
Simple	Dynamic	Strings
Notes	about	verison	2:	this	is	an	updated	version	of	SDS	in	an	attempt	to	finally	unify	Redis,
Disque,	Hiredis,	and
the	stand	alone	SDS	versions.	This	version	is	NOT	binary	compatible*	with	SDS	verison	1,	but
the	API	is	99%
compatible	so	switching	to	the	new	lib	should	be	trivial.

Note	that	this	version	of	SDS	may	be	a	slower	with	certain	workloads,	but	uses	less	memory
compared	to	V1	since	header
size	is	dynamic	and	depends	to	the	string	to	alloc.

Moreover	it	includes	a	few	more	API	functions,	notably	sdscatfmt	which	is	a	faster	version	of
sdscatprintf	that	can
be	used	for	the	simpler	cases	in	order	to	avoid	the	libc	printf	family	functions	performance
penalty.

How	SDS	stirngs	work
SDS	is	a	string	library	for	C	designed	to	augment	the	limited	libc	string	handling	functionalities
by	adding	heap
allocated	strings	that	are:

Simpler	to	use.
Binary	safe.
Computationally	more	efficient.
But	yet...	Compatible	with	normal	C	string	functions.

This	is	achieved	using	an	alternative	design	in	which	instead	of	using	a	C	structure	to	represent
a	string,	we	use	a
binary	prefix	that	is	stored	before	the	actual	pointer	to	the	string	that	is	returned	by	SDS	to	the
user.

+--------+-------------------------------+-----------+
|	Header	|	Binary	safe	C	alike	string...	|	Null	term	|
+--------+-------------------------------+-----------+
									|
									`->	Pointer	returned	to	the	user.

Because	of	meta	data	stored	before	the	actual	returned	pointer	as	a	prefix,	and	because	of
every	SDS	string	implicitly
adding	a	null	term	at	the	end	of	the	string	regardless	of	the	actual	content	of	the	string,	SDS
strings	work	well
together	with	C	strings	and	the	user	is	free	to	use	them	interchangeably	with	real-only
functions	that	access	the	string
in	read-only.

SDS	was	a	C	string	I	developed	in	the	past	for	my	everyday	C	programming	needs,	later	it	was
moved	into	Redis	where	it
is	used	extensively	and	where	it	was	modified	in	order	to	be	suitable	for	high	performance

operations.	Now	it	was
extracted	from	Redis	and	forked	as	a	stand	alone	project.

Because	of	its	many	years	life	inside	Redis,	SDS	provides	both	higher	level	functions	for	easy
strings	manipulation	in
C,	but	also	a	set	of	low	level	functions	that	make	it	possible	to	write	high	performance	code
without	paying	a	penalty
for	using	an	higher	level	string	library.

Advantages	and	disadvantages	of	SDS
Normally	dynamic	string	libraries	for	C	are	implemented	using	a	structure	that	defines	the
string.	The	structure	has	a
pointer	field	that	is	managed	by	the	string	function,	so	it	looks	like	this:

struct	yourAverageStringLibrary	{
				char	*buf;
				size_t	len;
				...	possibly	more	fields	here	...
};

SDS	strings	are	already	mentioned	don't	follow	this	schema,	and	are	instead	a	single	allocation
with	a	prefix	that
lives	before	the	address	actually	returned	for	the	string.

There	are	advantages	and	disadvantages	with	this	approach	over	the	traditional	approach:

Disadvantage	#1:	many	functions	return	the	new	string	as	value,	since	sometimes	SDS
requires	to	create	a	new	string
with	more	space,	so	the	most	SDS	API	calls	look	like	this:

s	=	sdscat(s,"Some	more	data");

As	you	can	see	s	is	used	as	input	for	sdscat	but	is	also	set	to	the	value	returned	by	the	SDS
API	call,	since	we	are
not	sure	if	the	call	modified	the	SDS	string	we	passed	or	allocated	a	new	one.	Not	remembering
to	assign	back	the	return
value	of	sdscat	or	similar	functions	to	the	variable	holding	the	SDS	string	will	result	in	a	bug.

Disadvantage	#2:	if	an	SDS	string	is	shared	in	different	places	in	your	program	you	have	to
modify	all	the
references	when	you	modify	the	string.	However	most	of	the	times	when	you	need	to	share
SDS	strings	it	is	much	better	to
encapsulate	them	into	structures	with	a	reference	count	otherwise	it	is	too	easy	to	incur	into
memory	leaks.

Advantage	#1:	you	can	pass	SDS	strings	to	functions	designed	for	C	functions	without
accessing	a	struct	member	or
calling	a	function,	like	this:

printf("%s\n",	sds_string);

In	most	other	libraries	this	will	be	something	like:

printf("%s\n",	string->buf);

Or:

printf("%s\n",	getStringPointer(string));

Advantage	#2:	accessing	individual	chars	is	straightforward.	C	is	a	low	level	language	so	this
is	an	important
operation	in	many	programs.	With	SDS	strings	accessing	individual	chars	is	very	natural:

printf("%c	%c\n",	s[0],	s[1]);

With	other	libraries	your	best	chance	is	to	assign	string->buf	(or	call	the	function	to	get	the
string	pointer)	to
a	char	pointer	and	work	with	this.	However	since	the	other	libraries	may	reallocate	the	buffer
implicitly	every	time
you	call	a	function	that	may	modify	the	string	you	have	to	get	a	reference	to	the	buffer	again.

Advantage	#3:	single	allocation	has	better	cache	locality.	Usually	when	you	access	a	string
created	by	a	string
library	using	a	structure,	you	have	two	different	allocations	for	the	structure	representing	the
string,	and	the	actual
buffer	holding	the	string.	Over	the	time	the	buffer	is	reallocated,	and	it	is	likely	that	it	ends	in	a
totally	different
part	of	memory	compared	to	the	structure	itself.	Since	modern	programs	performances	are
often	dominated	by	cache	misses,
SDS	may	perform	better	in	many	workloads.

SDS	basics
The	type	of	SDS	strings	is	just	the	char	pointer	char	*.	However	SDS	defines	an	sds	type	as
alias	of	char	*	in	its
header	file:	you	should	use	the
sds	type	in	order	to	make	sure	you	remember	that	a	given	variable	in	your	program	holds	an
SDS	string	and	not	a	C
string,	however	this	is	not	mandatory.

This	is	the	simplest	SDS	program	you	can	write	that	does	something:

sds	mystring	=	sdsnew("Hello	World!");
printf("%s\n",	mystring);
sdsfree(mystring);

output>	Hello	World!

The	above	small	program	already	shows	a	few	important	things	about	SDS:

SDS	strings	are	created,	and	heap	allocated,	via	the	sdsnew()	function,	or	other	similar
functions	that	we'll	see	in
a	moment.
SDS	strings	can	be	passed	to	printf()	like	any	other	C	string.
SDS	strings	require	to	be	freed	with	sdsfree(),	since	they	are	heap	allocated.

Creating	SDS	strings
sds	sdsnewlen(const	void	*init,	size_t	initlen);
sds	sdsnew(const	char	*init);
sds	sdsempty(void);
sds	sdsdup(const	sds	s);

There	are	many	ways	to	create	SDS	strings:

The	sdsnew	function	creates	an	SDS	string	starting	from	a	C	null	terminated	string.	We
already	saw	how	it	works	in
the	above	example.

The	sdsnewlen	function	is	similar	to	sdsnew	but	instead	of	creating	the	string	assuming
that	the	input	string	is
null	terminated,	it	gets	an	additional	length	parameter.	This	way	you	can	create	a
string	using	binary	data:

char	buf[3];
sds	mystring;

buf[0]	=	'A';
buf[1]	=	'B';
buf[2]	=	'C';
mystring	=	sdsnewlen(buf,3);
printf("%s	of	len	%d\n",	mystring,	(int)	sdslen(mystring));

output>	ABC	of	len	3

Note:	sdslen	return	value	is	casted	to	int	because	it	returns	a	size_t
type.	You	can	use	the	right	printf	specifier	instead	of	casting.

The	sdsempty()	function	creates	an	empty	zero-length	string:

sds	mystring	=	sdsempty();
printf("%d\n",	(int)	sdslen(mystring));

output>	0

The	sdsdup()	function	duplicates	an	already	existing	SDS	string:

sds	s1,	s2;

s1	=	sdsnew("Hello");
s2	=	sdsdup(s1);
printf("%s	%s\n",	s1,	s2);

output>	Hello	Hello

Obtaining	the	string	length
size_t	sdslen(const	sds	s);

In	the	examples	above	we	already	used	the	sdslen	function	in	order	to	get	the	length	of	the
string.	This	function
works	like	strlen	of	the	libc	except	that:

It	runs	in	constant	time	since	the	length	is	stored	in	the	prefix	of	SDS	strings,	so	calling
sdslen	is	not	expensive
even	when	called	with	very	large	strings.
The	function	is	binary	safe	like	any	other	SDS	string	function,	so	the	length	is	the	true
length	of	the	string
regardless	of	the	content,	there	is	no	problem	if	the	string	includes	null	term	characters
in	the	middle.

As	an	example	of	the	binary	safeness	of	SDS	strings,	we	can	run	the	following	code:

sds	s	=	sdsnewlen("A\0\0B",4);
printf("%d\n",	(int)	sdslen(s));

output>	4

Note	that	SDS	strings	are	always	null	terminated	at	the	end,	so	even	in	that	case	s[4]	will	be	a
null	term,	however
printing	the	string	with	printf
would	result	in	just	"A"	to	be	printed	since	libc	will	treat	the	SDS	string	like	a	normal	C	string.

Destroying	strings

void	sdsfree(sds	s);

The	destroy	an	SDS	string	there	is	just	to	call	sdsfree	with	the	string	pointer.	However	note
that	empty	strings
created	with	sdsempty	need	to	be	destroyed	as	well	otherwise	they'll	result	into	a	memory
leak.

The	function	sdsfree	does	not	perform	any	operation	if	instead	of	an	SDS	string	pointer,	NULL
is	passed,	so	you
don't	need	to	check	for	NULL	explicitly	before	calling	it:

if	(string)	sdsfree(string);	/*	Not	needed.	*/
sdsfree(string);	/*	Same	effect	but	simpler.	*/

Concatenating	strings
Concatenating	strings	to	other	strings	is	likely	the	operation	you	will	end	using	the	most	with	a
dynamic	C	string
library.	SDS	provides	different	functions	to	concatenate	strings	to	existing	strings.

sds	sdscatlen(sds	s,	const	void	*t,	size_t	len);
sds	sdscat(sds	s,	const	char	*t);

The	main	string	concatenation	functions	are	sdscatlen	and	sdscat	that	are	identical,	the	only
difference	being
that	sdscat	does	not	have	an	explicit	length	argument	since	it	expects	a	null	terminated	string.

sds	s	=	sdsempty();
s	=	sdscat(s,	"Hello	");
s	=	sdscat(s,	"World!");
printf("%s\n",	s);

output>	Hello	World!

Sometimes	you	want	to	cat	an	SDS	string	to	another	SDS	string,	so	you	don't	need	to	specify
the	length,	but	at	the	same
time	the	string	does	not	need	to	be	null	terminated	but	can	contain	any	binary	data.	For	this
there	is	a	special
function:

sds	sdscatsds(sds	s,	const	sds	t);

Usage	is	straightforward:

sds	s1	=	sdsnew("aaa");
sds	s2	=	sdsnew("bbb");
s1	=	sdscatsds(s1,s2);
sdsfree(s2);
printf("%s\n",	s1);

output>	aaabbb

Sometimes	you	don't	want	to	append	any	special	data	to	the	string,	but	you	want	to	make	sure
that	there	are	at	least	a
given	number	of	bytes	composing	the	whole	string.

sds	sdsgrowzero(sds	s,	size_t	len);

The	sdsgrowzero	function	will	do	nothing	if	the	current	string	length	is	already	len	bytes,
otherwise	it	will
enlarge	the	string	to	len	just	padding	it	with	zero	bytes.

sds	s	=	sdsnew("Hello");
s	=	sdsgrowzero(s,6);
s[5]	=	'!';	/*	We	are	sure	this	is	safe	because	of	sdsgrowzero()	*/
printf("%s\n',	s);

output>	Hello!

Formatting	strings
There	is	a	special	string	concatenation	function	that	accepts	a	printf	alike	format	specifier
and	cats	the	formatted
string	to	the	specified	string.

sds	sdscatprintf(sds	s,	const	char	*fmt,	...)	{

Example:

sds	s;
int	a	=	10,	b	=	20;
s	=	sdsnew("The	sum	is:	");
s	=	sdscatprintf(s,"%d+%d	=	%d",a,b,a+b);

Often	you	need	to	create	SDS	string	directly	from	printf	format	specifiers.	Because
sdscatprintf	is	actually	a
function	that	concatenates	strings	all	you	need	is	to	concatenate	your	string	to	an	empty
string:

char	*name	=	"Anna";
int	loc	=	2500;
sds	s;
s	=	sdscatprintf(sdsempty(),	"%s	wrote	%d	lines	of	LISP\n",	name,	loc);

You	can	use	sdscatprintf	in	order	to	convert	numbers	into	SDS	strings:

int	some_integer	=	100;
sds	num	=	sdscatprintf(sdsempty(),"%d\n",	some_integer);

However	this	is	slow	and	we	have	a	special	function	to	make	it	efficient.

Fast	number	to	string	operations
Creating	an	SDS	string	from	an	integer	may	be	a	common	operation	in	certain	kind	of
programs,	and	while	you	may	do	this
with	sdscatprintf	the	performance	hit	is	big,	so	SDS	provides	a	specialized	function.

sds	sdsfromlonglong(long	long	value);

Use	it	like	this:

sds	s	=	sdsfromlonglong(10000);
printf("%d\n",	(int)	sdslen(s));

output>	5

Trimming	strings	and	getting	ranges
String	trimming	is	a	common	operation	where	a	set	of	characters	are	removed	from	the	left
and	the	right	of	the	string.
Another	useful	operation	regarding	strings	is	the	ability	to	just	take	a	range	out	of	a	larger
string.

void	sdstrim(sds	s,	const	char	*cset);
void	sdsrange(sds	s,	int	start,	int	end);

SDS	provides	both	the	operations	with	the	sdstrim	and	sdsrange	functions.	However	note	that
both	functions	work
differently	than	most	functions	modifying	SDS	strings	since	the	return	value	is	null:	basically
those	functions	always

destructively	modify	the	passed	SDS	string,	never	allocating	a	new	one,	because	both	trimming
and	ranges	will	never	need
more	room:	the	operations	can	only	remove	characters	from	the	original	strings.

Because	of	this	behavior,	both	functions	are	fast	and	don't	involve	reallocation.

This	is	an	example	of	string	trimming	where	newlines	and	spaces	are	removed	from	an	SDS
strings:

sds	s	=	sdsnew("									my	string\n\n		");
sdstrim(s,"	\n");
printf("-%s-\n",s);

output>	-my	string-

Basically	sdstrim	takes	the	SDS	string	to	trim	as	first	argument,	and	a	null	terminated	set	of
characters	to	remove
from	left	and	right	of	the	string.	The	characters	are	removed	as	long	as	they	are	not	interrupted
by	a	character	that	is
not	in	the	list	of	characters	to	trim:	this	is	why	the	space	between
"my"	and	"string"	was	preserved	in	the	above	example.

Taking	ranges	is	similar,	but	instead	to	take	a	set	of	characters,	it	takes	to	indexes,
representing	the	start	and	the
end	as	specified	by	zero-based	indexes	inside	the	string,	to	obtain	the	range	that	will	be
retained.

sds	s	=	sdsnew("Hello	World!");
sdsrange(s,1,4);
printf("-%s-\n");

output>	-ello-

Indexes	can	be	negative	to	specify	a	position	starting	from	the	end	of	the	string,	so	that	-1
means	the	last
character,	-2	the	penultimate,	and	so	forth:

sds	s	=	sdsnew("Hello	World!");
sdsrange(s,6,-1);
printf("-%s-\n");
sdsrange(s,0,-2);
printf("-%s-\n");

output>	-World!-
output>	-World-

sdsrange	is	very	useful	when	implementing	networking	servers	processing	a	protocol	or
sending	messages.	For	example
the	following	code	is	used	implementing	the	write	handler	of	the	Redis	Cluster	message	bus
between	nodes:

void	clusterWriteHandler(...,	int	fd,	void	*privdata,	...)	{
				clusterLink	*link	=	(clusterLink*)	privdata;
				ssize_t	nwritten	=	write(fd,	link->sndbuf,	sdslen(link->sndbuf));
				if	(nwritten	<=	0)	{
								/*	Error	handling...	*/
				}
				sdsrange(link->sndbuf,nwritten,-1);
				...	more	code	here	...
}

Every	time	the	socket	of	the	node	we	want	to	send	the	message	to	is	writable	we	attempt	to
write	as	much	bytes	as
possible,	and	we	use	sdsrange	in	order	to	remove	from	the	buffer	what	was	already	sent.

The	function	to	queue	new	messages	to	send	to	some	node	in	the	cluster	will	simply	use
sdscatlen	in	order	to	put	more
data	in	the	send	buffer.

Note	that	the	Redis	Cluster	bus	implements	a	binary	protocol,	but	since	SDS	is	binary	safe	this
is	not	a	problem,	so	the
goal	of	SDS	is	not	just	to	provide	an	high	level	string	API	for	the	C	programmer	but	also
dynamically	allocated	buffers
that	are	easy	to	manage.

String	copying
The	most	dangerous	and	infamus	function	of	the	standard	C	library	is	probably
strcpy,	so	perhaps	it	is	funny	how	in	the	context	of	better	designed	dynamic	string	libraries
the	concept	of	copying
strings	is	almost	irrelevant.	Usually	what	you	do	is	to	create	strings	with	the	content	you	want,
or	concatenating	more
content	as	needed.

However	SDS	features	a	string	copy	function	that	is	useful	in	performance	critical	code
sections,	however	I	guess	its
practical	usefulness	is	limited	as	the	function	never	managed	to	get	called	in	the	context	of	the
50k	lines	of	code
composing	the	Redis	code	base.

sds	sdscpylen(sds	s,	const	char	*t,	size_t	len);
sds	sdscpy(sds	s,	const	char	*t);

The	string	copy	function	of	SDS	is	called	sdscpylen	and	works	like	that:

s	=	sdsnew("Hello	World!");
s	=	sdscpylen(s,"Hello	Superman!",15);

As	you	can	see	the	function	receives	as	input	the	SDS	string	s,	but	also	returns	an	SDS	string.
This	is	common	to	many
SDS	functions	that	modify	the	string:	this	way	the	returned	SDS	string	may	be	the	original	one
modified	or	a	newly
allocated	one	(for	example	if	there	was	not	enough	room	in	the	old	SDS	string).

The	sdscpylen	will	simply	replace	what	was	in	the	old	SDS	string	with	the	new	data	you	pass
using	the	pointer	and
length	argument.	There	is	a	similar	function	called	sdscpy	that	does	not	need	a	length	but
expects	a	null	terminated
string	instead.

You	may	wonder	why	it	makes	sense	to	have	a	string	copy	function	in	the	SDS	library,	since
you	can	simply	create	a	new
SDS	string	from	scratch	with	the	new	value	instead	of	copying	the	value	in	an	existing	SDS
string.	The	reason	is
efficiency:	sdsnewlen	will	always	allocate	a	new	string	while	sdscpylen	will	try	to	reuse	the
existing	string	if
there	is	enough	room	to	old	the	new	content	specified	by	the	user,	and	will	allocate	a	new	one
only	if	needed.

Quoting	strings
In	order	to	provide	consistent	output	to	the	program	user,	or	for	debugging	purposes,	it	is	often
important	to	turn	a
string	that	may	contain	binary	data	or	special	characters	into	a	quoted	string.	Here	for	quoted
string	we	mean	the
common	format	for	String	literals	in	programming	source	code.	However	today	this	format	is
also	part	of	the	well	known
serialization	formats	like	JSON	and	CSV,	so	it	definitely	escaped	the	simple	gaol	of	representing
literals	strings	in
the	source	code	of	programs.

An	example	of	quoted	string	literal	is	the	following:

"\x00Hello	World\n"

The	first	byte	is	a	zero	byte	while	the	last	byte	is	a	newline,	so	there	are	two	non
alphanumerical	characters	inside
the	string.

SDS	uses	a	concatenation	function	for	this	goal,	that	concatenates	to	an	existing	string	the
quoted	string
representation	of	the	input	string.

sds	sdscatrepr(sds	s,	const	char	*p,	size_t	len);

The	scscatrepr	(where	repr	means	representation)	follows	the	usualy	SDS	string	function
rules	accepting	a	char
pointer	and	a	length,	so	you	can	use	it	with	SDS	strings,	normal	C	strings	by	using	strlen()	as
len	argument,	or
binary	data.	The	following	is	an	example	usage:

sds	s1	=	sdsnew("abcd");
sds	s2	=	sdsempty();
s[1]	=	1;
s[2]	=	2;
s[3]	=	'\n';
s2	=	sdscatrepr(s2,s1,sdslen(s1));
printf("%s\n",	s2);

output>	"a\x01\x02\n"

This	is	the	rules	sdscatrepr	uses	for	conversion:

\	and	"	are	quoted	with	a	backslash.
It	quotes	special	characters	'\n',	'\r',	'\t',	'\a'	and	'\b'.
All	the	other	non	printable	characters	not	passing	the	isprint	test	are	quoted	in	\x..
form,	that	is:	backslash
followed	by	x	followed	by	two	digit	hex	number	representing	the	character	byte	value.
The	function	always	adds	initial	and	final	double	quotes	characters.

There	is	an	SDS	function	that	is	able	to	perform	the	reverse	conversion	and	is	documented	in
the	Tokenization
paragraph	below.

Tokenization
Tokenization	is	the	process	of	splitting	a	larger	string	into	smaller	strings.	In	this	specific	case,
the	split	is
performed	specifying	another	string	that	acts	as	separator.	For	example	in	the	following	string
there	are	two	substrings
that	are	separated	by	the	|-|	separator:

foo|-|bar|-|zap

A	more	common	separator	that	consists	of	a	single	character	is	the	comma:

foo,bar,zap

In	many	progrems	it	is	useful	to	process	a	line	in	order	to	obtain	the	sub	strings	it	is	composed
of,	so	SDS	provides	a
function	that	returns	an	array	of	SDS	strings	given	a	string	and	a	separator.

sds	*sdssplitlen(const	char	*s,	int	len,	const	char	*sep,	int	seplen,	int	
*count);
void	sdsfreesplitres(sds	*tokens,	int	count);

As	usually	the	function	can	work	with	both	SDS	strings	or	normal	C	strings.	The	first	two
arguments	s	and	len
specify	the	string	to	tokenize,	and	the	other	two	arguments	sep	and	seplen	the	separator	to
use	during	the
tokenization.	The	final	argument	count	is	a	pointer	to	an	integer	that	will	be	set	to	the	number
of	tokens	(sub
strings)	returned.

The	return	value	is	a	heap	allocated	array	of	SDS	strings.

sds	*tokens;
int	count,	j;

sds	line	=	sdsnew("Hello	World!");
tokens	=	sdssplitlen(line,sdslen(line),"	",1,&count);

for	(j	=	0;	j	<	count;	j++)
				printf("%s\n",	tokens[j]);
sdsfreesplitres(tokens,count);

output>	Hello
output>	World!

The	returned	array	is	heap	allocated,	and	the	single	elements	of	the	array	are	normal	SDS
strings.	You	can	free
everything	calling	sdsfreesplitres
as	in	the	example.	Alternativey	you	are	free	to	release	the	array	yourself	using	the	free
function	and	use	and/or	free
the	individual	SDS	strings	as	usually.

A	valid	approach	is	to	set	the	array	elements	you	reused	in	some	way	to
NULL,	and	use	sdsfreesplitres	to	free	all	the	rest.

Command	line	oriented	tokenization
Splitting	by	a	separator	is	a	useful	operation,	but	usually	it	is	not	enough	to	perform	one	of	the
most	common	tasks
involving	some	non	trivial	string	manipulation,	that	is,	implementing	a	Command	Line
Interface	for	a	program.

This	is	why	SDS	also	provides	an	additional	function	that	allows	you	to	split	arguments
provided	by	the	user	via	the
keyboard	in	an	interactive	manner,	or	via	a	file,	network,	or	any	other	mean,	into	tokens.

sds	*sdssplitargs(const	char	*line,	int	*argc);

The	sdssplitargs	function	returns	an	array	of	SDS	strings	exactly	like
sdssplitlen.	The	function	to	free	the	result	is	also	identical,	and	is
sdsfreesplitres.	The	difference	is	in	the	way	the	tokenization	is	performed.

For	example	if	the	input	is	the	following	line:

call	"Sabrina"				and	"Mark	Smith\n"

The	function	will	return	the	following	tokens:

"call"
"Sabrina"
"and"
"Mark	Smith\n"

Basically	different	tokens	need	to	be	separated	by	one	or	more	spaces,	and	every	single	token
can	also	be	a	quoted
string	in	the	same	format	that

sdscatrepr	is	able	to	emit.

String	joining
There	are	two	functions	doing	the	reverse	of	tokenization	by	joining	strings	into	a	single	one.

sds	sdsjoin(char	**argv,	int	argc,	char	*sep,	size_t	seplen);
sds	sdsjoinsds(sds	*argv,	int	argc,	const	char	*sep,	size_t	seplen);

The	two	functions	take	as	input	an	array	of	strings	of	length	argc	and	a	separator	and	its
length,	and	produce	as
output	an	SDS	string	consisting	of	all	the	specified	strings	separated	by	the	specified	separator.

The	difference	between	sdsjoin	and	sdsjoinsds	is	that	the	former	accept	C	null	terminated
strings	as	input	while	the
latter	requires	all	the	strings	in	the	array	to	be	SDS	strings.	However	because	of	this	only
sdsjoinsds	is	able	to
deal	with	binary	data.

char	*tokens[3]	=	{"foo","bar","zap"};
sds	s	=	sdsjoin(tokens,3,"|",1);
printf("%s\n",	s);

output>	foo|bar|zap

Error	handling
All	the	SDS	functions	that	return	an	SDS	pointer	may	also	return	NULL	on	out	of	memory,	this	is
basically	the	only
check	you	need	to	perform.

However	many	modern	C	programs	handle	out	of	memory	simply	aborting	the	program	so	you
may	want	to	do	this	as	well	by
wrapping	malloc	and	other	related	memory	allocation	calls	directly.

SDS	internals	and	advanced	usage
At	the	very	beginning	of	this	documentation	it	was	explained	how	SDS	strings	are	allocated,
however	the	prefix	stored
before	the	pointer	returned	to	the	user	was	classified	as	an	header	without	further	details.	For
an	advanced	usage	it
is	better	to	dig	more	into	the	internals	of	SDS	and	show	the	structure	implementing	it:

struct	sdshdr	{
				int	len;
				int	free;
				char	buf[];
};

As	you	can	see,	the	structure	may	resemble	the	one	of	a	conventional	string	library,	however
the	buf	field	of	the
structure	is	different	since	it	is	not	a	pointer	but	an	array	without	any	length	declared,	so	buf

actually	points	at
the	first	byte	just	after	the	free	integer.	So	in	order	to	create	an	SDS	string	we	just	allocate	a
piece	of	memory
that	is	as	large	as	the
sdshdr	structure	plus	the	length	of	our	string,	plus	an	additional	byte	for	the	mandatory	null
term	that	every	SDS
string	has.

The	len	field	of	the	structure	is	quite	obvious,	and	is	the	current	length	of	the	SDS	string,
always	computed	every
time	the	string	is	modified	via	SDS	function	calls.	The	free	field	instead	represents	the	amount
of	free	memory	in	the
current	allocation	that	can	be	used	to	store	more	characters.

So	the	actual	SDS	layout	is	this	one:

+------------+------------------------+-----------+---------------\
|	Len	|	Free	|	H	E	L	L	O	W	O	R	L	D	\n	|	Null	term	|		Free	space			\
+------------+------------------------+-----------+---------------\
													|
													`->	Pointer	returned	to	the	user.

You	may	wonder	why	there	is	some	free	space	at	the	end	of	the	string,	it	looks	like	a	waste.
Actually	after	a	new	SDS
string	is	created,	there	is	no	free	space	at	the	end	at	all:	the	allocation	will	be	as	small	as
possible	to	just	hold
the	header,	string,	and	null	term.	However	other	access	patterns	will	create	extra	free	space	at
the	end,	like	in	the
following	program:

s	=	sdsempty();
s	=	sdscat(s,"foo");
s	=	sdscat(s,"bar");
s	=	sdscat(s,"123");

Since	SDS	tries	to	be	efficient	it	can't	afford	to	reallocate	the	string	every	time	new	data	is
appended,	since	this
would	be	very	inefficient,	so	it	uses	the	preallocation	of	some	free	space	every	time	you
enlarge	the	string.

The	preallocation	algorithm	used	is	the	following:	every	time	the	string	is	reallocated	in	order
to	hold	more	bytes,	the
actual	allocation	size	performed	is	two	times	the	minimum	required.	So	for	instance	if	the	string
currently	is	holding
30	bytes,	and	we	concatenate	2	more	bytes,	instead	of	allocating	32	bytes	in	total	SDS	will
allocate	64	bytes.

However	there	is	an	hard	limit	to	the	allocation	it	can	perform	ahead,	and	is	defined	by
SDS_MAX_PREALLOC.	SDS	will
never	allocate	more	than	1MB	of	additional	space	(by	default,	you	can	change	this	default).

Shrinking	strings

sds	sdsRemoveFreeSpace(sds	s);
size_t	sdsAllocSize(sds	s);

Sometimes	there	are	class	of	programs	that	require	to	use	very	little	memory.	After	strings
concatenations,	trimming,
ranges,	the	string	may	end	having	a	non	trivial	amount	of	additional	space	at	the	end.

It	is	possible	to	resize	a	string	back	to	its	minimal	size	in	order	to	hold	the	current	content	by
using	the
function	sdsRemoveFreeSpace.

s	=	sdsRemoveFreeSpace(s);

There	is	also	a	function	that	can	be	used	in	order	to	get	the	size	of	the	total	allocation	for	a
given	string,	and	is
called	sdsAllocSize.

sds	s	=	sdsnew("Ladies	and	gentlemen");
s	=	sdscat(s,"...	welcome	to	the	C	language.");
printf("%d\n",	(int)	sdsAllocSize(s));
s	=	sdsRemoveFreeSpace(s);
printf("%d\n",	(int)	sdsAllocSize(s));

output>	109
output>	59

NOTE:	SDS	Low	level	API	use	cammelCase	in	order	to	warn	you	that	you	are	playing	with	the
fire.

Manual	modifications	of	SDS	strings

void	sdsupdatelen(sds	s);

Sometimes	you	may	want	to	hack	with	an	SDS	string	manually,	without	using	SDS	functions.	In
the	following	example	we
implicitly	change	the	length	of	the	string,	however	we	want	the	logical	length	to	reflect	the	null
terminated	C	string.

The	function	sdsupdatelen	does	just	that,	updating	the	internal	length	information	for	the
specified	string	to	the
length	obtained	via	strlen.

sds	s	=	sdsnew("foobar");
s[2]	=	'\0';
printf("%d\n",	sdslen(s));
sdsupdatelen(s);
printf("%d\n",	sdslen(s));

output>	6
output>	2

Sharing	SDS	strings

If	you	are	writing	a	program	in	which	it	is	advantageous	to	share	the	same	SDS	string	across
different	data	structures,
it	is	absolutely	advised	to	encapsulate	SDS	strings	into	structures	that	remember	the	number
of	references	of	the
string,	with	functions	to	increment	and	decrement	the	number	of	references.

This	approach	is	a	memory	management	technique	called	reference	counting	and	in	the
context	of	SDS	has	two	advantages:

It	is	less	likely	that	you'll	create	memory	leaks	or	bugs	due	to	non	freeing	SDS	strings
or	freeing	already	freed
strings.
You'll	not	need	to	update	every	reference	to	an	SDS	string	when	you	modify	it	(since
the	new	SDS	string	may	point	to	a
different	memory	location).

While	this	is	definitely	a	very	common	programming	technique	I'll	outline	the	basic	ideas	here.
You	create	a	structure
like	that:

struct	mySharedStrings	{
				int	refcount;
				sds	string;
}

When	new	strings	are	created,	the	structure	is	allocated	and	returned	with
refcount	set	to	1.	The	you	have	two	functions	to	change	the	reference	count	of	the	shared
string:

incrementStringRefCount	will	simply	increment	refcount	of	1	in	the	structure.	It	will
be	called	every	time	you	add
a	reference	to	the	string	on	some	new	data	structure,	variable,	or	whatever.
decrementStringRefCount	is	used	when	you	remove	a	reference.	This	function	is
however	special	since	when
the	refcount	drops	to	zero,	it	automatically	frees	the	SDS	string,	and	the
mySharedString	structure	as	well.

Interactions	with	heap	checkers
Because	SDS	returns	pointers	into	the	middle	of	memory	chunks	allocated	with
malloc,	heap	checkers	may	have	issues,	however:

The	popular	Valgrind	program	will	detect	SDS	strings	are	possibly	lost	memory	and
never	as	definitely	lost,	so	it
is	easy	to	tell	if	there	is	a	leak	or	not.	I	used	Valgrind	with	Redis	for	years	and	every	real
leak	was	consistently
detected	as	"definitely	lost".
OSX	instrumentation	tools	don't	detect	SDS	strings	as	leaks	but	are	able	to	correctly
handle	pointers	pointing	to	the
middle	of	memory	chunks.

Zero	copy	append	from	syscalls

At	this	point	you	should	have	all	the	tools	to	dig	more	inside	the	SDS	library	by	reading	the
source	code,	however	there
is	an	interesting	pattern	you	can	mount	using	the	low	level	API	exported,	that	is	used	inside
Redis	in	order	to	improve
performances	of	the	networking	code.

Using	sdsIncrLen()	and	sdsMakeRoomFor()	it	is	possible	to	mount	the	following	schema,	to
cat	bytes	coming	from	the
kernel	to	the	end	of	an	sds	string	without	copying	into	an	intermediate	buffer:

oldlen	=	sdslen(s);
s	=	sdsMakeRoomFor(s,	BUFFER_SIZE);
nread	=	read(fd,	s+oldlen,	BUFFER_SIZE);
...	check	for	nread	<=	0	and	handle	it	...
sdsIncrLen(s,	nread);

sdsIncrLen	is	documented	inside	the	source	code	of	sds.c.

Embedding	SDS	into	your	project
This	is	as	simple	as	copying	the	sds.c	and	sds.h	files	inside	your	project.	The	source	code	is
small	and	every	C99
compiler	should	deal	with	it	without	issues.

Credits	and	license
SDS	was	created	by	Salvatore	Sanfilippo	and	is	released	under	the	BDS	two	clause	license.	See
the	LICENSE	file	in	this
source	distribution	for	more	information.

