
zlog1 User's Guide

Hardy Simpson23

November 30, 2022

1A single spark can start a prairie �re � Mao Zedong
2This Guide is for zlog v1.2.*
3If you have comments or error corrections, post a issue on github, or write email to

HardySimpson1984@gmail.com

https://github.com/HardySimpson/zlog/issues/new
mailto:HardySimpson1984@gmail.com

Contents

1 What is zlog? 3

1.1 Compatibility Notes . 4
1.2 zlog 1.2 Release Notes . 4

2 What zlog is not 6

3 Hello World 7

3.1 Build and Installation zlog . 7
3.2 Call and Link zlog in User's application 8
3.3 Hello World Example . 8
3.4 Simpler Hello World Example . 9

4 Syslog model 11

4.1 Category, Rule and Format . 11
4.2 Di�erences between syslog model and log4j model 12
4.3 Expand syslog model . 13

5 Con�gure File 14

5.1 Global . 15
5.2 Levels . 18
5.3 Formats . 18
5.4 Conversion pattern . 19

5.4.1 Conversion Characters . 19
5.4.2 Format Modi�er . 22
5.4.3 Time Character . 23

5.5 Rules . 26
5.5.1 Level Matching . 26
5.5.2 Category Matching . 27
5.5.3 Output Action . 27

1

CONTENTS 2

5.6 Rotation . 31
5.7 Con�gure File Tools . 34

6 zlog API 36

6.1 initialize and �nish . 36
6.2 category operation . 37
6.3 log functions and macros . 38
6.4 MDC operation . 40
6.5 dzlog API . 41
6.6 User-de�ned Output . 42
6.7 debug and pro�le . 43

7 Advanced Usage 44

7.1 MDC . 44
7.2 Pro�le zlog Itself . 47
7.3 User-de�ned Level . 49
7.4 User-de�ned Output . 52

8 Epilog 55

Chapter 1

What is zlog?

zlog is a reliable, high-performance, thread safe, �exible, clear-model, pure C logging
library.

Actually, in the C world there was NO good logging library for applications like
logback in java or log4cxx in c++. printf can work, but can not be redirected easily
nor be reformatted. syslog is slow and is designed for system use.

So I wrote zlog.
It is faster, safer and more powerful than log4c. So it can be widely used.
zlog has these features:

� syslog model, better than log4j model

� log format customization

� multiple output, include static �le path, dynamic �le path, stdout, stderr,
syslog, user-de�ned ouput

� runtime with manual or automatic refresh of con�guration (done safely)

� high-performance, 250'000 logs/second on my laptop, about 1000 times faster
than syslog(3) with rsyslogd

� user-de�ned log level

� safely rotate log �le under multiple-process or multiple-thread conditions

� accurate to microseconds

� dzlog, a default category log API for easy use

3

CHAPTER 1. WHAT IS ZLOG? 4

� MDC, a log4j style key-value map

� self debuggable, can output zlog's self debug and error log at runtime

� Does not depend on any other 3rd party library, just base on POSIX system
(including pthread) and a C99 compliant vsnprintf.

Links:
Homepage: http://hardysimpson.github.com/zlog
Downloads: https://github.com/HardySimpson/zlog/releases
Author's Email: HardySimpson1984@gmail.com

1.1 Compatibility Notes

1. zlog is based on POSIX-compatible systems. I have just GNU/linux and AIX
environments to compile, test and run zlog. Still, I think zlog will work well on
FreeBSD, NetBSD, OpenBSD, OpenSolaris, Mac OS X etc. Test runs of zlog
on any system are welcome.

2. zlog uses a feature of C99 compliant vsnprintf. That is, if the bu�er size of
destination is not long enough, vsnprintf will return the number of characters
(not including the trailing '\0') which would have been written to the �nal
string if enough space had been available. If the vsnprintf on your system does
not work like that, zlog can not know the right bu�er size when a single log is
longer than the bu�er. Fortunately, glibc 2.1, libc on AIX, and libc on freebsd
work correctly, while glibc 2.0 does not. In this case, user should crack zlog
himself with a C99 compliant vsnprintf. I suggest ctrio, or C99-snprintf. The
�le buf.c should be cracked, good luck!

3. Some people o�er versions of zlog for other platforms. Thanks!

auto tools version: https://github.com/bmanojlovic/zlog

cmake verion: https://github.com/lisongmin/zlog

windows version: https://github.com/lopsd07/WinZlog

1.2 zlog 1.2 Release Notes

1. zlog 1.2 provides these features:

http://hardysimpson.github.com/zlog
https://github.com/HardySimpson/zlog/releases
mailto:HardySimpson1984@gmail.com
http://sourceforge.net/projects/ctrio/
http://www.jhweiss.de/software/snprintf.html
https://github.com/bmanojlovic/zlog
https://github.com/lisongmin/zlog
https://github.com/lopsd07/WinZlog

CHAPTER 1. WHAT IS ZLOG? 5

(a) support for pipeline. Now zlog can send ouput log through programs like
cronolog

(b) Full rotation support, see 5.6

(c) Other code compatible details, bug �xes.

2. zlog 1.2 is binary compatible with zlog 1.0. The di�erences are:

(a) All zlog macros like ZLOG_INFO are shifted to lowercase versions, zlog_info.
This big change is because I think it is easier for people to type. If you
are using a previous version of zlog, please use a script to substitute all
macros, and re-compile your program. Here is an example:

sed -i -e 's/\b\w*ZLOG\w*\b/\L&\E/g' aa.c

(a) Auto tools compile is abandoned. Auto tools is ugly so I dropped it.
A simple make�le is in use, which requires gcc and gnu make. If this
make�le does not work in your environment, you will need to write a
suitable make�le for yourself. It should be quite easy for a geek.

Chapter 2

What zlog is not

The goal of zlog is to be a simple, fast log library for applications. It does not
support output like sending the log to another machine through the net or saving it
to database. It will not parse content of log and �lter them.

The reason is obvious: the library is called by an application, so all time taken
by the log library is part of the application's time. And database inserting or log
content parsing takes a long time. These will slow down the application. These
operation should be done in a di�erent process or on a di�erent machine.

If you want all these features, I recommend rsyslog, zLogFabric, Logstash. These
have independent processes to receive logs from another process or machine, and to
parse and store logs. These functions are separated from the user application.

Now 7.4 is supported by zlog. Just one output function need to be implemented:
to transfer the log to the other process or machine. The work of category matching
and log generating is left with the zlog library.

One possibility is to write a zlog-redis client. It send logs to redis on local or
remote machines by user de�ned output. Then other processes can read logs from
redis and write to disk. What do you think about this idea? I will be happy to
discuss it with you.

6

Chapter 3

Hello World

3.1 Build and Installation zlog

Download:https://github.com/HardySimpson/zlog/archive/latest-stable.tar.gz

$ tar -zxvf zlog-latest-stable.tar.gz

$ cd zlog-latest-stable/

$ make

$ sudo make install

or

$ sudo make PREFIX=/usr/local/ install

PREFIX indicates where zlog is installed. After installation, change system settings
to make sure your program can �nd the zlog library

$ sudo vi /etc/ld.so.conf

/usr/local/lib

$ sudo ldconfig

Before running a real program, make sure libzlog.so is in the directory where the
system's dynamic lib loader can �nd it. The commands mentioned above are for
linux. Other systems will need a similar set of actions.

� Beside the normal make, these are also available:

$ make 32bit # 32bit version on 64bit machine, libc6-dev-i386 is needed

7

https://github.com/HardySimpson/zlog/archive/latest-stable.tar.gz

CHAPTER 3. HELLO WORLD 8

$ make noopt # without gcc optimization

$ make doc # lyx and hevea is needed

$ make test # test code, which is also good example for zlog

� make�le of zlog is written in gnu make style. So if your platform is not linux,
install a gnu make and gcc before trying to build zlog. Another way is to write
a make�le in your platform's make style. This should be quite easy as zlog is
not complicated.

3.2 Call and Link zlog in User's application

To use zlog, add one line to the source c �le or cpp �le:

#include "zlog.h"

zlog needs the pthread library. The link command is:

$ cc -c -o app.o app.c -I/usr/local/include

-I[where zlog.h is put]

$ cc -o app app.o -L/usr/local/lib -lzlog -lpthread

-L[where libzlog.so]

3.3 Hello World Example

This example can be found in $(top_builddir)/test/test_hello.c, test_hello.conf

1. Write a new c source �le:

$ vi test_hello.c

#include <stdio.h>

#include "zlog.h"

int main(int argc, char** argv)

{

int rc;

zlog_category_t *c;

rc = zlog_init("test_hello.conf");

if (rc) {

CHAPTER 3. HELLO WORLD 9

printf("init failed\n");

return -1;

}

c = zlog_get_category("my_cat");

if (!c) {

printf("get cat fail\n");

zlog_fini();

return -2;

}

zlog_info(c, "hello, zlog");

zlog_fini();

return 0;

}

2. Write a con�guration �le in the same path as test_hello.c:

$ vi test_hello.conf

[formats]

simple = "%m%n"

[rules]

my_cat.DEBUG >stdout; simple

3. Compile and run it:

$ cc -c -o test_hello.o test_hello.c -I/usr/local/include

$ cc -o test_hello test_hello.o -L/usr/local/lib -lzlog

$./test_hello

hello, zlog

3.4 Simpler Hello World Example

This example can be found in $(top_builddir)/test/test_default.c, test_default.conf.
The source code is

#include <stdio.h>

#include "zlog.h"

int main(int argc, char** argv)

{

CHAPTER 3. HELLO WORLD 10

int rc;

rc = dzlog_init("test_default.conf", "my_cat");

if (rc) {

printf("init failed\n");

return -1;

}

dzlog_info("hello, zlog");

zlog_fini();

return 0;

}

The con�gure �le test_default.conf is the same as test_hello.conf, and the output
of test_default is the same as that of test_hello. The di�erence is that test_default
uses the dzlog API, which has a default zlog_category_t inside and is easier to use.
See 6.5 for more details.

Chapter 4

Syslog model

4.1 Category, Rule and Format

In zlog, there are 3 important concepts: category, rule and format.
Category speci�es di�erent kinds of log entries. In the zlog source code, category

is a (zlog_cateogory_t *) variable. In your program, di�erent categories for the log
entries will distinguish them from each other.

Format describes detail log patterns, such as: with or without time stamp, source
�le, source line.

Rule consists of category, level, output �le (or other channel) and format. In
brief, if the category string in a rule in the con�guration �le equals the name of a
category variable in the source, then they match.

So when this sentence in the source �le is executed:

zlog_category_t *c;

c = zlog_get_category("my_cat");

zlog_info(c, "hello, zlog");

zlog library uses the category name "my_cat" to match one rule in the con�guration
�le. That is

[rules]

my_cat.DEBUG >stdout; simple

Then the library will check if level is correct to decide whether the log will be output
or not. As INFO>=DEBUG the log will be output, and as the rule says, it will be
sent to stdout (standard output) in the format of simple, which is described as

11

CHAPTER 4. SYSLOG MODEL 12

[formats]

simple = "%m%n"

Lastly, zlog will show the zlog_info() content on the screen

hello, zlog

That's the whole story. The only thing a user need to do is to write the messages.
Where the log will be output, or in which format, is done by zlog library.

4.2 Di�erences between syslog model and log4j model

Does zLog have anything to do with syslog? Until now, the model is more like
log4j. As in log4j, there are concepts of logger, appender and layout. The di�erence
is that in log4j, each logger in source code must correspond to one logger in the
con�guration �le and has just one de�nite level. One-to-one relationship is the only
choice for log4j, log4cxx, log4cpp, log4cplus log4net and etc...

But the log4j model is NOT �exible, they invent �lters to make up for it, and that
make things more worse. So let's get back to syslog model, which has an excellent
design.

Continuing our example from the last section, if the zlog con�guration �le has 2
rules:

[rules]

my_cat.DEBUG >stdout; simple

my_cat.INFO >stdout;

Then they will generate 2 log outputs to stdout:

hello, zlog

2012-05-29 10:41:36 INFO [11288:test_hello.c:41] hello, zlog

You see that one category in the source code corresponds to two rules in the con�gu-
ration �le. Maybe log4j's user will say, "That's good, but 2 appender for one logger
will do the same thing". So, let's see the next example of con�gure �le:

[rules]

my_cat.WARN "/var/log/aa.log"

my_cat.DEBUG "/var/log/bb.log"

CHAPTER 4. SYSLOG MODEL 13

And the source code is:

zlog_info(c, "info, zlog");

zlog_debug(c, "debug, zlog");

Then, in aa.log, there is just one log

2012-05-29 10:41:36 INFO [11288:test_hello.c:41] info, zlog

But in bb.log, there will be two

2012-05-29 10:41:36 INFO [11288:test_hello.c:41] info, zlog

2012-05-29 10:41:36 DEBUG [11288:test_hello.c:42] debug, zlog

From this example, you see the di�erence. Log4j can not do it easily. In zlog, one
category may correspond to mutiple rules, and rules can have di�erent level, output,
and format combinations. The user has an easy, clear way to �lter and multi-ouput
all logs on demand.

4.3 Expand syslog model

You can see that category in zlog is more like facility in syslog. Unfortunately,
facility in sylog is an int, and the value of facility must be chosen from a limited
system-de�ned range. zlog does better, making it a string variable.

In syslog, there is a special wildcard "*", which matches all facilities. It does the
same thing in zlog. "*" matches all categories. That is a convenient way to make
all errors generated by multiple components in your system redirect to one log �le.
Just write in the con�guration �le like this:

[rules]

*.error "/var/log/error.log"

A unique feature of zlog is sub-category matching. If your source code has:

c = zlog_get_category("my_cat");

And the con�guration �le has rules :

[rules]

my_cat.* "/var/log/my_cat.log"

my_.NOTICE "/var/log/my.log"

These 2 rules match category "c" with the name "my_cat". The wildcard "_" is
the way to represent a super category. "my_" is a super category for "my_cat" and
"my_dog". There is also another wildcard "!". See 5.5.2 for more detail.

Chapter 5

Con�gure File

Most actions of zlog library are dependent upon the con�guration �le: where to
output the log, how to rotate the log �les, how to format the output, etc. The
con�guration �le uses a domain speci�c language to control the library actions. Here
is an example of zlog.conf:

comments

[global]

strict init = true

reload conf period = 1M

buffer min = 1024

buffer max = 2MB

rotate lock file = /tmp/zlog.lock

default format = "%d.%ms %-6V (%c:%F:%L) - %m%n"

file perms = 600

fsync period = 1K

[levels]

TRACE = 10

CRIT = 130, LOG_CRIT

[formats]

simple = "%m%n"

normal = "%d(%F %T) %m%n"

[rules]

default.* >stdout; simple

14

CHAPTER 5. CONFIGURE FILE 15

. "%12.2E(HOME)/log/%c.log", 1MB*12; simple

my_.INFO >stderr;

my_cat.!ERROR "/var/log/aa.log"

my_dog.=DEBUG >syslog, LOG_LOCAL0; simple

my_mice.* $user_define;

[] means a section's beginning, and the order of sections is �xed, using the sequence
global-levels-formats-rules.

Note on units: when memory size or large number is needed, it is possible to
specify it in the usual form of 1k 5GB 4M and so forth:

1k => 1000 bytes

1kb => 1024 bytes

1m => 1000000 bytes

1mb => 1024*1024 bytes

1g => 1000000000 bytes

1gb => 1024*1024*1024 byte

units are case insensitive so 1GB 1Gb 1gB are all the same.

5.1 Global

Global section begins with [global]. This section can be omitted.The syntax is

(key) = (value)

� strict init

If "strict init = true�, zlog_init() will check syntax of all formats and rules
strictly, and any error will cause zlog_init() to fail and return -1. When "strict
init = false�, zlog_init() will ignore syntax errors for formats and rules. The
default is true.

� reload conf period

This parameter causes the zlog library to reload the con�guration �le automat-
ically after a period, which is measured by number of log times per process.
When the number reaches the value, it calls zlog_reload() internally. The num-
ber is reset to zero at the last zlog_reload() or zlog_init(). As zlog_reload()
is atomic, if zlog_reload() fails, zlog still runs with the current con�guration.
So reloading automatically the con�guration is safe. The default is 0, which
means never reload automatically.

CHAPTER 5. CONFIGURE FILE 16

� bu�er min

� bu�er max

zlog allocates a log bu�er in each thread. "bu�er min" indicates size of bu�er
malloc'ed at init time. While logging, if one single log's content is longer than
bu�er size now, zlog will expand bu�er automatically until "bu�er max". Then,
if the size is still longer than "bu�er max", the log content will be truncated.
If "bu�er max" is 0, it means bu�er size is unlimited, and each time zlog will
expand bu�er by twice its size, until the process uses all available memory.
The value of these 2 parameters can appended with unit KB, MB or GB su�x,
where 1024 equals 1KB. As default, "bu�er min" is 1K and "bu�er max" is
2MB.

� rotate lock �le

This speci�es a lock �le for rotating a log safely in multi-process situations.
zlog will open the �le at zlog_init() with the permission of read-write. The
pseudo-code for rotating a log �le is:

write(log_file, a_log)

if (log_file > 1M)

if (pthread_mutex_lock succ && fcntl_lock(lock_file) succ)

if (log_file > 1M) rotate(log_file);

fcntl_unlock(lock_file);

pthread_mutex_unlock;

mutex_lock is for multi-thread and fcntl_lock is for multi-process. fcntl_lock
is the POSIX advisory record locking. See man 3 fcntl for details. The lock
is system-wide, and when a process dies unexpectedly, the operating system
releases all locks owned by the process. That's why I chose fcntl lock for
rotating log safely. The process needs read-write permisson for lock_�le to
lock it.

By default, rotate lock �le = self. This way, zlog does not create any lock �le
and sets the con�guration �le as the lock �le. As fcntl is advisory, it does not
really forbid programmers to change and store the con�guration �le. Generally
speaking, one log �le will not be rotated by processes run by di�erent operating
system users, so using the con�guration �le as lock �le is safe.

CHAPTER 5. CONFIGURE FILE 17

If you choose another path as lock �le, for example, /tmp/zlog.lock, zlog will
create it at zlog_init(). Make sure your program has permission to create and
read-write the �le. If processes run by di�erent operating system users need to
write and rotate the same log �le, make sure that each program has permission
to create and read-write the same lock �le.

� default format

This parameter is used by rules without format speci�ed. The default is

"%d %V [%p:%F:%L] %m%n"

It will yield output like this:

2012-02-14 17:03:12 INFO [3758:test_hello.c:39] hello, zlog

� �le perms

This speci�es all log �le permissions when they are created. Note that it is
a�ected by user's umask. The �nal �le permission will be "�le perms" &
~umask. The default is 600, which just allows user read and write.

� fsync period

After a number of log times per rule (to �le only), zlog will call fsync(3) after
write() to tell the Operating System to write data to disk immediately from
any internal system bu�ers. The number is incremented by each rule and will
be reset to 0 after zlog_reload(). Note that when the �le's path is generated
dynamically or is rotated, zlog does not guarantee fsync() touch all �les. It
just does fsync() against the �le descriptors that have have seen write() prior
to the boundary time. It o�ers a balance between speed and data safety. An
example:

$ time ./test_press_zlog 1 10 100000

real 0m1.806s

user 0m3.060s

sys 0m0.270s

$ wc -l press.log

1000000 press.log

CHAPTER 5. CONFIGURE FILE 18

$ time ./test_press_zlog 1 10 100000 #fsync period = 1K

real 0m41.995s

user 0m7.920s

sys 0m0.990s

$ time ./test_press_zlog 1 10 100000 #fsync period = 10K

real 0m6.856s

user 0m4.360s

sys 0m0.550s

If you want extreme safety but do not care about speed, use synchronous �le
I/O, see 5.5.3.The defualt is 0, which means let the operating system �ush the
output bu�er when it wants.

5.2 Levels

This section begins with [levels] and allows the user to de�ne application levels. You
should match these values with user-de�ned macros in the source �le. This section
can be omitted.

The syntax is

(level string) = (level int), (syslog level, optional)

level int should in [1,253], higher numbers mean more important. syslog level is
optional, if not set, use LOG_DEBUG

see 7.3 for more details.

5.3 Formats

This section begins with [formats], where the user can de�ne preferred log patterns.
The syntax is

(name) = "(actual formats)"

It is easy to understand, (name) will be used in the next section [rules]. The format
(name) consists of letters and digits plus underscore "_". The (actual format) should
be put in double quotes. It can be built up with conversion patterns, as described
below.

CHAPTER 5. CONFIGURE FILE 19

5.4 Conversion pattern

The conversion pattern is closely related to the conversion pattern of the C printf
function. A conversion pattern is composed of literal text and format control expres-
sions called conversion speci�ers.

Conversion pattern is used in both �lepath of rule and pattern of format.
You are free to insert any literal text within the conversion pattern.
Each conversion speci�er starts with a percent sign (%) and is followed by optional

format modi�ers and a conversion character. The conversion character speci�es the
type of data, e.g. category, level, date, thread id. The format modi�ers control such
things as �eld width, padding, left and right justi�cation. The following is a simple
example.

Let the conversion pattern be

"%d(%m-%d %T) %-5V [%p:%F:%L] %m%n".

Then the statement

zlog_info(c, "hello, zlog");

would yield the output

02-14 17:17:42 INFO [4935:test_hello.c:39] hello, zlog

Note that there is no explicit separator between text and conversion speci�ers. The
pattern parser knows when it has reached the end of a conversion speci�er when
it reads a conversion character. In the example above the conversion speci�er %-
5p means the level of the logging event should be left justi�ed to a width of �ve
characters.

5.4.1 Conversion Characters

The recognized conversion characters are

conversion
char

e�ect example

CHAPTER 5. CONFIGURE FILE 20

%c Used to output the category of the
logging event.

aa_bb

%d() Used to output the date of the logging
event. The date conversion speci�er may
be followed by a date format speci�er
enclosed between parentheses. For
example, %d(%F) or %d(%m-%d %T). If
no date format speci�er is given then
%d(%F %T) format is assumed. The
date format speci�er permits the same
syntax as the strftime(2). see 5.4.3for
more detail.

%d(%F) 2011-12-01
%d(%m-%d %T) 12-01 17:17:42
%d(%T).%ms 17:17:42.035
%d 2012-02-14 17:03:12
%d() 2012-02-14 17:03:12

%E() Value of environment variables %E(LOGNAME) simpson
%ms The millisecond, 3-digit integer string

comes from gettimeofday(2)
013

%us The microsecond, 6-digit integer string
comes from gettimeofday(2)

002323

%F Used to output the �le name where the
logging request was issued. The �le name
comes from __FILE__ macro. Some
compilers supply __FILE__ as the
absolute path. Use %f to strip path and
keep the �le name. Some compilers have
an option to control this feature.

test_hello.c
or, under some compiler
/home/zlog/src/test/test_hello.c

%f Used to output the source �le name, the
string after the last '/' of $F. It will cause
a little performance loss in each log event.

test_hello.c

%g() Used to output the date of the logging
event in UTC in stead of local time.

%g(%F) 2011-12-01
%g(%m-%d %T) 12-01 15:17:42
%g(%T.ms) 15:17:42.035
%g 2012-02-14 15:03:12
%g() 2012-02-14 15:03:12

%H Used to output the hostname of system,
which is from gethostname(2)

zlog-dev

CHAPTER 5. CONFIGURE FILE 21

%k Used to output the kernel thread id. On
Linux, that's the LWP using
syscall(SYS_gettid) and on OSX,
pthread_threadid_np.

2136

%L Used to output the line number from
where the logging request was issued,
which comes from __LINE__ macro

135

%m Used to output the application supplied
message associated with the logging
event.

hello, zlog

%M Used to output the MDC (mapped
diagnostic context) associated with the
thread that generated the logging event.
The M conversion character must be
followed by the key for the map placed
between parenthesis, as in
%M(clientNumber) where clientNumber
is the key. The value in the MDC
corresponding to the key will be
output.See 7.1 for more detail.

%M(clientNumber) 12345

%n Outputs unix newline character, zLog
does not support the MS-Windows line
separator at this time.

\n

%p Used to output the id of the process that
generated the logging event, which comes
from getpid().

2134

%U Used to output the function name where
the logging request was issued. It comes
from __func__(C99) or
__FUNCTION__(gcc) macro, with the
support of the compiler.

main

%V Used to output the level of the logging
event, uppercase.

INFO

%v Used to output the level of the logging
event, lowercase.

info

CHAPTER 5. CONFIGURE FILE 22

%t Used to output the hexadecimal form of
the thread id that generated the logging
event, which comes from pthread_self().
"%x",(unsigned int) pthread_t

ba01e700

%T Equivalent to %t, but the long form
"%lu", (unsigned long) pthread_t

140633234859776

%% the sequence %% outputs a single percent
sign.

%

%[other
char]

parsed as a wrong syntax, will cause
zlog_init() fail

5.4.2 Format Modi�er

By default, the relevant information is output as-is. However, with the aid of format
modi�ers it is possible to change the minimum �eld width, the maximum �eld width,
and justi�cation. It will cause a little performance loss in each log event.

The optional format modi�er is placed between the percent sign and the conver-
sion character.

The �rst optional format modi�er is the left justi�cation �ag which is just the
minus (-) character. Then comes the optional minimum �eld width modi�er. This
is a decimal constant that represents the minimum number of characters to output.
If the data item requires fewer characters, it is padded on either the left or the
right until the minimum width is reached. The default is to pad on the left (right
justify) but you can specify right padding with the left justi�cation �ag. The padding
character is space. If the data item is larger than the minimum �eld width, the �eld
is expanded to accommodate the data. The value is never truncated.

This behavior can be changed using the maximum �eld width modi�er which is
designated by a period followed by a decimal constant. If the data item is longer than
the maximum �eld, then the extra characters are removed from the beginning of the
data item and not from the end. For example, if the maximum �eld width is eight
and the data item is ten characters long, then the last two characters of the data
item are dropped. This behavior equals the printf function in C where truncation is
done from the end.

Below are various format modi�er examples for the category conversion speci�er.

CHAPTER 5. CONFIGURE FILE 23

format
modi-
�er

left
justify

minimum
width

maximum
width

comment

%20c false 20 none Left pad with spaces if the category name is less
than 20 characters long.

%-20c true 20 none Right pad with spaces if the category name is less
than 20 characters long.

%020c false 20 none Left pad with 0's if the category name is less than
20 characters long.

%.30c NA none 30 Truncate from the end if the category name is
longer than 30 characters.

%20.30c false 20 30 Left pad with spaces if the category name is
shorter than 20 characters. However, if category
name is longer than 30 characters, then truncate

from the end.

%-
20.30c

true 20 30 Right pad with spaces if the category name is
shorter than 20 characters. However, if category
name is longer than 30 characters, then truncate

from the end.

5.4.3 Time Character

Here is the Time Character support by Conversion Character d.
All Character is supported by strftime(3) in library. The Character supported

on my linux system are

character e�ect example

%a The abbreviated weekday name according to the
current locale.

Wed

%A The full weekday name according to the current
locale.

Wednesday

%b The abbreviated month name according to the
current locale.

Mar

%B The full month name according to the current
locale.

March

%c The preferred date and time representation for
the current locale.

Thu Feb 16
14:16:35 2012

CHAPTER 5. CONFIGURE FILE 24

%C The century number (year/100) as a 2-digit
integer. (SU)

20

%d The day of the month as a decimal number (range
01 to 31).

06

%D Equivalent to %m/%d/%y. (for Americans only.
Americans should note that in other countries
%d/%m/%y is more common. This means that in
an international context this format is ambiguous
and should not be used.) (SU)

02/16/12

%e Like %d, the day of the month as a decimal
number, but a leading zero is replaced by a space.
(SU)

6

%F Equivalent to %Y-%m-%d (the ISO 8601 date
format). (C99)

2012-02-16

%G The ISO 8601 week-based year (see NOTES) with
century as a decimal number. The 4-digit year
corresponding to the ISO week number (see %V).
This has the same format and value as %Y,
except that if the ISO week number belongs to
the previous or next year, that year is used
instead. (TZ)

2012

%g Like %G, but without century, that is, with a
2-digit year (00-99). (TZ)

12

%h Equivalent to %b. (SU) Feb
%H The hour as a decimal number using a 24-hour

clock (range 00 to 23).
14

%I The hour as a decimal number using a 12-hour
clock (range 01 to 12).

02

%j The day of the year as a decimal number (range
001 to 366).

047

%k The hour (24-hour clock) as a decimal number
(range 0 to 23); single digits are preceded by a
blank. (See also %H.) (TZ)

15

%l The hour (12-hour clock) as a decimal number
(range 1 to 12); single digits are preceded by a
blank. (See also %I.) (TZ)

3

%m The month as a decimal number (range 01 to 12). 02

CHAPTER 5. CONFIGURE FILE 25

%M The minute as a decimal number (range 00 to 59). 11
%n A newline character. (SU) \n
%p Either "AM" or "PM" according to the given

time value, or the corresponding strings for the
current locale. Noon is treated as "PM" and
midnight as "AM".

PM

%P Like %p but in lowercase: "am" or "pm" or a
corresponding string for the current locale.
(GNU)

pm

%r The time in a.m. or p.m. notation. In the POSIX
locale this is equivalent to %I:%M:%S %p. (SU)

03:11:54 PM

%R The time in 24-hour notation (%H:%M). (SU) For
a version including the seconds, see %T below.

15:11

%s The number of seconds since the Epoch, that is,
since 1970-01-01 00:00:00 UTC. (TZ)

1329376487

%S The second as a decimal number (range 00 to 60).
(The range is up to 60 to allow for occasional leap
seconds.)

54

%t A tab character. (SU)
%T The time in 24-hour notation (%H:%M:%S). (SU) 15:14:47
%u The day of the week as a decimal, range 1 to 7,

Monday being 1. See also %w. (SU)
4

%U The week number of the current year as a decimal
number, range 00 to 53, starting with the �rst
Sun- day as the �rst day of week 01. See also %V
and %W.

07

%V The ISO 8601 week number (see NOTES) of the
current year as a decimal number, range 01 to 53,
where week 1 is the �rst week that has at least 4
days in the new year. See also %U and %W. (SU)

07

%w The day of the week as a decimal, range 0 to 6,
Sunday being 0. See also %u.

4

%W The week number of the current year as a decimal
number, range 00 to 53, starting with the �rst
Mon- day as the �rst day of week 01.

07

%x The preferred date representation for the current
locale without the time.

02/16/12

CHAPTER 5. CONFIGURE FILE 26

%X The preferred time representation for the current
locale without the date.

15:14:47

%y The year as a decimal number without a century
(range 00 to 99).

12

%Y The year as a decimal number including the
century.

2012

%z The time-zone as hour o�set from GMT. Required
to emit RFC 822-conformant dates (using "%a,
%d %b %Y %H:%M:%S %z"). (GNU)

+0800

%Z The timezone or name or abbreviation. CST
%% A literal '%' character. %

5.5 Rules

This section begins with [rules]. It decides how log actions are �ltered, formatted
and output. This section can be omitted, but there will result in no log output. The
syntax is

(category).(level) (output), (option,optional); (format name, optional)

When zlog_init() is called, all rules will be read into memory. When zlog_get_category()
is called, mutiple rules will be assigned to each category, in the way 5.5.2 describes.
When logging is performed, the level between matched rules and INFO will be
checked to decide whether this single log will be output through the rule. When
zlog_reload() is called, the con�guration �le will be re-read into memory, including
rules. All category rules will be re-calculated.

5.5.1 Level Matching

There are six default levels in zlog, "DEBUG", "INFO", "NOTICE", "WARN",
"ERROR" and "FATAL". As in all other log libraries, aa.DEBUG means all logs
of level greater than or equal to DEBUG will be output. Still, there are more
expressions. Levels in the con�guration �le are not case sensitive; both capital or
lowercase are accepted.

CHAPTER 5. CONFIGURE FILE 27

example expression meaning

* all [source level]
aa.debug [source level]>=debug
aa.=debug [source level]==debug
aa.!debug [source level]!=debug

The level strings can be de�ned by the user. See7.3.

5.5.2 Category Matching

Category Matching is simple. The name of the category is made up of letters, digits,
and/or the underscore "_".

summarize category
string from
con�gure
�le

category matches category not
matches

* matches all *.* aa, aa_bb, aa_cc,
xx, yy ...

NONE

string end with
underline
matches
super-category
and
sub-categories

aa_.* aa, aa_bb, aa_cc,
aa_bb_cc

xx, yy

string not
ending with
underline
accurately
matches
category

aa.* aa aa_bb, aa_cc,
aa_bb_cc

! matches
category that
has no rule
matched

!.* xx aa(as it matches
rules above)

5.5.3 Output Action

zlog supports various output methods. The syntax is

(output action), (output option); (format name, optional)

CHAPTER 5. CONFIGURE FILE 28

output output action output option

to standard out >stdout no meaning
to standard error >stderr no meaning
to syslog >syslog syslog facility, can be:

LOG_USER(default),
LOG_LOCAL[0-7]
This is required.

pipeline output | cat no meaning
to �le "(�le path)" rotation. see 5.6 for

detail
10MB * 3 ~
"press.#r.log"

synchronous I/O �le -"(�le path)"
user-de�ned output $name "path" (dynamic or

static) of record function

� stdout, stderr, syslog

As the above table describes, only the syslog action has a meaningful output
option and it must be set.

Warning: NEVER use >stdout or >stderr when your program is a daemon
process. A daemon process always closes its �rst �le descriptor, and when
>stdout is set, zlog will output a log like this

write(STDOUT_FILENO, zlog_buf_str(a_thread->msg_buf), zlog_buf_len(a_thread->msg_buf))

What will happen then? The log will be written to the �le whose fd is now
1. I have received mail from someone who said zlog as a daemon wrote logs to
the con�guration �le. So remember, daemon processes should not set any rule
output to stdout, or stderr. It will generate unde�ned behavior. If you still
want output logs to console when stdout is closed, use "/dev/tty" instead.

� pipeline output

. | /usr/bin/cronolog /www/logs/example_%Y%m%d.log ; normal

This is an example of how zlog pipelines its output to cronolog. The implemen-
tation is simple. popen("/usr/bin/cronolog /www/logs/example_%Y%m%d.log","w")

CHAPTER 5. CONFIGURE FILE 29

is called at zlog_init(), and forward logs will be written to the open descriptor
in the "normal" format. Writing through pipeline and cronnolog is faster than
dynamic �le of zlog, as there is no need to open and close �le descripter each
time when logs are written to a pipe.

[rules]

. "press%d(%Y%m%d).log"

$ time ./test_press_zlog 1 10 100000

real 0m4.240s

user 0m2.500s

sys 0m5.460s

[rules]

. | /usr/bin/cronolog press%Y%m%d.log

$ time ./test_press_zlog 1 10 100000

real 0m1.911s

user 0m1.980s

sys 0m1.470s

There are some limitations when using pipeline output:

� POSIX.1-2001 says that write(2)s of less than PIPE_BUF bytes must be
atomic, On Linux, PIPE_BUF is 4096 bytes.

� When a single log is longer than PIPE_BUF, and multiple processes
write logs through one pipe (parent calls zlog_init(), and forks many
child processes), log interlacing will occur.

� Unrelated multiple processes can start multiple cronolog processes and
write to the same log �le. Even if a single log is not longer than PIPE_BUF,
multiple cronologs will cause log interlace. As cronologs read log contin-
uously, it doesn't know where is the split between log entries.

In summary, pipeline to a single log �le:

� Single process writing, no limitation for length of one log. Multi-threads
in one process, atomic writing is already assured by zlog.

� Related multiple processes, the length of one log should not longer than
PIPE_BUF.

� Unrelated multiple processes, no matter how long a single log is, will cause
interlace and is not safe.

CHAPTER 5. CONFIGURE FILE 30

� �le

� �le path

can be absolute �le path or relative �le path. It is quoted by double
quotation marks. Conversion pattern can be used in �le path. If the �le
path is "%E(HOME)/log/out.log" and the program environment $HOME
is /home/harry, then the log �le will be /home/harry/log/output.log. See
5.4 for more details.

�le of zlog is powerful, for example

1. output to named pipe(FIFO), which must be created by mk�fo(1)
before use

. "/tmp/pipefile"

2. output to null, do nothing at all

. "/dev/null"

3. output to console, in any case

. "/dev/tty"

4. output a log to each tid, in the directory where the process running

. "%T.log"

5. output to �le with pid name, every day, in $HOME/log directory,
rotate log at 1GB, keep 5 log �les

. "%E(HOME)/log/aa.%p.%d(%F).log",1GB * 5

6. each category of aa_ super category, output log with category name

aa_.* "/var/log/%c.log"

� rotate action

controls log �le size and count. zlog rotates the log �le when the �le
exceeds this value. For example, let the action be

"%E(HOME)/log/out.log",1M*3

and after out.log is �lled to 1M, the rotation is

out.log -> out.log.1

out.log(new create)

If the new log is full again, the rotation is

out.log.1 -> out.log.2

out.log -> out.log.1

out.log(new create)

CHAPTER 5. CONFIGURE FILE 31

The next rotation will delete the oldest log, as *3 means just allows 3 �le
exist

unlink(out.log.2)

out.log.1 -> out.log.2

out.log -> out.log.1

out.log(new create)

So the oldest log has the biggest serial number. If *3 is not speci�ed, it
means rotation will continue and no old log will be deleted.

� synchronous I/O �le

Putting a minus sign '-' sets the synchronous I/O option. log �le is opened
with O_SYNC and every single log action will wait until the Operating
System writes data to disk. It is painfully slow:

$ time ./test_press_zlog 100 1000

real 0m0.732s

user 0m1.030s

sys 0m1.080s

$ time ./test_press_zlog 100 1000 # synchronous I/O open

real 0m20.646s

user 0m2.570s

sys 0m6.950s

� format name

It is optional. If not set, use zlog default format in global setting, which is:

[global]

default format = "%d %V [%p:%F:%L] %m%n"

� see 7.4 for more details for $.

5.6 Rotation

Why rotation? I have see more than once in a production environment, that the
hard disk is full of logs and causes the system to stop working, or a single log �le is
too big to open or grep. Several ways to rotate and archive log �les are possible:

1. Split log by date or time.

For example, generate one log �le per day.

CHAPTER 5. CONFIGURE FILE 32

aa.2012-08-02.log

aa.2012-08-03.log

aa.2012-08-04.log

In this case, the system administrator knows how much log will be produced
one day. The sys admin is able to search log �les based on the day. The best
way to make this split is to let the zlog library do it. Another choice is using
cronosplit to analyse the content of log �le and split it. A bad way is using
crontab+logrotate to daily move log �les, which is not accurate, some logs will
be put into the �le for the previous day.

Using zlog, there is no need for external rotate action to complete the job.
Setting time in the log �le name works:

. "aa.%d(%F).log"

or using cronolog for faster performace:

. | cronolog aa.%F.log

2. Split log by size.

Always suitable for development use. In this case, the program generates a lot
of logs in a short period. But the text editor might not be able to open big
�les quickly. Although the split can be done using split tools afterwards, this
requires extra steps. So a good way is to let the logging library do the rotation.
There are two ways of rotation, as nlog describes, Sequence and Rolling. In
case of Sequence:

aa.log (new)

aa.log.2 (less new)

aa.log.1

aa.log.0 (old)

And in case of Rolling:

aa.log (new)

aa.log.0 (less new)

aa.log.1

aa.log.2 (old)

CHAPTER 5. CONFIGURE FILE 33

It's hard to say which one is most suitable.

If only some of the newest logs are useful to developers, logging library should
do the cleanup work and delete the old log �les. Some external tools can't �nd
out which �les are older.

The simplest rotation con�guration for zlog is:

. "aa.log", 10MB

It is Rolling. When aa.log is larger than 10MB, zlog will rename �le like this:

aa.log.2 -> aa.log.3

aa.log.1 -> aa.log.2

aa.log.0 -> aa.log.1

aa.log -> aa.log.0

The con�guration can be more complex:

. "aa.log", 10MB * 0 ~ "aa.log.#r"

The 1st argument after the �le name says when rotation will be triggered, in
size.

The 2nd argument after the �le name says how many archive �les will be kept,
(0 means keep all).

The 3rd argument after the �le name shows the archive �le name. #r is a
sequence number for archive �les. r is short for Rolling, and #s is short for
sequence. Archive �le name must contain one of #r or #s.

3. Split log by size, and add time tag to archive �le.

aa.log

aa.log-20070305.00.log

aa.log-20070501.00.log

aa.log-20070501.01.log

aa.log-20071008.00.log

In this case, the log �le is not usually viewed frequently, and is likely checked
once a day. Of course, when one day's log is more than 100MB, you should
consider storing in two �les and add post�x numbers. For example if the date
is used as part of the pattern (like 20070501):

The con�guration of zlog is:

CHAPTER 5. CONFIGURE FILE 34

. "aa.log", 100MB ~ "aa-%d(%Y%m%d).#2s.log"

Do rotation every 100MB. The archive file name also supports conversion strings. #2s means the sequence number is at least 2 bytes wide. Sequence from 00. That's the most complex way to archive in zlog.

4. Compress, move and delete old archive.

Compress should not be done by the logging library, because compress need
time and CPU. The mission of the logging library is to cooperate with compress
programs.

For the 3 ways to split logs, way 1 and way 3 are easy to manage. It is easy
to �nd old log �le by name or by modify time. And then compress, move and
delete old log �les by crontab and shell.

For second way, compress is useless, delete is needed and zlog already supports
it.

If you really want to rotate and compress log �le at the same time, I suggest
logrotate. It is an independent program and will not confuse the situation.

5. zlog support for external tools like logrotate.

The rotation support of zlog is very powerful, still there are several cases zlog can
not handle. Like rotation by time, before or after rotation call some user-de�ned
shells. That will make zlog too complex.

Under these circumstances, consider using external tools like logrotate. On linux,
the problem is that when a tool renames the log �le, the working process which
uses an inode to reference the �le will not automatically reopen the new �le. The
standard way is send a signal to the program and let it reopen the �le. For syslogd
the command is:

kill -SIGHUP `cat /var/run/syslogd.pid`

For zlog as a library, it is not good to receive signals. zlog provide zlog_reload(),
which reloads the con�guration �le and reopens all log �les. So if you write a program
and want to reopen a log �le manually, you can write some code to do the job like
this: after receiving a signal or command from client, call zlog_reload().

5.7 Con�gure File Tools

$ zlog-chk-conf -h

Useage: zlog-chk-conf [conf files]...

-q, suppress non-error message

-h, show help message

CHAPTER 5. CONFIGURE FILE 35

zlog-chk-conf tries to read con�guration �les, check their syntax, and output to screen
whether it is correct or not. I suggest using this tool each time you create or change
a con�guration �le. It will output like this

$./zlog-chk-conf zlog.conf

03-08 15:35:44 ERROR (10595:rule.c:391) sscanf [aaa] fail, category or level is null

03-08 15:35:44 ERROR (10595:conf.c:155) zlog_rule_new fail [aaa]

03-08 15:35:44 ERROR (10595:conf.c:258) parse configure file[zlog.conf] line[126] fail

03-08 15:35:44 ERROR (10595:conf.c:306) zlog_conf_read_config fail

03-08 15:35:44 ERROR (10595:conf.c:366) zlog_conf_build fail

03-08 15:35:44 ERROR (10595:zlog.c:66) conf_file[zlog.conf], init conf fail

03-08 15:35:44 ERROR (10595:zlog.c:131) zlog_init_inner[zlog.conf] fail

---[zlog.conf] syntax error, see error message above

This example tells you that [aaa] is not a correct rule and that line 126 in the
con�guration �le is wrong. Later failure reports result from that fundamental failure.

Chapter 6

zlog API

All zlog APIs are thread safe. To use them, you just need to

#include "zlog.h"

6.1 initialize and �nish

SYNOPSIS int zlog_init(const char *confpath);

int zlog_reload(const char *confpath);

void zlog_fini(void);

DESCRIPTION zlog_init() reads con�guration from the �le confpath. If confpath
is NULL, it looks for the environment variable ZLOG_CONF_PATH to
�nd the con�guration �le. If $ZLOG_CONF_PATH is NULL also, all
logs will be output to stdout with an internal format. Only the �rst call
to zlog_init() per process is e�ective, subsequent calls will fail and do
nothing.

zlog_reload() is designed to reload the con�guration �le. From the
confpath it re-calculates the category-rule relationships, rebuilds thread
bu�ers, and resets user-de�ned output function rules. It can be called
at runtime when the con�guration �le is changed or you wish to use
another con�guration �le. It can be called any number of times. If
confpath is NULL, it reloads the last con�guration �le that zlog_init()
or zlog_reload() speci�ed. If zlog_reload() failed, the current con�gura-
tion in memory will remain unchanged. So zlog_reload() is atomic.

36

CHAPTER 6. ZLOG API 37

zlog_�ni() releases all zlog API memory and closes opened �les. It can
be called any number of times.

RETURN VALUE

On success , zlog_init() and zlog_reload() return zero. On error, zlog_init()
and zlog_reload() return -1, and a detailed error log will be recorded to
the log �le indicated by ZLOG_PROFILE_ERROR.

6.2 category operation

SYNOPSIS typedef struct zlog_category_s zlog_category_t;

zlog_category_t *zlog_get_category(const char *cname);

DESCRIPTION zlog_get_category() gets a category from zlog's category_table for
a future log action. If the category cname does not exist it will be created.
Then zlog goes through all rules as determined by the con�guration. It
returns a pointer to matched rules corresponding to cname.

This is how category string in rules matches cname:

1. * matches all cname.

2. category string which ends with underscore "_" matches super-
category and sub-categories. For example, "aa_" matches cname
like "aa", "aa_", "aa_bb", "aa_bb_cc".

3. category string which does not end with underscore "_"matches
cname accurately. For example, "aa_bb" matches only a cname of
"aa_bb".

4. ! matches cname that has no rule matched.

The rules for each category will be automatically re-calculated when
zlog_reload() is called. No need to worry about category's memory re-
lease, zlog_�ni() will clean up at the end.

RETURN VALUE

On success, return the address of zlog_category_t. On error, return
NULL, and a detailed error log will be recorded to the log �le indicated
by ZLOG_PROFILE_ERROR.

CHAPTER 6. ZLOG API 38

6.3 log functions and macros

SYNOPSIS void zlog(zlog_category_t * category,

const char *file, size_t filelen,

const char *func, size_t funclen,

long line, int level,

const char *format, ...);

void vzlog(zlog_category_t * category,

const char *file, size_t filelen,

const char *func, size_t funclen,

long line, int level,

const char *format, va_list args);

void hzlog(zlog_category_t * category,

const char *file, size_t filelen,

const char *func, size_t funclen,

long line, int level,

const void *buf, size_t buflen);

DESCRIPTION These 3 functions are the real log functions producing user mes-
sages, which correspond to %m is con�guration �le entries. category
comes from zlog_get_category() described above.

zlog() and vzlog() produce output according to a format like printf(3)
and vprintf(3).

vzlog() is equivalent to zlog(), except that it is called with a va_list
instead of a variable number of arguments. vzlog() invokes the va_copy
macro, the value of args remain unchanged after the call. See stdarg(3).

hzlog() is a little di�erent, it produce output like this, the hexadecimal
representation of buf and output len is buf_len

hex_buf_len=[5365]

0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF

0000000001 23 21 20 2f 62 69 6e 2f 62 61 73 68 0a 0a 23 20 #! /bin/bash..#

0000000002 74 65 73 74 5f 68 65 78 20 2d 20 74 65 6d 70 6f test_hex - tempo

0000000003 72 61 72 79 20 77 72 61 70 70 65 72 20 73 63 72 rary wrapper scr

The parameter �le and line are usually �lled by the __FILE__ and
__LINE__ macros. These indicate where the log event happened. The

CHAPTER 6. ZLOG API 39

parameter func is �lled with __func__ or __FUNCTION__, if the
compiler supports it, otherwise it will be �lled with "<unknown>".

level is an int in the current level list, which defaults to:

typedef enum {

ZLOG_LEVEL_DEBUG = 20,

ZLOG_LEVEL_INFO = 40,

ZLOG_LEVEL_NOTICE = 60,

ZLOG_LEVEL_WARN = 80,

ZLOG_LEVEL_ERROR = 100,

ZLOG_LEVEL_FATAL = 120

} zlog_level;

Each fuction has its macros for easy use. For example,

#define zlog_fatal(cat, format, args...) \

zlog(cat, __FILE__, sizeof(__FILE__)-1, \

__func__, sizeof(__func__)-1, __LINE__, \

ZLOG_LEVEL_FATAL, format, ##args)

The full list of macros is:

/* zlog macros */

/* zlog macros */

zlog_fatal(cat, format, ...)

zlog_error(cat, format, ...)

zlog_warn(cat, format, ...)

zlog_notice(cat, format, ...)

zlog_info(cat, format, ...)

zlog_debug(cat, format, ...)

/* vzlog macros */

vzlog_fatal(cat, format, args)

vzlog_error(cat, format, args)

vzlog_warn(cat, format, args)

vzlog_notice(cat, format, args)

vzlog_info(cat, format, args)

vzlog_debug(cat, format, args)

CHAPTER 6. ZLOG API 40

/* hzlog macros */

hzlog_fatal(cat, buf, buf_len)

hzlog_error(cat, buf, buf_len)

hzlog_warn(cat, buf, buf_len)

hzlog_notice(cat, buf, buf_len)

hzlog_info(cat, buf, buf_len)

hzlog_debug(cat, buf, buf_len)

RETURN VALUE

These functions return nothing. But if anything wrong happens, a de-
tailed error log will be recorded to the log �le indicated by ZLOG_PROFILE_ERROR.

6.4 MDC operation

SYNOPSIS
int zlog_put_mdc(const char *key, const char *value);

char *zlog_get_mdc(const char *key);

void zlog_remove_mdc(const char *key);

void zlog_clean_mdc(void);

DESCRIPTION MDC (Mapped Diagnostic Context) is a thread key-value map, and
has nothing to do with category.

key and value are all strings, which should be no longer than MAXLEN_PATH(1024).
If the input is longer than MAXLEN_PATH(1024), the input will be
truncated.

One thing you should remember is that the map bonds to a thread, thus
if you set a key-value pair in one thread, it will not a�ect other threads.

RETURN VALUE

zlog_put_mdc() returns 0 for success, -1 for fail. zlog_get_mdc() re-
turns a pointer to value for success, NULL for fail or key not exist. If
anything wrong happens, a detailed error log will be recorded to the log
�le indicated by ZLOG_PROFILE_ERROR.

CHAPTER 6. ZLOG API 41

6.5 dzlog API

SYNOPSIS
int dzlog_init(const char *confpath, const char *cname);

int dzlog_set_category(const char *cname);

void dzlog(const char *file, size_t filelen,

const char *func, size_t funclen,

long line, int level,

const char *format, ...);

void vdzlog(const char *file, size_t filelen,

const char *func, size_t funclen,

long line, int level,

const char *format, va_list args);

void hdzlog(const char *file, size_t filelen,

const char *func, size_t funclen,

long line, int level,

const void *buf, size_t buflen);

DESCRIPTION dzlog consists of simple functions that omit zlog_category_t. It
uses a default category internally and puts the category under lock pro-
tection. It is thread safe also. Omitting the category means that users
need not create, save, or transfer zlog_category_t variables. Still, you can
get and use other category values at the same time through the normal
API for �exibility.

dzlog_init() is just as zlog_init(), but needs a cname for the internal
default category. zlog_reload() and zlog_�ni() can be used as before, to
refresh conf_�le, or release all.

dzlog_set_category() is designed for changing the default category. The
last default category is replaced by the new one. Don't worry about
releasing memory since all category allocations will be cleaned up at
zlog_�ni().

Macros are de�ned in zlog.h. They are the general way in simple logging.

dzlog_fatal(format, ...)

dzlog_error(format, ...)

dzlog_warn(format, ...)

dzlog_notice(format, ...)

dzlog_info(format, ...)

CHAPTER 6. ZLOG API 42

dezlog_debug(format, ...)

vdzlog_fatal(format, args)

vdzlog_error(format, args)

vdzlog_warn(format, args)

vdzlog_notice(format, args)

vdzlog_info(format, args)

vdzlog_debug(format, args)

hdzlog_fatal(buf, buf_len)

hdzlog_error(buf, buf_len)

hdzlog_warn(buf, buf_len)

hdzlog_noticebuf, buf_len)

hdzlog_info(buf, buf_len)

hdzlog_debug(buf, buf_len)

RETURN VALUE

On success, dzlog_init() and dzlog_set_category() return zero. On er-
ror, dzlog_init() and dzlog_set_category() return -1, and a detailed er-
ror log will be recorded to the log �le indicated by ZLOG_PROFILE_ERROR.

6.6 User-de�ned Output

SYNOPSIS typedef struct zlog_msg_s {

char *buf;

size_t len;

char *path;

} zlog_msg_t;

typedef int (*zlog_record_fn)(zlog_msg_t *msg);

int zlog_set_record(const char *rname, zlog_record_fn record);

DESCRIPTION zlog allows a user to de�ne an output function. The output function
bonds to a special kind of rule in con�guration �le. A typical rule is:

. $name, "record path %c %d"; simple

zlog_set_record() does the bonding operation. Rules with the $rname
will be output through user-de�ned function record. The callback func-
tion has the type of zlog_record_fn.

CHAPTER 6. ZLOG API 43

The members of struct zlog_msg_t are decribed below:

path comes from the second parameter of rule after $name, which is
generated dynamically like the �le path.

buf and len are zlog formatted log message and its length.

All settings of zlog_set_record() are kept available after zlog_reload().

RETURN VALUE

On success, zlog_set_record() returns zero. On error, it returns -1,
and a detailed error log will be recorded to the log �le indicated by
ZLOG_PROFILE_ERROR.

6.7 debug and pro�le

SYNOPSIS void zlog_profile(void);

DESCRIPTION environment variable ZLOG_PROFILE_ERROR indicates zlog's
error log path.

environment variable ZLOG_PROFILE_DEBUG indicates zlog's debug
log path.

zlog_pro�le() prints all information in memory to zlog's error log �le at
runtime. You can compare it to the con�guration �le to �nd possible
errors.

Chapter 7

Advanced Usage

7.1 MDC

What is MDC? In log4j it is short for Mapped Diagnostic Context. That sounds like a
complicated terminology. MDC is just a key-value map. Once you set it by function,
the zlog library will print it to �le every time a log event happens, or become part
of log �le path. Let's see an example in $(top_builddir)/test/test_mdc.c.

$ cat test_mdc.c

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <unistd.h>

#include <string.h>

#include "zlog.h"

int main(int argc, char** argv)

{

int rc;

zlog_category_t *zc;

rc = zlog_init("test_mdc.conf");

if (rc) {

printf("init failed\n");

return -1;

}

zc = zlog_get_category("my_cat");

if (!zc) {

44

CHAPTER 7. ADVANCED USAGE 45

printf("get cat fail\n");

zlog_fini();

return -2;

}

zlog_info(zc, "1.hello, zlog");

zlog_put_mdc("myname", "Zhang");

zlog_info(zc, "2.hello, zlog");

zlog_put_mdc("myname", "Li");

zlog_info(zc, "3.hello, zlog");

zlog_fini();

return 0;

}

The con�gure �le is

$ cat test_mdc.conf

[formats]

mdc_format= "%d.%ms %-6V (%c:%F:%L) [%M(myname)] - %m%n"

[rules]

. >stdout; mdc_format

And the output is

$./test_mdc

2012-03-12 09:26:37.740 INFO (my_cat:test_mdc.c:47) [] - 1.hello, zlog

2012-03-12 09:26:37.740 INFO (my_cat:test_mdc.c:51) [Zhang] - 2.hello, zlog

2012-03-12 09:26:37.740 INFO (my_cat:test_mdc.c:55) [Li] - 3.hello, zlog

You can see zlog_put_mdc() function sets the map with key "myname" and value
"Zhang", and in con�guration �le %M(myname) indicates where the value shows in
each log. The second time, value of key "myname" is overwritten to "Li", and the
log changes also.

When should MDC be used? That mainly depends on when a user need to
separate same log action with di�erent scenarios. For example, in .c

zlog_put_mdc("customer_name", get_customer_name_from_db());

zlog_info("get in");

zlog_info("pick product");

zlog_info("pay");

zlog_info("get out");

CHAPTER 7. ADVANCED USAGE 46

in .conf

&format "%M(customer_name) %m%n"

When the program processes two customers at the same time, the output could be:

Zhang get in

Li get in

Zhang pick product

Zhang pay

Li pick product

Li pay

Zhang get out

Li get out

Now you can distinguish one customer from another, by using grep afterwards

$ grep Zhang aa.log > Zhang.log

$ grep Li aa.log >Li.log

Or, another way is to seperate them to di�erent log �le when log action is taken. In
.conf

. "mdc_%M(customer_name).log";

It will produce 3 logs

mdc_.log mdc_Zhang.log mdc_Li.log

That's a quick way, if you know what you are doing.
In MDC, the map belongs to a thread and each thread has it's own map. In

one thread zlog_mdc_put() will not a�ect other thread's map. Still, if you want to
distinguish one thread from another, using the %t conversion character is enough.

CHAPTER 7. ADVANCED USAGE 47

7.2 Pro�le zlog Itself

Until this point we have assumed that the zlog library never fails. It helps the
application to write log entries and to debug the application. But if zlog itself has
some problem, how can we �nd out? Other programs debug through the log library
so how can a log library debug itself? The answer is the same, zlog library has its
own log. This pro�le log is usually closed, and can be opened by setting environment
variables.

$ export ZLOG_PROFILE_DEBUG=/tmp/zlog.debug.log

$ export ZLOG_PROFILE_ERROR=/tmp/zlog.error.log

pro�le log has just 2 levels, debug and error. After setting them, run test_hello
program in 3.3, and the debug log will be

$ more zlog.debug.log

03-13 09:46:56 DEBUG (7503:zlog.c:115) ------zlog_init start, compile time[Mar 13 2012 11:28:56]------

03-13 09:46:56 DEBUG (7503:spec.c:825) spec:[0x7fdf96b7c010][%d(%F %T)][%F %T 29][]

03-13 09:46:56 DEBUG (7503:spec.c:825) spec:[0x7fdf96b52010][][0][]

......

03-13 09:52:40 DEBUG (8139:zlog.c:291) ------zlog_fini end------

zlog.error.log is not created, as no error occurs.
As you can see, debug log shows how zlog is inited and �nished, but no debug

log is written when zlog_info() is executed. That's for e�cency.
If there is anything wrong with zlog library, all will show in zlog.error.log. For

example, using a wrong printf syntax in zlog()

zlog_info(zc, "%l", 1);

Then run the program, the zlog.error.log should be

$ cat zlog.error.log

03-13 10:04:58 ERROR (10102:buf.c:189) vsnprintf fail, errno[0]

03-13 10:04:58 ERROR (10102:buf.c:191) nwrite[-1], size_left[1024], format[%l]

03-13 10:04:58 ERROR (10102:spec.c:329) zlog_buf_vprintf maybe fail or overflow

03-13 10:04:58 ERROR (10102:spec.c:467) a_spec->gen_buf fail

03-13 10:04:58 ERROR (10102:format.c:160) zlog_spec_gen_msg fail

03-13 10:04:58 ERROR (10102:rule.c:265) zlog_format_gen_msg fail

03-13 10:04:58 ERROR (10102:category.c:164) hzb_log_rule_output fail

03-13 10:04:58 ERROR (10102:zlog.c:632) zlog_output fail, srcfile[test_hello.c], srcline[41]

CHAPTER 7. ADVANCED USAGE 48

Now, you could �nd the reason why the expected log doesn't generate, and �x the
wrong printf syntax.

Runtime pro�ling causes a loss of e�cency. Normally, I keep ZLOG_PROFILE_ERROR
on and ZLOG_PROFILE_DEBUG o� in my environment.

There is another way to pro�le the zlog library. zlog_init() reads the con�g-
uration �le into memory. Throughout all log actions, the con�gure structure re-
mains unchanged. There is possibility that this memory is damaged by other func-
tions in an application, or the memory doesn't equal what the con�guration �le
describes. So there is a function to show this memory at runtime and print it to
ZLOG_PROFILE_ERROR.

see $(top_builddir)/test/test_pro�le.c

$ cat test_profile.c

#include <stdio.h>

#include "zlog.h"

int main(int argc, char** argv)

{

int rc;

rc = dzlog_init("test_profile.conf", "my_cat");

if (rc) {

printf("init failed\n");

return -1;

}

dzlog_info("hello, zlog");

zlog_profile();

zlog_fini();

return 0;

}

zlog_pro�le() is the function. The con�guration �le is simple

$ cat test_profile.conf

[formats]

simple = "%m%n"

[rules]

my_cat.* >stdout; simple

CHAPTER 7. ADVANCED USAGE 49

Then zlog.error.log is

$ cat /tmp/zlog.error.log

06-01 11:21:26 WARN (7063:zlog.c:783) ------zlog_profile start------

06-01 11:21:26 WARN (7063:zlog.c:784) init_flag:[1]

06-01 11:21:26 WARN (7063:conf.c:75) -conf[0x2333010]-

06-01 11:21:26 WARN (7063:conf.c:76) --global--

06-01 11:21:26 WARN (7063:conf.c:77) ---file[test_profile.conf],mtime[2012-06-01 11:20:44]---

06-01 11:21:26 WARN (7063:conf.c:78) ---strict init[1]---

06-01 11:21:26 WARN (7063:conf.c:79) ---buffer min[1024]---

06-01 11:21:26 WARN (7063:conf.c:80) ---buffer max[2097152]---

06-01 11:21:26 WARN (7063:conf.c:82) ---default_format---

06-01 11:21:26 WARN (7063:format.c:48) ---format[0x235ef60][default = %d(%F %T) %V [%p:%F:%L] %m%n(0x233b810)]---

06-01 11:21:26 WARN (7063:conf.c:85) ---file perms[0600]---

06-01 11:21:26 WARN (7063:conf.c:87) ---rotate lock file[/tmp/zlog.lock]---

06-01 11:21:26 WARN (7063:rotater.c:48) --rotater[0x233b7d0][0x233b7d0,/tmp/zlog.lock,4]--

06-01 11:21:26 WARN (7063:level_list.c:37) --level_list[0x2335490]--

06-01 11:21:26 WARN (7063:level.c:37) ---level[0x23355c0][0,*,*,1,6]---

06-01 11:21:26 WARN (7063:level.c:37) ---level[0x23375e0][20,DEBUG,debug,5,7]---

06-01 11:21:26 WARN (7063:level.c:37) ---level[0x2339600][40,INFO,info,4,6]---

06-01 11:21:26 WARN (7063:level.c:37) ---level[0x233b830][60,NOTICE,notice,6,5]---

06-01 11:21:26 WARN (7063:level.c:37) ---level[0x233d850][80,WARN,warn,4,4]---

06-01 11:21:26 WARN (7063:level.c:37) ---level[0x233fc80][100,ERROR,error,5,3]---

7.3 User-de�ned Level

Here are all the steps to de�ne your own levels.

1. De�ne levels in the con�guration �le.

$ cat $(top_builddir)/test/test_level.conf

[global]

default format = "%V %v %m%n"

[levels]

TRACE = 30, LOG_DEBUG

[rules]

my_cat.TRACE >stdout;

The internal default levels are (no need to write them in the conf �le):

CHAPTER 7. ADVANCED USAGE 50

DEBUG = 20, LOG_DEBUG

INFO = 40, LOG_INFO

NOTICE = 60, LOG_NOTICE

WARN = 80, LOG_WARNING

ERROR = 100, LOG_ERR

FATAL = 120, LOG_ALERT

UNKNOWN = 254, LOG_ERR

In zlog, an integer(30) and a level string(TRACE) represent a level. Note that
this integer must be in [1,253], any other number is illegal. Higher numbers
are more important. TRACE is more important than DEBUG(30>20), and
less important than INFO(30<40). After the de�nition, TRACE can be used
in rule of con�gure �le. This sentence

my_cat.TRACE >stdout;

means that level >= TRACE, which is TRACE, INFO, NOTICE, WARN,
ERROR, FATAL will be written to standard output.

The conversion charactor %V of format string generates the uppercase value
of the level string and %v generates the lowercase value of the level string.

In the level de�nition LOG_DEBUG means when using >syslog in a rule, all
TRACE log will output as syslog' s LOG_DEBUG level.

2. Using the new log level in source �le, the direct way is like this

zlog(cat, __FILE__, sizeof(__FILE__)-1, \

__func__, sizeof(__func__)-1,__LINE__, \

30, "test %d", 1);

For easy use, create a .h �le

$ cat $(top_builddir)/test/test_level.h

#ifndef __test_level_h

#define __test_level_h

#include "zlog.h"

enum {

CHAPTER 7. ADVANCED USAGE 51

ZLOG_LEVEL_TRACE = 30,

/* must equals conf file setting */

};

#define zlog_trace(cat, format, ...) \

zlog(cat, __FILE__, sizeof(__FILE__)-1, \

__func__, sizeof(__func__)-1, __LINE__, \

ZLOG_LEVEL_TRACE, format, ## __VA_ARGS__)

#endif

3. Then zlog_trace can be used int .c �le

$ cat $(top_builddir)/test/test_level.c

#include <stdio.h>

#include "test_level.h"

int main(int argc, char** argv)

{

int rc;

zlog_category_t *zc;

rc = zlog_init("test_level.conf");

if (rc) {

printf("init failed\n");

return -1;

}

zc = zlog_get_category("my_cat");

if (!zc) {

printf("get cat fail\n");

zlog_fini();

return -2;

}

zlog_trace(zc, "hello, zlog - trace");

zlog_debug(zc, "hello, zlog - debug");

zlog_info(zc, "hello, zlog - info");

zlog_fini();

return 0;

}

4. Now we can see the output

CHAPTER 7. ADVANCED USAGE 52

$./test_level

TRACE trace hello, zlog - trace

INFO info hello, zlog - info

That's just what we expect. The con�guration �le only allows >=TRACE
ouput to screen. And %V and %v work as well.

7.4 User-de�ned Output

The goal of user-de�ned output is that zlog gives up some rights. zlog is only respon-
sible for generating path and message dynamically as per the user's con�guration,
but leaves the log output, rotate and cleanup actions for the user to specify. You can
do what ever you want by setting a function to special rules. Here are the steps to
de�ne your own output function.

1. De�ne output in rules of con�gure �le.

$ cat test_record.conf

[formats]

simple = "%m%n"

[rules]

my_cat.* $myoutput, " mypath %c %d";simple

2. Set an output function for myoutput, then use it

#include <stdio.h>

#include "zlog.h"

int output(zlog_msg_t *msg)

{

printf("[mystd]:[%s][%s][%ld]\n", msg->path, msg->buf, (long)msg->len);

return 0;

}

int main(int argc, char** argv)

{

int rc;

zlog_category_t *zc;

CHAPTER 7. ADVANCED USAGE 53

rc = zlog_init("test_record.conf");

if (rc) {

printf("init failed\n");

return -1;

}

zlog_set_record("myoutput", output);

zc = zlog_get_category("my_cat");

if (!zc) {

printf("get cat fail\n");

zlog_fini();

return -2;

}

zlog_info(zc, "hello, zlog");

zlog_fini();

return 0;

}

3. Now we can see how the user-de�ned output() works

$./test_record

[mystd]:[mypath my_cat 2012-07-19 11:01:12][hello, zlog

][12]

As you can see, msglen is 12, and msg is formatted by zlog to contain a newline
character.

4. There are many other things you can do with user-de�ned output functions.
As one user(�w@newsmth.net) provided:

(a) Log name is foo.log

(b) If foo.log is larger than 100M, then generate a new log�le which contains
all the contents of foo.log. And zlog truncates foo.log to 0 and re-appends
to it when the next log happens.

(c) When the time is over 5 minutes after last logging, even if foo.log is not
larger than 100M, zlog still jumps to a new �le.

(d) The new �le name should be de�ned by your own needs. For example add
device number as pre�x and time string as post�x.

CHAPTER 7. ADVANCED USAGE 54

(e) You might compress the new log �le to save disk space and network band-
width.

I wish him good luck trying to write such a function for multi-process or multi-
thread cases!

Chapter 8

Epilog

Here's to alcohol, the cause of � and solution to � all life's problems.

Homer Simpson

55

	1 What is zlog?
	1.1 Compatibility Notes
	1.2 zlog 1.2 Release Notes

	2 What zlog is not
	3 Hello World
	3.1 Build and Installation zlog
	3.2 Call and Link zlog in User's application
	3.3 Hello World Example
	3.4 Simpler Hello World Example

	4 Syslog model
	4.1 Category, Rule and Format
	4.2 Differences between syslog model and log4j model
	4.3 Expand syslog model

	5 Configure File
	5.1 Global
	5.2 Levels
	5.3 Formats
	5.4 Conversion pattern
	5.4.1 Conversion Characters
	5.4.2 Format Modifier
	5.4.3 Time Character

	5.5 Rules
	5.5.1 Level Matching
	5.5.2 Category Matching
	5.5.3 Output Action

	5.6 Rotation
	5.7 Configure File Tools

	6 zlog API
	6.1 initialize and finish
	6.2 category operation
	6.3 log functions and macros
	6.4 MDC operation
	6.5 dzlog API
	6.6 User-defined Output
	6.7 debug and profile

	7 Advanced Usage
	7.1 MDC
	7.2 Profile zlog Itself
	7.3 User-defined Level
	7.4 User-defined Output

	8 Epilog

