Welcome to the libuv
documentation

Overview

libuv is a multi-platform support library with a focus on
asynchronous 1/0. It was primarily developed for use by
Node.|s [https://nodejs.org], but it’s also used by Luvit
[https://luvit.io], Julia [https://julialang.org], UVvIloop
[https://github.com/MagicStack/uvlioop]l, and others
[https://github.com/libuv/libuv/blob/v1.x/LINKS.md].

Note

In case you find errors in this documentation you can help
by sending pull requests [https://github.com/libuv/libuv]!

Features

e Full-featured event loop backed by epoll, kqueue, IOCP,
event ports.

Asynchronous TCP and UDP sockets

Asynchronous DNS resolution

Asynchronous file and file system operations

File system events

ANSI escape code controlled TTY

IPC with socket sharing, using Unix domain sockets or
named pipes (Windows)

e Child processes

e Thread pool

https://nodejs.org/
https://luvit.io/
https://julialang.org/
https://github.com/MagicStack/uvloop
https://github.com/libuv/libuv/blob/v1.x/LINKS.md
https://github.com/libuv/libuv

e Signal handling
e High resolution clock
e Threading and synchronization primitives

Documentation

Design overview
APl documentation
User guide
Upgrading

Downloads

libuv can be downloaded from here [https://dist.libuv.org/dist/].

Installation

Installation instructions can be found in the README
[https://github.com/libuv/libuv/blob/master/README.md].

https://dist.libuv.org/dist/
https://github.com/libuv/libuv/blob/master/README.md

Design overview

libuv is cross-platform support library which was originally
written for Node.|js [https://nodejs.org]. It’s designed around the

event-driven asynchronous |/O model.

The library provides much more than a simple abstraction
over different 1/O polling mechanisms: ‘handles’ and
‘streams’ provide a high level abstraction for sockets and
other entities; cross-platform file 1/O and threading

functionality is also provided, amongst other things.

Here is a diagram illustrating the different parts that
compose libuv and what subsystem they relate to:

—

ibuv
Network I/O
CI-TT-T
|OCP
=
L

File
/0

DNS
Ops.

Thread Pool

User
code

Handles and requests

https://nodejs.org/

libuv provides users with 2 abstractions to work with, in
combination with the event loop: handles and requests.

Handles represent long-lived objects capable of performing
certain operations while active. Some examples:

» A prepare handle gets its callback called once every
loop iteration when active.

« A TCP server handle that gets its connection callback
called every time there is a new connection.

Requests represent (typically) short-lived operations. These
operations can be performed over a handle: write requests
are used to write data on a handle; or standalone:
getaddrinfo requests don’t need a handle they run directly
on the loop.

The 1/0O loop

The I/O (or event) loop is the central part of libuv. It
establishes the content for all 1/O operations, and it's meant
to be tied to a single thread. One can run multiple event
loops as long as each runs in a different thread. The libuv
event loop (or any other API involving the loop or handles,
for that matter) is not thread-safe except where stated
otherwise.

The event loop follows the rather usual single threaded
asynchronous I/O approach: all (network) 1/O is performed
on non-blocking sockets which are polled using the best
mechanism available on the given platform: epoll on Linux,
kqueue on OSX and other BSDs, event ports on SunOS and
IOCP on Windows. As part of a loop iteration the loop will
block waiting for 1/O activity on sockets which have been
added to the poller and callbacks will be fired indicating

socket conditions (readable, writable hangup) so handles
can read, write or perform the desired I/O operation.

In order to better understand how the event loop operates,

the following diagram illustrates all stages of a loop
iteration:

Update loop time +—

No loop Yes

alive? —l

Run due timers

End

Call pending callbacks
Run idle handles
Run prepare handles
Poll for I/O
Run check handles

Call close callbacks

1. The loop concept of ‘now’ is updated. The event loop
caches the current time at the start of the event loop
tick in order to reduce the number of time-related
system calls.

. If the loop is alive an iteration is started, otherwise the
loop will exit immediately. So, when is a loop considered
to be alive? If a loop has active and ref’'d handles, active
requests or closing handles it's considered to be alive.

. Due timers are run. All active timers scheduled for a
time before the loop’s concept of now get their
callbacks called.

. Pending callbacks are called. All I/O callbacks are called
right after polling for 1/O, for the most part. There are
cases, however, in which calling such a callback is
deferred for the next loop iteration. If the previous
iteration deferred any 1/O callback it will be run at this
point.

. Idle handle callbacks are called. Despite the unfortunate
name, idle handles are run on every loop iteration, if
they are active.

. Prepare handle callbacks are called. Prepare handles get
their callbacks called right before the loop will block for
/0.

. Poll timeout is calculated. Before blocking for I/O the
loop calculates for how long it should block. These are
the rules when calculating the timeout:

o If the loop was run with the uv RUN NOWAIT flag,
the timeout is 0.

o If the loop is going to be stopped (uv_stop() was
called), the timeout is 0.

o If there are no active handles or requests, the
timeout is 0.

o If there are any idle handles active, the timeout
is O.

10.

11.

12.

o If there are any handles pending to be closed,
the timeout is 0.

o |f none of the above cases matches, the timeout
of the closest timer is taken, or if there are no
active timers, infinity.

. The loop blocks for I/O. At this point the loop will block

for 1/O for the duration calculated in the previous step.
All 1/0O related handles that were monitoring a given file
descriptor for a read or write operation get their
callbacks called at this point.

. Check handle callbacks are called. Check handles get

their callbacks called right after the loop has blocked for
I/0. Check handles are essentially the counterpart of
prepare handles.

Close callbacks are called. If a handle was closed by
calling uv_close() it will get the close callback called.

Special case in case the loop was run with uv_RUN ONCE,
as it implies forward progress. It's possible that no I/O
callbacks were fired after blocking for I/O, but some time
has passed so there might be timers which are due,
those timers get their callbacks called.

lteration ends. If the loop was run with Uv_RUN NOWAIT or
UV_RUN_ONCE modes the iteration ends and uv_run() will
return. If the loop was run with uv_RUN DEFAULT it will
continue from the start if it’s still alive, otherwise it will
also end.

Important

libuv uses a thread pool to make asynchronous file 1/0
operations possible, but network I/O is always performed

in a single thread, each loop’s thread.

Note

While the polling mechanism is different, libuv makes the
execution model consistent across Unix systems and
Windows.

File I/O

Unlike network 1/O, there are no platform-specific file 1/O
primitives libuv could rely on, so the current approach is to
run blocking file 1/O operations in a thread pool.

For a thorough explanation of the cross-platform file 1/O
landscape, check out this post
[https://blog.libtorrent.org/2012/10/asynchronous-disk-io/].

libuv currently uses a global thread pool on which all loops
can queue work. 3 types of operations are currently run on
this pool:

» File system operations
e DNS functions (getaddrinfo and getnameinfo)
e User specified code via uv_queue_work().

Warning

See the Thread pool work scheduling section for more
details, but keep in mind the thread pool size is quite
limited.

https://blog.libtorrent.org/2012/10/asynchronous-disk-io/

APl documentation

Error handling
Version-checking_macros and functions
uv_loop_t — Event loop
uv_handle_t — Base handle
uv_req_t_— Base request
uv_timer_t — Timer handle
uv_prepare_t_ — Prepare handle
uv_check_t — Check handle
uv_idle_t — Idle handle
uv_async_t_— Async handle
uv_poll_t — Poll handle
uv_signal_t — Signal handle
uv_process_t_ — Process handle
uv_stream_t — Stream handle
uv_tcp_t — TCP handle

uv_pipe_t — Pipe handle
uv_tty_t — TTY handle

uv_udp_t — UDP handle
uv_fs_event_t — FS Event handle
uv_fs_poll_t — FS Poll handle
File system operations

Thread pool work scheduling
DNS utility functions

Shared library handling
Threading_and synchronization utilities
Miscellaneous utilities

Metrics operations

Error handling

In libuv errors are negative numbered constants. As a rule of
thumb, whenever there is a status parameter, or an API
functions returns an integer, a negative number will imply
an error.

When a function which takes a callback returns an error, the
callback will never be called.

Note

Implementation detail: on Unix error codes are the
negated errno (or -errno), while on Windows they are
defined by libuv to arbitrary negative numbers.

Error constants

UV_E2BIG
argument list too long

UV_EACCES
permission denied

UV_EADDRINUSE
address already in use

UV_EADDRNOTAVAIL
address not available

UV_EAFNOSUPPORT
address family not supported

UV_EAGAIN
resource temporarily unavailable

UV_EAI_ADDRFAMILY
address family not supported

UV_EAI_AGAIN
temporary failure

UV_EAI_BADFLAGS
bad ai_flags value

UV_EAI_BADHINTS
invalid value for hints

UV_EAI_CANCELED
request canceled

UV_EAI_FAIL
permanent failure

UV_EAI_FAMILY
ai_family not supported

UV_EAI_MEMORY
out of memory

UV_EAI NODATA
no address

UV_EAI_NONAME
unknown node or service

UV_EAI OVERFLOW
argument buffer overflow

UV_EAI_PROTOCOL
resolved protocol is unknown

UV_EAI_ SERVICE
service not available for socket type

UV_EAI SOCKTYPE
socket type not supported

UV_EALREADY
connection already in progress

UV_EBADF
bad file descriptor

UV_EBUSY
resource busy or locked

UV_ECANCELED
operation canceled

UV_ECHARSET
invalid Unicode character

UV_ECONNABORTED
software caused connection abort

UV_ECONNREFUSED
connection refused

UV_ECONNRESET
connection reset by peer

UV_EDESTADDRREQ
destination address required

UV_EEXIST
file already exists

UV_EFAULT
bad address in system call argument

UV_EFBIG
file too large

UV_EHOSTUNREACH
host is unreachable

UV_EINTR
interrupted system call

UV_EINVAL
invalid argument

UV_EIO
i/o error

UV_EISCONN
socket is already connected

UV_EISDIR
illegal operation on a directory

UV_ELOOP
too many symbolic links encountered

UV_EMFILE
too many open files

UV_EMSGSIZE
message too long

UV_ENAMETOOLONG
name too long

UV_ENETDOWN
network is down

UV_ENETUNREACH
network is unreachable

UV_ENFILE
file table overflow

UV_ENOBUFS
no buffer space available

UV_ENODEV
no such device

UV_ENOENT
no such file or directory

UV_ENOMEM
not enough memory

UV_ENONET
machine is not on the network

UV_ENOPROTOOPT
protocol not available

UV_ENOSPC
no space left on device

UV_ENOSYS
function not implemented

UV_ENOTCONN
socket is not connected

UV_ENOTDIR
not a directory

UV_ENOTEMPTY
directory not empty

UV_ENOTSOCK
socket operation on non-socket

UV_ENOTSUP
operation not supported on socket

UV_EOVERFLOW
value too large for defined data type

UV_EPERM
operation not permitted

UV_EPIPE
broken pipe

UV_EPROTO
protocol error

UV_EPROTONOSUPPORT
protocol not supported

UV_EPROTOTYPE
protocol wrong type for socket

UV_ERANGE
result too large

UV_EROFS
read-only file system

UV_ESHUTDOWN
cannot send after transport endpoint shutdown

UV_ESPIPE
invalid seek

UV_ESRCH
no such process

UV_ETIMEDOUT
connection timed out

UV_ETXTBSY
text file is busy

UV_EXDEV
cross-device link not permitted

UV_UNKNOWN
unknown error

UV_EOF
end of file

UV_ENXIO
no such device or address

UV_EMLINK
too many links

UV_ENOTTY
inappropriate ioctl for device

UV_EFTYPE
inappropriate file type or format

UV_EILSEQ
illegal byte sequence

UV_ESOCKTNOSUPPORT
socket type not supported

API

UV_ERRNO_MAP(iter_macro)

Macro that expands to a series of invocations of
iter_macro for each of the error constants above.

iter_ macro is invoked with two arguments: the name of
the error constant without the UV_ prefix, and the error
message string literal.

const char* uv_strerror(int err)
Returns the error message for the given error code.
Leaks a few bytes of memory when you call it with an
unknown error code.

char* uv_strerror_r(int err, char* buf, size t buflen)
Returns the error message for the given error code. The
zero-terminated message is stored in the user-supplied
buffer buf of at most buflen bytes.

New in version 1.22.0.

const char* uv_err_name(int err)
Returns the error name for the given error code. Leaks a
few bytes of memory when you call it with an unknown
error code.

char* uv_err_name_r(int err, char* buf, size t buflen)

Returns the error name for the given error code. The
zero-terminated name is stored in the user-supplied
buffer buf of at most buflen bytes.

New in version 1.22.0.

int uv_translate_sys error(int sys errno)

Returns the libuv error code equivalent to the given
platform dependent error code: POSIX error codes on
Unix (the ones stored in errno), and Win32 error codes on
Windows (those returned by GetLastError() or
WSAGetLastError()).

If sys errno is already a libuv error, it is simply returned.

Changed in version 1.10.0: function declared public.

Version-checking macros
and functions

Starting with version 1.0.0 libuv follows the semantic
versioning [https://semver.org] SCheme. This means that new
APIs can be introduced throughout the lifetime of a major
release. In this section you’ll find all macros and functions
that will allow you to write or compile code conditionally, in
order to work with multiple libuv versions.

Macros

UV_VERSION_ MAJOR
libuv version’s major number.

UV_VERSION_ MINOR
libuv version’s minor number.

UV_VERSION PATCH
libuv version’s patch number.

UV_VERSION_IS_RELEASE

Set to 1 to indicate a release version of libuv, 0 for a
development snapshot.

UV_VERSION_SUFFIX

libuv version suffix. Certain development releases such
as Release Candidates might have a suffix such as “rc”.

UV_VERSION_ HEX

Returns the libuv version packed into a single integer. 8
bits are used for each component, with the patch number

https://semver.org/

stored in the 8 least significant bits. E.qg. for libuv 1.2.3
this would be 0x010203.

New in version 1.7.0.

Functions

unsigned int uv_version(void)
Returns Uv_VERSION HEX.

const char* uv_version_string(void)

Returns the libuv version number as a string. For non-
release versions the version suffix is included.

uv_loop_t — Event loop

The event loop is the central part of libuv’s functionality. It
takes care of polling for i/o and scheduling callbacks to be
run based on different sources of events.

Data types

uv_loop t
Loop data type.

void (*uv_walk_cb)(uv_handle_t* handle, void* arg)
Type definition for callback passed to uv_walk().

Public members

void* uv_loop_t.data

Space for user-defined arbitrary data. libuv does not use
and does not touch this field.

API

int uv_loop_init(uv_loop_t* loop)
Initializes the given uv _loop t structure.

int uv_loop_configure(uv_loop_t* loop,
uv_loop_option option, ...)
New in version 1.0.2.

Set additional loop options. You should normally call this
before the first call to uv_run() unless mentioned
otherwise.

Returns 0 on success or a UV_E* error code on failure. Be
prepared to handle UV_ENOSYS; it means the loop option
is not supported by the platform.

Supported options:

« UV _LOOP_BLOCK SIGNAL: Block a signal when polling
for new events. The second argument to
uv_loop_configure() is the signal number.

This operation is currently only implemented for
SIGPROF signals, to suppress unnecessary wakeups
when using a sampling profiler. Requesting other
signals will fail with UV_EINVAL.

« UV_METRICS IDLE_TIME: Accumulate the amount of
idle time the event loop spends in the event provider.

This option is necessary to use uv_metrics_idle_time().

Changed in version 1.39.0: added the
UV_METRICS IDLE TIME option.

int uv_loop_close(uv_loop_t* loop)
Releases all internal loop resources. Call this function
only when the loop has finished executing and all open
handles and requests have been closed, or it will return
UV_EBUSY. After this function returns, the user can free
the memory allocated for the loop.

uv_loop_t* uv_default_loop(void)
Returns the initialized default loop. It may return NULL in
case of allocation failure.

This function is just a convenient way for having a global
loop throughout an application, the default loop is in no
way different than the ones initialized with uv_1loop_init().

As such, the default loop can (and should) be closed with
uv_loop_close(). SO the resources associated with it are
freed.

Warning
This function is not thread safe.

int uv_run(uv_loop_t* loop, uv_run_mode mode)

This function runs the event loop. It will act differently
depending on the specified mode:

 UV_RUN_DEFAULT: Runs the event loop until there are
no more active and referenced handles or requests.
Returns non-zero if uv_stop(). was called and there are
still active handles or requests. Returns zero in all
other cases.

 UV_RUN_ONCE: Poll for i/o once. Note that this
function blocks if there are no pending callbacks.
Returns zero when done (no active handles or
requests left), or non-zero if more callbacks are
expected (meaning you should run the event loop
again sometime in the future).

« UV_RUN_NOWAIT: Poll for i/o once but don’t block if
there are no pending callbacks. Returns zero if done
(no active handles or requests left), or non-zero if
more callbacks are expected (meaning you should
run the event loop again sometime in the future).

uv_run() is not reentrant. It must not be called from a
callback.

int uv_loop_alive(const uv_loop_t* loop)

Returns non-zero if there are referenced active handles,
active requests or closing handles in the loop.

void uv_stop(uv_loop_t* loop)
Stop the event loop, causing uv_run() to end as soon as
possible. This will happen not sooner than the next loop
iteration. If this function was called before blocking for
i/o, the loop won’t block for i/o on this iteration.

size_t uv_loop_size(void)
Returns the size of the uv_loop t structure. Useful for FFI
binding writers who don’t want to know the structure
layout.

int uv_backend_fd(const uv_loop_t* loop)

Get backend file descriptor. Only kqueue, epoll and event
ports are supported.

This can be used in conjunction with uv_run(loop,
UV_RUN_NOWAIT) to poll in one thread and run the event
loop’s callbacks in another see test/test-embed.c for an
example.

Note

Embedding a kqueue fd in another kqueue pollset
doesn’t work on all platforms. It's not an error to add
the fd but it never generates events.

int uv_backend_timeout(const uv_loop_t* loop)

Get the poll timeout. The return value is in milliseconds,
or -1 for no timeout.

uint64 t uv_now(const uv_loop_t* loop)
Return the current timestamp in milliseconds. The
timestamp is cached at the start of the event loop tick,
see uv_update_time() for details and rationale.

The timestamp increases monotonically from some
arbitrary point in time. Don’t make assumptions about
the starting point, you will only get disappointed.

Note
Use uv_hrtime() if you need sub-millisecond granularity.

void uv_update_time(uv_loop_t* loop)
Update the event loop’s concept of “now”. Libuv caches

the current time at the start of the event loop tick in
order to reduce the number of time-related system calls.

You won't normally need to call this function unless you
have callbacks that block the event loop for longer
periods of time, where “longer” is somewhat subjective
but probably on the order of a millisecond or more.

void uv_walk(uv_loop_t* loop, uv_walk _cb walk cb,

void* arg)
Walk the list of handles: walk cb will be executed with
the given arg.

int uv_loop_fork(uv_loop_t* loop)
New in version 1.12.0.

Reinitialize any kernel state necessary in the child
process after a fork(2) [https://man7.org/linux/man-
pages/man2/fork.2.html] system call.

Previously started watchers will continue to be started in
the child process.

It is necessary to explicitly call this function on every
event loop created in the parent process that you plan to

https://man7.org/linux/man-pages/man2/fork.2.html

continue to use in the child, including the default loop
(even if you don’t continue to use it in the parent). This
function must be called before calling uv_run() or any
other API function using the loop in the child. Failure to
do so will result in undefined behaviour, possibly
including duplicate events delivered to both parent and
child or aborting the child process.

When possible, it is preferred to create a new loop in the
child process instead of reusing a loop created in the
parent. New loops created in the child process after the
fork should not use this function.

This function is not implemented on Windows, where it
returns Uv_ENOSYS.

Caution

This function is experimental. It may contain bugs, and
is subject to change or removal. APl and ABI stability is
not guaranteed.

Note

On Mac OS X, if directory FS event handles were in use
in the parent process for any event loop, the child
process will no longer be able to use the most efficient
FSEvent implementation. Instead, uses of directory FS
event handles in the child will fall back to the same
implementation used for files and on other kqueue-
based systems.

Caution

On AIX and SunOS, FS event handles that were already
started in the parent process at the time of forking will

not deliver events in the child process; they must be
closed and restarted. On all other platforms, they will
continue to work normally without any further
intervention.

Caution

Any previous value returned from uv_backend_fd() iS now
invalid. That function must be called again to determine
the correct backend file descriptor.

void* uv_loop_get_ data(const uv_loop_t* loop)
Returns loop->data.

New in version 1.19.0.

void* uv_loop_set_data(uv_loop_t* loop, void* data)
Sets loop->data to data.

New in version 1.19.0.

uv_handle_t — Base handle

uv_handle_t is the base type for all libuv handle types.

Structures are aligned so that any libuv handle can be cast
to uv_handle t. All API functions defined here work with any
handle type.

Libuv handles are not movable. Pointers to handle
structures passed to functions must remain valid for the
duration of the requested operation. Take care when using
stack allocated handles.

Data types

uv_handle_t
The base libuv handle type.

uv_any_handle
Union of all handle types.

void (*uv_alloc_cb)(uv_handle_t* handle,

size_t suggested size, uv_buf_t* buf)
Type definition for callback passed to uv_read_start() and
uv_udp_recv_start(). The user must allocate memory and
fill the supplied uv_buf_t structure. If NULL is assigned as
the buffer’'s base or 0 as its length, a uv_ENOBUFS error will
be triggered in the uv_udp_recv_cb or the uv_read_cb
callback.

Each buffer is used only once and the user is responsible
for freeing it in the uv_udp_recv_cb or the uv_read_cb
callback.

A suggested size (65536 at the moment in most cases) is
provided, but it’s just an indication, not related in any
way to the pending data to be read. The user is free to
allocate the amount of memory they decide.

As an example, applications with custom allocation
schemes such as using freelists, allocation pools or slab
based allocators may decide to use a different size which
matches the memory chunks they already have.

Example:

static void my alloc _cb(uv_handle t* handle, size t
suggested size, uv buf t* buf) {

buf->base = malloc(suggested size);

buf->len = suggested size;

}

void (*uv_close_cb)(uv_handle_t* handle)
Type definition for callback passed to uv_close().

Public members

uv_loop_t* uv_handle_t.loop

Pointer to the uv_1loop_t the handle is running on.
Readonly.

uv_handle_type uv_handle_t.type

The uv_handle_type, indicating the type of the underlying
handle. Readonly.

void* uv_handle_t.data

Space for user-defined arbitrary data. libuv does not use
this field.

API

UV_HANDLE_TYPE_MAP(iter macro)

Macro that expands to a series of invocations of
iter_macro for each of the handle types. iter_macro is
invoked with two arguments: the name of the
uv_handle_type element without the UV _ prefix, and the
name of the corresponding structure type without the uv_
prefix and _t suffix.

int uv_is_active(const uv_handle_t* handle)

Returns non-zero if the handle is active, zero if it’s
inactive. What “active” means depends on the type of
handle:

« A uv_async_t handle is always active and cannot be
deactivated, except by closing it with uv_close().

o Auv_pipe_t, uv_tcp t, uv_udp_t, etc. handle -
basically any handle that deals with i/o - is active
when it is doing something that involves i/o, like
reading, writing, connecting, accepting new
connections, etc.

o Auv_check t, uv_idle_t, uv_timer_t, etc. handle is
active when it has been started with a call to
uv_check start(), uv_idle_start(), etc.

Rule of thumb: if a handle of type uv_foo t has a
uv_foo_start() function, then it's active from the moment
that function is called. Likewise, uv_foo_stop()
deactivates the handle again.

int uv_is_closing(const uv_handle_t* handle)

Returns non-zero if the handle is closing or closed, zero
otherwise.

Note

This function should only be used between the
initialization of the handle and the arrival of the close

callback.

void uv_close(uv_handle_t* handle, uv_close_cb close cb)

Request handle to be closed. close cb will be called
asynchronously after this call. This MUST be called on
each handle before memory is released. Moreover, the
memory can only be released in close cb or after it has
returned.

Handles that wrap file descriptors are closed immediately
but close cb will still be deferred to the next iteration of
the event loop. It gives you a chance to free up any
resources associated with the handle.

In-progress requests, like uv_connect_t or uv_write_t, are
cancelled and have their callbacks called asynchronously
with status=UV_ECANCELED.

void uv_ref(uv_handle_t* handle)
Reference the given handle. References are idempotent,
that is, if a handle is already referenced calling this
function again will have no effect.

See Reference counting.

void uv_unref(uv_handle_t* handle)

Un-reference the given handle. References are
idempotent, that is, if a handle is not referenced calling
this function again will have no effect.

See Reference counting.

int uv_has_ref(const uv_handle_t* handle)

Returns non-zero if the handle referenced, zero
otherwise.

See Reference counting.

size_t uv_handle_size(uv_handle_type type)

Returns the size of the given handle type. Useful for FFI
binding writers who don’t want to know the structure
layout.

Miscellaneous API functions

The following API functions take a uv_handle_t argument but
they work just for some handle types.

int uv_send_buffer_size(uv_handle_t* handle, int* value)

Gets or sets the size of the send buffer that the operating
system uses for the socket.

If *value == 0, then it will set *value to the current send
buffer size. If *value > 0 then it will use *value to set the
new send buffer size.

On success, zero is returned. On error, a negative result
is returned.

This function works for TCP, pipe and UDP handles on
Unix and for TCP and UDP handles on Windows.

Note

Linux will set double the size and return double the size
of the original set value.

int uv_recv_buffer _size(uv_handle_t* handle, int* value)

Gets or sets the size of the receive buffer that the
operating system uses for the socket.

If *value == 0, then it will set *value to the current
receive buffer size. If *value > 0 then it will use *value to
set the new receive buffer size.

On success, zero is returned. On error, a negative result
is returned.

This function works for TCP, pipe and UDP handles on
Unix and for TCP and UDP handles on Windows.

Note

Linux will set double the size and return double the size
of the original set value.

int uv_fileno(const uv_handle_t* handle, uv_os_fd_t* fd)
Gets the platform dependent file descriptor equivalent.

The following handles are supported: TCP, pipes, TTY,
UDP and poll. Passing any other handle type will fail with
UV _EINVAL.

If a handle doesn’t have an attached file descriptor yet or
the handle itself has been closed, this function will return
UV _EBADF.

Warning

Be very careful when using this function. libuv assumes
it’s in control of the file descriptor so any change to it
may lead to malfunction.

uv_loop_t* uv_handle_get loop(const uv_handle_t* handle)
Returns handle->loop.

New in version 1.19.0.

void* uv_handle_get_data(const uv_handle_t* handle)
Returns handle->data.

New in version 1.19.0.

void* uv_handle_set_data(uv_handle_t* handle, void* data)
Sets handle->data to data.

New in version 1.19.0.

uv_handle type uv_handle_get_ type(const
uv_handle_t* handle)
Returns handle->type.

New in version 1.19.0.

const char* uv_handle_type_name(uv_handle type type)
Returns the name for the equivalent struct for a given
handle type, e.g. “pipe” (as in uv_pipe_t) for
UV_NAMED PIPE.

If no such handle type exists, this returns NULL.

New in version 1.19.0.

Reference counting

The libuv event loop (if run in the default mode) will run
until there are no active and referenced handles left. The
user can force the loop to exit early by unreferencing
handles which are active, for example by calling uv_unref().
after calling uv_timer_start().

A handle can be referenced or unreferenced, the refcounting
scheme doesn’t use a counter, so both operations are
idempotent.

All handles are referenced when active by default, see
uv_is_active() for a more detailed explanation on what being
active involves.

uv_req_t — Base request

uv_req tis the base type for all libuv request types.

Structures are aligned so that any libuv request can be cast
to uv_req_t. All API functions defined here work with any
request type.

Data types

uv_req_t
The base libuv request structure.

uv_any_req
Union of all request types.

Public members

void* uv_req_t.data
Space for user-defined arbitrary data. libuv does not use
this field.

uv_req_type uv_req_t.type
Indicated the type of request. Readonly.

typedef enum {
UV_UNKNOWN REQ = 0,
UV_REQ,
UV_CONNECT,
UV_WRITE,
UV_SHUTDOWN,
UV_UDP SEND,
UV_FS,
UV_WORK,
UV_GETADDRINFO,

UV _GETNAMEINFO,
UV REQ TYPE MAX,
} uv_req type;

API

UV_REQ_TYPE_MAP(iter_macro)
Macro that expands to a series of invocations of
iter_macro for each of the request types. iter_ macro is
invoked with two arguments: the name of the
uv_req_type element without the UV_ prefix, and the
name of the corresponding structure type without the uv_
prefix and _t suffix.

int uv_cancel(uv_req_t* req)

Cancel a pending request. Fails if the request is executing
or has finished executing.

Returns 0 on success, or an error code < 0 on failure.

Only cancellation of uv_fs_t, uv_getaddrinfo_t,
uv_getnameinfo_t, uv_random_t and uv_work_t requests is
currently supported.

Cancelled requests have their callbacks invoked some
time in the future. It's not safe to free the memory
associated with the request until the callback is called.

Here is how cancellation is reported to the callback:

e Auv_fs_t request has its reg->result field set to
UV_ECANCELED.

e A uv_work_t, uv_getaddrinfo_t, uv_getnameinfo_t Or
uv_random_t request has its callback invoked with
status == UV_ECANCELED.

size t uv_req_size(uv req_type type)
Returns the size of the given request type. Useful for FFI
binding writers who don’t want to know the structure

layout.

void* uv_req_get_data(const uv_req_t* req)
Returns req->data.

New in version 1.19.0.

void* uv_req_set_data(uv_req_t* req, void* data)
Sets req->data to data.

New in version 1.19.0.

uv_req_type uv_req_get_type(const uv_req_t* req)
Returns req->type.

New in version 1.19.0.

const char* uv_req_type_name(uv_req_type type)
Returns the name for the equivalent struct for a given

request type, e.g. “connect” (as in uv_connect_t) for
UV _CONNECT.

If no such request type exists, this returns NULL.

New in version 1.19.0.

uv_timer_t — Timer handle

Timer handles are used to schedule callbacks to be called in
the future.

Data types

uv_timer_t
Timer handle type.

void (*uv_timer_cb)(uv_timer_t* handle)
Type definition for callback passed to uv_timer_start().

Public members

N/A

See also

The uv_handle_t members also apply.

API

int uv_timer_init(uv_loop_t* loop, uv_timer_t* handle)
Initialize the handle.

int uv_timer_start(uv_timer_t* handle, uv_timer_cb cb,
uinté4_t timeout, uint64_t repeat)
Start the timer. timeout and repeat are in milliseconds.

If timeout is zero, the callback fires on the next event
loop iteration. If repeat is non-zero, the callback fires first
after timeout milliseconds and then repeatedly after
repeat milliseconds.

Note

Does not update the event loop’s concept of “now”. See
uv_update_time() for more information.

If the timer is already active, it is simply updated.

int uv_timer_stop(uv_timer_t* handle)
Stop the timer, the callback will not be called anymore.

int uv_timer_again(uv_timer_t* handle)
Stop the timer, and if it is repeating restart it using the

repeat value as the timeout. If the timer has never been
started before it returns UV_EINVAL.

void uv_timer_set_repeat(uv_timer_t* handle,

uinté4_t repeat)
Set the repeat interval value in milliseconds. The timer
will be scheduled to run on the given interval, regardless
of the callback execution duration, and will follow normal
timer semantics in the case of a time-slice overrun.

For example, if a 50ms repeating timer first runs for
17ms, it will be scheduled to run again 33ms later. If
other tasks consume more than the 33ms following the
first timer callback, then the callback will run as soon as
possible.

Note

If the repeat value is set from a timer callback it does
not immediately take effect. If the timer was non-
repeating before, it will have been stopped. If it was
repeating, then the old repeat value will have been
used to schedule the next timeout.

uint64 t uv_timer_get_repeat(const uv_timer_t* handle)
Get the timer repeat value.

uint64 t uv_timer_get_due_in(const uv_timer_t* handle)

Get the timer due value or O if it has expired. The time is
relative to uv_now().

New in version 1.40.0.

See also

The uv_handle_t API functions also apply.

uv_prepare_t — Prepare
handle

Prepare handles will run the given callback once per loop
iteration, right before polling for i/o.

Data types

uv_prepare_t
Prepare handle type.

void (*uv_prepare_ch)(uv_prepare_t* handle)
Type definition for callback passed to uv_prepare_start().

Public members

N/A

See also

The uv_handle_t members also apply.

API

int uv_prepare_init(uv_loop_t* loop, uv_prepare_t* prepare)
Initialize the handle. This function always succeeds.

Returns: 0

int uv_prepare_start(uv_prepare_t* prepare,
uv_prepare_cb cb)

Start the handle with the given callback. This function
always succeeds, except when cb is NULL.

Returns: 0 on success, or UV_EINVAL when cb
== NULL.

int uv_prepare_stop(uv_prepare_t* prepare)
Stop the handle, the callback will no longer be called.
This function always succeeds.

Returns: 0
See also

The uv_handle_t API functions also apply.

uv_check_t — Check handle

Check handles will run the given callback once per loop
iteration, right after polling for i/o.

Data types

uv_check_t
Check handle type.

void (*uv_check_cb)(uv_check_t* handle)
Type definition for callback passed to uv_check_start().

Public members

N/A

See also

The uv_handle_t members also apply.

API

int uv_check_init(uv_loop_t* Joop, uv_check t* check)
Initialize the handle. This function always succeeds.

Returns: 0

int uv_check_start(uv_check t* check, uv_check cb cb)

Start the handle with the given callback. This function
always succeeds, except when cb is NULL.

Returns: 0 on success, or UV_EINVAL when cb
== NULL.

int uv_check_stop(uv_check_t* check)

Stop the handle, the callback will no longer be called.
This function always succeeds.

Returns: 0

See also

The uv_handle_t API functions also apply.

uv_idle_t — ldle handle

Idle handles will run the given callback once per loop
iteration, right before the uv_prepare_t handles.

Note

The notable difference with prepare handles is that when
there are active idle handles, the loop will perform a zero
timeout poll instead of blocking for i/o.

Warning

Despite the name, idle handles will get their callbacks
called on every loop iteration, not when the loop is actually
“idle”.

Data types

uv_idle_t
Idle handle type.

void (*uv_idle _cb)(uv_idle_t* handle)
Type definition for callback passed to uv_idle_start().

Public members

N/A

See also

The uv_handle_t members also apply.

API

int uv_idle_init(uv_loop_t* loop, uv_idle_t* idle)
Initialize the handle. This function always succeeds.

Returns: 0

int uv_idle_start(uv_idle_t* idle, uv_idle_cb cb)
Start the handle with the given callback. This function
always succeeds, except when cb is NULL.

Returns: 0 on success, or UV_EINVAL when cb
== NULL.

int uv_idle_stop(uv_idle_t* idle)
Stop the handle, the callback will no longer be called.
This function always succeeds.

Returns: 0
See also

The uv_handle_t API functions also apply.

uv_async_t — Async handle

Async handles allow the user to “wakeup” the event loop
and get a callback called from another thread.

Data types

uv_async_t
Async handle type.

void (*uv_async_cb)(uv_async_t* handle)
Type definition for callback passed to uv_async_init().

Public members

N/A

See also

The uv_handle_t members also apply.

API

int uv_async_init(uv_loop_t* loop, uv_async_t* async,
uv_async_cb async cb)
Initialize the handle. A NULL callback is allowed.

Returns: 0 on success, or an error code < 0 on
failure.

Note

Unlike other handle initialization functions, it
immediately starts the handle.

int uv_async_send(uv_async_t* async)
Wake up the event loop and call the async handle’s
callback.

Returns: 0 on success, or an error code < 0 on
failure.

Note

It's safe to call this function from any thread. The
callback will be called on the loop thread.

Note

uv_async_send (). iS async-signal-safe
[https://man7.org/linux/man-pages/man7/signal-safety.7.html]. It’s safe
to call this function from a signal handler.

Warning

libuv will coalesce calls to uv_async_send(), that is, not
every call to it will yield an execution of the callback.
For example: if uv_async_send(). is called 5 times in a row
before the callback is called, the callback will only be
called once. If uv_async_send() is called again after the
callback was called, it will be called again.

See also

The uv_handle_t API functions also apply.

https://man7.org/linux/man-pages/man7/signal-safety.7.html

uv_poll t — Poll handle

Poll handles are used to watch file descriptors for
readability, writability and disconnection similar to the
purpose of poll(2) [https://man7.org/linux/man-pages/man2/poll.2.html].

The purpose of poll handles is to enable integrating external
libraries that rely on the event loop to signal it about the
socket status changes, like c-ares or libssh2. Using uv_poll t
for any other purpose is not recommended; uv_tcp_t,
uv_udp_t, etc. provide an implementation that is faster and
more scalable than what can be achieved with uv_poll t,
especially on Windows.

It is possible that poll handles occasionally signal that a file
descriptor is readable or writable even when it isn’t. The
user should therefore always be prepared to handle EAGAIN
or equivalent when it attempts to read from or write to the
fd.

It is not okay to have multiple active poll handles for the
same socket, this can cause libuv to busyloop or otherwise
malfunction.

The user should not close a file descriptor while it is being
polled by an active poll handle. This can cause the handle to
report an error, but it might also start polling another
socket. However the fd can be safely closed immediately
after a call to uv_poll_stop() Or uv_close().

Note

On windows only sockets can be polled with poll handles.
On Unix any file descriptor that would be accepted by

https://man7.org/linux/man-pages/man2/poll.2.html

p0||(2)_ [https://man7.org/linux/man-pages/man2/poll.2.html] Can be
used.

Note

On AIX, watching for disconnection is not supported.

Data types

uv_poll_t
Poll handle type.

void (*uv_poll_cb)(uv_poll_t* handle, int status, int events)
Type definition for callback passed to uv_poll_start().

uv_poll_event
Poll event types

enum uv poll event {
UV _READABLE =
UV WRITABLE =
UV DISCONNECT = 4,
UV _PRIORITIZED = 8

’
’

N =

};
Public members
N/A

See also

The uv_handle_t members also apply.

https://man7.org/linux/man-pages/man2/poll.2.html

API

int uv_poll_init(uv_loop_t* loop, uv_poll_t* handle, int fd)
Initialize the handle using a file descriptor.

Changed in version 1.2.2: the file descriptor is set to non-
blocking mode.

int uv_poll _init_socket(uv_loop_t* loop, uv_poll_t* handle,
uv_os_sock_t socket)

Initialize the handle using a socket descriptor. On Unix
this is identical to uv_poll_init(). On windows it takes a
SOCKET handle.

Changed in version 1.2.2: the socket is set to non-
blocking mode.

int uv_poll_start(uv_poll_t* handle, int events,

uv_poll_cb cb)
Starts polling the file descriptor. events is a bitmask
made up of UV_READABLE, UV_WRITABLE,
UV _PRIORITIZED and UV_DISCONNECT. As soon as an
event is detected the callback will be called with status
set to 0, and the detected events set on the events field.

The UV _PRIORITIZED event is used to watch for sysfs
interrupts or TCP out-of-band messages.

The UV_DISCONNECT event is optional in the sense that
it may not be reported and the user is free to ignore it,
but it can help optimize the shutdown path because an
extra read or write call might be avoided.

If an error happens while polling, status will be < 0 and
corresponds with one of the UV_E* error codes (see Error

handling). The user should not close the socket while the
handle is active. If the user does that anyway, the
callback may be called reporting an error status, but this
is not guaranteed.

Note

Calling uv_poll_start(). on a handle that is already active
is fine. Doing so will update the events mask that is
being watched for.

Note

Though UV _DISCONNECT can be set, it is unsupported
on AlIX and as such will not be set on the events field in
the callback.

Note

If one of the events UV_READABLE or UV_WRITABLE are
set, the callback will be called again, as long as the
given fd/socket remains readable or writable
accordingly. Particularly in each of the following
scenarios:

e The callback has been called because the socket
became readable/writable and the callback did not
conduct a read/write on this socket at all.

e The callback committed a read on the socket, and
has not read all the available data (when
UV_READABLE is set).

e The callback committed a write on the socket, but it
remained writable afterwards (when UV_WRITABLE
Is set).

 The socket has already became readable/writable
before calling uv_poll_start() on a poll handle

associated with this socket, and since then the state
of the socket did not changed.

In all of the above listed scenarios, the socket remains
readable or writable and hence the callback will be
called again (depending on the events set in the
bitmask). This behaviour is known as level triggering.

Changed in version 1.9.0: Added the UV_DISCONNECT
event.

Changed in version 1.14.0: Added the UV_PRIORITIZED
event.

int uv_poll_stop(uv_poll_t* poll)

Stop polling the file descriptor, the callback will no longer
be called.

Note

Calling uv_poll_stop() is effective immediately: any
pending callback is also canceled, even if the socket
state change notification was already pending.

See also

The uv_handle_t API functions also apply.

uv_signal_t — Signal handle

Signal handles implement Unix style signal handling on a
per-event loop bases.

Windows notes

Reception of some signals is emulated:

e SIGINT is normally delivered when the user presses
CTRL+C. However, like on Unix, it is not generated when
terminal raw mode is enabled.

» SIGBREAK is delivered when the user pressed CTRL +
BREAK.

e SIGHUP is generated when the user closes the console
window. On SIGHUP the program is given approximately
10 seconds to perform cleanup. After that Windows will
unconditionally terminate it.

e SIGWINCH is raised whenever libuv detects that the
console has been resized. When a libuv app is running
under a console emulator, or when a 32-bit libuv app is
running on 64-bit system, SIGWINCH will be emulated.
In such cases SIGWINCH signals may not always be
delivered in a timely manner. For a writable uv_tty_t
handle libuv will only detect size changes when the
cursor is moved. When a readable uv_tty_t handle is
used, resizing of the console buffer will be detected only
if the handle is in raw mode and is being read.

» Watchers for other signals can be successfully created,
but these signals are never received. These signals are:
SIGILL, SIGABRT, SIGFPE, SIGSEGV, SIGTERM and
SIGKILL.

e Calls to raise() or abort() to programmatically raise a
signal are not detected by libuv; these will not trigger a
signal watcher.

Changed in version 1.15.0: SIGWINCH support on Windows
was improved.

Changed in version 1.31.0: 32-bit libuv SIGWINCH support
on 64-bit Windows was rolled back to old implementation.

Unix notes

e SIGKILL and SIGSTOP are impossible to catch.

e Handling SIGBUS, SIGFPE, SIGILL or SIGSEGV via libuv
results into undefined behavior.

e SIGABRT will not be caught by libuv if generated by
abort(), e.q. through assert().

e On Linux SIGRTO and SIGRT1 (signals 32 and 33) are
used by the NPTL pthreads library to manage threads.
Installing watchers for those signals will lead to
unpredictable behavior and is strongly discouraged.
Future versions of libuv may simply reject them.

Data types

uv_signal_t
Signal handle type.

void (*uv_signal cb)(uv_signal_t* handle, int signum)
Type definition for callback passed to uv_signal_start().

Public members

int uv_signal t.signum
Signal being monitored by this handle. Readonly.

See also

The uv_handle_t members also apply.

API

int uv_signal_init(uv_loop_t* loop, uv_signal_t* signal)
Initialize the handle.

int uv_signal_start(uv_signal_t* signal, uv_signal_cb cb,
int signum)

Start the handle with the given callback, watching for the
given signal.

int uv_signal_start_oneshot(uv_signal_t* signal,
uv_signal_cb cb, int signum)
New in version 1.12.0.

Same functionality as uv_signal_start() but the signal
handler is reset the moment the signal is received.

int uv_signal_stop(uv_signal_t* signal)
Stop the handle, the callback will no longer be called.

See also

The uv_handle_t API functions also apply.

uv_process_t — Process
handle

Process handles will spawn a new process and allow the
user to control it and establish communication channels
with it using streams.

Data types

uv_process_t
Process handle type.

uv_process_options_t
Options for spawning the process (passed to uv_spawn().

typedef struct uv process options s {
uv_exit cb exit cb;
const char* file;
char** args;
char** env;
const char* cwd;
unsigned int flags;
int stdio count;
uv_stdio container t* stdio;
uv_uid t uid;
uv_gid t gid;
} uv process options t;

void (*uv_exit_cbh)(uv_process_t*, int64 t exit status,
int term_signal)

Type definition for callback passed in uv_process_options_t
which will indicate the exit status and the signal that
caused the process to terminate, if any.

uv_process_flags
Flags to be set on the flags field of uv_process_options_t.

enum uv_process flags {

/*

* Set the child process' user id.

*/

UV _PROCESS SETUID = (1 << 0),

/*

* Set the child process' group id.

*/

UV _PROCESS SETGID = (1 << 1),

/*

* Do not wrap any arguments in quotes, or perform any
other escaping, when

* converting the argument list into a command line
string. This option is

* only meaningful on Windows systems. On Unix it is
silently ignored.

*/

UV PROCESS WINDOWS VERBATIM ARGUMENTS = (1 << 2),

/*

* Spawn the child process in a detached state - this
will make it a process

* group leader, and will effectively enable the child to
keep running after

* the parent exits. Note that the child process will
still keep the

* parent's event loop alive unless the parent process
calls uv unref() on

* the child's process handle.

*/

UV _PROCESS DETACHED = (1 << 3),

/*

* Hide the subprocess window that would normally be
created. This option is

* only meaningful on Windows systems. On Unix it is
silently ignored.

*/

UV PROCESS WINDOWS HIDE = (1 << 4),

/*

* Hide the subprocess console window that would normally
be created. This

* option is only meaningful on Windows systems. On Unix

it is silently
* ignored.
*/
UV _PROCESS WINDOWS HIDE CONSOLE = (1 << 5),

/*
* Hide the subprocess GUI window that would normally be

created. This
* option is only meaningful on Windows systems. On Unix

it is silently
* ignored.
*/
UV _PROCESS WINDOWS HIDE GUI = (1 << 6)

Ji -

uv_stdio container_t
Container for each stdio handle or fd passed to a child
process.

typedef struct uv stdio container s {
uv_stdio flags flags;

union {
uv_stream t* stream;

int fd;
} data;
} uv stdio container t;

Public members

int uv_process_t.pid
The PID of the spawned process. It's set after calling

uv_spawn ().

Note

The uv_handle_t members also apply.

uv_exit_cb uv_process_options_t.exit_cb
Callback called after the process exits.

const char* uv_process_options_t.file
Path pointing to the program to be executed.

char** uv_process _options_t.args

Command line arguments. args[0] should be the path to
the program. On Windows this uses CreateProcess which
concatenates the arguments into a string this can cause
some strange errors. See the
UV_PROCESS WINDOWS VERBATIM ARGUMENTS flag on
uv_process_flags.

char** uv_process_options t.env

Environment for the new process. If NULL the parents
environment is used.

const char* uv_process_options_t.cwd
Current working directory for the subprocess.

unsigned int uv_process_options_t.flags

Various flags that control how uv_spawn() behaves. See
uv_process_flags.

int uv_process_options_t.stdio count

uv_stdio_container_t* uv_process_options_t.stdio

The stdio field points to an array of uv_stdio_container_t
structs that describe the file descriptors that will be
made available to the child process. The convention is
that stdio[0] points to stdin, fd 1 is used for stdout, and
fd 2 is stderr.

Note

On Windows file descriptors greater than 2 are available
to the child process only if the child processes uses the
MSVCRT runtime.

uv_uid t uv_process_options_t.uid

uv_gid t uv_process_options_t.gid
Libuv can change the child process’ user/group id. This
happens only when the appropriate bits are set in the
flags fields.

Note

This is not supported on Windows, uv_spawn() will fail and
set the error to Uv_ENOTSUP.

uv_stdio _flags uv_stdio_container_t. flags

Flags specifying how the stdio container should be
passed to the child.

union @0 uv_stdio container_t.data

Union containing either the stream or fd to be passed on
to the child process.

API

void uv_disable_stdio_inheritance(void)

Disables inheritance for file descriptors / handles that this
process inherited from its parent. The effect is that child
processes spawned by this process don’t accidentally
inherit these handles.

It is recommended to call this function as early in your
program as possible, before the inherited file descriptors
can be closed or duplicated.

Note

This function works on a best-effort basis: there is no
guarantee that libuv can discover all file descriptors
that were inherited. In general it does a better job on
Windows than it does on Unix.

int uv_spawn(uv_loop_t* loop, uv_process_t* handle, const
uv_process_options_t* options)
Initializes the process handle and starts the process. If
the process is successfully spawned, this function will
return 0. Otherwise, the negative error code
corresponding to the reason it couldn’t spawn is
returned.

Possible reasons for failing to spawn would include (but
not be limited to) the file to execute not existing, not
having permissions to use the setuid or setgid specified,
or not having enough memory to allocate for the new
process.

Changed in version 1.24.0: Added
UV_PROCESS WINDOWS HIDE CONSOLE and
UV_PROCESS WINDOWS HIDE GUI flags.

int uv_process_kill(uv_process_t* handle, int signum)

Sends the specified signal to the given process handle.
Check the documentation on uv_signal_t — Signal handle
for signal support, specially on Windows.

int uv_kill(int pid, int signum)
Sends the specified signal to the given PID. Check the
documentation on uv_signal_t — Signal handle for signal
support, specially on Windows.

uv_pid_t uv_process_get_pid(const uv_process_t* handle)

Returns handle->pid.

New in version 1.19.0.

See also

The uv_handle_t API functions also apply.

uv_stream_t — Stream handle

Stream handles provide an abstraction of a duplex
communication channel. uv_stream_t is an abstract type,
libuv provides 3 stream implementations in the form of
uv_tcp_t, uv_pipe_t and uv_tty_t.

Data types

uv_stream_t
Stream handle type.

uv_connect_t
Connect request type.

uv_shutdown_t
Shutdown request type.

uv_write t
Write request type. Careful attention must be paid when
reusing objects of this type. When a stream is in non-
blocking mode, write requests sent with uv write will be
queued. Reusing objects at this point is undefined
behaviour. It is safe to reuse the uv write t object only
after the callback passed to uv write is fired.

void (*uv_read_cb)(uv_stream_t* stream, ssize t nread,
const uv_buf_t* buf)
Callback called when data was read on a stream.

nread is > 0 if there is data available or < 0 on error.
When we've reached EOF, nread will be set to uv_EoOF.
When nread < 0, the buf parameter might not point to a

valid buffer; in that case buf.len and buf.base are both
set to 0.

Note

nread might be 0, which does not indicate an error or
EOF. This is equivalent to EAGAIN or EWOULDBLOCK under
read(2).

The callee is responsible for stopping/closing the stream
when an error happens by calling uv_read_stop(). or
uv_close(). Trying to read from the stream again is
undefined.

The callee is responsible for freeing the buffer, libuv does
not reuse it. The buffer may be a null buffer (where buf-
>bpase == NULL and buf->/en == 0) on error.

void (*uv_write_cb)(uv_write_t* req, int status)
Callback called after data was written on a stream. status
will be 0 in case of success, < 0 otherwise.

void (*uv_connect_cb)(uv_connect_t* req, int status)

Callback called after a connection started by uv_connect()
is done. status will be 0 in case of success, <0
otherwise.

void (*uv_shutdown_cb)(uv_shutdown_t* req, int status)

Callback called after a shutdown request has been
completed. status will be 0 in case of success, < 0
otherwise.

void (*uv_connection_cbh)(uv_stream_t* server, int status)

Callback called when a stream server has received an
incoming connection. The user can accept the connection

by calling uv_accept(). status will be 0 in case of success,
< 0 otherwise.

Public members

Size tuv_stream_t.write_queue_size

Contains the amount of queued bytes waiting to be sent.
Readonly.

uv_stream_t* uv_connect_t.handle

Pointer to the stream where this connection request is
running.

uv_stream_t* uv_shutdown_t.handle

Pointer to the stream where this shutdown request is
running.

uv_stream_t* uv_write_t.handle
Pointer to the stream where this write request is running.

uv_stream_t* uv_write_t.send_handle
Pointer to the stream being sent using this write request.

See also

The uv_handle_t members also apply.

API

int uv_shutdown(uv_shutdown_t* req, uv_stream_t* handle,
uv_shutdown_cb cb)

Shutdown the outgoing (write) side of a duplex stream. It
waits for pending write requests to complete. The handle
should refer to a initialized stream. req should be an

uninitialized shutdown request struct. The cb is called
after shutdown is complete.

int uv_listen(uv_stream_t* stream, int backlog,
uv_connection_cb cb)

Start listening for incoming connections. backlog
indicates the number of connections the kernel might
queue, same as listen(2) [https://man7.org/linux/man-
pages/man2/listen.2.html]. When a new incoming connection is
received the uv_connection_cb callback is called.

int uv_accept(uv_stream_t* server, uv_stream_t* client)

This call is used in conjunction with uv_listen() to accept
incoming connections. Call this function after receiving a
uv_connection_cb to accept the connection. Before calling
this function the client handle must be initialized. < 0
return value indicates an error.

When the uv_connection_cb callback is called it is
guaranteed that this function will complete successfully
the first time. If you attempt to use it more than once, it
may fail. It is suggested to only call this function once per
uv_connection_cb call.

Note

server and client must be handles running on the same
loop.

int uv_read_start(uv_stream_t* stream,
uv_alloc_cb alloc cb, uv_read_cb read cb)
Read data from an incoming stream. The uv_read_cb

callback will be made several times until there is no more
data to read or uv_read_stop(). is called.

https://man7.org/linux/man-pages/man2/listen.2.html

Changed in version 1.38.0: uv_read_start() NOW
consistently returns UV_EALREADY when called twice,
and UV_EINVAL when the stream is closing. With older
libuv versions, it returns UV_EALREADY on Windows but
not UNIX, and UV_EINVAL on UNIX but not Windows.

int uv_read_stop(uv_stream_t*)

Stop reading data from the stream. The uv_read_cb
callback will no longer be called.

This function is idempotent and may be safely called on a
stopped stream.

This function will always succeed; hence, checking its
return value is unnecessary. A non-zero return indicates
that finishing releasing resources may be pending on the
next input event on that TTY on Windows, and does not
indicate failure.

int uv_write(uv_write_t* req, uv_stream_t* handle, const
uv_buf t bufs[], unsigned int nbufs, uv_write_cb cb)

Write data to stream. Buffers are written in order.
Example:

void cb(uv_write t* req, int status) {
/* Logic which handles the write result */

}
uv_ buf t a[] = {
{ .base = "1", .len =1 },
{ .base = "2", .len =1 }
b
uv_buf t b[] = {
{ .base = "3", .len =1 },
{ .base = "4", .len =1 }
b

uv_write t reql;

uv_write t req2;

/* writes "1234" */
uv_write(&reql, stream, a, 2, cb);
uv_write(&req2, stream, b, 2, cb);

Note

The memory pointed to by the buffers must remain
valid until the callback gets called. This also holds for
uv_write2().

int uv_write2(uv_write_t* req, uv_stream_t* handle, const
uv_buf_t bufs[], unsigned int nbufs,
uv_stream_t* send_handle, uv_write_cb cb)
Extended write function for sending handles over a pipe.
The pipe must be initialized with ipc ==

Note

send_handle must be a TCP, pipe and UDP handle on
Unix, or a TCP handle on Windows, which is a server or
a connection (listening or connected state). Bound
sockets or pipes will be assumed to be servers.

int uv_try write(uv_stream_t* handle, const uv_buf t bufs[],

unsigned int nbufs)
Same as uv_write(), but won't queue a write request if it
can’'t be completed immediately.

Will return either:

e > 0: number of bytes written (can be less than the

supplied buffer size).
e < 0: negative error code (Uv_EAGAIN is returned if no

data can be sent immediately).

int uv_try write2(uv_stream_t* handle, const

uv_buf_t bufs[], unsigned int nbufs,

uv_stream_t* send_handle)
Same as uv_try write() and extended write function for
sending handles over a pipe like c:func:uv_writeZ2.

Try to send a handle is not supported on Windows, where
it returns UV _EAGAIN.

New in version 1.42.0.

int uv_is_readable(const uv_stream_t* handle)
Returns 1 if the stream is readable, 0 otherwise.

int uv_is_writable(const uv_stream_t* handle)
Returns 1 if the stream is writable, 0 otherwise.

int uv_stream_set_blocking(uv_stream_t* handle,
int blocking)
Enable or disable blocking mode for a stream.

When blocking mode is enabled all writes complete
synchronously. The interface remains unchanged
otherwise, e.g. completion or failure of the operation will
still be reported through a callback which is made
asynchronously.

Warning

Relying too much on this APl is not recommended. It is
likely to change significantly in the future.

Currently only works on Windows for uv_pipe_t handles.
On UNIX platforms, all uv_stream_t handles are
supported.

Also libuv currently makes no ordering guarantee when
the blocking mode is changed after write requests have
already been submitted. Therefore it is recommended
to set the blocking mode immediately after opening or
creating the stream.

Changed in version 1.4.0: UNIX implementation added.

size_t uv_stream_get write queue_size(const
uv_stream_t* stream)

Returns stream->write _queue_size.

New in version 1.19.0.

See also

The uv_handle_t API functions also apply.

uv_tcp t — TCP handle

TCP handles are used to represent both TCP streams and
servers.

uv_tcp_t is a ‘subclass’ of uv_stream_t.

Data types

uv_tcp_t
TCP handle type.

Public members
N/A

See also

The uv_stream_t members also apply.

API

int uv_tcp_init(uv_loop_t* loop, uv_tcp_t* handle)
Initialize the handle. No socket is created as of yet.

int uv_tcp_init_ex(uv_loop_t* loop, uv_tcp_t* handle,
unsigned int flags)
Initialize the handle with the specified flags. At the

moment only the lower 8 bits of the flags parameter are
used as the socket domain. A socket will be created for

the given domain. If the specified domain is AF_UNSPEC no
socket is created, just like uv_tcp_init().

New in version 1.7.0.

int uv_tcp_open(uv_tcp_t* handle, uv_os_sock_t sock)

Open an existing file descriptor or SOCKET as a TCP
handle.

Changed in version 1.2.1: the file descriptor is set to non-
blocking mode.

Note

The passed file descriptor or SOCKET is not checked for
its type, but it's required that it represents a valid
stream socket.

int uv_tcp_nodelay(uv_tcp_t* handle, int enable)
Enable TCP_NODELAY, which disables Nagle’s algorithm.

int uv_tcp_keepalive(uv_tcp_t* handle, int enable, unsigned
int delay)

Enable / disable TCP keep-alive. delay is the initial delay
in seconds, ignored when enable is zero.

After delay has been reached, 10 successive probes,
each spaced 1 second from the previous one, will still
happen. If the connection is still lost at the end of this
procedure, then the handle is destroyed with a
UV_ETIMEDOUT error passed to the corresponding callback.

int uv_tcp_simultaneous_accepts(uv_tcp_t* handle,
int enable)

Enable / disable simultaneous asynchronous accept
requests that are queued by the operating system when
listening for new TCP connections.

This setting is used to tune a TCP server for the desired
performance. Having simultaneous accepts can
significantly improve the rate of accepting connections
(which is why it is enabled by default) but may lead to
uneven load distribution in multi-process setups.

int uv_tcp_bind(uv_tcp_t* handle, const struct
sockaddr* addr, unsigned int flags)
Bind the handle to an address and port. addr should
point to an initialized struct sockaddr _in Or struct
sockaddr in6.

When the port is already taken, you can expect to see an
UV_EADDRINUSE error from uv_listen() Or uv_tcp_connect().
That is, a successful call to this function does not
guarantee that the call to uv_listen() Or uv_tcp_connect()
will succeed as well.

flags can contain uv_TCP_IPV6ONLY, in which case dual-stack
support is disabled and only IPv6 is used.

int uv_tcp_getsockname(const uv_tcp_t* handle, struct
sockaddr* name, int* namelen)

Get the current address to which the handle is bound.
name must point to a valid and big enough chunk of
memory, struct sockaddr storage is recommended for IPv4
and IPv6 support.

int uv_tcp_getpeername(const uv_tcp_t* handle, struct
sockaddr* name, int* namelen)

Get the address of the peer connected to the handle.
name must point to a valid and big enough chunk of
memory, struct sockaddr storage is recommended for IPv4
and IPv6 support.

int uv_tcp_connect(uv_connect_t* req, uv_tcp_t* handle,
const struct sockaddr* addr, uv_connect_cb cb)

Establish an IPv4 or IPv6 TCP connection. Provide an
initialized TCP handle and an uninitialized uv_connect_t.
addr should point to an initialized struct sockaddr in or
struct sockaddr in®.

On Windows if the addr is initialized to point to an
unspecified address (0.0.0.0 or ::) it will be changed to
point to localhost. This is done to match the behavior of
Linux systems.

The callback is made when the connection has been
established or when a connection error happened.

Changed in version 1.19.0: added 0.0.0.0 and :: to
localhost mapping

See also

The uv_stream_t APl functions also apply.

int uv_tcp_close_reset(uv_tcp_t* handle,
uv_close_cb close cb)

Resets a TCP connection by sending a RST packet. This is
accomplished by setting the SO _LINGER socket option
with a linger interval of zero and then calling uv_close().
Due to some platform inconsistencies, mixing of
uv_shutdown (). and uv_tcp_close_reset() calls is not allowed.

New in version 1.32.0.

int uv_socketpair(int type, int protocol,

uv_os_sock_t socket vector[2], int flagsO0, int flags1)
Create a pair of connected sockets with the specified
properties. The resulting handles can be passed to
uv_tcp_open, used with uv_spawn, or for any other
purpose.

Valid values for flags0O and flagsl1 are:

« UV_NONBLOCK PIPE: Opens the specified socket
handle for OVERLAPPED or
FIONBIO/O_NONBLOCK 1/O usage. This is
recommended for handles that will be used by
libuv, and not usually recommended otherwise.

Equivalent to socketpair(2) [https://man7.org/linux/man-
pages/man2/socketpair.2.html] with @ domain of AF_UNIX.

New in version 1.41.0.

https://man7.org/linux/man-pages/man2/socketpair.2.html

uv_pipe_t — Pipe handle

Pipe handles provide an abstraction over streaming files on
Unix (including local domain sockets, pipes, and FIFOs) and
named pipes on Windows.

uv_pipe_t IS a ‘subclass’ of uv_stream_t.

Data types

uv_pipe_t
Pipe handle type.

Public members

int uv_pipe_t.ipc
Whether this pipe is suitable for handle passing between
processes. Only a connected pipe that will be passing the
handles should have this flag set, not the listening pipe
that uv_accept is called on.

See also

The uv_stream_t members also apply.

API

int uv_pipe_init(uv_loop_t* loop, uv_pipe_t* handle, int ipc)
Initialize a pipe handle. The ipc argument is a boolean to
indicate if this pipe will be used for handle passing
between processes (which may change the bytes on the

wire). Only a connected pipe that will be passing the
handles should have this flag set, not the listening pipe
that uv_accept is called on.

int uv_pipe_open(uv_pipe_t* handle, uv_file file)
Open an existing file descriptor or HANDLE as a pipe.

Changed in version 1.2.1: the file descriptor is set to non-
blocking mode.

Note

The passed file descriptor or HANDLE is not checked for
its type, but it's required that it represents a valid pipe.

int uv_pipe_bind(uv_pipe_t* handle, const char* name)
Bind the pipe to a file path (Unix) or a name (Windows).

Note

Paths on Unix get truncated to
sizeof (sockaddr un.sun path) bytes, typically between 92
and 108 bytes.

void uv_pipe connect(uv_connect t* req, uv_pipe_t* handle,
const char* name, uv_connect_cb cb)
Connect to the Unix domain socket or the named pipe.

Note

Paths on Unix get truncated to
sizeof (sockaddr un.sun path) bytes, typically between 92
and 108 bytes.

int uv_pipe_getsockname(const uv_pipe_t* handle,

char* buffer, size_t* size)
Get the name of the Unix domain socket or the named
pipe.

A preallocated buffer must be provided. The size
parameter holds the length of the buffer and it’s set to
the number of bytes written to the buffer on output. If
the buffer is not big enough uv_EN0BUFS will be returned
and len will contain the required size.

Changed in version 1.3.0: the returned length no longer
includes the terminating null byte, and the buffer is not
null terminated.

int uv_pipe_getpeername(const uv_pipe_t* handle,

char* buffer, size_t* size)
Get the name of the Unix domain socket or the named
pipe to which the handle is connected.

A preallocated buffer must be provided. The size
parameter holds the length of the buffer and it’s set to
the number of bytes written to the buffer on output. If
the buffer is not big enough uv_EN0BUFS will be returned
and len will contain the required size.

New in version 1.3.0.

void uv_pipe pending_instances(uv_pipe_t* handle,
int count)

Set the number of pending pipe instance handles when
the pipe server is waiting for connections.

Note
This setting applies to Windows only.

int uv_pipe_pending_count(uv_pipe_t* handle)

uv_handle _type uv_pipe_pending_type(uv_pipe_t* handle)
Used to receive handles over IPC pipes.

First - call uv_pipe_pending_count(), if it’'s > O then initialize
a handle of the given type, returned by

See also

The uv_stream_t API functions also apply.

int uv_pipe_chmod(uv_pipe_t* handle, int flags)
Alters pipe permissions, allowing it to be accessed from
processes run by different users. Makes the pipe writable
or readable by all users. Mode can be uv WRITABLE,
UV _READABLE Or UV WRITABLE | UV READABLE. This function is
blocking.

New in version 1.16.0.

int uv_pipe(uv_file fds[2], int read flags, int write _flags)
Create a pair of connected pipe handles. Data may be
written to fds[1] and read from fds[0]. The resulting
handles can be passed to uv_pipe open, used with
uv_spawn, or for any other purpose.

Valid values for flags are:

« UV_NONBLOCK PIPE: Opens the specified socket
handle for OVERLAPPED or
FIONBIO/O_NONBLOCK 1/O usage. This is

recommended for handles that will be used by
libuv, and not usually recommended otherwise.

Equivalent to pipe(2) [https://man7.org/linux/man-
pages/man2/pipe.2.html] with the O_CLOEXEC flag set.

New in version 1.41.0.

https://man7.org/linux/man-pages/man2/pipe.2.html

uv_tty t — TTY handle

ITY handles represent a stream for the console.

uv_tty_t is a ‘subclass’ of uv_stream_t.

Data types

uv_tty t
TTY handle type.

Public members
N/A

See also

The uv_stream_t members also apply.

API

int uv_tty init(uv_loop_t* loop, uv_tty_t* handle, uv_file fd,
int unused)

Initialize a new TTY stream with the given file descriptor.
Usually the file descriptor will be:

e 0 = stdin
e 1 = stdout
e 2 = stderr

On Unix this function will determine the path of the fd of
the terminal using ttyname_r(3) [https://man7.org/linux/man-

https://man7.org/linux/man-pages/man3/ttyname_r.3.html

pages/man3/ttyname_r.3.html], open it, and use it if the passed
file descriptor refers to a TTY. This lets libuv put the tty in
non-blocking mode without affecting other processes that
share the tty.

This function is not thread safe on systems that don’t
support ioctl TIOCGPTN or TIOCPTYGNAME, for instance
OpenBSD and Solaris.

Note

If reopening the TTY fails, libuv falls back to blocking
writes.

Changed in version 1.23.1:: the readable parameter is
now unused and ignored. The correct value will now be
auto-detected from the kernel.

Changed in version 1.9.0:: the path of the TTY is
determined by ttyname_r(3) [https://man7.org/linux/man-
pages/man3/ttyname_r.3.html]. In earlier versions libuv opened
/dev/tty instead.

Changed in version 1.5.0:: trying to initialize a TTY
stream with a file descriptor that refers to a file returns
UV_EINVAL on UNIX.

int uv_tty set _mode(uv_tty_t* handle, uv_tty mode_t mode)

Changed in version 1.2.0:: the mode is specified as a
uv_tty mode_t value.

Set the TTY using the specified terminal mode.

int uv_tty reset_mode(void)

To be called when the program exits. Resets TTY settings
to default values for the next process to take over.

https://man7.org/linux/man-pages/man3/ttyname_r.3.html

This function is async signal-safe on Unix platforms but
can fail with error code uv_EBusy if you call it when
execution is inside uv_tty_set_mode().

int uv_tty get winsize(uv_tty_t* handle, int* width,
int* height)
Gets the current Window size. On success it returns O.

See also

The uv_stream_t API functions also apply.

void uv_tty set vterm_state(uv_tty vtermstate t state)

Controls whether console virtual terminal sequences are
processed by libuv or console. Useful in particular for
enabling ConEmu support of ANSI X3.64 and Xterm 256
colors. Otherwise Windows10 consoles are usually
detected automatically.

This function is only meaningful on Windows systems. On
Unix it is silently ignored.

New in version 1.33.0.

int uv_tty get vterm_state(uv tty vtermstate t* state)

Get the current state of whether console virtual terminal
sequences are handled by libuv or the console.

This function is not implemented on Unix, where it
returns Uv_ENOTSUP.

New in version 1.33.0.

uv_udp_t — UDP handle

UDP handles encapsulate UDP communication for both clients
and servers.

Data types

uv_udp t
UDP handle type.

uv_udp_send_t
UDP send request type.

uv_udp_flags
Flags used in uv_udp_bind(). and uv_udp_recv_cbh..

enum uv_udp flags {

/* Disables dual stack mode. */

UV _UDP_IPVG6ONLY = 1,

/*

* Indicates message was truncated because read buffer was
too small. The

* remainder was discarded by the 0S. Used in
uv_udp recv cb.

*/

UV _UDP PARTIAL = 2,

/*

* Indicates if SO REUSEADDR will be set when binding the
handle in

* uv_udp bind.

* This sets the SO REUSEPORT socket flag on the BSDs and
0S X. On other

* Unix platforms, it sets the SO REUSEADDR flag. What
that means is that

* multiple threads or processes can bind to the same
address without error

* (provided they all set the flag) but only the last one
to bind will receive

* any traffic, in effect "stealing" the port from the

previous listener.
*/
UV_UDP REUSEADDR = 4,
/*
* Indicates that the message was received by recvmmsg,
so the buffer provided
* must not be freed by the recv _cb callback.
*/
UV_UDP MMSG CHUNK = 8,
/*
* Indicates that the buffer provided has been fully
utilized by recvmmsg and
* that it should now be freed by the recv cb callback.
When this flag is set
* in uv_udp recv_cb, nread will always be 0 and addr
will always be NULL.
*/
UV_UDP MMSG FREE = 16,
/*
* Indicates if IP_RECVERR/IPV6 RECVERR will be set when
binding the handle.
* This sets IP _RECVERR for IPv4 and IPV6_ RECVERR for
IPv6 UDP sockets on
* Linux. This stops the Linux kernel from supressing
some ICMP error messages
* and enables full ICMP error reporting for faster

failover.
* This flag is no-op on platforms other than Linux.
*/
UV _UDP LINUX RECVERR = 32,
/*
* Indicates that recvmmsg should be used, if available.
*/

UV_UDP RECVMMSG = 256
+;

void (*uv_udp_send_cbh)(uv_udp_send_t* req, int status)

Type definition for callback passed to uv_udp_send(), which
is called after the data was sent.

void (*uv_udp_recv_cb)(uv_udp_t* handle, ssize t nread,
const uv_buf_t* buf, const struct sockaddr* addr,
unsigned flags)

Type definition for callback passed to uv_udp_recv_start(),
which is called when the endpoint receives data.

e handle: UDP handle

e nread: Number of bytes that have been received. 0 if
there is no more data to read. Note that 0 may also
mean that an empty datagram was received (in this
case addr is not NULL). < O if a transmission error was
detected; if using recvmmsg(2), [https://man7.org/linux/man-
pages/man2/recvmmsg.2.html] N0 more chunks will be
received and the buffer can be freed safely.

e buf: uv_buf_t with the received data.

e addr: struct sockaddr* containing the address of the
sender. Can be NULL. Valid for the duration of the
callback only.

e flags: One or more or'ed UV_UDP_* constants.

The callee is responsible for freeing the buffer, libuv does
not reuse it. The buffer may be a null buffer (where buf-
>base == NULL and buf->/en == 0) on error.

pages/man2/recvmmsg.2.html], chunks will have the
UV_UDP_MMSG_CHUNK flag set, those must not be freed.
If no errors occur, there will be a final callback with nread
set to 0, addr set to NULL and the buffer pointing at the
initially allocated data with the UV_UDP_MMSG_CHUNK
flag cleared and the UV_UDP_MMSG_FREE flag set. If a
UDP socket error occurs, nread will be < 0. In either
scenario, the callee can now safely free the provided
buffer.

When using recvmmsg(Z),[https://man7.org/|inux/man-

Changed in version 1.40.0: added the
UV _UDP _MMSG_FREE flag.

Note

https://man7.org/linux/man-pages/man2/recvmmsg.2.html
https://man7.org/linux/man-pages/man2/recvmmsg.2.html

The receive callback will be called with nread == 0 and
addr == NULL when there is nothing to read, and with
nread == 0 and addr '= NULL when an empty UDP
packet is received.

Public members

Size t uv_udp_t.send_queue_size

Number of bytes queued for sending. This field strictly
shows how much information is currently queued.

Size t uv_udp_t.send_queue_count

Number of send requests currently in the queue awaiting
to be processed.

uv_udp_t* uv_udp_send_t.handle
UDP handle where this send request is taking place.

See also

The uv_handle_t members also apply.

API

int uv_udp_init(uv_loop_t* loop, uv_udp_t* handle)

Initialize a new UDP handle. The actual socket is created
lazily. Returns 0 on success.

int uv_udp_init_ex(uv_loop_t* loop, uv_udp_t* handle,
unsigned int flags)
Initialize the handle with the specified flags. The lower 8

bits of the flags parameter are used as the socket domain.
A socket will be created for the given domain. If the

specified domain is AF_UNSPEC no socket is created, just like
uv_udp_init().

The remaining bits can be used to set one of these flags:

« UV _UDP _RECVMMSG: if set, and the platform supports
it, recvmmsg_(z)_ [https://man7.org/linux/man-
pages/man2/recvmmsg.2.html] will be used.

New in version 1.7.0.

Changed in version 1.37.0: added the UV_UDP_RECVMMSG
flag.

int uv_udp_open(uv_udp_t* handle, uv_os_sock_t sock)

Opens an existing file descriptor or Windows SOCKET as a
UDP handle.

Unix only: The only requirement of the sock argument is
that it follows the datagram contract (works in
unconnected mode, supports sendmsg()/recvmsg(), etc).
In other words, other datagram-type sockets like raw
sockets or netlink sockets can also be passed to this
function.

Changed in version 1.2.1: the file descriptor is set to non-
blocking mode.

Note

The passed file descriptor or SOCKET is not checked for
its type, but it’s required that it represents a valid
datagram socket.

int uv_udp_bind(uv_udp_t* handle, const struct
sockaddr* addr, unsigned int flags)
Bind the UDP handle to an IP address and port.

https://man7.org/linux/man-pages/man2/recvmmsg.2.html

Parameters: handle - UDP handle. Should have beel
initialized with uv_udp_init().

o addr - struct sockaddr in or struct
sockaddr_in6 with the address and port
to bind to.

» flags - Indicate how the socket will be
bound, Uv_UDP_IPV6ONLY, UV_UDP_REUSEADDR,
and Uv_UDP RECVERR are supported.

Returns: 0 on success, or an error code < 0 on
failure.

int uv_udp_connect(uv_udp_t* handle, const struct
sockaddr* addr)

Associate the UDP handle to a remote address and port, so
every message sent by this handle is automatically sent to
that destination. Calling this function with a NULL addr
disconnects the handle. Trying to call uv_udp_connect() on
an already connected handle will result in an UV_EISCONN
error. Trying to disconnect a handle that is not connected
will return an UV_ENOTCONN error.

Parameters: handle - UDP handle. Should have beel
initialized with uv_udp_init().

o addr - struct sockaddr in or struct
sockaddr _in6 with the address and port
to associate to.

Returns: 0 on success, or an error code < 0 on
failure.

New in version 1.27.0.

int uv_udp_getpeername(const uv_udp_t* handle, struct
sockaddr* name, int* namelen)
Get the remote IP and port of the UDP handle on

connected UDP handles. On unconnected handles, it
returns UV_ENOTCONN.

Parameters: handle - UDP handle. Should have beel
initialized with uv_udp_init() and bound.

e name - Pointer to the structure to be
filled with the address data. In order to
support IPv4 and IPv6 struct
sockaddr _storage should be used.

« namelen - On input it indicates the dat
of the name field. On output it indicates
how much of it was filled.

Returns: 0 on success, or an error code < 0 on
failure

New in version 1.27.0.

int uv_udp_getsockname(const uv_udp_t* handle, struct
sockaddr* name, int* namelen)
Get the local IP and port of the UDP handle.

Parameters: handle - UDP handle. Should have beel
initialized with uv_udp_init() and bound.

e name - Pointer to the structure to be
filled with the address data. In order to
support IPv4 and IPv6 struct
sockaddr storage should be used.

« namelen - On input it indicates the dat
of the name field. On output it indicates
how much of it was filled.

Returns: 0 on success, or an error code < 0 on
failure.

int uv_udp_set_membership(uv_udp_t* handle, const
char* multicast_addr, const char* interface_addr,
uv_membership membership)

Set membership for a multicast address

handle - UDP handle. Should have beel
initialized with uv_udp_init().
 multicast_addr - Multicast address to
set membership for.
» interface_addr - Interface address.
e membership - Should be uv _J0IN GROUP
Oor UV_LEAVE_ GROUP.
Returns: 0 on success, or an error code < 0 on
failure.

Parameters:

int uv_udp_set_source_membership(uv_udp_t* handle, const
char* multicast_addr, const char* interface_addr, const
char* source_addr, uv_membership membership)

Set membership for a source-specific multicast group.

Parameters: handle - UDP handle. Should have beel
initialized with uv_udp_init().
 multicast_addr - Multicast address to
set membership for.
» interface_addr - Interface address.
» source_addr - Source address.
« membership - Should be uv_J0IN GROUP
Or UV_LEAVE_ GROUP.
Returns: 0 on success, or an error code < 0 on
failure.

New in version 1.32.0.

int uv_udp_set_multicast loop(uv_udp_t* handle, int on)

Set IP multicast loop flag. Makes multicast packets loop
back to local sockets.

Parameters: handle - UDP handle. Should have beel
initialized with uv_udp_init().
e on - 1 for on, O for off.
Returns: 0 on success, or an error code < 0 on
failure.

int uv_udp_set_multicast_ttl(uv_udp_t* handle, int ttl)
Set the multicast ttl.

Parameters: handle - UDP handle. Should have beel
initialized with uv_udp_init().
e ttl - 1 through 255.
Returns: 0 on success, or an error code < 0 on
failure.

int uv_udp_set_multicast_interface(uv_udp_t* handle, const
char* interface_addr)
Set the multicast interface to send or receive data on.

Parameters: handle - UDP handle. Should have beel
initialized with uv_udp_init().
» interface_addr - interface address.
Returns: 0 on success, or an error code < 0 on
failure.

int uv_udp_set_broadcast(uv_udp_t* handle, int on)
Set broadcast on or off.

Parameters: handle - UDP handle. Should have beel
initialized with uv_udp_init().
e on - 1 for on, O for off.
Returns: 0 on success, or an error code < 0 on
failure.

int uv_udp_set_ttl(uv_udp_t* handle, int ttl)
Set the time to live.

Parameters: handle - UDP handle. Should have beel
initialized with uv_udp_init().
o ttl - 1 through 255.
Returns: 0 on success, or an error code < 0 on
failure.

int uv_udp_send(uv_udp_send_t* req, uv_udp_t* handle, const

uv_buf t bufs[], unsigned int nbufs, const struct

sockaddr* addr, uv_udp_send_cb send cb)
Send data over the UDP socket. If the socket has not
previously been bound with uv_udp_bind(). it will be bound
to 0.0.0.0 (the “all interfaces” IPv4 address) and a random
port number.

On Windows if the addr is initialized to point to an
unspecified address (0.0.0.0 or ::) it will be changed to
point to localhost. This is done to match the behavior of
Linux systems.

For connected UDP handles, addr must be set to NULL,
otherwise it will return UV_EISCONN error.

For connectionless UDP handles, addr cannot be NULL,
otherwise it will return UV_EDESTADDRREQ error.

Parameters: e req - UDP request handle. Need not be
initialized.

e handle - UDP handle. Should have beel
initialized with uv_udp_init().

e bufs - List of buffers to send.

e nbufs - Number of buffers in bufs.

o addr - struct sockaddr _in or struct
sockaddr in6 with the address and port
of the remote peer.

 send cb - Callback to invoke when the
data has been sent out.

Returns: 0 on success, or an error code < 0 on
failure.

Changed in version 1.19.0: added 0.0.0.0 and :: to
localhost mapping

Changed in version 1.27.0: added support for connected
sockets

int uv_udp_try send(uv_udp_t* handle, const uv_buf t bufs[],
unsigned int nbufs, const struct sockaddr* addr)

Same as uv_udp_send(), but won’t queue a send request if it
can’t be completed immediately.

For connected UDP handles, addr must be set to NULL,
otherwise it will return UV_EISCONN error.

For connectionless UDP handles, addr cannot be NULL,
otherwise it will return UV_EDESTADDRREQ error.

Returns: >= 0: number of bytes sent (it matches
the given buffer size). < 0: negative
error code (UV_EAGAIN is returned when
the message can’t be sent immediately).

Changed in version 1.27.0: added support for connected
sockets

int uv_udp_recv_start(uv_udp_t* handle, uv_alloc_cb alloc _cb,
uv_udp_recv_cb recv_cb)
Prepare for receiving data. If the socket has not previously

been bound with uv_udp_bind() it is bound to 0.0.0.0 (the
“all interfaces” IPv4 address) and a random port number.

Parameters: handle - UDP handle. Should have beel
initialized with uv_udp_init().
» alloc_cb - Callback to invoke when
temporary storage is needed.
» recv_cb - Callback to invoke with
received data.
Returns: 0 on success, or an error code < 0 on
failure.

Note

When using recvmmsg_(;)_[https://man7.org/Iinux/man-
pages/man2/recvmmsg.2.html], the number of Mmessages
received at a time is limited by the number of max size
dgrams that will fit into the buffer allocated in alloc_cb,
and suggested size in alloc_cb for udp _recv is always set
to the size of 1 max size dgram.

Changed in version 1.35.0: added support for

recvim msg_(z)_ [https://man7.org/linux/man-pages/man2/recvmmsg.2.html]
on supported platforms). The use of this feature requires a
buffer larger than 2 * 64KB to be passed to alloc cb.

Changed in version 1.37.0: recvmmsg(2)
[https://man7.org/linux/man-pages/man2/recvmmsg.2.html] SUpport IS no
longer enabled implicitly, it must be explicitly requested
by passing the UV_UDP_RECVMMSG flag to

uv_udp_init_ex().

Changed in version 1.39.0: uv_udp_using_recvmmsg(). Can be
used in alloc_cb to determine if a buffer sized for use with
recvim msg_(;)_ [https://man7.org/linux/man-pages/man2/recvmmsg.2.html]
should be allocated for the current handle/platform.

int uv_udp_using_recvmmsg(uv_udp_t* handle)

Returns 1 if the UDP handle was created with the
UV_UDP_RECVMMSG flag and the platform supports
recvmmsg(2) [https://man7.org/linux/man-
pages/man2/recvmmsg.2.html], O otherwise.

New in version 1.39.0.

int uv_udp_recv_stop(uv_udp_t* handle)
Stop listening for incoming datagrams.

https://man7.org/linux/man-pages/man2/recvmmsg.2.html
https://man7.org/linux/man-pages/man2/recvmmsg.2.html
https://man7.org/linux/man-pages/man2/recvmmsg.2.html
https://man7.org/linux/man-pages/man2/recvmmsg.2.html
https://man7.org/linux/man-pages/man2/recvmmsg.2.html

Parameters: « handle - UDP handle. Should have beel
initialized with uv_udp_init().
Returns: 0 on success, or an error code < 0 on
failure.

size_t uv_udp_get_send_queue_size(const uv_udp_t* handle)
Returns handle->send queue_size.

New in version 1.19.0.

size_t uv_udp_get_send_queue_count(const uv_udp_t* handle)
Returns handle->send_queue_count.

New in version 1.19.0.

See also

The uv_handle_t API functions also apply.

uv_fs_event_t — FS Event
handle

FS Event handles allow the user to monitor a given path for
changes, for example, if the file was renamed or there was a
generic change in it. This handle uses the best backend for
the job on each platform.

Note

For AlX, the non default IBM bos.ahafs package has to be
installed. The AIX Event Infrastructure file system (ahafs)
has some limitations:

e ahafs tracks monitoring per process and is not
thread safe. A separate process must be spawned
for each monitor for the same event.

e Events for file modification (writing to a file) are
not received if only the containing folder is
watched.

See documentation [https://developer.ibm.com/articles/au-
aix_event infrastructure/] for more details.

The z/OS file system events monitoring infrastructure does
not notify of file creation/deletion within a directory that is
being monitored. See the |BM Knowledge centre
[https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.2.0/com.ibm.zos
.v2rl.bpxb100/ioc.htm] for more details.

Data types

https://developer.ibm.com/articles/au-aix_event_infrastructure/
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.2.0/com.ibm.zos.v2r1.bpxb100/ioc.htm

uv_fs_event_t
FS Event handle type.

void (*uv_fs_event_cb)(uv_fs_event_t* handle, const
char* filename, int events, int status)

Callback passed to uv_fs_event_start() which will be called
repeatedly after the handle is started. If the handle was
started with a directory the filename parameter will be a
relative path to a file contained in the directory. The
events parameter is an ORed mask of uv_fs_event
elements.

uv_fs_event
Event types that uv_fs_event_t handles monitor.

enum uv_fs event {
UV_RENAME = 1,
UV_CHANGE = 2

};

uv_fs_event_flags
Flags that can be passed to uv_fs_event_start() to control
its behavior.

enum uv_fs event flags {

/*

* By default, if the fs event watcher is given a
directory name, we will

* watch for all events in that directory. This flags
overrides this behavior

* and makes fs event report only changes to the
directory entry itself. This

* flag does not affect individual files watched.

* This flag is currently not implemented yet on any
backend.

*/

UV _FS EVENT WATCH ENTRY = 1,

/*

* By default uv_fs event will try to use a kernel
interface such as inotify

* or kqueue to detect events. This may not work on
remote file systems such

* as NFS mounts. This flag makes fs event fall back to
calling stat() on a

* regular interval.

* This flag is currently not implemented yet on any
backend.

*/

UV _FS EVENT STAT = 2,

/*

* By default, event watcher, when watching directory, is

not registering

* (1s ignoring) changes in its subdirectories.

* This flag will override this behaviour on platforms
that support it.

*/

UV _FS EVENT RECURSIVE = 4
}i

Public members
N/A

See also

The uv_handle_t members also apply.

API

int uv_fs_event_init(uv_loop_t* Joop,
uv_fs_event_t* handle)
Initialize the handle.

int uv_fs_event_start(uv_fs_event t* handle,
uv_fs_event cb cb, const char* path, unsigned int flags)

Start the handle with the given callback, which will watch

the specified path for changes. flags can be an ORed

mask of uv_fs_event_flags.

Note

Currently the only supported flag is uv_FS EVENT RECURSIVE
and only on OSX and Windows.

int uv_fs_event_stop(uv_fs_event_t* handle)
Stop the handle, the callback will no longer be called.

int uv_fs_event_getpath(uv_fs_event_t* handle, char* buffer,

size_t* size)
Get the path being monitored by the handle. The buffer
must be preallocated by the user. Returns 0 on success
or an error code < 0 in case of failure. On success, buffer
will contain the path and size its length. If the buffer is
not big enough UV_ENOBUFS will be returned and size
will be set to the required size, including the null
terminator.

Changed in version 1.3.0: the returned length no longer
includes the terminating null byte, and the buffer is not
null terminated.

Changed in version 1.9.0: the returned length includes
the terminating null byte on UV_ENOBUFS, and the buffer
is null terminated on success.

See also

The uv_handle_t APl functions also apply.

uv_fs_poll_t — FS Poll
handle

FS Poll handles allow the user to monitor a given path for
changes. Unlike uv_fs_event_t, fs poll handles use stat to
detect when a file has changed so they can work on file
systems where fs event handles can’t.

Data types

uv_fs poll_t
FS Poll handle type.

void (*uv_fs_poll_cb)(uv_fs_poll_t* handle, int status, const
uv_stat_t* prev, const uv_stat_t* curr)
Callback passed to uv_fs_poll_start() which will be called
repeatedly after the handle is started, when any change
happens to the monitored path.

The callback is invoked with status < O if path does not
exist or is inaccessible. The watcher is not stopped but
your callback is not called again until something changes
(e.g. when the file is created or the error reason
changes).

When status == 0, the callback receives pointers to the
old and new uv_stat_t structs. They are valid for the
duration of the callback only.

Public members

N/A

See also

The uv_handle_t members also apply.

API

int uv_fs_poll init(uv_loop_t* loop, uv_fs_poll_t* handle)
Initialize the handle.

int uv_fs_poll start(uv_fs_poll_t* handle,
uv_fs_poll_cb poll cb, const char* path, unsigned
int interval)

Check the file at path for changes every interval
milliseconds.

Note

For maximum portability, use multi-second intervals.
Sub-second intervals will not detect all changes on
many file systems.

int uv_fs_poll_stop(uv_fs_poll_t* handle)
Stop the handle, the callback will no longer be called.

int uv_fs_poll getpath(uv_fs_poll_t* handle, char* buffer,

size_t* size)
Get the path being monitored by the handle. The buffer
must be preallocated by the user. Returns 0 on success
or an error code < 0 in case of failure. On success, buffer
will contain the path and size its length. If the buffer is
not big enough UV_ENOBUFS will be returned and size
will be set to the required size.

Changed in version 1.3.0: the returned length no longer
includes the terminating null byte, and the buffer is not
null terminated.

Changed in version 1.9.0: the returned length includes

the terminating null byte on UV_ENOBUFS, and the buffer
is null terminated on success.

See also

The uv_handle_t API functions also apply.

File system operations

libuv provides a wide variety of cross-platform sync and
async file system operations. All functions defined in this
document take a callback, which is allowed to be NULL. If
the callback is NULL the request is completed
synchronously, otherwise it will be performed
asynchronously.

All file operations are run on the threadpool. See Thread
pool work scheduling for information on the threadpool size.

Note

On Windows uv_fs * functions use utf-8 encoding.

Data types

uv_fs_t
File system request type.

uv_timespec_t
Portable equivalent of struct timespec.

typedef struct {
long tv sec;
long tv nsec;

} uv_timespec t;

uv_stat_t
Portable equivalent of struct stat.

typedef struct {
uint64 t st dev;

uint64 t
uint64 t
uint64 t
uint64 t
uint64 t
uint64 t
uint64 t
uinté4 t
uint64 t
uint64 t
uint64 t
uv_timespec_t
uv_timespec t
uv_timespec_ t
uv_timespec t
} uv stat t;

st mode;

st nlink;

st uid;

st gid;

st rdev;

st ino;

st size;

st blksize;
st blocks;

st flags;

st gen;

st atim;
st mtim;
st ctim;
st birthtim;

uv_statfs_t

Reduced cross platform equivalent of struct statfs. Used
iNnuv_fs_statfs().

typedef struct uv statfs s {
uint64 t f type;

uint64 t
uint64 t
uint64 t
uint64 t
uinté4 t
uint64 t

f bsize;
f blocks;
f bfree;
f bavail,;
f files;
f ffree;

uint64 t f spare[4];
} uv _statfs t;

uv_dir_t
Data type used for streaming directory iteration. Used by
uv_fs_opendir(), uv_fs_readdir(), and uv_fs_closedir().
dirents represents a user provided array of uv _dirent t's
used to hold results. "nentries is the user provided
maximum array size of dirents.

typedef struct uv dir s {
uv_dirent t* dirents;

size t nentries;
} uv dir t;

Public members

uv_loop_t* uv_fs_t.loop
Loop that started this request and where completion will
be reported. Readonly.

uv_fs type uv_fs_t.fs_type
FS request type.

const char* uv_fs_t.path
Path affecting the request.

ssize tuv_fs_t.result
Result of the request. < 0 means error, success
otherwise. On requests such as uv_fs_read() or
uv_fs_write() it indicates the amount of data that was
read or written, respectively.

uv_stat t uv_fs_t.statbuf
Stores the result of uv_fs_stat(). and other stat requests.

void* uv_fs_t.ptr
Stores the result of uv_fs_readlink(). and uv_fs_realpath()
and serves as an alias to statbuf.

See also

The uv_req_t members also apply.

API

void uv_fs_req_cleanup(uv_fs_t* req)

Cleanup request. Must be called after a request is
finished to deallocate any memory libuv might have
allocated.

int uv_fs_close(uv_loop_t* loop, uv_fs_t* req, uv_file file,
uv_fs cb cb)

Equivalent to close(2), [https://man7.org/linux/man-
pages/man2/close.2.html].

int uv_fs_open(uv_loop_t* loop, uv_fs_t* req, const
char* path, int flags, int mode, uv_fs_cb cb)

Equivalent to open(2), [https://man7.org/linux/man-
pages/man2/open.2.html].

Note

On Windows libuv uses CreateFileW and thus the file is
always opened in binary mode. Because of this the
O_BINARY and O _TEXT flags are not supported.

int uv_fs_read(uv_loop_t* loop, uv_fs_t* req, uv_file file,
const uv_buf t bufs[], unsigned int nbufs, int64 t offset,
uv_fs_cb cb)
Equivalent to preadv(2) [https://man7.org/linux/man-
pages/man2/preadv.2.html].

Warning

On Windows, under non-MSVC environments (e.g. when
GCC or Clang is used to build libuv), files opened using
UV _FS 0 FILEMAP may cause a fatal crash if the memory
mapped read operation fails.

https://man7.org/linux/man-pages/man2/close.2.html
https://man7.org/linux/man-pages/man2/open.2.html
https://man7.org/linux/man-pages/man2/preadv.2.html

int uv_fs_unlink(uv_loop_t* loop, uv_fs_t* req, const
char* path, uv_fs_cb cb)

Equivalent to unlink(2) [https://man7.org/linux/man-
pages/man2/unlink.2.html].

int uv_fs_write(uv_loop_t* loop, uv_fs_t* req, uv_file file,
const uv_buf t bufs[], unsigned int nbufs, int64 t offset,
uv_fs cb cb)
Equivalent to pwritev(2) [https://man7.org/linux/man-
pages/man2/pwritev.2.html].

Warning

On Windows, under non-MSVC environments (e.g. when
GCC or Clang is used to build libuv), files opened using
UV_FS 0 FILEMAP may cause a fatal crash if the memory
mapped write operation fails.

int uv_fs_mkdir(uv_loop_t* loop, uv_fs_t* req, const
char* path, int mode, uv_fs _cb cb)

Equivalent to mkdir(2) [https://man7.org/linux/man-
pages/man2/mkdir.2.html].

Note
mode is currently not implemented on Windows.

int uv_fs_mkdtemp(uv_loop_t* loop, uv_fs_t* req, const
char* tpl, uv_fs cb cb)
Equivalent to mkdtemp(3) [https://man7.org/linux/man-

pages/man3/mkdtemp.3.html]. The result can be found as a null
terminated string at req->path.

https://man7.org/linux/man-pages/man2/unlink.2.html
https://man7.org/linux/man-pages/man2/pwritev.2.html
https://man7.org/linux/man-pages/man2/mkdir.2.html
https://man7.org/linux/man-pages/man3/mkdtemp.3.html

int uv_fs_mkstemp(uv_loop_t* Joop, uv_fs_t* req, const
char* tpl, uv_fs_cb cb)
Equivalent to mkstemp(3), [https://man7.org/linux/man-
pages/man3/mkstemp.3.html]. The created file path can be
found as a null terminated string at reg->path. The file
descriptor can be found as an integer at reqg->result.

New in version 1.34.0.

int uv_fs_rmdir(uv_loop_t* loop, uv_fs_t* req, const
char* path, uv_fs_cb cb)

Equivalent to rmdir(2) [https://man7.org/linux/man-
pages/man2/rmdir.2.html].

int uv_fs_opendir(uv_loop_t* loop, uv_fs_t* req, const
char* path, uv_fs_cb cb)

Opens path as a directory stream. On success, a uv_dir t
is allocated and returned via reqg->ptr. This memory is
not freed by uv_fs req cleanup(), although reqg->ptr is
set to NULL. The allocated memory must be freed by
calling uv_fs closedir(). On failure, no memory is
allocated.

The contents of the directory can be iterated over by
passing the resulting uv_dir_t to uv_fs readdir().

New in version 1.28.0.

int uv_fs_closedir(uv_loop_t* loop, uv_fs_t* req,

uv_dir_t* dir, uv_fs cb cb)
Closes the directory stream represented by dir and frees
the memory allocated by uv _fs opendir().

New in version 1.28.0.

https://man7.org/linux/man-pages/man3/mkstemp.3.html
https://man7.org/linux/man-pages/man2/rmdir.2.html

int uv_fs_readdir(uv_loop_t* loop, uv_fs_t* req, uv_dir_t* dir,
uv_fs cb cb)

Iterates over the directory stream, dir, returned by a
successful uv_fs opendir() call. Prior to invoking

uv_fs readdir(), the caller must set dir->dirents and dir-
>nentries, representing the array of uv_dirent_t elements
used to hold the read directory entries and its size.

On success, the result is an integer >= 0 representing
the number of entries read from the stream.

New in version 1.28.0.

Warning
uv_fs _readdir() is not thread safe.

Note
This function does not return the “.” and “.."” entries.

Note

On success this function allocates memory that must be
freed using uv_fs_req_cleanup(). uv_fs_req _cleanup()
must be called before closing the directory with

uv_fs closedir().

int uv_fs_scandir(uv_loop_t* Joop, uv_fs_t* req, const
char* path, int flags, uv_fs_cb cb)

int uv_fs_scandir_next(uv_fs_t* req, uv_dirent_t* ent)

Equivalent to scandir(3) [https://man7.org/linux/man-
pages/man3/scandir.3.html], with a slightly different API. Once
the callback for the request is called, the user can use

https://man7.org/linux/man-pages/man3/scandir.3.html

uv_fs_scandir_next() to get ent populated with the next
directory entry data. When there are no more entries
uv_EOF will be returned.

Note

Unlike scandir(3), this function does not return the *“.
and “..” entries.

Note

On Linux, getting the type of an entry is only supported
by some file systems (btrfs, ext2, ext3 and ext4 at the
time of this writing), check the getdents(2),
[https://man7.org/linux/man-pages/man2/getdents.2.html] Man page.

int uv_fs_stat(uv_loop_t* loop, uv_fs_t* req, const
char* path, uv_fs_cb cb)

int uv_fs_fstat(uv_loop_t* loop, uv_fs_t* req, uv_file file,
uv_fs cb cb)

int uv_fs_lstat(uv_loop_t* loop, uv_fs_t* req, const
char* path, uv_fs_cb cb)

Equivalent to stat(2), [https://man7.org/linux/man-
pages/man2/stat.2.html], fstat(2) [https://man7.org/linux/man-
pages/man2/fstat.2.html] and Istat(2) [https://man7.org/linux/man-
pages/man2/Istat.2.html] respectively.

int uv_fs_statfs(uv_loop_t* loop, uv_fs_t* req, const
char* path, uv_fs_cb cb)

Equivalent to statfs(2) [https://man7.org/linux/man-
pages/man2/statfs.2.html]. On success, a uv_statfs tis

https://man7.org/linux/man-pages/man2/getdents.2.html
https://man7.org/linux/man-pages/man2/stat.2.html
https://man7.org/linux/man-pages/man2/fstat.2.html