SmartAudio/lichee/brandy/u-boot-2014.07/board/sunxi/sun8iw15p1/sun8iw15p1.c

546 lines
18 KiB
C
Raw Normal View History

2018-07-13 01:31:50 +00:00
/*
* (C) Copyright 2016
* Allwinner Technology Co., Ltd. <www.allwinnertech.com>
* zhouhuacai <zhouhuacai@allwinnertech.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* SPDX-License-Identifier: GPL-2.0
*/
#include <common.h>
#include <sunxi_mbr.h>
#include <boot_type.h>
#include <sys_partition.h>
#include <sys_config.h>
#include <mmc.h>
#include <power/sunxi/axp.h>
#include <asm/io.h>
#include <power/sunxi/pmu.h>
#include <asm/arch/ccmu.h>
2018-09-27 09:16:43 +00:00
#include <asm/arch/gpio.h>
2018-12-13 10:48:25 +00:00
#include <asm/arch/dram.h>
#include <fdt_support.h>
2018-07-13 01:31:50 +00:00
DECLARE_GLOBAL_DATA_PTR;
int enable_smp(void)
{
//SMP status is controlled by bit 6 of the CP15 Aux Ctrl Reg
asm volatile("MRC p15, 0, r0, c1, c0, 1"); // Read ACTLR
asm volatile("ORR r0, r0, #0x040"); // Set bit 6
asm volatile("MCR p15, 0, r0, c1, c0, 1"); // Write ACTLR
return 0;
}
2018-09-27 09:16:43 +00:00
__s32 boot_set_gpio(void *user_gpio_list, __u32 group_count_max, __s32 set_gpio)
{
normal_gpio_set_t *tmp_user_gpio_data, *gpio_list;
__u32 first_port; //保存真正有效的GPIO的个数
__u32 tmp_group_func_data;
__u32 tmp_group_pull_data;
__u32 tmp_group_dlevel_data;
__u32 tmp_group_data_data;
__u32 data_change = 0;
// __u32 *tmp_group_port_addr;
volatile __u32 *tmp_group_func_addr, *tmp_group_pull_addr;
volatile __u32 *tmp_group_dlevel_addr, *tmp_group_data_addr;
__u32 port, port_num, port_num_func, port_num_pull;
__u32 pre_port, pre_port_num_func;
__u32 pre_port_num_pull;
__s32 i, tmp_val;
gpio_list = (normal_gpio_set_t *)user_gpio_list;
for(first_port = 0; first_port < group_count_max; first_port++)
{
tmp_user_gpio_data = gpio_list + first_port;
port = tmp_user_gpio_data->port; //读出端口数值
port_num = tmp_user_gpio_data->port_num; //读出端口中的某一个GPIO
if(!port)
{
continue;
}
port_num_func = (port_num >> 3);
port_num_pull = (port_num >> 4);
tmp_group_func_addr = PIO_REG_CFG(port, port_num_func); //更新功能寄存器地址
tmp_group_pull_addr = PIO_REG_PULL(port, port_num_pull); //更新pull寄存器
tmp_group_dlevel_addr = PIO_REG_DLEVEL(port, port_num_pull);//更新level寄存器
tmp_group_data_addr = PIO_REG_DATA(port); //更新data寄存器
tmp_group_func_data = GPIO_REG_READ(tmp_group_func_addr);
tmp_group_pull_data = GPIO_REG_READ(tmp_group_pull_addr);
tmp_group_dlevel_data = GPIO_REG_READ(tmp_group_dlevel_addr);
tmp_group_data_data = GPIO_REG_READ(tmp_group_data_addr);
pre_port = port;
pre_port_num_func = port_num_func;
pre_port_num_pull = port_num_pull;
//更新功能寄存器
tmp_val = (port_num - (port_num_func << 3)) << 2;
tmp_group_func_data &= ~(0x07 << tmp_val);
if(set_gpio)
{
tmp_group_func_data |= (tmp_user_gpio_data->mul_sel & 0x07) << tmp_val;
}
//根据pull的值决定是否更新pull寄存器
tmp_val = (port_num - (port_num_pull << 4)) << 1;
if(tmp_user_gpio_data->pull >= 0)
{
tmp_group_pull_data &= ~( 0x03 << tmp_val);
tmp_group_pull_data |= (tmp_user_gpio_data->pull & 0x03) << tmp_val;
}
//根据driver level的值决定是否更新driver level寄存器
if(tmp_user_gpio_data->drv_level >= 0)
{
tmp_group_dlevel_data &= ~( 0x03 << tmp_val);
tmp_group_dlevel_data |= (tmp_user_gpio_data->drv_level & 0x03) << tmp_val;
}
//根据用户输入以及功能分配决定是否更新data寄存器
if(tmp_user_gpio_data->mul_sel == 1)
{
if(tmp_user_gpio_data->data >= 0)
{
tmp_val = tmp_user_gpio_data->data & 1;
tmp_group_data_data &= ~(1 << port_num);
tmp_group_data_data |= tmp_val << port_num;
data_change = 1;
}
}
break;
}
//检查是否有数据存在
if(first_port >= group_count_max)
{
return -1;
}
//保存用户数据
for(i = first_port + 1; i < group_count_max; i++)
{
tmp_user_gpio_data = gpio_list + i; //gpio_set依次指向用户的每个GPIO数组成员
port = tmp_user_gpio_data->port; //读出端口数值
port_num = tmp_user_gpio_data->port_num; //读出端口中的某一个GPIO
if(!port)
{
break;
}
port_num_func = (port_num >> 3);
port_num_pull = (port_num >> 4);
if((port_num_pull != pre_port_num_pull) || (port != pre_port)) //如果发现当前引脚的端口不一致或者所在的pull寄存器不一致
{
GPIO_REG_WRITE(tmp_group_func_addr, tmp_group_func_data); //回写功能寄存器
GPIO_REG_WRITE(tmp_group_pull_addr, tmp_group_pull_data); //回写pull寄存器
GPIO_REG_WRITE(tmp_group_dlevel_addr, tmp_group_dlevel_data); //回写driver level寄存器
if(data_change)
{
data_change = 0;
GPIO_REG_WRITE(tmp_group_data_addr, tmp_group_data_data); //回写data寄存器
}
tmp_group_func_addr = PIO_REG_CFG(port, port_num_func); //更新功能寄存器地址
tmp_group_pull_addr = PIO_REG_PULL(port, port_num_pull); //更新pull寄存器
tmp_group_dlevel_addr = PIO_REG_DLEVEL(port, port_num_pull);//更新level寄存器
tmp_group_data_addr = PIO_REG_DATA(port); //更新data寄存器
tmp_group_func_data = GPIO_REG_READ(tmp_group_func_addr);
tmp_group_pull_data = GPIO_REG_READ(tmp_group_pull_addr);
tmp_group_dlevel_data = GPIO_REG_READ(tmp_group_dlevel_addr);
tmp_group_data_data = GPIO_REG_READ(tmp_group_data_addr);
}
else if(pre_port_num_func != port_num_func) //如果发现当前引脚的功能寄存器不一致
{
GPIO_REG_WRITE(tmp_group_func_addr, tmp_group_func_data); //则只回写功能寄存器
tmp_group_func_addr = PIO_REG_CFG(port, port_num_func); //更新功能寄存器地址
tmp_group_func_data = GPIO_REG_READ(tmp_group_func_addr);
}
//保存当前硬件寄存器数据
pre_port_num_pull = port_num_pull; //设置当前GPIO成为前一个GPIO
pre_port_num_func = port_num_func;
pre_port = port;
//更新功能寄存器
tmp_val = (port_num - (port_num_func << 3)) << 2;
if(tmp_user_gpio_data->mul_sel >= 0)
{
tmp_group_func_data &= ~( 0x07 << tmp_val);
if(set_gpio)
{
tmp_group_func_data |= (tmp_user_gpio_data->mul_sel & 0x07) << tmp_val;
}
}
//根据pull的值决定是否更新pull寄存器
tmp_val = (port_num - (port_num_pull << 4)) << 1;
if(tmp_user_gpio_data->pull >= 0)
{
tmp_group_pull_data &= ~( 0x03 << tmp_val);
tmp_group_pull_data |= (tmp_user_gpio_data->pull & 0x03) << tmp_val;
}
//根据driver level的值决定是否更新driver level寄存器
if(tmp_user_gpio_data->drv_level >= 0)
{
tmp_group_dlevel_data &= ~( 0x03 << tmp_val);
tmp_group_dlevel_data |= (tmp_user_gpio_data->drv_level & 0x03) << tmp_val;
}
//根据用户输入以及功能分配决定是否更新data寄存器
if(tmp_user_gpio_data->mul_sel == 1)
{
if(tmp_user_gpio_data->data >= 0)
{
tmp_val = tmp_user_gpio_data->data & 1;
tmp_group_data_data &= ~(1 << port_num);
tmp_group_data_data |= tmp_val << port_num;
data_change = 1;
}
}
}
//for循环结束如果存在还没有回写的寄存器这里写回到硬件当中
if(tmp_group_func_addr) //只要更新过寄存器地址,就可以对硬件赋值
{ //那么把所有的值全部回写到硬件寄存器
GPIO_REG_WRITE(tmp_group_func_addr, tmp_group_func_data); //回写功能寄存器
GPIO_REG_WRITE(tmp_group_pull_addr, tmp_group_pull_data); //回写pull寄存器
GPIO_REG_WRITE(tmp_group_dlevel_addr, tmp_group_dlevel_data); //回写driver level寄存器
if(data_change)
{
GPIO_REG_WRITE(tmp_group_data_addr, tmp_group_data_data); //回写data寄存器
}
}
return 0;
}
void Netease_gpio_init(void) {
normal_gpio_set_t ldo_gpio[2] =
{
{ 8, 4, 1, -1, -1, 1, {0}},//4v5_ldo_en = port:PH04<1><default><default><0>
{ 8, 5, 1, -1, -1, 1, {0}} //3v_ldo_en = port:PH05<1><default><default><0>
};
boot_set_gpio(ldo_gpio,2,1);
}
2018-07-13 01:31:50 +00:00
int board_init(void)
{
//asm volatile("b .");
u32 reg_val;
int cpu_status = 0;
cpu_status = readl(SUNXI_CPUXCFG_BASE+0x80);
cpu_status &= (0xf<<24);
//note:
//sbrom will enable smp bit when jmp to non-secure fel on AW1718.
//but normal brom not do this operation.
//so should enable smp when run uboot by normal fel mode.
if(!cpu_status)
enable_smp();
if (uboot_spare_head.boot_data.work_mode != WORK_MODE_USB_PRODUCT)
{
//VE SRAM:set sram to normal mode, default boot mode
reg_val = readl(SUNXI_SYSCRL_BASE+0X0004);
reg_val &= ~(0x1<<24);
writel(reg_val, SUNXI_SYSCRL_BASE+0X0004);
//VE gating&VE Bus Reset :brom set them, but not require now
reg_val = readl(CCMU_VE_BGR_REG);
reg_val &= ~(0x1<<0);
reg_val &= ~(0x1<<16);
writel(reg_val, CCMU_VE_BGR_REG);
}
2018-09-27 09:16:43 +00:00
printf("Enable GPIO PH04 PH05, by Netease!\n");
Netease_gpio_init();
2018-07-13 01:31:50 +00:00
return 0;
}
void dram_init_banksize(void)
{
gd->bd->bi_dram[0].start = PHYS_SDRAM_1;
gd->bd->bi_dram[0].size = gd->ram_size;
}
int dram_init(void)
{
uint dram_size = 0;
dram_size = uboot_spare_head.boot_data.dram_scan_size;
if(dram_size)
{
gd->ram_size = dram_size * 1024 * 1024;
}
else
{
gd->ram_size = get_ram_size((long *)PHYS_SDRAM_1, PHYS_SDRAM_1_SIZE);
}
print_size(gd->ram_size, "");
putc('\n');
return 0;
}
#ifdef CONFIG_GENERIC_MMC
extern int sunxi_mmc_init(int sdc_no);
int board_mmc_init(bd_t *bis)
{
sunxi_mmc_init(bis->bi_card_num);
return 0;
}
void board_mmc_pre_init(int card_num)
{
bd_t *bd;
bd = gd->bd;
gd->bd->bi_card_num = card_num;
mmc_initialize(bd);
}
int board_mmc_get_num(void)
{
return gd->boot_card_num;
}
void board_mmc_set_num(int num)
{
gd->boot_card_num = num;
}
#endif
#ifdef CONFIG_DISPLAY_BOARDINFO
int checkboard(void)
{
printf("Board: SUN6I\n");
return 0;
}
#endif
int cpu0_set_detected_paras(void)
{
return 0;
}
ulong get_spare_head_size(void)
{
return (ulong)sizeof(struct spare_boot_head_t);
}
extern int axp858_probe(void);
extern int axp2585_probe(void);
/**
* platform_axp_probe -detect the pmu on board
* @sunxi_axp_dev_pt: pointer to the axp array
* @max_dev: offset of the property to retrieve
* returns:
* the num of pmu
*/
int platform_axp_probe(sunxi_axp_dev_t *sunxi_axp_dev_pt[], int max_dev)
{
2018-12-13 10:48:25 +00:00
u32 axp_num = 0;
2018-07-13 01:31:50 +00:00
#ifdef CONFIG_SUNXI_MODULE_AXP
if (!axp858_probe()) {
tick_printf("PMU: AXP858 found\n");
sunxi_axp_dev_pt[0] = &sunxi_axp_858;
2018-12-13 10:48:25 +00:00
axp_num++;
2018-07-13 01:31:50 +00:00
} else {
printf("probe axp858 failed\n");
sunxi_axp_dev_pt[0] = &sunxi_axp_null;
}
/*bmu probe*/
if (!axp2585_probe()) {
sunxi_axp_dev_pt[1] = &sunxi_axp_2585;
2018-12-13 10:48:25 +00:00
axp_num++;
2018-07-13 01:31:50 +00:00
} else {
printf("probe axp858 failed\n");
sunxi_axp_dev_pt[1] = &sunxi_axp_null;
}
#else
sunxi_axp_dev_pt[0] = &sunxi_axp_null;
2018-12-13 10:48:25 +00:00
sunxi_axp_dev_pt[1] = &sunxi_axp_null;
2018-07-13 01:31:50 +00:00
#endif
2018-12-13 10:48:25 +00:00
return axp_num;
2018-07-13 01:31:50 +00:00
}
char* board_hardware_info(void)
{
static char *hardware_info = "sun8iw15p1";
return hardware_info;
}
#ifdef CONFIG_CMD_NET
#ifdef CONFIG_USB_ETHER
extern int sunxi_udc_probe(void);
#ifdef CONFIG_SUNXI_SERIAL
extern int get_serial_num_from_chipid(char* serial);
static int sunxi_serial_num_is_zero(char *serial)
{
int i = 0;
get_serial_num_from_chipid(serial);
while(i < 20) {
if (serial[i] != '0')
break;
i++;
}
if (i == 20)
return 0;
else
return 1;
}
#endif
static void sunxi_random_ether_addr(void)
{
int i = 0;
char serial[128] = {0};
ulong tmp = 0;
char tmp_s[5] = "";
unsigned long long rand = 0;
uchar usb_net_addr[6];
char mac[18] = "";
char tmp_mac = 0;
int ret = 0;
/*
* get random mac address from serial num if it's not zero, or from timer.
*/
#ifdef CONFIG_SUNXI_SERIAL
ret = sunxi_serial_num_is_zero(serial);
#endif
if (ret == 1) {
for(i = 0; i < 6; i++) {
if(i == 0)
strncpy(tmp_s, serial+16, 4);
else if ((i == 1) || (i == 4))
strncpy(tmp_s, serial+12, 4);
else if (i == 2)
strncpy(tmp_s, serial+8, 4);
else
strncpy(tmp_s,serial+4,4);
tmp = simple_strtoul(tmp_s, NULL, 16);
rand = (tmp) * 0xfedf4fd;
rand = rand * 0xd263f967 + 0xea6f22ad8235;
usb_net_addr[i] = (uchar)(rand % 0x100);
}
} else {
for(i = 0; i < 6; i++) {
rand = get_timer_masked() * 0xfedf4fd;
rand = rand * 0xd263f967 + 0xea6f22ad8235;
usb_net_addr[i] = (uchar)(rand % 0x100);
}
}
/*
* usbnet_hostaddr, usb_net_addr[0] = 0xxx xx10
*/
tmp_mac = usb_net_addr[0] & 0x7e;
tmp_mac = tmp_mac | 0x02;
sprintf(mac, "%02x:%02x:%02x:%02x:%02x:%02x", tmp_mac, usb_net_addr[1],usb_net_addr[2],
usb_net_addr[3],usb_net_addr[4],usb_net_addr[5]);
setenv("usbnet_hostaddr", mac);
/*
* usbnet_devaddr, usb_net_addr[0] = 1xxx xx10
*/
tmp_mac = usb_net_addr[0] & 0xfe;
tmp_mac = tmp_mac | 0x82;
sprintf(mac, "%02x:%02x:%02x:%02x:%02x:%02x", tmp_mac, usb_net_addr[1],usb_net_addr[2],
usb_net_addr[3],usb_net_addr[4],usb_net_addr[5]);
setenv("usbnet_devaddr", mac);
}
#endif
int board_eth_init(bd_t *bis)
{
int rc = 0;
#if defined(CONFIG_USB_ETHER)
sunxi_random_ether_addr();
sunxi_udc_probe();
usb_eth_initialize(bis);
#endif
return rc;
}
#endif
2018-12-13 10:48:25 +00:00
int update_fdt_dram_para(void *dtb_base)
{
/*fix dram para*/
int nodeoffset = 0;
uint32_t *dram_para = NULL;
dram_para = (uint32_t *)uboot_spare_head.boot_data.dram_para;
pr_msg("(sunxi):update dtb dram start\n");
nodeoffset = fdt_path_offset(dtb_base, "/dram");
if (nodeoffset < 0) {
printf("## error: %s : %s\n", __func__, fdt_strerror(nodeoffset));
return -1;
}
fdt_setprop_u32(dtb_base, nodeoffset, "dram_clk", dram_para[0]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_type", dram_para[1]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_dx_odt", dram_para[2]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_dx_dri", dram_para[3]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_ca_dri", dram_para[4]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_odt_en", dram_para[5]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_para1", dram_para[6]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_para2", dram_para[7]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr0", dram_para[8]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr1", dram_para[9]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr2", dram_para[10]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr3", dram_para[11]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr4", dram_para[12]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr5", dram_para[13]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr6", dram_para[14]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr11", dram_para[15]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr12", dram_para[16]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr13", dram_para[17]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr14", dram_para[18]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr16", dram_para[19]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr17", dram_para[20]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_mr22", dram_para[21]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_tpr0", dram_para[22]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_tpr1", dram_para[23]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_tpr2", dram_para[24]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_tpr3", dram_para[25]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_tpr6", dram_para[26]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_tpr10", dram_para[27]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_tpr11", dram_para[28]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_tpr12", dram_para[29]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_tpr13", dram_para[30]);
fdt_setprop_u32(dtb_base, nodeoffset, "dram_tpr14", dram_para[31]);
pr_msg("update dtb dram end\n");
return 0;
}