SmartAudio/lichee/linux-4.9/drivers/net/wireless/xr829/wlan/fwio.c

1013 lines
26 KiB
C
Raw Normal View History

2018-12-13 10:48:25 +00:00
/*
* Firmware I/O implementation for XRadio drivers
*
* Copyright (c) 2013
* Xradio Technology Co., Ltd. <www.xradiotech.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/sched.h>
#include <linux/firmware.h>
#include "xradio.h"
#include "fwio.h"
#include "hwio.h"
#include "sbus.h"
#include "bh.h"
/* Macroses are local. */
#define APB_WRITE(reg, val) \
do { \
ret = xradio_apb_write_32(hw_priv, APB_ADDR(reg), (val)); \
if (ret < 0) { \
xradio_dbg(XRADIO_DBG_ERROR, \
"%s: can't write %s at line %d.\n", \
__func__, #reg, __LINE__); \
goto error; \
} \
} while (0)
#define APB_READ(reg, val) \
do { \
ret = xradio_apb_read_32(hw_priv, APB_ADDR(reg), &(val)); \
if (ret < 0) { \
xradio_dbg(XRADIO_DBG_ERROR, \
"%s: can't read %s at line %d.\n", \
__func__, #reg, __LINE__); \
goto error; \
} \
} while (0)
#define REG_WRITE(reg, val) \
do { \
ret = xradio_reg_write_32(hw_priv, (reg), (val)); \
if (ret < 0) { \
xradio_dbg(XRADIO_DBG_ERROR, \
"%s: can't write %s at line %d.\n", \
__func__, #reg, __LINE__); \
goto error; \
} \
} while (0)
#define REG_READ(reg, val) \
do { \
ret = xradio_reg_read_32(hw_priv, (reg), &(val)); \
if (ret < 0) { \
xradio_dbg(XRADIO_DBG_ERROR, \
"%s: can't read %s at line %d.\n", \
__func__, #reg, __LINE__); \
goto error; \
} \
} while (0)
static int xradio_get_hw_type(u32 config_reg_val, int *major_revision)
{
int hw_type = -1;
u32 hif_type = (config_reg_val >> 24) & 0x4;
/*u32 hif_vers = (config_reg_val >> 31) & 0x1;*/
/* Check if we have XRADIO */
if (hif_type == 0x4) {
*major_revision = 0x4;
hw_type = HIF_HW_TYPE_XRADIO;
} else {
/*hw type unknown.*/
*major_revision = 0x0;
}
return hw_type;
}
/*
* This function is called to Parse the SDD file
* to extract some informations
*/
static int xradio_parse_sdd(struct xradio_common *hw_priv, u32 *dpll)
{
int ret = 0;
const char *sdd_path = NULL;
struct xradio_sdd *pElement = NULL;
int parsedLength = 0;
sta_printk(XRADIO_DBG_TRC, "%s\n", __func__);
SYS_BUG(hw_priv->sdd != NULL);
/* select and load sdd file depend on hardware version. */
switch (hw_priv->hw_revision) {
case XR829_HW_REV0:
sdd_path = XR829_SDD_FILE;
#ifdef CONFIG_XRADIO_ETF
if (etf_is_connect())
sdd_path = etf_get_sddpath();
#endif
break;
default:
xradio_dbg(XRADIO_DBG_ERROR,
"%s: unknown hardware version.\n", __func__);
return ret;
}
#ifdef USE_VFS_FIRMWARE
hw_priv->sdd = xr_request_file(sdd_path);
if (unlikely(!hw_priv->sdd)) {
xradio_dbg(XRADIO_DBG_ERROR, "%s: can't load sdd file %s.\n",
__func__, sdd_path);
return -ENOENT;
}
#else
ret = request_firmware(&hw_priv->sdd, sdd_path, hw_priv->pdev);
if (unlikely(ret)) {
xradio_dbg(XRADIO_DBG_ERROR, "%s: can't load sdd file %s.\n",
__func__, sdd_path);
return ret;
}
#endif
/*parse SDD config.*/
hw_priv->is_BT_Present = false;
pElement = (struct xradio_sdd *)hw_priv->sdd->data;
parsedLength += (FIELD_OFFSET(struct xradio_sdd, data) + \
pElement->length);
pElement = FIND_NEXT_ELT(pElement);
while (parsedLength < hw_priv->sdd->size) {
switch (pElement->id) {
case SDD_PTA_CFG_ELT_ID:
hw_priv->conf_listen_interval =
(*((u16 *) pElement->data + 1) >> 7) & 0x1F;
hw_priv->is_BT_Present = true;
xradio_dbg(XRADIO_DBG_NIY,
"PTA element found.Listen Interval %d\n",
hw_priv->conf_listen_interval);
break;
case SDD_REFERENCE_FREQUENCY_ELT_ID:
switch (*((uint16_t *) pElement->data)) {
case 0x32C8:
*dpll = 0x1D89D241;
break;
case 0x3E80:
*dpll = 0x1E1;
break;
case 0x41A0:
*dpll = 0x124931C1;
break;
case 0x4B00:
*dpll = 0x191;
break;
case 0x5DC0:
*dpll = 0x141;
break;
case 0x6590:
*dpll = 0x0EC4F121;
break;
case 0x8340:
*dpll = 0x92490E1;
break;
case 0x9600:
*dpll = 0x100010C1;
break;
case 0x9C40:
*dpll = 0xC1;
break;
case 0xBB80:
*dpll = 0xA1;
break;
case 0xCB20:
*dpll = 0x7627091;
break;
default:
*dpll = DPLL_INIT_VAL_XRADIO;
xradio_dbg(XRADIO_DBG_WARN,
"Unknown Reference clock frequency."
"Use default DPLL value=0x%08x.",
DPLL_INIT_VAL_XRADIO);
break;
}
xradio_dbg(XRADIO_DBG_NIY,
"Reference clock=%uKHz, DPLL value=0x%08x.\n",
*((uint16_t *) pElement->data), *dpll);
default:
break;
}
parsedLength += (FIELD_OFFSET(struct xradio_sdd, data) + \
pElement->length);
pElement = FIND_NEXT_ELT(pElement);
}
xradio_dbg(XRADIO_DBG_MSG, "sdd size=%zu parse len=%d.\n",
hw_priv->sdd->size, parsedLength);
if (hw_priv->is_BT_Present == false) {
hw_priv->conf_listen_interval = 0;
xradio_dbg(XRADIO_DBG_NIY, "PTA element NOT found.\n");
}
return ret;
}
int xradio_update_dpllctrl(struct xradio_common *hw_priv, u32 dpll_update)
{
int ret = 0;
u32 val32 = 0;
u32 dpll_read = 0;
int i = 0;
xradio_ahb_read_32(hw_priv, PWRCTRL_WLAN_START_CFG, &val32);
do {
ret = xradio_ahb_read_32(hw_priv, PWRCTRL_WLAN_COMMON_CFG, &val32);
/*Check DPLL, return success if sync finish*/
if (val32 & PWRCTRL_COMMON_REG_DONE) {
xradio_ahb_read_32(hw_priv, PWRCTRL_WLAN_DPLL_CTRL, &dpll_read);
if (dpll_update == dpll_read) {
xradio_dbg(XRADIO_DBG_NIY, "%s: dpll sync ok=0x%08x.\n",
__func__, dpll_read);
break;
} else {
xradio_dbg(XRADIO_DBG_ERROR, "%s: dpll is incorrect," \
"dpll_read=0x%08x, dpll_update=0x%08x.\n",
__func__, dpll_read, dpll_update);
/*dpll_ctrl need to be corrected it by follow procedure.*/
}
}
/*correct dpll_ctrl if wlan is accessible.*/
if ((val32 & PWRCTRL_COMMON_REG_ARBT) && /*wait for arbit end.*/
!(val32 & PWRCTRL_COMMON_REG_BT)) { /*wlan is accessible.*/
xradio_ahb_read_32(hw_priv, PWRCTRL_WLAN_DPLL_CTRL, &dpll_read);
if (dpll_update != dpll_read) {
xradio_dbg(XRADIO_DBG_WARN,
"%s:dpll_read=0x%08x, new dpll_ctrl=0x%08x.\n",
__func__, dpll_read, dpll_update);
xradio_ahb_write_32(hw_priv,
PWRCTRL_WLAN_DPLL_CTRL, (dpll_update|0x1));
msleep(5); /*wait for it stable after change DPLL config. */
} else {
xradio_dbg(XRADIO_DBG_ALWY, "%s: DPLL_CTRL Sync=0x%08x.\n",
__func__, dpll_read);
}
xradio_ahb_write_32(hw_priv, PWRCTRL_WLAN_COMMON_CFG,
PWRCTRL_COMMON_REG_DONE); /*set done*/
break;
} else if (i < 100) {
xradio_dbg(XRADIO_DBG_WARN, "%s: COMMON_REG=0x%08x.\n",
__func__, val32);
msleep(i);
++i;
} else {
xradio_dbg(XRADIO_DBG_ERROR, "%s:DPLL access timeout=0x%08x.\n",
__func__, val32);
ret = -ETIMEDOUT;
break;
}
} while (!ret);
xradio_ahb_write_32(hw_priv, PWRCTRL_WLAN_START_CFG, 0);
return ret;
}
static int xradio_firmware(struct xradio_common *hw_priv)
{
int ret, block, num_blocks;
unsigned i;
u32 val32;
u32 put = 0, get = 0;
u8 *buf = NULL;
const char *fw_path;
#ifdef USE_VFS_FIRMWARE
const struct xr_file *firmware = NULL;
#else
const struct firmware *firmware = NULL;
#endif
xradio_dbg(XRADIO_DBG_TRC, "%s\n", __func__);
switch (hw_priv->hw_revision) {
case XR829_HW_REV0:
fw_path = XR829_FIRMWARE;
#ifdef CONFIG_XRADIO_ETF
if (etf_is_connect())
fw_path = etf_get_fwpath();
#endif
break;
default:
xradio_dbg(XRADIO_DBG_ERROR, "%s: invalid silicon revision %d.\n",
__func__, hw_priv->hw_revision);
return -EINVAL;
}
/* Initialize common registers */
APB_WRITE(DOWNLOAD_IMAGE_SIZE_REG, DOWNLOAD_ARE_YOU_HERE);
APB_WRITE(DOWNLOAD_PUT_REG, 0);
APB_WRITE(DOWNLOAD_GET_REG, 0);
APB_WRITE(DOWNLOAD_STATUS_REG, DOWNLOAD_PENDING);
APB_WRITE(DOWNLOAD_FLAGS_REG, 0);
/* Release CPU from RESET */
xradio_reg_bit_operate(hw_priv, HIF_CONFIG_REG_ID,
0, HIF_CONFIG_CPU_RESET_BIT);
/* Enable Clock */
xradio_reg_bit_operate(hw_priv, HIF_CONFIG_REG_ID,
0, HIF_CONFIG_CPU_CLK_DIS_BIT);
/* Load a firmware file */
#ifdef USE_VFS_FIRMWARE
firmware = xr_fileopen(fw_path, O_RDONLY, 0);
if (!firmware) {
xradio_dbg(XRADIO_DBG_ERROR, "%s: can't load firmware file %s.\n",
__func__, fw_path);
ret = -1;
goto error;
}
#else
ret = request_firmware(&firmware, fw_path, hw_priv->pdev);
if (ret) {
xradio_dbg(XRADIO_DBG_ERROR, "%s: can't load firmware file %s.\n",
__func__, fw_path);
goto error;
}
SYS_BUG(!firmware->data);
#endif
buf = xr_kmalloc(DOWNLOAD_BLOCK_SIZE, true);
if (!buf) {
xradio_dbg(XRADIO_DBG_ERROR,
"%s: can't allocate firmware buffer.\n", __func__);
ret = -ENOMEM;
goto error;
}
/* Check if the bootloader is ready */
for (i = 0; i < 100; i++ /*= 1 + i / 2*/) {
APB_READ(DOWNLOAD_IMAGE_SIZE_REG, val32);
if (val32 == DOWNLOAD_I_AM_HERE)
break;
mdelay(10);
} /* End of for loop */
if (val32 != DOWNLOAD_I_AM_HERE) {
xradio_dbg(XRADIO_DBG_ERROR, "%s: bootloader is not ready.\n",
__func__);
#ifdef BOOT_NOT_READY_FIX
hw_priv->boot_not_ready_cnt++;
hw_priv->boot_not_ready = 1;
#endif
ret = -ETIMEDOUT;
goto error;
}
/* Calculcate number of download blocks */
num_blocks = (firmware->size - 1) / DOWNLOAD_BLOCK_SIZE + 1;
/* Updating the length in Download Ctrl Area */
val32 = firmware->size; /* Explicit cast from size_t to u32 */
APB_WRITE(DOWNLOAD_IMAGE_SIZE_REG, val32);
/*
* DOWNLOAD_BLOCK_SIZE must be divided exactly by sdio blocksize,
* otherwise it may cause bootloader error.
*/
val32 = hw_priv->sbus_ops->get_block_size(hw_priv->sbus_priv);
if (val32 > DOWNLOAD_BLOCK_SIZE || DOWNLOAD_BLOCK_SIZE%val32) {
xradio_dbg(XRADIO_DBG_WARN,
"%s:change blocksize(%d->%d) during download fw.\n",
__func__, val32, DOWNLOAD_BLOCK_SIZE>>1);
hw_priv->sbus_ops->lock(hw_priv->sbus_priv);
ret = hw_priv->sbus_ops->set_block_size(hw_priv->sbus_priv,
DOWNLOAD_BLOCK_SIZE>>1);
if (ret)
xradio_dbg(XRADIO_DBG_ERROR,
"%s: set blocksize error(%d).\n", __func__, ret);
hw_priv->sbus_ops->unlock(hw_priv->sbus_priv);
}
/* Firmware downloading loop */
for (block = 0; block < num_blocks; block++) {
size_t tx_size;
size_t block_size;
/* check the download status */
APB_READ(DOWNLOAD_STATUS_REG, val32);
if (val32 != DOWNLOAD_PENDING) {
xradio_dbg(XRADIO_DBG_ERROR,
"%s: bootloader reported error %d.\n",
__func__, val32);
ret = -EIO;
goto error;
}
/* calculate the block size */
tx_size = block_size = min((size_t)(firmware->size - put),
(size_t)DOWNLOAD_BLOCK_SIZE);
#ifdef USE_VFS_FIRMWARE
ret = xr_fileread(firmware, buf, block_size);
if (ret < block_size) {
xradio_dbg(XRADIO_DBG_ERROR, "%s: xr_fileread error %d.\n",
__func__, ret);
goto error;
}
#else
memcpy(buf, &firmware->data[put], block_size);
#endif
if (block_size < DOWNLOAD_BLOCK_SIZE) {
memset(&buf[block_size], 0, DOWNLOAD_BLOCK_SIZE - block_size);
tx_size = DOWNLOAD_BLOCK_SIZE;
}
/* loop until put - get <= 24K */
for (i = 0; i < 100; i++) {
APB_READ(DOWNLOAD_GET_REG, get);
if ((put - get) <= (DOWNLOAD_FIFO_SIZE - DOWNLOAD_BLOCK_SIZE))
break;
mdelay(i);
}
if ((put - get) > (DOWNLOAD_FIFO_SIZE - DOWNLOAD_BLOCK_SIZE)) {
xradio_dbg(XRADIO_DBG_ERROR, "%s: Timeout waiting for FIFO.\n",
__func__);
ret = -ETIMEDOUT;
goto error;
}
/* send the block to sram */
ret = xradio_apb_write(hw_priv, APB_ADDR(DOWNLOAD_FIFO_OFFSET + \
(put & (DOWNLOAD_FIFO_SIZE - 1))),
buf, tx_size);
if (ret < 0) {
xradio_dbg(XRADIO_DBG_ERROR,
"%s: can't write block at line %d.\n",
__func__, __LINE__);
goto error;
}
/* update the put register */
put += block_size;
APB_WRITE(DOWNLOAD_PUT_REG, put);
} /* End of firmware download loop */
/* Wait for the download completion */
for (i = 0; i < 300; i += 1 + i / 2) {
APB_READ(DOWNLOAD_STATUS_REG, val32);
if (val32 != DOWNLOAD_PENDING)
break;
mdelay(i);
}
if (val32 != DOWNLOAD_SUCCESS) {
xradio_dbg(XRADIO_DBG_ERROR,
"%s: wait for download completion failed. " \
"Read: 0x%.8X\n", __func__, val32);
ret = -ETIMEDOUT;
goto error;
} else {
xradio_dbg(XRADIO_DBG_ALWY, "Firmware completed.\n");
ret = 0;
}
error:
if (buf)
kfree(buf);
if (firmware) {
#ifdef USE_VFS_FIRMWARE
xr_fileclose(firmware);
#else
release_firmware(firmware);
#endif
}
return ret;
}
static int xradio_bootloader(struct xradio_common *hw_priv)
{
int ret = -1;
u32 i = 0;
const char *bl_path = XR829_BOOTLOADER;
u32 addr = AHB_MEMORY_ADDRESS;
u32 *data = NULL;
#ifdef USE_VFS_FIRMWARE
const struct xr_file *bootloader = NULL;
#else
const struct firmware *bootloader = NULL;
#endif
xradio_dbg(XRADIO_DBG_TRC, "%s\n", __func__);
#ifdef USE_VFS_FIRMWARE
bootloader = xr_request_file(bl_path);
if (!bootloader) {
xradio_dbg(XRADIO_DBG_ERROR,
"%s: can't load bootloader file %s.\n",
__func__, bl_path);
goto error;
}
#else
/* Load a bootloader file */
ret = request_firmware(&bootloader, bl_path, hw_priv->pdev);
if (ret) {
xradio_dbg(XRADIO_DBG_ERROR,
"%s: can't load bootloader file %s.\n",
__func__, bl_path);
goto error;
}
#endif
xradio_dbg(XRADIO_DBG_NIY, "%s: bootloader size = %zu, loopcount = %zu\n",
__func__, bootloader->size, (bootloader->size) / 4);
/* Down bootloader. */
data = (u32 *)bootloader->data;
for (i = 0; i < (bootloader->size)/4; i++) {
ret = xradio_ahb_write_32(hw_priv, addr, data[i]);
if (ret < 0) {
sbus_printk(XRADIO_DBG_ERROR, "%s: xradio_ahb_write failed.\n", __func__);
goto error;
}
if (i == 100 || i == 200 || i == 300 || i == 400 || i == 500 || i == 600)
xradio_dbg(XRADIO_DBG_NIY, "%s: addr = 0x%x,data = 0x%x\n", __func__, addr, data[i]);
addr += 4;
}
xradio_dbg(XRADIO_DBG_ALWY, "Bootloader complete\n");
error:
if (bootloader) {
#ifdef USE_VFS_FIRMWARE
xr_fileclose(bootloader);
#else
release_firmware(bootloader);
#endif
}
return ret;
}
#if (DBG_XRADIO_HIF)
extern u16 hif_test_rw; /*0: nothing to do; 1: write only; 2: write and read*/
extern u16 hif_test_data_mode; /* hif test data mode, such as 0x55, 0xff etc*/
extern u16 hif_test_data_len; /* hif test data len, every data len pre round*/
extern u16 hif_test_data_round;
extern u16 hif_test_oper_delta; /* hif test operation delta time, give more time to analyze data tranx*/
int HIF_R_W_TEST(struct xradio_common *hw_priv)
{
int time;
int i;
struct timeval start;
struct timeval end;
unsigned int addr;
char *write_buf;
char *read_buf;
write_buf = kmalloc(hif_test_data_len * 4, GFP_KERNEL);
if (!write_buf)
return 0xff;
read_buf = kmalloc(hif_test_data_len * 4, GFP_KERNEL);
if (!read_buf) {
kfree(write_buf);
return 0xff;
}
do_gettimeofday(&start);
printk(KERN_ERR"[HIF test] --- <write> --- begin~~\n");
addr = PAS_RAM_START_ADDR;
memset(write_buf, hif_test_data_mode, hif_test_data_len * 4);
i = 0;
while (i < hif_test_data_round) {
xradio_apb_write(hw_priv, addr, write_buf, hif_test_data_len * 4);
msleep(hif_test_oper_delta);
i++;
if (0 == hif_test_rw)
goto err;
}
if (1 == hif_test_rw) { // means write only
kfree(write_buf);
kfree(read_buf);
printk(KERN_ERR"[HIF test] --- <write> --- end and return~~\n");
return 0;
}
msleep(hif_test_oper_delta * 5);
printk(KERN_ERR"[HIF test] --- <read> --- begin~~\n");
addr = PAS_RAM_START_ADDR;
memset(write_buf, hif_test_data_mode, hif_test_data_len * 4);
i = 0;
while (i < hif_test_data_round) {
xradio_apb_read(hw_priv, addr, read_buf, hif_test_data_len * 4);
msleep(hif_test_oper_delta);
i++;
if (0 == hif_test_rw)
goto err;
}
printk(KERN_ERR"[HIF test] --- <read> --- end~~\n");
do_gettimeofday(&end);
time = 1000 * (end.tv_sec - start.tv_sec) + (end.tv_usec - start.tv_usec) / 1000;
kfree(write_buf);
kfree(read_buf);
return 0;
err:
kfree(write_buf);
kfree(read_buf);
return 1;
}
#endif
#if (DBG_PAS_RAM)
int pas_ram_check(struct xradio_common *hw_priv)
{
int ret;
int count = 0;
int time;
int i;
bool error = false;
unsigned char write_value[4] = {0x0, 0x55, 0xaa, 0xff};
struct timeval start;
struct timeval end;
unsigned int addr;
unsigned char *write_buf;
unsigned char *read_buf;
write_buf = kmalloc(WRITE_READ_MAX_LEN, GFP_KERNEL);
if (!write_buf)
return 0xff;
read_buf = kmalloc(WRITE_READ_MAX_LEN, GFP_KERNEL);
if (!read_buf) {
kfree(write_buf);
return 0xff;
}
printk(KERN_ERR "[PAS_RAM_TEST begin] start address = 0x%08x, end address = 0x%08x\n", PAS_RAM_START_ADDR, PAS_RAM_END_ADDR);
do_gettimeofday(&start);
for (i = 0;i < 4;i++) {
addr = PAS_RAM_START_ADDR;
memset(write_buf, write_value[i], WRITE_READ_MAX_LEN);
while (addr + WRITE_READ_MAX_LEN <= PAS_RAM_END_ADDR + 1) {
if (xradio_apb_write(hw_priv, addr, write_buf, WRITE_READ_MAX_LEN))
goto err;
if (xradio_apb_read(hw_priv, addr, read_buf, WRITE_READ_MAX_LEN))
goto err;
ret = memcmp(write_buf, read_buf, WRITE_READ_MAX_LEN);
count++;
if (ret) {
unsigned char *check_addr = read_buf;
while (check_addr < read_buf + WRITE_READ_MAX_LEN) {
if (*check_addr != write_value[i]) {
printk(KERN_ERR "[pas_ram err]:error address:0x%08x, write value:0x%02x, but read value:0x%02x\n",
addr + check_addr - read_buf, write_value[i], *check_addr);
}
check_addr++;
}
error = true;
} else {
/* printk(KERN_ERR "pas_ram test: %d finish, writing value:0x%02x, there are no error\n", count, write_value[i]); */
}
addr += WRITE_READ_MAX_LEN;
}
}
do_gettimeofday(&end);
time = 1000 * (end.tv_sec - start.tv_sec) + (end.tv_usec - start.tv_usec) / 1000;
printk(KERN_ERR "[PAS_RAM_TEST end] used time:%dms\n", time);
kfree(write_buf);
kfree(read_buf);
if (error)
return 1;
else
return 0;
err:
printk(KERN_ERR "fail to read or write!\n");
kfree(write_buf);
kfree(read_buf);
return 0xff;
}
extern u8 dbg_pas_ram;
#endif
#if (DBG_AHB_RAM)
int ahb_ram_check(struct xradio_common *hw_priv)
{
int count = 0;
int time;
int i;
bool error = false;
unsigned char write_value[4] = {0x0, 0x55, 0xaa, 0xff};
struct timeval start;
struct timeval end;
unsigned int addr;
unsigned char *write_buf;
u32 val_read;
u32 val_expected;
write_buf = kmalloc(AHB_WRITE_MAX_LEN, GFP_KERNEL);
if (!write_buf)
return 0xff;
printk(KERN_ERR "[AHB_RAM_TEST begin] start address = 0x%08x, end address = 0x%08x\n", AHB_RAM_START_ADDR, AHB_RAM_END_ADDR);
do_gettimeofday(&start);
for (i = 0;i < 4;i++) {
/* ahb write*/
addr = AHB_RAM_START_ADDR;
memset(write_buf, write_value[i], AHB_WRITE_MAX_LEN);
while (addr + AHB_WRITE_MAX_LEN <= AHB_RAM_END_ADDR + 1) {
if (xradio_ahb_write(hw_priv, addr, write_buf, AHB_WRITE_MAX_LEN))
goto err;
addr += AHB_WRITE_MAX_LEN;
}
/* ahb read*/
addr = AHB_RAM_START_ADDR;
memset(&val_expected, write_value[i], AHB_READ_MAX_LEN);
while (addr + AHB_READ_MAX_LEN <= AHB_RAM_END_ADDR + 1) {
if (xradio_ahb_read_32(hw_priv, addr, &val_read))
goto err;
count++;
if (val_read != val_expected) {
printk(KERN_ERR "[ahb_ram err]:error address:0x%08x, write value:0x%08x, but read value:0x%08x\n",
addr, val_expected, val_read);
error = true;
} else {
/* printk(KERN_ERR "ahb_ram test: %d finish, writing value:0x%02x, there are no error\n", count, write_value[i]); */
}
addr += AHB_READ_MAX_LEN;
}
}
do_gettimeofday(&end);
time = 1000 * (end.tv_sec - start.tv_sec) + (end.tv_usec - start.tv_usec) / 1000;
printk(KERN_ERR "[AHB_RAM_TEST end] used time:%dms\n", time);
kfree(write_buf);
if (error)
return 1;
else
return 0;
err:
printk(KERN_ERR "fail to read or write!\n");
kfree(write_buf);
return 0xff;
}
extern u8 dbg_ahb_ram;
#endif
int xradio_load_firmware(struct xradio_common *hw_priv)
{
int ret;
int i;
u32 val32;
u16 val16;
u32 dpll = 0;
int major_revision;
xradio_dbg(XRADIO_DBG_TRC, "%s\n", __func__);
SYS_BUG(!hw_priv);
/* Read CONFIG Register Value - We will read 32 bits */
ret = xradio_reg_read_32(hw_priv, HIF_CONFIG_REG_ID, &val32);
if (ret < 0) {
xradio_dbg(XRADIO_DBG_ERROR,
"%s: can't read config register, err=%d.\n",
__func__, ret);
return ret;
}
/*check hardware type and revision.*/
hw_priv->hw_type = xradio_get_hw_type(val32, &major_revision);
switch (hw_priv->hw_type) {
case HIF_HW_TYPE_XRADIO:
xradio_dbg(XRADIO_DBG_NIY, "%s: HW_TYPE_XRADIO detected.\n",
__func__);
break;
default:
xradio_dbg(XRADIO_DBG_ERROR, "%s: Unknown hardware: %d.\n",
__func__, hw_priv->hw_type);
return -ENOTSUPP;
}
if (major_revision == 4) {
hw_priv->hw_revision = XR829_HW_REV0;
xradio_dbg(XRADIO_DBG_ALWY, "XRADIO_HW_REV 1.0 detected.\n");
} else {
xradio_dbg(XRADIO_DBG_ERROR, "%s: Unsupported major revision %d.\n",
__func__, major_revision);
return -ENOTSUPP;
}
/*load sdd file, and get config from it.*/
ret = xradio_parse_sdd(hw_priv, &dpll);
if (ret < 0) {
return ret;
}
/*set dpll initial value and check.*/
ret = xradio_reg_write_32(hw_priv, HIF_TSET_GEN_R_W_REG_ID, dpll);
if (ret < 0) {
xradio_dbg(XRADIO_DBG_ERROR, "%s: can't write DPLL register.\n",
__func__);
goto out;
}
msleep(5);
ret = xradio_reg_read_32(hw_priv, HIF_TSET_GEN_R_W_REG_ID, &val32);
if (ret < 0) {
xradio_dbg(XRADIO_DBG_ERROR, "%s: can't read DPLL register.\n",
__func__);
goto out;
}
if (val32 != dpll) {
xradio_dbg(XRADIO_DBG_ERROR, "%s: unable to initialise " \
"DPLL register. Wrote 0x%.8X, read 0x%.8X.\n",
__func__, dpll, val32);
ret = -EIO;
goto out;
}
/* Set wakeup bit in device */
ret = xradio_reg_bit_operate(hw_priv, HIF_CONTROL_REG_ID, HIF_CTRL_WUP_BIT, 0);
if (ret < 0) {
xradio_dbg(XRADIO_DBG_ERROR, "%s: device wake up failed.\n", __func__);
goto out;
}
/* Wait for wakeup */
for (i = 0 ; i < 300 ; i += 1 + i / 2) {
ret = xradio_reg_read_16(hw_priv, HIF_CONTROL_REG_ID, &val16);
if (ret < 0) {
xradio_dbg(XRADIO_DBG_ERROR, "%s: Wait_for_wakeup: "
"can't read control register.\n", __func__);
goto out;
}
if (val16 & HIF_CTRL_RDY_BIT) {
break;
}
msleep(i);
}
if ((val16 & HIF_CTRL_RDY_BIT) == 0) {
xradio_dbg(XRADIO_DBG_ERROR, "%s: Wait for wakeup:"
"device is not responding.\n", __func__);
#ifdef BOOT_NOT_READY_FIX
hw_priv->boot_not_ready_cnt++;
hw_priv->boot_not_ready = 1;
xradio_dbg(XRADIO_DBG_ERROR, "Device will restart at %d times!\n",
hw_priv->boot_not_ready_cnt);
#ifdef ERROR_HANG_DRIVER
if (hw_priv->boot_not_ready_cnt >= 6) {
xradio_dbg(XRADIO_DBG_ERROR, "Boot not ready and device restart "
"more than 6, hang the driver.\n");
error_hang_driver = 1;
}
#endif
#endif
ret = -ETIMEDOUT;
goto out;
} else {
xradio_dbg(XRADIO_DBG_NIY, "WLAN device is ready.\n");
}
/* Checking for access mode and download firmware. */
ret = xradio_reg_bit_operate(hw_priv, HIF_CONFIG_REG_ID,
HIF_CONFIG_ACCESS_MODE_BIT, 0);
if (ret < 0) {
xradio_dbg(XRADIO_DBG_ERROR, "%s: check_access_mode: "
"can't read config register.\n", __func__);
goto out;
}
#if (DBG_XRADIO_HIF)
if (hif_test_rw) {
ret = HIF_R_W_TEST(hw_priv);
if (0 == ret) {
printk(KERN_ERR "HIF Test OK!\n");
} else if (1 == ret) {
printk(KERN_ERR "HIF Test faied!\n");
} else {
printk(KERN_ERR "Unkmow error!\n");
}
}
#endif
#if (DBG_PAS_RAM)
/*test PAS_RAM*/
if (dbg_pas_ram == 1) {
int ret = pas_ram_check(hw_priv);
if (ret == 0) {
dbg_pas_ram = 2;
printk(KERN_ERR "PAS_RAM_Test: all are right\n");
} else if (ret == 1){
dbg_pas_ram = 3;
printk(KERN_ERR "PAS_RAM_Test: error write/read in some address\n");
} else {
dbg_pas_ram = 4;
printk(KERN_ERR "PAS_RAM_Test: unable to test the chip\n");
}
}
#endif
#if (DBG_AHB_RAM)
/*test AHB_RAM*/
if (dbg_ahb_ram == 1) {
int ret = ahb_ram_check(hw_priv);
if (ret == 0) {
dbg_ahb_ram = 2;
printk(KERN_ERR "AHB_RAM_Test: all are right\n");
} else if (ret == 1){
dbg_ahb_ram = 3;
printk(KERN_ERR "AHB_RAM_Test: error write/read in some address\n");
} else {
dbg_ahb_ram = 4;
printk(KERN_ERR "AHB_RAM_Test: unable to test the chip\n");
}
}
#endif
#ifdef SUPPORT_DPLL_CHECK
/*Checking DPLL value and correct it if need.*/
xradio_update_dpllctrl(hw_priv, xradio_dllctrl_convert(dpll));
#else
xradio_dbg(XRADIO_DBG_ALWY, "%s: not need check dpll.\n", __func__);
#endif
/* Down bootloader. */
ret = xradio_bootloader(hw_priv);
if (ret < 0) {
xradio_dbg(XRADIO_DBG_ERROR, "%s: can't download bootloader.\n", __func__);
goto out;
}
/* Down firmware. */
ret = xradio_firmware(hw_priv);
if (ret < 0) {
xradio_dbg(XRADIO_DBG_ERROR, "%s: can't download firmware.\n", __func__);
goto out;
}
/* Register Interrupt Handler */
ret = hw_priv->sbus_ops->irq_subscribe(hw_priv->sbus_priv,
(sbus_irq_handler)xradio_irq_handler,
hw_priv);
if (ret < 0) {
xradio_dbg(XRADIO_DBG_ERROR, "%s: can't register IRQ handler.\n",
__func__);
goto out;
}
if (HIF_HW_TYPE_XRADIO == hw_priv->hw_type) {
/* If device is XRADIO the IRQ enable/disable bits
* are in CONFIG register */
ret = xradio_reg_bit_operate(hw_priv, HIF_CONFIG_REG_ID,
HIF_CONF_IRQ_RDY_ENABLE, 0);
if (ret < 0) {
xradio_dbg(XRADIO_DBG_ERROR, "%s: enable_irq: can't read " \
"config register.\n", __func__);
goto unsubscribe;
}
} else {
/* Enable device interrupts - Both DATA_RDY and WLAN_RDY */
ret = xradio_reg_bit_operate(hw_priv, HIF_CONTROL_REG_ID,
HIF_CTRL_IRQ_RDY_ENABLE, 0);
if (ret < 0) {
xradio_dbg(XRADIO_DBG_ERROR, "%s: enable_irq: can't read " \
"control register.\n", __func__);
goto unsubscribe;
}
}
/* Configure device for MESSSAGE MODE */
ret = xradio_reg_bit_operate(hw_priv, HIF_CONFIG_REG_ID,
0, HIF_CONFIG_ACCESS_MODE_BIT);
if (ret < 0) {
xradio_dbg(XRADIO_DBG_ERROR, "%s: set_mode: can't read config register.\n",
__func__);
goto unsubscribe;
}
/* Unless we read the CONFIG Register we are
* not able to get an interrupt */
mdelay(10);
xradio_reg_read_32(hw_priv, HIF_CONFIG_REG_ID, &val32);
return 0;
unsubscribe:
hw_priv->sbus_ops->irq_unsubscribe(hw_priv->sbus_priv);
out:
if (hw_priv->sdd) {
#ifdef USE_VFS_FIRMWARE
xr_fileclose(hw_priv->sdd);
#else
release_firmware(hw_priv->sdd);
#endif
hw_priv->sdd = NULL;
}
return ret;
}
int xradio_dev_deinit(struct xradio_common *hw_priv)
{
hw_priv->sbus_ops->irq_unsubscribe(hw_priv->sbus_priv);
if (hw_priv->sdd) {
#ifdef USE_VFS_FIRMWARE
xr_fileclose(hw_priv->sdd);
#else
release_firmware(hw_priv->sdd);
#endif
hw_priv->sdd = NULL;
}
return 0;
}
#undef APB_WRITE
#undef APB_READ
#undef REG_WRITE
#undef REG_READ