ID */
|
||
|
coreid = si_coreid(sih);
|
||
|
}
|
||
|
|
||
|
/* read error log status */
|
||
|
errlog_status = R_REG(sii->osh, &ai->errlogstatus);
|
||
|
|
||
|
if (errlog_status == ID32_INVALID) {
|
||
|
/* Do not try to peek further */
|
||
|
SI_PRINT(("%s, errlogstatus:%x - Slave Wrapper:%x\n",
|
||
|
__FUNCTION__, errlog_status, coreid));
|
||
|
ret = AXI_WRAP_STS_WRAP_RD_ERR;
|
||
|
errlog_lo = (uint32)&ai->errlogstatus;
|
||
|
goto end;
|
||
|
}
|
||
|
|
||
|
if ((errlog_status & AIELS_TIMEOUT_MASK) != 0) {
|
||
|
uint32 tmp;
|
||
|
uint32 count = 0;
|
||
|
/* set ErrDone to clear the condition */
|
||
|
W_REG(sii->osh, &ai->errlogdone, AIELD_ERRDONE_MASK);
|
||
|
|
||
|
/* SPINWAIT on errlogstatus timeout status bits */
|
||
|
while ((tmp = R_REG(sii->osh, &ai->errlogstatus)) & AIELS_TIMEOUT_MASK) {
|
||
|
|
||
|
if (tmp == ID32_INVALID) {
|
||
|
SI_PRINT(("%s: prev errlogstatus:%x, errlogstatus:%x\n",
|
||
|
__FUNCTION__, errlog_status, tmp));
|
||
|
ret = AXI_WRAP_STS_WRAP_RD_ERR;
|
||
|
errlog_lo = (uint32)&ai->errlogstatus;
|
||
|
goto end;
|
||
|
}
|
||
|
/*
|
||
|
* Clear again, to avoid getting stuck in the loop, if a new error
|
||
|
* is logged after we cleared the first timeout
|
||
|
*/
|
||
|
W_REG(sii->osh, &ai->errlogdone, AIELD_ERRDONE_MASK);
|
||
|
|
||
|
count++;
|
||
|
OSL_DELAY(10);
|
||
|
if ((10 * count) > AI_REG_READ_TIMEOUT) {
|
||
|
errlog_status = tmp;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
errlog_lo = R_REG(sii->osh, &ai->errlogaddrlo);
|
||
|
errlog_hi = R_REG(sii->osh, &ai->errlogaddrhi);
|
||
|
errlog_id = R_REG(sii->osh, &ai->errlogid);
|
||
|
errlog_flags = R_REG(sii->osh, &ai->errlogflags);
|
||
|
|
||
|
/* we are already in the error path, so OK to check for the slave error */
|
||
|
if (ai_ignore_errlog(sii, errlog_lo, errlog_hi, errlog_id,
|
||
|
errlog_status)) {
|
||
|
si_ignore_errlog_cnt++;
|
||
|
goto end;
|
||
|
}
|
||
|
|
||
|
/* only reset APB Bridge on timeout (not slave error, or dec error) */
|
||
|
switch (errlog_status & AIELS_TIMEOUT_MASK) {
|
||
|
case AIELS_SLAVE_ERR:
|
||
|
SI_PRINT(("AXI slave error"));
|
||
|
ret = AXI_WRAP_STS_SLAVE_ERR;
|
||
|
break;
|
||
|
|
||
|
case AIELS_TIMEOUT:
|
||
|
/* reset APB Bridge */
|
||
|
OR_REG(sii->osh, &ai->resetctrl, AIRC_RESET);
|
||
|
/* sync write */
|
||
|
(void)R_REG(sii->osh, &ai->resetctrl);
|
||
|
/* clear Reset bit */
|
||
|
AND_REG(sii->osh, &ai->resetctrl, ~(AIRC_RESET));
|
||
|
/* sync write */
|
||
|
(void)R_REG(sii->osh, &ai->resetctrl);
|
||
|
SI_PRINT(("AXI timeout"));
|
||
|
ret = AXI_WRAP_STS_TIMEOUT;
|
||
|
break;
|
||
|
|
||
|
case AIELS_DECODE:
|
||
|
SI_PRINT(("AXI decode error"));
|
||
|
ret = AXI_WRAP_STS_DECODE_ERR;
|
||
|
break;
|
||
|
default:
|
||
|
ASSERT(0); /* should be impossible */
|
||
|
}
|
||
|
|
||
|
SI_PRINT(("\tCoreID: %x\n", coreid));
|
||
|
SI_PRINT(("\t errlog: lo 0x%08x, hi 0x%08x, id 0x%08x, flags 0x%08x"
|
||
|
", status 0x%08x\n",
|
||
|
errlog_lo, errlog_hi, errlog_id, errlog_flags,
|
||
|
errlog_status));
|
||
|
}
|
||
|
|
||
|
end:
|
||
|
|
||
|
#if defined(BCM_BACKPLANE_TIMEOUT)
|
||
|
if (axi_error && (ret != AXI_WRAP_STS_NONE)) {
|
||
|
axi_error->error = ret;
|
||
|
axi_error->coreid = coreid;
|
||
|
axi_error->errlog_lo = errlog_lo;
|
||
|
axi_error->errlog_hi = errlog_hi;
|
||
|
axi_error->errlog_id = errlog_id;
|
||
|
axi_error->errlog_flags = errlog_flags;
|
||
|
axi_error->errlog_status = errlog_status;
|
||
|
sih->err_info->count++;
|
||
|
|
||
|
if (sih->err_info->count == SI_MAX_ERRLOG_SIZE) {
|
||
|
sih->err_info->count = SI_MAX_ERRLOG_SIZE - 1;
|
||
|
SI_PRINT(("AXI Error log overflow\n"));
|
||
|
}
|
||
|
}
|
||
|
#endif /* BCM_BACKPLANE_TIMEOUT */
|
||
|
|
||
|
if (restore_core) {
|
||
|
if (ai_setcoreidx(sih, current_coreidx) == NULL) {
|
||
|
/* Unable to set the core */
|
||
|
return ID32_INVALID;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
#endif /* AXI_TIMEOUTS || BCM_BACKPLANE_TIMEOUT */
|
||
|
|
||
|
/*
|
||
|
* This API polls all slave wrappers for errors and returns bit map of
|
||
|
* all reported errors.
|
||
|
* return - bit map of
|
||
|
* AXI_WRAP_STS_NONE
|
||
|
* AXI_WRAP_STS_TIMEOUT
|
||
|
* AXI_WRAP_STS_SLAVE_ERR
|
||
|
* AXI_WRAP_STS_DECODE_ERR
|
||
|
* AXI_WRAP_STS_PCI_RD_ERR
|
||
|
* AXI_WRAP_STS_WRAP_RD_ERR
|
||
|
* AXI_WRAP_STS_SET_CORE_FAIL
|
||
|
* On timeout detection, correspondign bridge will be reset to
|
||
|
* unblock the bus.
|
||
|
* Error reported in each wrapper can be retrieved using the API
|
||
|
* si_get_axi_errlog_info()
|
||
|
*/
|
||
|
uint32
|
||
|
ai_clear_backplane_to(si_t *sih)
|
||
|
{
|
||
|
uint32 ret = 0;
|
||
|
#if defined(AXI_TIMEOUTS) || defined(BCM_BACKPLANE_TIMEOUT)
|
||
|
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
aidmp_t *ai;
|
||
|
uint32 i;
|
||
|
axi_wrapper_t * axi_wrapper = sii->axi_wrapper;
|
||
|
|
||
|
#ifdef BCM_BACKPLANE_TIMEOUT
|
||
|
uint32 prev_value = 0;
|
||
|
osl_t *osh = sii->osh;
|
||
|
uint32 cfg_reg = 0;
|
||
|
uint32 offset = 0;
|
||
|
|
||
|
if ((sii->axi_num_wrappers == 0) || (!PCIE(sii)))
|
||
|
#else
|
||
|
if (sii->axi_num_wrappers == 0)
|
||
|
#endif
|
||
|
{
|
||
|
SI_VMSG((" %s, axi_num_wrappers:%d, Is_PCIE:%d, BUS_TYPE:%d, ID:%x\n",
|
||
|
__FUNCTION__, sii->axi_num_wrappers, PCIE(sii),
|
||
|
BUSTYPE(sii->pub.bustype), sii->pub.buscoretype));
|
||
|
return AXI_WRAP_STS_NONE;
|
||
|
}
|
||
|
|
||
|
#ifdef BCM_BACKPLANE_TIMEOUT
|
||
|
/* Save and restore wrapper access window */
|
||
|
if (BUSTYPE(sii->pub.bustype) == PCI_BUS) {
|
||
|
if (PCIE_GEN1(sii)) {
|
||
|
cfg_reg = PCI_BAR0_WIN2;
|
||
|
offset = PCI_BAR0_WIN2_OFFSET;
|
||
|
} else if (PCIE_GEN2(sii)) {
|
||
|
cfg_reg = PCIE2_BAR0_CORE2_WIN2;
|
||
|
offset = PCIE2_BAR0_CORE2_WIN2_OFFSET;
|
||
|
}
|
||
|
else {
|
||
|
osl_panic("!PCIE_GEN1 && !PCIE_GEN2\n");
|
||
|
}
|
||
|
|
||
|
prev_value = OSL_PCI_READ_CONFIG(osh, cfg_reg, 4);
|
||
|
|
||
|
if (prev_value == ID32_INVALID) {
|
||
|
si_axi_error_t * axi_error =
|
||
|
&sih->err_info->axi_error[sih->err_info->count];
|
||
|
SI_PRINT(("%s, PCI_BAR0_WIN2 - %x\n", __FUNCTION__, prev_value));
|
||
|
|
||
|
axi_error->error = ret = AXI_WRAP_STS_PCI_RD_ERR;
|
||
|
axi_error->errlog_lo = cfg_reg;
|
||
|
sih->err_info->count++;
|
||
|
|
||
|
if (sih->err_info->count == SI_MAX_ERRLOG_SIZE) {
|
||
|
sih->err_info->count = SI_MAX_ERRLOG_SIZE - 1;
|
||
|
SI_PRINT(("AXI Error log overflow\n"));
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
#endif /* BCM_BACKPLANE_TIMEOUT */
|
||
|
|
||
|
for (i = 0; i < sii->axi_num_wrappers; ++i) {
|
||
|
uint32 tmp;
|
||
|
|
||
|
if (axi_wrapper[i].wrapper_type != AI_SLAVE_WRAPPER) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
#ifdef BCM_BACKPLANE_TIMEOUT
|
||
|
|
||
|
if (BUSTYPE(sii->pub.bustype) == PCI_BUS) {
|
||
|
/* Set BAR0_CORE2_WIN2 to bridge wapper base address */
|
||
|
OSL_PCI_WRITE_CONFIG(osh,
|
||
|
cfg_reg, 4, axi_wrapper[i].wrapper_addr);
|
||
|
|
||
|
/* set AI to BAR0 + Offset corresponding to Gen1 or gen2 */
|
||
|
ai = (aidmp_t *) ((uint8*)sii->curmap + offset);
|
||
|
}
|
||
|
else
|
||
|
#endif /* BCM_BACKPLANE_TIMEOUT */
|
||
|
{
|
||
|
ai = (aidmp_t *)(uintptr) axi_wrapper[i].wrapper_addr;
|
||
|
}
|
||
|
|
||
|
tmp = ai_clear_backplane_to_per_core(sih, axi_wrapper[i].cid, 0, (void*)ai);
|
||
|
|
||
|
ret |= tmp;
|
||
|
}
|
||
|
|
||
|
#ifdef BCM_BACKPLANE_TIMEOUT
|
||
|
/* Restore the initial wrapper space */
|
||
|
if (prev_value) {
|
||
|
OSL_PCI_WRITE_CONFIG(osh, cfg_reg, 4, prev_value);
|
||
|
}
|
||
|
#endif /* BCM_BACKPLANE_TIMEOUT */
|
||
|
|
||
|
#endif /* AXI_TIMEOUTS || BCM_BACKPLANE_TIMEOUT */
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
uint
|
||
|
ai_num_slaveports(si_t *sih, uint coreidx)
|
||
|
{
|
||
|
si_info_t *sii = SI_INFO(sih);
|
||
|
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
|
||
|
uint32 cib;
|
||
|
|
||
|
cib = cores_info->cib[coreidx];
|
||
|
return ((cib & CIB_NSP_MASK) >> CIB_NSP_SHIFT);
|
||
|
}
|