
Welcome to the libuv

documentation

Overview

libuv is a multi-platform support library with a focus on

asynchronous I/O. It was primarily developed for use by

Node.js [https://nodejs.org], but it’s also used by Luvit

[https://luvit.io], Julia [https://julialang.org], uvloop

[https://github.com/MagicStack/uvloop], and others

[https://github.com/libuv/libuv/blob/v1.x/LINKS.md].

Note

In case you find errors in this documentation you can help

by sending pull requests [https://github.com/libuv/libuv]!

Features

Full-featured event loop backed by epoll, kqueue, IOCP,

event ports.

Asynchronous TCP and UDP sockets

Asynchronous DNS resolution

Asynchronous file and file system operations

File system events

ANSI escape code controlled TTY

IPC with socket sharing, using Unix domain sockets or

named pipes (Windows)

Child processes

Thread pool

https://nodejs.org/
https://luvit.io/
https://julialang.org/
https://github.com/MagicStack/uvloop
https://github.com/libuv/libuv/blob/v1.x/LINKS.md
https://github.com/libuv/libuv

Signal handling

High resolution clock

Threading and synchronization primitives

Documentation

Design overview

API documentation

User guide

Upgrading

Downloads

libuv can be downloaded from here [https://dist.libuv.org/dist/].

Installation

Installation instructions can be found in the README

[https://github.com/libuv/libuv/blob/master/README.md].

https://dist.libuv.org/dist/
https://github.com/libuv/libuv/blob/master/README.md

Design overview

libuv is cross-platform support library which was originally

written for Node.js [https://nodejs.org]. It’s designed around the

event-driven asynchronous I/O model.

The library provides much more than a simple abstraction

over different I/O polling mechanisms: ‘handles’ and

‘streams’ provide a high level abstraction for sockets and

other entities; cross-platform file I/O and threading

functionality is also provided, amongst other things.

Here is a diagram illustrating the different parts that

compose libuv and what subsystem they relate to:

Handles and requests

https://nodejs.org/

libuv provides users with 2 abstractions to work with, in

combination with the event loop: handles and requests.

Handles represent long-lived objects capable of performing

certain operations while active. Some examples:

A prepare handle gets its callback called once every

loop iteration when active.

A TCP server handle that gets its connection callback

called every time there is a new connection.

Requests represent (typically) short-lived operations. These

operations can be performed over a handle: write requests

are used to write data on a handle; or standalone:

getaddrinfo requests don’t need a handle they run directly

on the loop.

The I/O loop

The I/O (or event) loop is the central part of libuv. It

establishes the content for all I/O operations, and it’s meant

to be tied to a single thread. One can run multiple event

loops as long as each runs in a different thread. The libuv

event loop (or any other API involving the loop or handles,

for that matter) is not thread-safe except where stated

otherwise.

The event loop follows the rather usual single threaded

asynchronous I/O approach: all (network) I/O is performed

on non-blocking sockets which are polled using the best

mechanism available on the given platform: epoll on Linux,

kqueue on OSX and other BSDs, event ports on SunOS and

IOCP on Windows. As part of a loop iteration the loop will

block waiting for I/O activity on sockets which have been

added to the poller and callbacks will be fired indicating

socket conditions (readable, writable hangup) so handles

can read, write or perform the desired I/O operation.

In order to better understand how the event loop operates,

the following diagram illustrates all stages of a loop

iteration:

1. The loop concept of ‘now’ is updated. The event loop

caches the current time at the start of the event loop

tick in order to reduce the number of time-related

system calls.

2. If the loop is alive an iteration is started, otherwise the

loop will exit immediately. So, when is a loop considered

to be alive? If a loop has active and ref’d handles, active

requests or closing handles it’s considered to be alive.

3. Due timers are run. All active timers scheduled for a

time before the loop’s concept of now get their

callbacks called.

4. Pending callbacks are called. All I/O callbacks are called

right after polling for I/O, for the most part. There are

cases, however, in which calling such a callback is

deferred for the next loop iteration. If the previous

iteration deferred any I/O callback it will be run at this

point.

5. Idle handle callbacks are called. Despite the unfortunate

name, idle handles are run on every loop iteration, if

they are active.

6. Prepare handle callbacks are called. Prepare handles get

their callbacks called right before the loop will block for

I/O.

7. Poll timeout is calculated. Before blocking for I/O the

loop calculates for how long it should block. These are

the rules when calculating the timeout:

If the loop was run with the UV_RUN_NOWAIT flag,

the timeout is 0.

If the loop is going to be stopped (uv_stop() was

called), the timeout is 0.

If there are no active handles or requests, the

timeout is 0.

If there are any idle handles active, the timeout

is 0.

If there are any handles pending to be closed,

the timeout is 0.

If none of the above cases matches, the timeout

of the closest timer is taken, or if there are no

active timers, infinity.

8. The loop blocks for I/O. At this point the loop will block

for I/O for the duration calculated in the previous step.

All I/O related handles that were monitoring a given file

descriptor for a read or write operation get their

callbacks called at this point.

9. Check handle callbacks are called. Check handles get

their callbacks called right after the loop has blocked for

I/O. Check handles are essentially the counterpart of

prepare handles.

10. Close callbacks are called. If a handle was closed by

calling uv_close() it will get the close callback called.

11. Special case in case the loop was run with UV_RUN_ONCE,

as it implies forward progress. It’s possible that no I/O

callbacks were fired after blocking for I/O, but some time

has passed so there might be timers which are due,

those timers get their callbacks called.

12. Iteration ends. If the loop was run with UV_RUN_NOWAIT or

UV_RUN_ONCE modes the iteration ends and uv_run() will

return. If the loop was run with UV_RUN_DEFAULT it will

continue from the start if it’s still alive, otherwise it will

also end.

Important

libuv uses a thread pool to make asynchronous file I/O

operations possible, but network I/O is always performed

in a single thread, each loop’s thread.

Note

While the polling mechanism is different, libuv makes the

execution model consistent across Unix systems and

Windows.

File I/O

Unlike network I/O, there are no platform-specific file I/O

primitives libuv could rely on, so the current approach is to

run blocking file I/O operations in a thread pool.

For a thorough explanation of the cross-platform file I/O

landscape, check out this post

[https://blog.libtorrent.org/2012/10/asynchronous-disk-io/].

libuv currently uses a global thread pool on which all loops

can queue work. 3 types of operations are currently run on

this pool:

File system operations

DNS functions (getaddrinfo and getnameinfo)

User specified code via uv_queue_work()

Warning

See the Thread pool work scheduling section for more

details, but keep in mind the thread pool size is quite

limited.

https://blog.libtorrent.org/2012/10/asynchronous-disk-io/

API documentation

Error handling

Version-checking macros and functions

uv_loop_t — Event loop

uv_handle_t — Base handle

uv_req_t — Base request

uv_timer_t — Timer handle

uv_prepare_t — Prepare handle

uv_check_t — Check handle

uv_idle_t — Idle handle

uv_async_t — Async handle

uv_poll_t — Poll handle

uv_signal_t — Signal handle

uv_process_t — Process handle

uv_stream_t — Stream handle

uv_tcp_t — TCP handle

uv_pipe_t — Pipe handle

uv_tty_t — TTY handle

uv_udp_t — UDP handle

uv_fs_event_t — FS Event handle

uv_fs_poll_t — FS Poll handle

File system operations

Thread pool work scheduling

DNS utility functions

Shared library handling

Threading and synchronization utilities

Miscellaneous utilities

Metrics operations

Error handling

In libuv errors are negative numbered constants. As a rule of

thumb, whenever there is a status parameter, or an API

functions returns an integer, a negative number will imply

an error.

When a function which takes a callback returns an error, the

callback will never be called.

Note

Implementation detail: on Unix error codes are the

negated errno (or -errno), while on Windows they are

defined by libuv to arbitrary negative numbers.

Error constants

UV_E2BIG

argument list too long

UV_EACCES

permission denied

UV_EADDRINUSE

address already in use

UV_EADDRNOTAVAIL

address not available

UV_EAFNOSUPPORT

address family not supported

UV_EAGAIN

resource temporarily unavailable

UV_EAI_ADDRFAMILY

address family not supported

UV_EAI_AGAIN

temporary failure

UV_EAI_BADFLAGS

bad ai_flags value

UV_EAI_BADHINTS

invalid value for hints

UV_EAI_CANCELED

request canceled

UV_EAI_FAIL

permanent failure

UV_EAI_FAMILY

ai_family not supported

UV_EAI_MEMORY

out of memory

UV_EAI_NODATA

no address

UV_EAI_NONAME

unknown node or service

UV_EAI_OVERFLOW

argument buffer overflow

UV_EAI_PROTOCOL

resolved protocol is unknown

UV_EAI_SERVICE

service not available for socket type

UV_EAI_SOCKTYPE

socket type not supported

UV_EALREADY

connection already in progress

UV_EBADF

bad file descriptor

UV_EBUSY

resource busy or locked

UV_ECANCELED

operation canceled

UV_ECHARSET

invalid Unicode character

UV_ECONNABORTED

software caused connection abort

UV_ECONNREFUSED

connection refused

UV_ECONNRESET

connection reset by peer

UV_EDESTADDRREQ

destination address required

UV_EEXIST

file already exists

UV_EFAULT

bad address in system call argument

UV_EFBIG

file too large

UV_EHOSTUNREACH

host is unreachable

UV_EINTR

interrupted system call

UV_EINVAL

invalid argument

UV_EIO

i/o error

UV_EISCONN

socket is already connected

UV_EISDIR

illegal operation on a directory

UV_ELOOP

too many symbolic links encountered

UV_EMFILE

too many open files

UV_EMSGSIZE

message too long

UV_ENAMETOOLONG

name too long

UV_ENETDOWN

network is down

UV_ENETUNREACH

network is unreachable

UV_ENFILE

file table overflow

UV_ENOBUFS

no buffer space available

UV_ENODEV

no such device

UV_ENOENT

no such file or directory

UV_ENOMEM

not enough memory

UV_ENONET

machine is not on the network

UV_ENOPROTOOPT

protocol not available

UV_ENOSPC

no space left on device

UV_ENOSYS

function not implemented

UV_ENOTCONN

socket is not connected

UV_ENOTDIR

not a directory

UV_ENOTEMPTY

directory not empty

UV_ENOTSOCK

socket operation on non-socket

UV_ENOTSUP

operation not supported on socket

UV_EOVERFLOW

value too large for defined data type

UV_EPERM

operation not permitted

UV_EPIPE

broken pipe

UV_EPROTO

protocol error

UV_EPROTONOSUPPORT

protocol not supported

UV_EPROTOTYPE

protocol wrong type for socket

UV_ERANGE

result too large

UV_EROFS

read-only file system

UV_ESHUTDOWN

cannot send after transport endpoint shutdown

UV_ESPIPE

invalid seek

UV_ESRCH

no such process

UV_ETIMEDOUT

connection timed out

UV_ETXTBSY

text file is busy

UV_EXDEV

cross-device link not permitted

UV_UNKNOWN

unknown error

UV_EOF

end of file

UV_ENXIO

no such device or address

UV_EMLINK

too many links

UV_ENOTTY

inappropriate ioctl for device

UV_EFTYPE

inappropriate file type or format

UV_EILSEQ

illegal byte sequence

UV_ESOCKTNOSUPPORT

socket type not supported

API

UV_ERRNO_MAP(iter_macro)

Macro that expands to a series of invocations of

iter_macro for each of the error constants above.

iter_macro is invoked with two arguments: the name of

the error constant without the UV_ prefix, and the error

message string literal.

const char* uv_strerror(int err)

Returns the error message for the given error code.

Leaks a few bytes of memory when you call it with an

unknown error code.

char* uv_strerror_r(int err, char* buf, size_t buflen)

Returns the error message for the given error code. The

zero-terminated message is stored in the user-supplied

buffer buf of at most buflen bytes.

New in version 1.22.0.

const char* uv_err_name(int err)

Returns the error name for the given error code. Leaks a

few bytes of memory when you call it with an unknown

error code.

char* uv_err_name_r(int err, char* buf, size_t buflen)

Returns the error name for the given error code. The

zero-terminated name is stored in the user-supplied

buffer buf of at most buflen bytes.

New in version 1.22.0.

int uv_translate_sys_error(int sys_errno)

Returns the libuv error code equivalent to the given

platform dependent error code: POSIX error codes on

Unix (the ones stored in errno), and Win32 error codes on

Windows (those returned by GetLastError() or

WSAGetLastError()).

If sys_errno is already a libuv error, it is simply returned.

Changed in version 1.10.0: function declared public.

Version-checking macros

and functions

Starting with version 1.0.0 libuv follows the semantic

versioning [https://semver.org] scheme. This means that new

APIs can be introduced throughout the lifetime of a major

release. In this section you’ll find all macros and functions

that will allow you to write or compile code conditionally, in

order to work with multiple libuv versions.

Macros

UV_VERSION_MAJOR

libuv version’s major number.

UV_VERSION_MINOR

libuv version’s minor number.

UV_VERSION_PATCH

libuv version’s patch number.

UV_VERSION_IS_RELEASE

Set to 1 to indicate a release version of libuv, 0 for a

development snapshot.

UV_VERSION_SUFFIX

libuv version suffix. Certain development releases such

as Release Candidates might have a suffix such as “rc”.

UV_VERSION_HEX

Returns the libuv version packed into a single integer. 8

bits are used for each component, with the patch number

https://semver.org/

stored in the 8 least significant bits. E.g. for libuv 1.2.3

this would be 0x010203.

New in version 1.7.0.

Functions

unsigned int uv_version(void)

Returns UV_VERSION_HEX.

const char* uv_version_string(void)

Returns the libuv version number as a string. For non-

release versions the version suffix is included.

uv_loop_t — Event loop

The event loop is the central part of libuv’s functionality. It

takes care of polling for i/o and scheduling callbacks to be

run based on different sources of events.

Data types

uv_loop_t

Loop data type.

void (*uv_walk_cb)(uv_handle_t* handle, void* arg)

Type definition for callback passed to uv_walk().

Public members

void* uv_loop_t.data

Space for user-defined arbitrary data. libuv does not use

and does not touch this field.

API

int uv_loop_init(uv_loop_t* loop)

Initializes the given uv_loop_t structure.

int uv_loop_configure(uv_loop_t* loop,

uv_loop_option option, ...)

New in version 1.0.2.

Set additional loop options. You should normally call this

before the first call to uv_run() unless mentioned

otherwise.

Returns 0 on success or a UV_E* error code on failure. Be

prepared to handle UV_ENOSYS; it means the loop option

is not supported by the platform.

Supported options:

UV_LOOP_BLOCK_SIGNAL: Block a signal when polling

for new events. The second argument to

uv_loop_configure() is the signal number.

This operation is currently only implemented for

SIGPROF signals, to suppress unnecessary wakeups

when using a sampling profiler. Requesting other

signals will fail with UV_EINVAL.

UV_METRICS_IDLE_TIME: Accumulate the amount of

idle time the event loop spends in the event provider.

This option is necessary to use uv_metrics_idle_time().

Changed in version 1.39.0: added the

UV_METRICS_IDLE_TIME option.

int uv_loop_close(uv_loop_t* loop)

Releases all internal loop resources. Call this function

only when the loop has finished executing and all open

handles and requests have been closed, or it will return

UV_EBUSY. After this function returns, the user can free

the memory allocated for the loop.

uv_loop_t* uv_default_loop(void)

Returns the initialized default loop. It may return NULL in

case of allocation failure.

This function is just a convenient way for having a global

loop throughout an application, the default loop is in no

way different than the ones initialized with uv_loop_init().

As such, the default loop can (and should) be closed with

uv_loop_close() so the resources associated with it are

freed.

Warning

This function is not thread safe.

int uv_run(uv_loop_t* loop, uv_run_mode mode)

This function runs the event loop. It will act differently

depending on the specified mode:

UV_RUN_DEFAULT: Runs the event loop until there are

no more active and referenced handles or requests.

Returns non-zero if uv_stop() was called and there are

still active handles or requests. Returns zero in all

other cases.

UV_RUN_ONCE: Poll for i/o once. Note that this

function blocks if there are no pending callbacks.

Returns zero when done (no active handles or

requests left), or non-zero if more callbacks are

expected (meaning you should run the event loop

again sometime in the future).

UV_RUN_NOWAIT: Poll for i/o once but don’t block if

there are no pending callbacks. Returns zero if done

(no active handles or requests left), or non-zero if

more callbacks are expected (meaning you should

run the event loop again sometime in the future).

uv_run() is not reentrant. It must not be called from a

callback.

int uv_loop_alive(const uv_loop_t* loop)

Returns non-zero if there are referenced active handles,

active requests or closing handles in the loop.

void uv_stop(uv_loop_t* loop)

Stop the event loop, causing uv_run() to end as soon as

possible. This will happen not sooner than the next loop

iteration. If this function was called before blocking for

i/o, the loop won’t block for i/o on this iteration.

size_t uv_loop_size(void)

Returns the size of the uv_loop_t structure. Useful for FFI

binding writers who don’t want to know the structure

layout.

int uv_backend_fd(const uv_loop_t* loop)

Get backend file descriptor. Only kqueue, epoll and event

ports are supported.

This can be used in conjunction with uv_run(loop,

UV_RUN_NOWAIT) to poll in one thread and run the event

loop’s callbacks in another see test/test-embed.c for an

example.

Note

Embedding a kqueue fd in another kqueue pollset

doesn’t work on all platforms. It’s not an error to add

the fd but it never generates events.

int uv_backend_timeout(const uv_loop_t* loop)

Get the poll timeout. The return value is in milliseconds,

or -1 for no timeout.

uint64_t uv_now(const uv_loop_t* loop)

Return the current timestamp in milliseconds. The

timestamp is cached at the start of the event loop tick,

see uv_update_time() for details and rationale.

The timestamp increases monotonically from some

arbitrary point in time. Don’t make assumptions about

the starting point, you will only get disappointed.

Note

Use uv_hrtime() if you need sub-millisecond granularity.

void uv_update_time(uv_loop_t* loop)

Update the event loop’s concept of “now”. Libuv caches

the current time at the start of the event loop tick in

order to reduce the number of time-related system calls.

You won’t normally need to call this function unless you

have callbacks that block the event loop for longer

periods of time, where “longer” is somewhat subjective

but probably on the order of a millisecond or more.

void uv_walk(uv_loop_t* loop, uv_walk_cb walk_cb,

void* arg)

Walk the list of handles: walk_cb will be executed with

the given arg.

int uv_loop_fork(uv_loop_t* loop)

New in version 1.12.0.

Reinitialize any kernel state necessary in the child

process after a fork(2) [https://man7.org/linux/man-

pages/man2/fork.2.html] system call.

Previously started watchers will continue to be started in

the child process.

It is necessary to explicitly call this function on every

event loop created in the parent process that you plan to

https://man7.org/linux/man-pages/man2/fork.2.html

continue to use in the child, including the default loop

(even if you don’t continue to use it in the parent). This

function must be called before calling uv_run() or any

other API function using the loop in the child. Failure to

do so will result in undefined behaviour, possibly

including duplicate events delivered to both parent and

child or aborting the child process.

When possible, it is preferred to create a new loop in the

child process instead of reusing a loop created in the

parent. New loops created in the child process after the

fork should not use this function.

This function is not implemented on Windows, where it

returns UV_ENOSYS.

Caution

This function is experimental. It may contain bugs, and

is subject to change or removal. API and ABI stability is

not guaranteed.

Note

On Mac OS X, if directory FS event handles were in use

in the parent process for any event loop, the child

process will no longer be able to use the most efficient

FSEvent implementation. Instead, uses of directory FS

event handles in the child will fall back to the same

implementation used for files and on other kqueue-

based systems.

Caution

On AIX and SunOS, FS event handles that were already

started in the parent process at the time of forking will

not deliver events in the child process; they must be

closed and restarted. On all other platforms, they will

continue to work normally without any further

intervention.

Caution

Any previous value returned from uv_backend_fd() is now

invalid. That function must be called again to determine

the correct backend file descriptor.

void* uv_loop_get_data(const uv_loop_t* loop)

Returns loop->data.

New in version 1.19.0.

void* uv_loop_set_data(uv_loop_t* loop, void* data)

Sets loop->data to data.

New in version 1.19.0.

uv_handle_t — Base handle

uv_handle_t is the base type for all libuv handle types.

Structures are aligned so that any libuv handle can be cast

to uv_handle_t. All API functions defined here work with any

handle type.

Libuv handles are not movable. Pointers to handle

structures passed to functions must remain valid for the

duration of the requested operation. Take care when using

stack allocated handles.

Data types

uv_handle_t

The base libuv handle type.

uv_any_handle

Union of all handle types.

void (*uv_alloc_cb)(uv_handle_t* handle,

size_t suggested_size, uv_buf_t* buf)

Type definition for callback passed to uv_read_start() and

uv_udp_recv_start(). The user must allocate memory and

fill the supplied uv_buf_t structure. If NULL is assigned as

the buffer’s base or 0 as its length, a UV_ENOBUFS error will

be triggered in the uv_udp_recv_cb or the uv_read_cb

callback.

Each buffer is used only once and the user is responsible

for freeing it in the uv_udp_recv_cb or the uv_read_cb

callback.

A suggested size (65536 at the moment in most cases) is

provided, but it’s just an indication, not related in any

way to the pending data to be read. The user is free to

allocate the amount of memory they decide.

As an example, applications with custom allocation

schemes such as using freelists, allocation pools or slab

based allocators may decide to use a different size which

matches the memory chunks they already have.

Example:

static void my_alloc_cb(uv_handle_t* handle, size_t

suggested_size, uv_buf_t* buf) {

 buf->base = malloc(suggested_size);

 buf->len = suggested_size;

}

void (*uv_close_cb)(uv_handle_t* handle)

Type definition for callback passed to uv_close().

Public members

uv_loop_t* uv_handle_t.loop

Pointer to the uv_loop_t the handle is running on.

Readonly.

uv_handle_type uv_handle_t.type

The uv_handle_type, indicating the type of the underlying

handle. Readonly.

void* uv_handle_t.data

Space for user-defined arbitrary data. libuv does not use

this field.

API

UV_HANDLE_TYPE_MAP(iter_macro)

Macro that expands to a series of invocations of

iter_macro for each of the handle types. iter_macro is

invoked with two arguments: the name of the

uv_handle_type element without the UV_ prefix, and the

name of the corresponding structure type without the uv_

prefix and _t suffix.

int uv_is_active(const uv_handle_t* handle)

Returns non-zero if the handle is active, zero if it’s

inactive. What “active” means depends on the type of

handle:

A uv_async_t handle is always active and cannot be

deactivated, except by closing it with uv_close().

A uv_pipe_t, uv_tcp_t, uv_udp_t, etc. handle -

basically any handle that deals with i/o - is active

when it is doing something that involves i/o, like

reading, writing, connecting, accepting new

connections, etc.

A uv_check_t, uv_idle_t, uv_timer_t, etc. handle is

active when it has been started with a call to

uv_check_start(), uv_idle_start(), etc.

Rule of thumb: if a handle of type uv_foo_t has a

uv_foo_start() function, then it’s active from the moment

that function is called. Likewise, uv_foo_stop()

deactivates the handle again.

int uv_is_closing(const uv_handle_t* handle)

Returns non-zero if the handle is closing or closed, zero

otherwise.

Note

This function should only be used between the

initialization of the handle and the arrival of the close

callback.

void uv_close(uv_handle_t* handle, uv_close_cb close_cb)

Request handle to be closed. close_cb will be called

asynchronously after this call. This MUST be called on

each handle before memory is released. Moreover, the

memory can only be released in close_cb or after it has

returned.

Handles that wrap file descriptors are closed immediately

but close_cb will still be deferred to the next iteration of

the event loop. It gives you a chance to free up any

resources associated with the handle.

In-progress requests, like uv_connect_t or uv_write_t, are

cancelled and have their callbacks called asynchronously

with status=UV_ECANCELED.

void uv_ref(uv_handle_t* handle)

Reference the given handle. References are idempotent,

that is, if a handle is already referenced calling this

function again will have no effect.

See Reference counting.

void uv_unref(uv_handle_t* handle)

Un-reference the given handle. References are

idempotent, that is, if a handle is not referenced calling

this function again will have no effect.

See Reference counting.

int uv_has_ref(const uv_handle_t* handle)

Returns non-zero if the handle referenced, zero

otherwise.

See Reference counting.

size_t uv_handle_size(uv_handle_type type)

Returns the size of the given handle type. Useful for FFI

binding writers who don’t want to know the structure

layout.

Miscellaneous API functions

The following API functions take a uv_handle_t argument but

they work just for some handle types.

int uv_send_buffer_size(uv_handle_t* handle, int* value)

Gets or sets the size of the send buffer that the operating

system uses for the socket.

If *value == 0, then it will set *value to the current send

buffer size. If *value > 0 then it will use *value to set the

new send buffer size.

On success, zero is returned. On error, a negative result

is returned.

This function works for TCP, pipe and UDP handles on

Unix and for TCP and UDP handles on Windows.

Note

Linux will set double the size and return double the size

of the original set value.

int uv_recv_buffer_size(uv_handle_t* handle, int* value)

Gets or sets the size of the receive buffer that the

operating system uses for the socket.

If *value == 0, then it will set *value to the current

receive buffer size. If *value > 0 then it will use *value to

set the new receive buffer size.

On success, zero is returned. On error, a negative result

is returned.

This function works for TCP, pipe and UDP handles on

Unix and for TCP and UDP handles on Windows.

Note

Linux will set double the size and return double the size

of the original set value.

int uv_fileno(const uv_handle_t* handle, uv_os_fd_t* fd)

Gets the platform dependent file descriptor equivalent.

The following handles are supported: TCP, pipes, TTY,

UDP and poll. Passing any other handle type will fail with

UV_EINVAL.

If a handle doesn’t have an attached file descriptor yet or

the handle itself has been closed, this function will return

UV_EBADF.

Warning

Be very careful when using this function. libuv assumes

it’s in control of the file descriptor so any change to it

may lead to malfunction.

uv_loop_t* uv_handle_get_loop(const uv_handle_t* handle)

Returns handle->loop.

New in version 1.19.0.

void* uv_handle_get_data(const uv_handle_t* handle)

Returns handle->data.

New in version 1.19.0.

void* uv_handle_set_data(uv_handle_t* handle, void* data)

Sets handle->data to data.

New in version 1.19.0.

uv_handle_type uv_handle_get_type(const

uv_handle_t* handle)

Returns handle->type.

New in version 1.19.0.

const char* uv_handle_type_name(uv_handle_type type)

Returns the name for the equivalent struct for a given

handle type, e.g. “pipe” (as in uv_pipe_t) for

UV_NAMED_PIPE.

If no such handle type exists, this returns NULL.

New in version 1.19.0.

Reference counting

The libuv event loop (if run in the default mode) will run

until there are no active and referenced handles left. The

user can force the loop to exit early by unreferencing

handles which are active, for example by calling uv_unref()

after calling uv_timer_start().

A handle can be referenced or unreferenced, the refcounting

scheme doesn’t use a counter, so both operations are

idempotent.

All handles are referenced when active by default, see

uv_is_active() for a more detailed explanation on what being

active involves.

uv_req_t — Base request

uv_req_t is the base type for all libuv request types.

Structures are aligned so that any libuv request can be cast

to uv_req_t. All API functions defined here work with any

request type.

Data types

uv_req_t

The base libuv request structure.

uv_any_req

Union of all request types.

Public members

void* uv_req_t.data

Space for user-defined arbitrary data. libuv does not use

this field.

uv_req_type uv_req_t.type

Indicated the type of request. Readonly.

typedef enum {

 UV_UNKNOWN_REQ = 0,

 UV_REQ,

 UV_CONNECT,

 UV_WRITE,

 UV_SHUTDOWN,

 UV_UDP_SEND,

 UV_FS,

 UV_WORK,

 UV_GETADDRINFO,

 UV_GETNAMEINFO,

 UV_REQ_TYPE_MAX,

} uv_req_type;

API

UV_REQ_TYPE_MAP(iter_macro)

Macro that expands to a series of invocations of

iter_macro for each of the request types. iter_macro is

invoked with two arguments: the name of the

uv_req_type element without the UV_ prefix, and the

name of the corresponding structure type without the uv_

prefix and _t suffix.

int uv_cancel(uv_req_t* req)

Cancel a pending request. Fails if the request is executing

or has finished executing.

Returns 0 on success, or an error code < 0 on failure.

Only cancellation of uv_fs_t, uv_getaddrinfo_t,

uv_getnameinfo_t, uv_random_t and uv_work_t requests is

currently supported.

Cancelled requests have their callbacks invoked some

time in the future. It’s not safe to free the memory

associated with the request until the callback is called.

Here is how cancellation is reported to the callback:

A uv_fs_t request has its req->result field set to

UV_ECANCELED.

A uv_work_t, uv_getaddrinfo_t, uv_getnameinfo_t or

uv_random_t request has its callback invoked with

status == UV_ECANCELED.

size_t uv_req_size(uv_req_type type)

Returns the size of the given request type. Useful for FFI

binding writers who don’t want to know the structure

layout.

void* uv_req_get_data(const uv_req_t* req)

Returns req->data.

New in version 1.19.0.

void* uv_req_set_data(uv_req_t* req, void* data)

Sets req->data to data.

New in version 1.19.0.

uv_req_type uv_req_get_type(const uv_req_t* req)

Returns req->type.

New in version 1.19.0.

const char* uv_req_type_name(uv_req_type type)

Returns the name for the equivalent struct for a given

request type, e.g. “connect” (as in uv_connect_t) for

UV_CONNECT.

If no such request type exists, this returns NULL.

New in version 1.19.0.

uv_timer_t — Timer handle

Timer handles are used to schedule callbacks to be called in

the future.

Data types

uv_timer_t

Timer handle type.

void (*uv_timer_cb)(uv_timer_t* handle)

Type definition for callback passed to uv_timer_start().

Public members

N/A

See also

The uv_handle_t members also apply.

API

int uv_timer_init(uv_loop_t* loop, uv_timer_t* handle)

Initialize the handle.

int uv_timer_start(uv_timer_t* handle, uv_timer_cb cb,

uint64_t timeout, uint64_t repeat)

Start the timer. timeout and repeat are in milliseconds.

If timeout is zero, the callback fires on the next event

loop iteration. If repeat is non-zero, the callback fires first

after timeout milliseconds and then repeatedly after

repeat milliseconds.

Note

Does not update the event loop’s concept of “now”. See

uv_update_time() for more information.

If the timer is already active, it is simply updated.

int uv_timer_stop(uv_timer_t* handle)

Stop the timer, the callback will not be called anymore.

int uv_timer_again(uv_timer_t* handle)

Stop the timer, and if it is repeating restart it using the

repeat value as the timeout. If the timer has never been

started before it returns UV_EINVAL.

void uv_timer_set_repeat(uv_timer_t* handle,

uint64_t repeat)

Set the repeat interval value in milliseconds. The timer

will be scheduled to run on the given interval, regardless

of the callback execution duration, and will follow normal

timer semantics in the case of a time-slice overrun.

For example, if a 50ms repeating timer first runs for

17ms, it will be scheduled to run again 33ms later. If

other tasks consume more than the 33ms following the

first timer callback, then the callback will run as soon as

possible.

Note

If the repeat value is set from a timer callback it does

not immediately take effect. If the timer was non-

repeating before, it will have been stopped. If it was

repeating, then the old repeat value will have been

used to schedule the next timeout.

uint64_t uv_timer_get_repeat(const uv_timer_t* handle)

Get the timer repeat value.

uint64_t uv_timer_get_due_in(const uv_timer_t* handle)

Get the timer due value or 0 if it has expired. The time is

relative to uv_now().

New in version 1.40.0.

See also

The uv_handle_t API functions also apply.

Returns:

uv_prepare_t — Prepare

handle

Prepare handles will run the given callback once per loop

iteration, right before polling for i/o.

Data types

uv_prepare_t

Prepare handle type.

void (*uv_prepare_cb)(uv_prepare_t* handle)

Type definition for callback passed to uv_prepare_start().

Public members

N/A

See also

The uv_handle_t members also apply.

API

int uv_prepare_init(uv_loop_t* loop, uv_prepare_t* prepare)

Initialize the handle. This function always succeeds.

0

Returns:

Returns:

int uv_prepare_start(uv_prepare_t* prepare,

uv_prepare_cb cb)

Start the handle with the given callback. This function

always succeeds, except when cb is NULL.

0 on success, or UV_EINVAL when cb

== NULL.

int uv_prepare_stop(uv_prepare_t* prepare)

Stop the handle, the callback will no longer be called.

This function always succeeds.

0

See also

The uv_handle_t API functions also apply.

Returns:

uv_check_t — Check handle

Check handles will run the given callback once per loop

iteration, right after polling for i/o.

Data types

uv_check_t

Check handle type.

void (*uv_check_cb)(uv_check_t* handle)

Type definition for callback passed to uv_check_start().

Public members

N/A

See also

The uv_handle_t members also apply.

API

int uv_check_init(uv_loop_t* loop, uv_check_t* check)

Initialize the handle. This function always succeeds.

0

int uv_check_start(uv_check_t* check, uv_check_cb cb)

Start the handle with the given callback. This function

always succeeds, except when cb is NULL.

Returns:

Returns:

0 on success, or UV_EINVAL when cb

== NULL.

int uv_check_stop(uv_check_t* check)

Stop the handle, the callback will no longer be called.

This function always succeeds.

0

See also

The uv_handle_t API functions also apply.

uv_idle_t — Idle handle

Idle handles will run the given callback once per loop

iteration, right before the uv_prepare_t handles.

Note

The notable difference with prepare handles is that when

there are active idle handles, the loop will perform a zero

timeout poll instead of blocking for i/o.

Warning

Despite the name, idle handles will get their callbacks

called on every loop iteration, not when the loop is actually

“idle”.

Data types

uv_idle_t

Idle handle type.

void (*uv_idle_cb)(uv_idle_t* handle)

Type definition for callback passed to uv_idle_start().

Public members

N/A

See also

Returns:

Returns:

Returns:

The uv_handle_t members also apply.

API

int uv_idle_init(uv_loop_t* loop, uv_idle_t* idle)

Initialize the handle. This function always succeeds.

0

int uv_idle_start(uv_idle_t* idle, uv_idle_cb cb)

Start the handle with the given callback. This function

always succeeds, except when cb is NULL.

0 on success, or UV_EINVAL when cb

== NULL.

int uv_idle_stop(uv_idle_t* idle)

Stop the handle, the callback will no longer be called.

This function always succeeds.

0

See also

The uv_handle_t API functions also apply.

Returns:

uv_async_t — Async handle

Async handles allow the user to “wakeup” the event loop

and get a callback called from another thread.

Data types

uv_async_t

Async handle type.

void (*uv_async_cb)(uv_async_t* handle)

Type definition for callback passed to uv_async_init().

Public members

N/A

See also

The uv_handle_t members also apply.

API

int uv_async_init(uv_loop_t* loop, uv_async_t* async,

uv_async_cb async_cb)

Initialize the handle. A NULL callback is allowed.

0 on success, or an error code < 0 on

failure.

Note

Returns:

Unlike other handle initialization functions, it

immediately starts the handle.

int uv_async_send(uv_async_t* async)

Wake up the event loop and call the async handle’s

callback.

0 on success, or an error code < 0 on

failure.

Note

It’s safe to call this function from any thread. The

callback will be called on the loop thread.

Note

uv_async_send() is async-signal-safe

[https://man7.org/linux/man-pages/man7/signal-safety.7.html]. It’s safe

to call this function from a signal handler.

Warning

libuv will coalesce calls to uv_async_send(), that is, not

every call to it will yield an execution of the callback.

For example: if uv_async_send() is called 5 times in a row

before the callback is called, the callback will only be

called once. If uv_async_send() is called again after the

callback was called, it will be called again.

See also

The uv_handle_t API functions also apply.

https://man7.org/linux/man-pages/man7/signal-safety.7.html

uv_poll_t — Poll handle

Poll handles are used to watch file descriptors for

readability, writability and disconnection similar to the

purpose of poll(2) [https://man7.org/linux/man-pages/man2/poll.2.html].

The purpose of poll handles is to enable integrating external

libraries that rely on the event loop to signal it about the

socket status changes, like c-ares or libssh2. Using uv_poll_t

for any other purpose is not recommended; uv_tcp_t,

uv_udp_t, etc. provide an implementation that is faster and

more scalable than what can be achieved with uv_poll_t,

especially on Windows.

It is possible that poll handles occasionally signal that a file

descriptor is readable or writable even when it isn’t. The

user should therefore always be prepared to handle EAGAIN

or equivalent when it attempts to read from or write to the

fd.

It is not okay to have multiple active poll handles for the

same socket, this can cause libuv to busyloop or otherwise

malfunction.

The user should not close a file descriptor while it is being

polled by an active poll handle. This can cause the handle to

report an error, but it might also start polling another

socket. However the fd can be safely closed immediately

after a call to uv_poll_stop() or uv_close().

Note

On windows only sockets can be polled with poll handles.

On Unix any file descriptor that would be accepted by

https://man7.org/linux/man-pages/man2/poll.2.html

poll(2) [https://man7.org/linux/man-pages/man2/poll.2.html] can be

used.

Note

On AIX, watching for disconnection is not supported.

Data types

uv_poll_t

Poll handle type.

void (*uv_poll_cb)(uv_poll_t* handle, int status, int events)

Type definition for callback passed to uv_poll_start().

uv_poll_event

Poll event types

enum uv_poll_event {

 UV_READABLE = 1,

 UV_WRITABLE = 2,

 UV_DISCONNECT = 4,

 UV_PRIORITIZED = 8

};

Public members

N/A

See also

The uv_handle_t members also apply.

https://man7.org/linux/man-pages/man2/poll.2.html

API

int uv_poll_init(uv_loop_t* loop, uv_poll_t* handle, int fd)

Initialize the handle using a file descriptor.

Changed in version 1.2.2: the file descriptor is set to non-

blocking mode.

int uv_poll_init_socket(uv_loop_t* loop, uv_poll_t* handle,

uv_os_sock_t socket)

Initialize the handle using a socket descriptor. On Unix

this is identical to uv_poll_init(). On windows it takes a

SOCKET handle.

Changed in version 1.2.2: the socket is set to non-

blocking mode.

int uv_poll_start(uv_poll_t* handle, int events,

uv_poll_cb cb)

Starts polling the file descriptor. events is a bitmask

made up of UV_READABLE, UV_WRITABLE,

UV_PRIORITIZED and UV_DISCONNECT. As soon as an

event is detected the callback will be called with status

set to 0, and the detected events set on the events field.

The UV_PRIORITIZED event is used to watch for sysfs

interrupts or TCP out-of-band messages.

The UV_DISCONNECT event is optional in the sense that

it may not be reported and the user is free to ignore it,

but it can help optimize the shutdown path because an

extra read or write call might be avoided.

If an error happens while polling, status will be < 0 and

corresponds with one of the UV_E* error codes (see Error

handling). The user should not close the socket while the

handle is active. If the user does that anyway, the

callback may be called reporting an error status, but this

is not guaranteed.

Note

Calling uv_poll_start() on a handle that is already active

is fine. Doing so will update the events mask that is

being watched for.

Note

Though UV_DISCONNECT can be set, it is unsupported

on AIX and as such will not be set on the events field in

the callback.

Note

If one of the events UV_READABLE or UV_WRITABLE are

set, the callback will be called again, as long as the

given fd/socket remains readable or writable

accordingly. Particularly in each of the following

scenarios:

The callback has been called because the socket

became readable/writable and the callback did not

conduct a read/write on this socket at all.

The callback committed a read on the socket, and

has not read all the available data (when

UV_READABLE is set).

The callback committed a write on the socket, but it

remained writable afterwards (when UV_WRITABLE

is set).

The socket has already became readable/writable

before calling uv_poll_start() on a poll handle

associated with this socket, and since then the state

of the socket did not changed.

In all of the above listed scenarios, the socket remains

readable or writable and hence the callback will be

called again (depending on the events set in the

bitmask). This behaviour is known as level triggering.

Changed in version 1.9.0: Added the UV_DISCONNECT

event.

Changed in version 1.14.0: Added the UV_PRIORITIZED

event.

int uv_poll_stop(uv_poll_t* poll)

Stop polling the file descriptor, the callback will no longer

be called.

Note

Calling uv_poll_stop() is effective immediately: any

pending callback is also canceled, even if the socket

state change notification was already pending.

See also

The uv_handle_t API functions also apply.

uv_signal_t — Signal handle

Signal handles implement Unix style signal handling on a

per-event loop bases.

Windows notes

Reception of some signals is emulated:

SIGINT is normally delivered when the user presses

CTRL+C. However, like on Unix, it is not generated when

terminal raw mode is enabled.

SIGBREAK is delivered when the user pressed CTRL +

BREAK.

SIGHUP is generated when the user closes the console

window. On SIGHUP the program is given approximately

10 seconds to perform cleanup. After that Windows will

unconditionally terminate it.

SIGWINCH is raised whenever libuv detects that the

console has been resized. When a libuv app is running

under a console emulator, or when a 32-bit libuv app is

running on 64-bit system, SIGWINCH will be emulated.

In such cases SIGWINCH signals may not always be

delivered in a timely manner. For a writable uv_tty_t

handle libuv will only detect size changes when the

cursor is moved. When a readable uv_tty_t handle is

used, resizing of the console buffer will be detected only

if the handle is in raw mode and is being read.

Watchers for other signals can be successfully created,

but these signals are never received. These signals are:

SIGILL, SIGABRT, SIGFPE, SIGSEGV, SIGTERM and

SIGKILL.

Calls to raise() or abort() to programmatically raise a

signal are not detected by libuv; these will not trigger a

signal watcher.

Changed in version 1.15.0: SIGWINCH support on Windows

was improved.

Changed in version 1.31.0: 32-bit libuv SIGWINCH support

on 64-bit Windows was rolled back to old implementation.

Unix notes

SIGKILL and SIGSTOP are impossible to catch.

Handling SIGBUS, SIGFPE, SIGILL or SIGSEGV via libuv

results into undefined behavior.

SIGABRT will not be caught by libuv if generated by

abort(), e.g. through assert().

On Linux SIGRT0 and SIGRT1 (signals 32 and 33) are

used by the NPTL pthreads library to manage threads.

Installing watchers for those signals will lead to

unpredictable behavior and is strongly discouraged.

Future versions of libuv may simply reject them.

Data types

uv_signal_t

Signal handle type.

void (*uv_signal_cb)(uv_signal_t* handle, int signum)

Type definition for callback passed to uv_signal_start().

Public members

int uv_signal_t.signum

Signal being monitored by this handle. Readonly.

See also

The uv_handle_t members also apply.

API

int uv_signal_init(uv_loop_t* loop, uv_signal_t* signal)

Initialize the handle.

int uv_signal_start(uv_signal_t* signal, uv_signal_cb cb,

int signum)

Start the handle with the given callback, watching for the

given signal.

int uv_signal_start_oneshot(uv_signal_t* signal,

uv_signal_cb cb, int signum)

New in version 1.12.0.

Same functionality as uv_signal_start() but the signal

handler is reset the moment the signal is received.

int uv_signal_stop(uv_signal_t* signal)

Stop the handle, the callback will no longer be called.

See also

The uv_handle_t API functions also apply.

uv_process_t — Process

handle

Process handles will spawn a new process and allow the

user to control it and establish communication channels

with it using streams.

Data types

uv_process_t

Process handle type.

uv_process_options_t

Options for spawning the process (passed to uv_spawn().

typedef struct uv_process_options_s {

 uv_exit_cb exit_cb;

 const char* file;

 char** args;

 char** env;

 const char* cwd;

 unsigned int flags;

 int stdio_count;

 uv_stdio_container_t* stdio;

 uv_uid_t uid;

 uv_gid_t gid;

} uv_process_options_t;

void (*uv_exit_cb)(uv_process_t*, int64_t exit_status,

int term_signal)

Type definition for callback passed in uv_process_options_t

which will indicate the exit status and the signal that

caused the process to terminate, if any.

uv_process_flags

Flags to be set on the flags field of uv_process_options_t.

enum uv_process_flags {

 /*

 * Set the child process' user id.

 */

 UV_PROCESS_SETUID = (1 << 0),

 /*

 * Set the child process' group id.

 */

 UV_PROCESS_SETGID = (1 << 1),

 /*

 * Do not wrap any arguments in quotes, or perform any

other escaping, when

 * converting the argument list into a command line

string. This option is

 * only meaningful on Windows systems. On Unix it is

silently ignored.

 */

 UV_PROCESS_WINDOWS_VERBATIM_ARGUMENTS = (1 << 2),

 /*

 * Spawn the child process in a detached state - this

will make it a process

 * group leader, and will effectively enable the child to

keep running after

 * the parent exits. Note that the child process will

still keep the

 * parent's event loop alive unless the parent process

calls uv_unref() on

 * the child's process handle.

 */

 UV_PROCESS_DETACHED = (1 << 3),

 /*

 * Hide the subprocess window that would normally be

created. This option is

 * only meaningful on Windows systems. On Unix it is

silently ignored.

 */

 UV_PROCESS_WINDOWS_HIDE = (1 << 4),

 /*

 * Hide the subprocess console window that would normally

be created. This

 * option is only meaningful on Windows systems. On Unix

it is silently

 * ignored.

 */

 UV_PROCESS_WINDOWS_HIDE_CONSOLE = (1 << 5),

 /*

 * Hide the subprocess GUI window that would normally be

created. This

 * option is only meaningful on Windows systems. On Unix

it is silently

 * ignored.

 */

 UV_PROCESS_WINDOWS_HIDE_GUI = (1 << 6)

};

uv_stdio_container_t

Container for each stdio handle or fd passed to a child

process.

typedef struct uv_stdio_container_s {

 uv_stdio_flags flags;

 union {

 uv_stream_t* stream;

 int fd;

 } data;

} uv_stdio_container_t;

Public members

int uv_process_t.pid

The PID of the spawned process. It’s set after calling

uv_spawn().

Note

The uv_handle_t members also apply.

uv_exit_cb uv_process_options_t.exit_cb

Callback called after the process exits.

const char* uv_process_options_t.file

Path pointing to the program to be executed.

char** uv_process_options_t.args

Command line arguments. args[0] should be the path to

the program. On Windows this uses CreateProcess which

concatenates the arguments into a string this can cause

some strange errors. See the

UV_PROCESS_WINDOWS_VERBATIM_ARGUMENTS flag on

uv_process_flags.

char** uv_process_options_t.env

Environment for the new process. If NULL the parents

environment is used.

const char* uv_process_options_t.cwd

Current working directory for the subprocess.

unsigned int uv_process_options_t.flags

Various flags that control how uv_spawn() behaves. See

uv_process_flags.

int uv_process_options_t.stdio_count

uv_stdio_container_t* uv_process_options_t.stdio

The stdio field points to an array of uv_stdio_container_t

structs that describe the file descriptors that will be

made available to the child process. The convention is

that stdio[0] points to stdin, fd 1 is used for stdout, and

fd 2 is stderr.

Note

On Windows file descriptors greater than 2 are available

to the child process only if the child processes uses the

MSVCRT runtime.

uv_uid_t uv_process_options_t.uid

uv_gid_t uv_process_options_t.gid

Libuv can change the child process’ user/group id. This

happens only when the appropriate bits are set in the

flags fields.

Note

This is not supported on Windows, uv_spawn() will fail and

set the error to UV_ENOTSUP.

uv_stdio_flags uv_stdio_container_t.flags

Flags specifying how the stdio container should be

passed to the child.

union @0 uv_stdio_container_t.data

Union containing either the stream or fd to be passed on

to the child process.

API

void uv_disable_stdio_inheritance(void)

Disables inheritance for file descriptors / handles that this

process inherited from its parent. The effect is that child

processes spawned by this process don’t accidentally

inherit these handles.

It is recommended to call this function as early in your

program as possible, before the inherited file descriptors

can be closed or duplicated.

Note

This function works on a best-effort basis: there is no

guarantee that libuv can discover all file descriptors

that were inherited. In general it does a better job on

Windows than it does on Unix.

int uv_spawn(uv_loop_t* loop, uv_process_t* handle, const

uv_process_options_t* options)

Initializes the process handle and starts the process. If

the process is successfully spawned, this function will

return 0. Otherwise, the negative error code

corresponding to the reason it couldn’t spawn is

returned.

Possible reasons for failing to spawn would include (but

not be limited to) the file to execute not existing, not

having permissions to use the setuid or setgid specified,

or not having enough memory to allocate for the new

process.

Changed in version 1.24.0: Added

UV_PROCESS_WINDOWS_HIDE_CONSOLE and

UV_PROCESS_WINDOWS_HIDE_GUI flags.

int uv_process_kill(uv_process_t* handle, int signum)

Sends the specified signal to the given process handle.

Check the documentation on uv_signal_t — Signal handle

for signal support, specially on Windows.

int uv_kill(int pid, int signum)

Sends the specified signal to the given PID. Check the

documentation on uv_signal_t — Signal handle for signal

support, specially on Windows.

uv_pid_t uv_process_get_pid(const uv_process_t* handle)

Returns handle->pid.

New in version 1.19.0.

See also

The uv_handle_t API functions also apply.

uv_stream_t — Stream handle

Stream handles provide an abstraction of a duplex

communication channel. uv_stream_t is an abstract type,

libuv provides 3 stream implementations in the form of

uv_tcp_t, uv_pipe_t and uv_tty_t.

Data types

uv_stream_t

Stream handle type.

uv_connect_t

Connect request type.

uv_shutdown_t

Shutdown request type.

uv_write_t

Write request type. Careful attention must be paid when

reusing objects of this type. When a stream is in non-

blocking mode, write requests sent with uv_write will be

queued. Reusing objects at this point is undefined

behaviour. It is safe to reuse the uv_write_t object only

after the callback passed to uv_write is fired.

void (*uv_read_cb)(uv_stream_t* stream, ssize_t nread,

const uv_buf_t* buf)

Callback called when data was read on a stream.

nread is > 0 if there is data available or < 0 on error.

When we’ve reached EOF, nread will be set to UV_EOF.

When nread < 0, the buf parameter might not point to a

valid buffer; in that case buf.len and buf.base are both

set to 0.

Note

nread might be 0, which does not indicate an error or

EOF. This is equivalent to EAGAIN or EWOULDBLOCK under

read(2).

The callee is responsible for stopping/closing the stream

when an error happens by calling uv_read_stop() or

uv_close(). Trying to read from the stream again is

undefined.

The callee is responsible for freeing the buffer, libuv does

not reuse it. The buffer may be a null buffer (where buf-

>base == NULL and buf->len == 0) on error.

void (*uv_write_cb)(uv_write_t* req, int status)

Callback called after data was written on a stream. status

will be 0 in case of success, < 0 otherwise.

void (*uv_connect_cb)(uv_connect_t* req, int status)

Callback called after a connection started by uv_connect()

is done. status will be 0 in case of success, < 0

otherwise.

void (*uv_shutdown_cb)(uv_shutdown_t* req, int status)

Callback called after a shutdown request has been

completed. status will be 0 in case of success, < 0

otherwise.

void (*uv_connection_cb)(uv_stream_t* server, int status)

Callback called when a stream server has received an

incoming connection. The user can accept the connection

by calling uv_accept(). status will be 0 in case of success,

< 0 otherwise.

Public members

size_t uv_stream_t.write_queue_size

Contains the amount of queued bytes waiting to be sent.

Readonly.

uv_stream_t* uv_connect_t.handle

Pointer to the stream where this connection request is

running.

uv_stream_t* uv_shutdown_t.handle

Pointer to the stream where this shutdown request is

running.

uv_stream_t* uv_write_t.handle

Pointer to the stream where this write request is running.

uv_stream_t* uv_write_t.send_handle

Pointer to the stream being sent using this write request.

See also

The uv_handle_t members also apply.

API

int uv_shutdown(uv_shutdown_t* req, uv_stream_t* handle,

uv_shutdown_cb cb)

Shutdown the outgoing (write) side of a duplex stream. It

waits for pending write requests to complete. The handle

should refer to a initialized stream. req should be an

uninitialized shutdown request struct. The cb is called

after shutdown is complete.

int uv_listen(uv_stream_t* stream, int backlog,

uv_connection_cb cb)

Start listening for incoming connections. backlog

indicates the number of connections the kernel might

queue, same as listen(2) [https://man7.org/linux/man-

pages/man2/listen.2.html]. When a new incoming connection is

received the uv_connection_cb callback is called.

int uv_accept(uv_stream_t* server, uv_stream_t* client)

This call is used in conjunction with uv_listen() to accept

incoming connections. Call this function after receiving a

uv_connection_cb to accept the connection. Before calling

this function the client handle must be initialized. < 0

return value indicates an error.

When the uv_connection_cb callback is called it is

guaranteed that this function will complete successfully

the first time. If you attempt to use it more than once, it

may fail. It is suggested to only call this function once per

uv_connection_cb call.

Note

server and client must be handles running on the same

loop.

int uv_read_start(uv_stream_t* stream,

uv_alloc_cb alloc_cb, uv_read_cb read_cb)

Read data from an incoming stream. The uv_read_cb

callback will be made several times until there is no more

data to read or uv_read_stop() is called.

https://man7.org/linux/man-pages/man2/listen.2.html

Changed in version 1.38.0: uv_read_start() now

consistently returns UV_EALREADY when called twice,

and UV_EINVAL when the stream is closing. With older

libuv versions, it returns UV_EALREADY on Windows but

not UNIX, and UV_EINVAL on UNIX but not Windows.

int uv_read_stop(uv_stream_t*)

Stop reading data from the stream. The uv_read_cb

callback will no longer be called.

This function is idempotent and may be safely called on a

stopped stream.

This function will always succeed; hence, checking its

return value is unnecessary. A non-zero return indicates

that finishing releasing resources may be pending on the

next input event on that TTY on Windows, and does not

indicate failure.

int uv_write(uv_write_t* req, uv_stream_t* handle, const

uv_buf_t bufs[], unsigned int nbufs, uv_write_cb cb)

Write data to stream. Buffers are written in order.

Example:

void cb(uv_write_t* req, int status) {

 /* Logic which handles the write result */

}

uv_buf_t a[] = {

 { .base = "1", .len = 1 },

 { .base = "2", .len = 1 }

};

uv_buf_t b[] = {

 { .base = "3", .len = 1 },

 { .base = "4", .len = 1 }

};

uv_write_t req1;

uv_write_t req2;

/* writes "1234" */

uv_write(&req1, stream, a, 2, cb);

uv_write(&req2, stream, b, 2, cb);

Note

The memory pointed to by the buffers must remain

valid until the callback gets called. This also holds for

uv_write2().

int uv_write2(uv_write_t* req, uv_stream_t* handle, const

uv_buf_t bufs[], unsigned int nbufs,

uv_stream_t* send_handle, uv_write_cb cb)

Extended write function for sending handles over a pipe.

The pipe must be initialized with ipc == 1.

Note

send_handle must be a TCP, pipe and UDP handle on

Unix, or a TCP handle on Windows, which is a server or

a connection (listening or connected state). Bound

sockets or pipes will be assumed to be servers.

int uv_try_write(uv_stream_t* handle, const uv_buf_t bufs[],

unsigned int nbufs)

Same as uv_write(), but won’t queue a write request if it

can’t be completed immediately.

Will return either:

> 0: number of bytes written (can be less than the

supplied buffer size).

< 0: negative error code (UV_EAGAIN is returned if no

data can be sent immediately).

int uv_try_write2(uv_stream_t* handle, const

uv_buf_t bufs[], unsigned int nbufs,

uv_stream_t* send_handle)

Same as uv_try_write() and extended write function for

sending handles over a pipe like c:func:uv_write2.

Try to send a handle is not supported on Windows, where

it returns UV_EAGAIN.

New in version 1.42.0.

int uv_is_readable(const uv_stream_t* handle)

Returns 1 if the stream is readable, 0 otherwise.

int uv_is_writable(const uv_stream_t* handle)

Returns 1 if the stream is writable, 0 otherwise.

int uv_stream_set_blocking(uv_stream_t* handle,

int blocking)

Enable or disable blocking mode for a stream.

When blocking mode is enabled all writes complete

synchronously. The interface remains unchanged

otherwise, e.g. completion or failure of the operation will

still be reported through a callback which is made

asynchronously.

Warning

Relying too much on this API is not recommended. It is

likely to change significantly in the future.

Currently only works on Windows for uv_pipe_t handles.

On UNIX platforms, all uv_stream_t handles are

supported.

Also libuv currently makes no ordering guarantee when

the blocking mode is changed after write requests have

already been submitted. Therefore it is recommended

to set the blocking mode immediately after opening or

creating the stream.

Changed in version 1.4.0: UNIX implementation added.

size_t uv_stream_get_write_queue_size(const

uv_stream_t* stream)

Returns stream->write_queue_size.

New in version 1.19.0.

See also

The uv_handle_t API functions also apply.

uv_tcp_t — TCP handle

TCP handles are used to represent both TCP streams and

servers.

uv_tcp_t is a ‘subclass’ of uv_stream_t.

Data types

uv_tcp_t

TCP handle type.

Public members

N/A

See also

The uv_stream_t members also apply.

API

int uv_tcp_init(uv_loop_t* loop, uv_tcp_t* handle)

Initialize the handle. No socket is created as of yet.

int uv_tcp_init_ex(uv_loop_t* loop, uv_tcp_t* handle,

unsigned int flags)

Initialize the handle with the specified flags. At the

moment only the lower 8 bits of the flags parameter are

used as the socket domain. A socket will be created for

the given domain. If the specified domain is AF_UNSPEC no

socket is created, just like uv_tcp_init().

New in version 1.7.0.

int uv_tcp_open(uv_tcp_t* handle, uv_os_sock_t sock)

Open an existing file descriptor or SOCKET as a TCP

handle.

Changed in version 1.2.1: the file descriptor is set to non-

blocking mode.

Note

The passed file descriptor or SOCKET is not checked for

its type, but it’s required that it represents a valid

stream socket.

int uv_tcp_nodelay(uv_tcp_t* handle, int enable)

Enable TCP_NODELAY, which disables Nagle’s algorithm.

int uv_tcp_keepalive(uv_tcp_t* handle, int enable, unsigned

int delay)

Enable / disable TCP keep-alive. delay is the initial delay

in seconds, ignored when enable is zero.

After delay has been reached, 10 successive probes,

each spaced 1 second from the previous one, will still

happen. If the connection is still lost at the end of this

procedure, then the handle is destroyed with a

UV_ETIMEDOUT error passed to the corresponding callback.

int uv_tcp_simultaneous_accepts(uv_tcp_t* handle,

int enable)

Enable / disable simultaneous asynchronous accept

requests that are queued by the operating system when

listening for new TCP connections.

This setting is used to tune a TCP server for the desired

performance. Having simultaneous accepts can

significantly improve the rate of accepting connections

(which is why it is enabled by default) but may lead to

uneven load distribution in multi-process setups.

int uv_tcp_bind(uv_tcp_t* handle, const struct

sockaddr* addr, unsigned int flags)

Bind the handle to an address and port. addr should

point to an initialized struct sockaddr_in or struct

sockaddr_in6.

When the port is already taken, you can expect to see an

UV_EADDRINUSE error from uv_listen() or uv_tcp_connect().

That is, a successful call to this function does not

guarantee that the call to uv_listen() or uv_tcp_connect()

will succeed as well.

flags can contain UV_TCP_IPV6ONLY, in which case dual-stack

support is disabled and only IPv6 is used.

int uv_tcp_getsockname(const uv_tcp_t* handle, struct

sockaddr* name, int* namelen)

Get the current address to which the handle is bound.

name must point to a valid and big enough chunk of

memory, struct sockaddr_storage is recommended for IPv4

and IPv6 support.

int uv_tcp_getpeername(const uv_tcp_t* handle, struct

sockaddr* name, int* namelen)

Get the address of the peer connected to the handle.

name must point to a valid and big enough chunk of

memory, struct sockaddr_storage is recommended for IPv4

and IPv6 support.

int uv_tcp_connect(uv_connect_t* req, uv_tcp_t* handle,

const struct sockaddr* addr, uv_connect_cb cb)

Establish an IPv4 or IPv6 TCP connection. Provide an

initialized TCP handle and an uninitialized uv_connect_t.

addr should point to an initialized struct sockaddr_in or

struct sockaddr_in6.

On Windows if the addr is initialized to point to an

unspecified address (0.0.0.0 or ::) it will be changed to

point to localhost. This is done to match the behavior of

Linux systems.

The callback is made when the connection has been

established or when a connection error happened.

Changed in version 1.19.0: added 0.0.0.0 and :: to

localhost mapping

See also

The uv_stream_t API functions also apply.

int uv_tcp_close_reset(uv_tcp_t* handle,

uv_close_cb close_cb)

Resets a TCP connection by sending a RST packet. This is

accomplished by setting the SO_LINGER socket option

with a linger interval of zero and then calling uv_close().

Due to some platform inconsistencies, mixing of

uv_shutdown() and uv_tcp_close_reset() calls is not allowed.

New in version 1.32.0.

int uv_socketpair(int type, int protocol,

uv_os_sock_t socket_vector[2], int flags0, int flags1)

Create a pair of connected sockets with the specified

properties. The resulting handles can be passed to

uv_tcp_open, used with uv_spawn, or for any other

purpose.

Valid values for flags0 and flags1 are:

UV_NONBLOCK_PIPE: Opens the specified socket

handle for OVERLAPPED or

FIONBIO/O_NONBLOCK I/O usage. This is

recommended for handles that will be used by

libuv, and not usually recommended otherwise.

Equivalent to socketpair(2) [https://man7.org/linux/man-

pages/man2/socketpair.2.html] with a domain of AF_UNIX.

New in version 1.41.0.

https://man7.org/linux/man-pages/man2/socketpair.2.html

uv_pipe_t — Pipe handle

Pipe handles provide an abstraction over streaming files on

Unix (including local domain sockets, pipes, and FIFOs) and

named pipes on Windows.

uv_pipe_t is a ‘subclass’ of uv_stream_t.

Data types

uv_pipe_t

Pipe handle type.

Public members

int uv_pipe_t.ipc

Whether this pipe is suitable for handle passing between

processes. Only a connected pipe that will be passing the

handles should have this flag set, not the listening pipe

that uv_accept is called on.

See also

The uv_stream_t members also apply.

API

int uv_pipe_init(uv_loop_t* loop, uv_pipe_t* handle, int ipc)

Initialize a pipe handle. The ipc argument is a boolean to

indicate if this pipe will be used for handle passing

between processes (which may change the bytes on the

wire). Only a connected pipe that will be passing the

handles should have this flag set, not the listening pipe

that uv_accept is called on.

int uv_pipe_open(uv_pipe_t* handle, uv_file file)

Open an existing file descriptor or HANDLE as a pipe.

Changed in version 1.2.1: the file descriptor is set to non-

blocking mode.

Note

The passed file descriptor or HANDLE is not checked for

its type, but it’s required that it represents a valid pipe.

int uv_pipe_bind(uv_pipe_t* handle, const char* name)

Bind the pipe to a file path (Unix) or a name (Windows).

Note

Paths on Unix get truncated to

sizeof(sockaddr_un.sun_path) bytes, typically between 92

and 108 bytes.

void uv_pipe_connect(uv_connect_t* req, uv_pipe_t* handle,

const char* name, uv_connect_cb cb)

Connect to the Unix domain socket or the named pipe.

Note

Paths on Unix get truncated to

sizeof(sockaddr_un.sun_path) bytes, typically between 92

and 108 bytes.

int uv_pipe_getsockname(const uv_pipe_t* handle,

char* buffer, size_t* size)

Get the name of the Unix domain socket or the named

pipe.

A preallocated buffer must be provided. The size

parameter holds the length of the buffer and it’s set to

the number of bytes written to the buffer on output. If

the buffer is not big enough UV_ENOBUFS will be returned

and len will contain the required size.

Changed in version 1.3.0: the returned length no longer

includes the terminating null byte, and the buffer is not

null terminated.

int uv_pipe_getpeername(const uv_pipe_t* handle,

char* buffer, size_t* size)

Get the name of the Unix domain socket or the named

pipe to which the handle is connected.

A preallocated buffer must be provided. The size

parameter holds the length of the buffer and it’s set to

the number of bytes written to the buffer on output. If

the buffer is not big enough UV_ENOBUFS will be returned

and len will contain the required size.

New in version 1.3.0.

void uv_pipe_pending_instances(uv_pipe_t* handle,

int count)

Set the number of pending pipe instance handles when

the pipe server is waiting for connections.

Note

This setting applies to Windows only.

int uv_pipe_pending_count(uv_pipe_t* handle)

uv_handle_type uv_pipe_pending_type(uv_pipe_t* handle)

Used to receive handles over IPC pipes.

First - call uv_pipe_pending_count(), if it’s > 0 then initialize

a handle of the given type, returned by

uv_pipe_pending_type() and call uv_accept(pipe, handle).

See also

The uv_stream_t API functions also apply.

int uv_pipe_chmod(uv_pipe_t* handle, int flags)

Alters pipe permissions, allowing it to be accessed from

processes run by different users. Makes the pipe writable

or readable by all users. Mode can be UV_WRITABLE,

UV_READABLE or UV_WRITABLE | UV_READABLE. This function is

blocking.

New in version 1.16.0.

int uv_pipe(uv_file fds[2], int read_flags, int write_flags)

Create a pair of connected pipe handles. Data may be

written to fds[1] and read from fds[0]. The resulting

handles can be passed to uv_pipe_open, used with

uv_spawn, or for any other purpose.

Valid values for flags are:

UV_NONBLOCK_PIPE: Opens the specified socket

handle for OVERLAPPED or

FIONBIO/O_NONBLOCK I/O usage. This is

recommended for handles that will be used by

libuv, and not usually recommended otherwise.

Equivalent to pipe(2) [https://man7.org/linux/man-

pages/man2/pipe.2.html] with the O_CLOEXEC flag set.

New in version 1.41.0.

https://man7.org/linux/man-pages/man2/pipe.2.html

uv_tty_t — TTY handle

TTY handles represent a stream for the console.

uv_tty_t is a ‘subclass’ of uv_stream_t.

Data types

uv_tty_t

TTY handle type.

Public members

N/A

See also

The uv_stream_t members also apply.

API

int uv_tty_init(uv_loop_t* loop, uv_tty_t* handle, uv_file fd,

int unused)

Initialize a new TTY stream with the given file descriptor.

Usually the file descriptor will be:

0 = stdin

1 = stdout

2 = stderr

On Unix this function will determine the path of the fd of

the terminal using ttyname_r(3) [https://man7.org/linux/man-

https://man7.org/linux/man-pages/man3/ttyname_r.3.html

pages/man3/ttyname_r.3.html], open it, and use it if the passed

file descriptor refers to a TTY. This lets libuv put the tty in

non-blocking mode without affecting other processes that

share the tty.

This function is not thread safe on systems that don’t

support ioctl TIOCGPTN or TIOCPTYGNAME, for instance

OpenBSD and Solaris.

Note

If reopening the TTY fails, libuv falls back to blocking

writes.

Changed in version 1.23.1:: the readable parameter is

now unused and ignored. The correct value will now be

auto-detected from the kernel.

Changed in version 1.9.0:: the path of the TTY is

determined by ttyname_r(3) [https://man7.org/linux/man-

pages/man3/ttyname_r.3.html]. In earlier versions libuv opened

/dev/tty instead.

Changed in version 1.5.0:: trying to initialize a TTY

stream with a file descriptor that refers to a file returns

UV_EINVAL on UNIX.

int uv_tty_set_mode(uv_tty_t* handle, uv_tty_mode_t mode)

Changed in version 1.2.0:: the mode is specified as a

uv_tty_mode_t value.

Set the TTY using the specified terminal mode.

int uv_tty_reset_mode(void)

To be called when the program exits. Resets TTY settings

to default values for the next process to take over.

https://man7.org/linux/man-pages/man3/ttyname_r.3.html

This function is async signal-safe on Unix platforms but

can fail with error code UV_EBUSY if you call it when

execution is inside uv_tty_set_mode().

int uv_tty_get_winsize(uv_tty_t* handle, int* width,

int* height)

Gets the current Window size. On success it returns 0.

See also

The uv_stream_t API functions also apply.

void uv_tty_set_vterm_state(uv_tty_vtermstate_t state)

Controls whether console virtual terminal sequences are

processed by libuv or console. Useful in particular for

enabling ConEmu support of ANSI X3.64 and Xterm 256

colors. Otherwise Windows10 consoles are usually

detected automatically.

This function is only meaningful on Windows systems. On

Unix it is silently ignored.

New in version 1.33.0.

int uv_tty_get_vterm_state(uv_tty_vtermstate_t* state)

Get the current state of whether console virtual terminal

sequences are handled by libuv or the console.

This function is not implemented on Unix, where it

returns UV_ENOTSUP.

New in version 1.33.0.

uv_udp_t — UDP handle

UDP handles encapsulate UDP communication for both clients

and servers.

Data types

uv_udp_t

UDP handle type.

uv_udp_send_t

UDP send request type.

uv_udp_flags

Flags used in uv_udp_bind() and uv_udp_recv_cb..

enum uv_udp_flags {

 /* Disables dual stack mode. */

 UV_UDP_IPV6ONLY = 1,

 /*

 * Indicates message was truncated because read buffer was

too small. The

 * remainder was discarded by the OS. Used in

uv_udp_recv_cb.

 */

 UV_UDP_PARTIAL = 2,

 /*

 * Indicates if SO_REUSEADDR will be set when binding the

handle in

 * uv_udp_bind.

 * This sets the SO_REUSEPORT socket flag on the BSDs and

OS X. On other

 * Unix platforms, it sets the SO_REUSEADDR flag. What

that means is that

 * multiple threads or processes can bind to the same

address without error

 * (provided they all set the flag) but only the last one

to bind will receive

 * any traffic, in effect "stealing" the port from the

previous listener.

 */

 UV_UDP_REUSEADDR = 4,

 /*

 * Indicates that the message was received by recvmmsg,

so the buffer provided

 * must not be freed by the recv_cb callback.

 */

 UV_UDP_MMSG_CHUNK = 8,

 /*

 * Indicates that the buffer provided has been fully

utilized by recvmmsg and

 * that it should now be freed by the recv_cb callback.

When this flag is set

 * in uv_udp_recv_cb, nread will always be 0 and addr

will always be NULL.

 */

 UV_UDP_MMSG_FREE = 16,

 /*

 * Indicates if IP_RECVERR/IPV6_RECVERR will be set when

binding the handle.

 * This sets IP_RECVERR for IPv4 and IPV6_RECVERR for

IPv6 UDP sockets on

 * Linux. This stops the Linux kernel from supressing

some ICMP error messages

 * and enables full ICMP error reporting for faster

failover.

 * This flag is no-op on platforms other than Linux.

 */

 UV_UDP_LINUX_RECVERR = 32,

 /*

 * Indicates that recvmmsg should be used, if available.

 */

 UV_UDP_RECVMMSG = 256

};

void (*uv_udp_send_cb)(uv_udp_send_t* req, int status)

Type definition for callback passed to uv_udp_send(), which

is called after the data was sent.

void (*uv_udp_recv_cb)(uv_udp_t* handle, ssize_t nread,

const uv_buf_t* buf, const struct sockaddr* addr,

unsigned flags)

Type definition for callback passed to uv_udp_recv_start(),

which is called when the endpoint receives data.

handle: UDP handle

nread: Number of bytes that have been received. 0 if

there is no more data to read. Note that 0 may also

mean that an empty datagram was received (in this

case addr is not NULL). < 0 if a transmission error was

detected; if using recvmmsg(2) [https://man7.org/linux/man-

pages/man2/recvmmsg.2.html] no more chunks will be

received and the buffer can be freed safely.

buf: uv_buf_t with the received data.

addr: struct sockaddr* containing the address of the

sender. Can be NULL. Valid for the duration of the

callback only.

flags: One or more or’ed UV_UDP_* constants.

The callee is responsible for freeing the buffer, libuv does

not reuse it. The buffer may be a null buffer (where buf-

>base == NULL and buf->len == 0) on error.

When using recvmmsg(2) [https://man7.org/linux/man-

pages/man2/recvmmsg.2.html], chunks will have the

UV_UDP_MMSG_CHUNK flag set, those must not be freed.

If no errors occur, there will be a final callback with nread

set to 0, addr set to NULL and the buffer pointing at the

initially allocated data with the UV_UDP_MMSG_CHUNK

flag cleared and the UV_UDP_MMSG_FREE flag set. If a

UDP socket error occurs, nread will be < 0. In either

scenario, the callee can now safely free the provided

buffer.

Changed in version 1.40.0: added the

UV_UDP_MMSG_FREE flag.

Note

https://man7.org/linux/man-pages/man2/recvmmsg.2.html
https://man7.org/linux/man-pages/man2/recvmmsg.2.html

The receive callback will be called with nread == 0 and

addr == NULL when there is nothing to read, and with

nread == 0 and addr != NULL when an empty UDP

packet is received.

Public members

size_t uv_udp_t.send_queue_size

Number of bytes queued for sending. This field strictly

shows how much information is currently queued.

size_t uv_udp_t.send_queue_count

Number of send requests currently in the queue awaiting

to be processed.

uv_udp_t* uv_udp_send_t.handle

UDP handle where this send request is taking place.

See also

The uv_handle_t members also apply.

API

int uv_udp_init(uv_loop_t* loop, uv_udp_t* handle)

Initialize a new UDP handle. The actual socket is created

lazily. Returns 0 on success.

int uv_udp_init_ex(uv_loop_t* loop, uv_udp_t* handle,

unsigned int flags)

Initialize the handle with the specified flags. The lower 8

bits of the flags parameter are used as the socket domain.

A socket will be created for the given domain. If the

specified domain is AF_UNSPEC no socket is created, just like

uv_udp_init().

The remaining bits can be used to set one of these flags:

UV_UDP_RECVMMSG: if set, and the platform supports

it, recvmmsg(2) [https://man7.org/linux/man-

pages/man2/recvmmsg.2.html] will be used.

New in version 1.7.0.

Changed in version 1.37.0: added the UV_UDP_RECVMMSG

flag.

int uv_udp_open(uv_udp_t* handle, uv_os_sock_t sock)

Opens an existing file descriptor or Windows SOCKET as a

UDP handle.

Unix only: The only requirement of the sock argument is

that it follows the datagram contract (works in

unconnected mode, supports sendmsg()/recvmsg(), etc).

In other words, other datagram-type sockets like raw

sockets or netlink sockets can also be passed to this

function.

Changed in version 1.2.1: the file descriptor is set to non-

blocking mode.

Note

The passed file descriptor or SOCKET is not checked for

its type, but it’s required that it represents a valid

datagram socket.

int uv_udp_bind(uv_udp_t* handle, const struct

sockaddr* addr, unsigned int flags)

Bind the UDP handle to an IP address and port.

https://man7.org/linux/man-pages/man2/recvmmsg.2.html

Parameters:

Returns:

Parameters:

Returns:

handle – UDP handle. Should have been

initialized with uv_udp_init().

addr – struct sockaddr_in or struct

sockaddr_in6 with the address and port

to bind to.

flags – Indicate how the socket will be

bound, UV_UDP_IPV6ONLY, UV_UDP_REUSEADDR,

and UV_UDP_RECVERR are supported.

0 on success, or an error code < 0 on

failure.

int uv_udp_connect(uv_udp_t* handle, const struct

sockaddr* addr)

Associate the UDP handle to a remote address and port, so

every message sent by this handle is automatically sent to

that destination. Calling this function with a NULL addr

disconnects the handle. Trying to call uv_udp_connect() on

an already connected handle will result in an UV_EISCONN

error. Trying to disconnect a handle that is not connected

will return an UV_ENOTCONN error.

handle – UDP handle. Should have been

initialized with uv_udp_init().

addr – struct sockaddr_in or struct

sockaddr_in6 with the address and port

to associate to.

0 on success, or an error code < 0 on

failure.

New in version 1.27.0.

int uv_udp_getpeername(const uv_udp_t* handle, struct

sockaddr* name, int* namelen)

Get the remote IP and port of the UDP handle on

connected UDP handles. On unconnected handles, it

returns UV_ENOTCONN.

Parameters:

Returns:

Parameters:

Returns:

handle – UDP handle. Should have been

initialized with uv_udp_init() and bound.

name – Pointer to the structure to be

filled with the address data. In order to

support IPv4 and IPv6 struct

sockaddr_storage should be used.

namelen – On input it indicates the dat

of the name field. On output it indicates

how much of it was filled.

0 on success, or an error code < 0 on

failure

New in version 1.27.0.

int uv_udp_getsockname(const uv_udp_t* handle, struct

sockaddr* name, int* namelen)

Get the local IP and port of the UDP handle.

handle – UDP handle. Should have been

initialized with uv_udp_init() and bound.

name – Pointer to the structure to be

filled with the address data. In order to

support IPv4 and IPv6 struct

sockaddr_storage should be used.

namelen – On input it indicates the dat

of the name field. On output it indicates

how much of it was filled.

0 on success, or an error code < 0 on

failure.

int uv_udp_set_membership(uv_udp_t* handle, const

char* multicast_addr, const char* interface_addr,

uv_membership membership)

Set membership for a multicast address

Parameters:

Returns:

Parameters:

Returns:

Parameters:

Returns:

handle – UDP handle. Should have been

initialized with uv_udp_init().

multicast_addr – Multicast address to

set membership for.

interface_addr – Interface address.

membership – Should be UV_JOIN_GROUP

or UV_LEAVE_GROUP.

0 on success, or an error code < 0 on

failure.

int uv_udp_set_source_membership(uv_udp_t* handle, const

char* multicast_addr, const char* interface_addr, const

char* source_addr, uv_membership membership)

Set membership for a source-specific multicast group.

handle – UDP handle. Should have been

initialized with uv_udp_init().

multicast_addr – Multicast address to

set membership for.

interface_addr – Interface address.

source_addr – Source address.

membership – Should be UV_JOIN_GROUP

or UV_LEAVE_GROUP.

0 on success, or an error code < 0 on

failure.

New in version 1.32.0.

int uv_udp_set_multicast_loop(uv_udp_t* handle, int on)

Set IP multicast loop flag. Makes multicast packets loop

back to local sockets.

handle – UDP handle. Should have been

initialized with uv_udp_init().

on – 1 for on, 0 for off.

0 on success, or an error code < 0 on

failure.

Parameters:

Returns:

Parameters:

Returns:

Parameters:

Returns:

Parameters:

Returns:

int uv_udp_set_multicast_ttl(uv_udp_t* handle, int ttl)

Set the multicast ttl.

handle – UDP handle. Should have been

initialized with uv_udp_init().

ttl – 1 through 255.

0 on success, or an error code < 0 on

failure.

int uv_udp_set_multicast_interface(uv_udp_t* handle, const

char* interface_addr)

Set the multicast interface to send or receive data on.

handle – UDP handle. Should have been

initialized with uv_udp_init().

interface_addr – interface address.

0 on success, or an error code < 0 on

failure.

int uv_udp_set_broadcast(uv_udp_t* handle, int on)

Set broadcast on or off.

handle – UDP handle. Should have been

initialized with uv_udp_init().

on – 1 for on, 0 for off.

0 on success, or an error code < 0 on

failure.

int uv_udp_set_ttl(uv_udp_t* handle, int ttl)

Set the time to live.

handle – UDP handle. Should have been

initialized with uv_udp_init().

ttl – 1 through 255.

0 on success, or an error code < 0 on

failure.

Parameters:

Returns:

int uv_udp_send(uv_udp_send_t* req, uv_udp_t* handle, const

uv_buf_t bufs[], unsigned int nbufs, const struct

sockaddr* addr, uv_udp_send_cb send_cb)

Send data over the UDP socket. If the socket has not

previously been bound with uv_udp_bind() it will be bound

to 0.0.0.0 (the “all interfaces” IPv4 address) and a random

port number.

On Windows if the addr is initialized to point to an

unspecified address (0.0.0.0 or ::) it will be changed to

point to localhost. This is done to match the behavior of

Linux systems.

For connected UDP handles, addr must be set to NULL,

otherwise it will return UV_EISCONN error.

For connectionless UDP handles, addr cannot be NULL,

otherwise it will return UV_EDESTADDRREQ error.

req – UDP request handle. Need not be

initialized.

handle – UDP handle. Should have been

initialized with uv_udp_init().

bufs – List of buffers to send.

nbufs – Number of buffers in bufs.

addr – struct sockaddr_in or struct

sockaddr_in6 with the address and port

of the remote peer.

send_cb – Callback to invoke when the

data has been sent out.

0 on success, or an error code < 0 on

failure.

Changed in version 1.19.0: added 0.0.0.0 and :: to

localhost mapping

Returns:

Parameters:

Returns:

Changed in version 1.27.0: added support for connected

sockets

int uv_udp_try_send(uv_udp_t* handle, const uv_buf_t bufs[],

unsigned int nbufs, const struct sockaddr* addr)

Same as uv_udp_send(), but won’t queue a send request if it

can’t be completed immediately.

For connected UDP handles, addr must be set to NULL,

otherwise it will return UV_EISCONN error.

For connectionless UDP handles, addr cannot be NULL,

otherwise it will return UV_EDESTADDRREQ error.

>= 0: number of bytes sent (it matches

the given buffer size). < 0: negative

error code (UV_EAGAIN is returned when

the message can’t be sent immediately).

Changed in version 1.27.0: added support for connected

sockets

int uv_udp_recv_start(uv_udp_t* handle, uv_alloc_cb alloc_cb,

uv_udp_recv_cb recv_cb)

Prepare for receiving data. If the socket has not previously

been bound with uv_udp_bind() it is bound to 0.0.0.0 (the

“all interfaces” IPv4 address) and a random port number.

handle – UDP handle. Should have been

initialized with uv_udp_init().

alloc_cb – Callback to invoke when

temporary storage is needed.

recv_cb – Callback to invoke with

received data.

0 on success, or an error code < 0 on

failure.

Note

When using recvmmsg(2) [https://man7.org/linux/man-

pages/man2/recvmmsg.2.html], the number of messages

received at a time is limited by the number of max size

dgrams that will fit into the buffer allocated in alloc_cb,

and suggested_size in alloc_cb for udp_recv is always set

to the size of 1 max size dgram.

Changed in version 1.35.0: added support for

recvmmsg(2) [https://man7.org/linux/man-pages/man2/recvmmsg.2.html]

on supported platforms). The use of this feature requires a

buffer larger than 2 * 64KB to be passed to alloc_cb.

Changed in version 1.37.0: recvmmsg(2)

[https://man7.org/linux/man-pages/man2/recvmmsg.2.html] support is no

longer enabled implicitly, it must be explicitly requested

by passing the UV_UDP_RECVMMSG flag to

uv_udp_init_ex().

Changed in version 1.39.0: uv_udp_using_recvmmsg() can be

used in alloc_cb to determine if a buffer sized for use with

recvmmsg(2) [https://man7.org/linux/man-pages/man2/recvmmsg.2.html]

should be allocated for the current handle/platform.

int uv_udp_using_recvmmsg(uv_udp_t* handle)

Returns 1 if the UDP handle was created with the

UV_UDP_RECVMMSG flag and the platform supports

recvmmsg(2) [https://man7.org/linux/man-

pages/man2/recvmmsg.2.html], 0 otherwise.

New in version 1.39.0.

int uv_udp_recv_stop(uv_udp_t* handle)

Stop listening for incoming datagrams.

https://man7.org/linux/man-pages/man2/recvmmsg.2.html
https://man7.org/linux/man-pages/man2/recvmmsg.2.html
https://man7.org/linux/man-pages/man2/recvmmsg.2.html
https://man7.org/linux/man-pages/man2/recvmmsg.2.html
https://man7.org/linux/man-pages/man2/recvmmsg.2.html

Parameters:

Returns:

handle – UDP handle. Should have been

initialized with uv_udp_init().

0 on success, or an error code < 0 on

failure.

size_t uv_udp_get_send_queue_size(const uv_udp_t* handle)

Returns handle->send_queue_size.

New in version 1.19.0.

size_t uv_udp_get_send_queue_count(const uv_udp_t* handle)

Returns handle->send_queue_count.

New in version 1.19.0.

See also

The uv_handle_t API functions also apply.

uv_fs_event_t — FS Event

handle

FS Event handles allow the user to monitor a given path for

changes, for example, if the file was renamed or there was a

generic change in it. This handle uses the best backend for

the job on each platform.

Note

For AIX, the non default IBM bos.ahafs package has to be

installed. The AIX Event Infrastructure file system (ahafs)

has some limitations:

ahafs tracks monitoring per process and is not

thread safe. A separate process must be spawned

for each monitor for the same event.

Events for file modification (writing to a file) are

not received if only the containing folder is

watched.

See documentation [https://developer.ibm.com/articles/au-

aix_event_infrastructure/] for more details.

The z/OS file system events monitoring infrastructure does

not notify of file creation/deletion within a directory that is

being monitored. See the IBM Knowledge centre

[https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.2.0/com.ibm.zos

.v2r1.bpxb100/ioc.htm] for more details.

Data types

https://developer.ibm.com/articles/au-aix_event_infrastructure/
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.2.0/com.ibm.zos.v2r1.bpxb100/ioc.htm

uv_fs_event_t

FS Event handle type.

void (*uv_fs_event_cb)(uv_fs_event_t* handle, const

char* filename, int events, int status)

Callback passed to uv_fs_event_start() which will be called

repeatedly after the handle is started. If the handle was

started with a directory the filename parameter will be a

relative path to a file contained in the directory. The

events parameter is an ORed mask of uv_fs_event

elements.

uv_fs_event

Event types that uv_fs_event_t handles monitor.

enum uv_fs_event {

 UV_RENAME = 1,

 UV_CHANGE = 2

};

uv_fs_event_flags

Flags that can be passed to uv_fs_event_start() to control

its behavior.

enum uv_fs_event_flags {

 /*

 * By default, if the fs event watcher is given a

directory name, we will

 * watch for all events in that directory. This flags

overrides this behavior

 * and makes fs_event report only changes to the

directory entry itself. This

 * flag does not affect individual files watched.

 * This flag is currently not implemented yet on any

backend.

 */

 UV_FS_EVENT_WATCH_ENTRY = 1,

 /*

 * By default uv_fs_event will try to use a kernel

interface such as inotify

 * or kqueue to detect events. This may not work on

remote file systems such

 * as NFS mounts. This flag makes fs_event fall back to

calling stat() on a

 * regular interval.

 * This flag is currently not implemented yet on any

backend.

 */

 UV_FS_EVENT_STAT = 2,

 /*

 * By default, event watcher, when watching directory, is

not registering

 * (is ignoring) changes in its subdirectories.

 * This flag will override this behaviour on platforms

that support it.

 */

 UV_FS_EVENT_RECURSIVE = 4

};

Public members

N/A

See also

The uv_handle_t members also apply.

API

int uv_fs_event_init(uv_loop_t* loop,

uv_fs_event_t* handle)

Initialize the handle.

int uv_fs_event_start(uv_fs_event_t* handle,

uv_fs_event_cb cb, const char* path, unsigned int flags)

Start the handle with the given callback, which will watch

the specified path for changes. flags can be an ORed

mask of uv_fs_event_flags.

Note

Currently the only supported flag is UV_FS_EVENT_RECURSIVE

and only on OSX and Windows.

int uv_fs_event_stop(uv_fs_event_t* handle)

Stop the handle, the callback will no longer be called.

int uv_fs_event_getpath(uv_fs_event_t* handle, char* buffer,

size_t* size)

Get the path being monitored by the handle. The buffer

must be preallocated by the user. Returns 0 on success

or an error code < 0 in case of failure. On success, buffer

will contain the path and size its length. If the buffer is

not big enough UV_ENOBUFS will be returned and size

will be set to the required size, including the null

terminator.

Changed in version 1.3.0: the returned length no longer

includes the terminating null byte, and the buffer is not

null terminated.

Changed in version 1.9.0: the returned length includes

the terminating null byte on UV_ENOBUFS, and the buffer

is null terminated on success.

See also

The uv_handle_t API functions also apply.

uv_fs_poll_t — FS Poll

handle

FS Poll handles allow the user to monitor a given path for

changes. Unlike uv_fs_event_t, fs poll handles use stat to

detect when a file has changed so they can work on file

systems where fs event handles can’t.

Data types

uv_fs_poll_t

FS Poll handle type.

void (*uv_fs_poll_cb)(uv_fs_poll_t* handle, int status, const

uv_stat_t* prev, const uv_stat_t* curr)

Callback passed to uv_fs_poll_start() which will be called

repeatedly after the handle is started, when any change

happens to the monitored path.

The callback is invoked with status < 0 if path does not

exist or is inaccessible. The watcher is not stopped but

your callback is not called again until something changes

(e.g. when the file is created or the error reason

changes).

When status == 0, the callback receives pointers to the

old and new uv_stat_t structs. They are valid for the

duration of the callback only.

Public members

N/A

See also

The uv_handle_t members also apply.

API

int uv_fs_poll_init(uv_loop_t* loop, uv_fs_poll_t* handle)

Initialize the handle.

int uv_fs_poll_start(uv_fs_poll_t* handle,

uv_fs_poll_cb poll_cb, const char* path, unsigned

int interval)

Check the file at path for changes every interval

milliseconds.

Note

For maximum portability, use multi-second intervals.

Sub-second intervals will not detect all changes on

many file systems.

int uv_fs_poll_stop(uv_fs_poll_t* handle)

Stop the handle, the callback will no longer be called.

int uv_fs_poll_getpath(uv_fs_poll_t* handle, char* buffer,

size_t* size)

Get the path being monitored by the handle. The buffer

must be preallocated by the user. Returns 0 on success

or an error code < 0 in case of failure. On success, buffer

will contain the path and size its length. If the buffer is

not big enough UV_ENOBUFS will be returned and size

will be set to the required size.

Changed in version 1.3.0: the returned length no longer

includes the terminating null byte, and the buffer is not

null terminated.

Changed in version 1.9.0: the returned length includes

the terminating null byte on UV_ENOBUFS, and the buffer

is null terminated on success.

See also

The uv_handle_t API functions also apply.

File system operations

libuv provides a wide variety of cross-platform sync and

async file system operations. All functions defined in this

document take a callback, which is allowed to be NULL. If

the callback is NULL the request is completed

synchronously, otherwise it will be performed

asynchronously.

All file operations are run on the threadpool. See Thread

pool work scheduling for information on the threadpool size.

Note

On Windows uv_fs_* functions use utf-8 encoding.

Data types

uv_fs_t

File system request type.

uv_timespec_t

Portable equivalent of struct timespec.

typedef struct {

 long tv_sec;

 long tv_nsec;

} uv_timespec_t;

uv_stat_t

Portable equivalent of struct stat.

typedef struct {

 uint64_t st_dev;

 uint64_t st_mode;

 uint64_t st_nlink;

 uint64_t st_uid;

 uint64_t st_gid;

 uint64_t st_rdev;

 uint64_t st_ino;

 uint64_t st_size;

 uint64_t st_blksize;

 uint64_t st_blocks;

 uint64_t st_flags;

 uint64_t st_gen;

 uv_timespec_t st_atim;

 uv_timespec_t st_mtim;

 uv_timespec_t st_ctim;

 uv_timespec_t st_birthtim;

} uv_stat_t;

uv_statfs_t

Reduced cross platform equivalent of struct statfs. Used

in uv_fs_statfs().

typedef struct uv_statfs_s {

 uint64_t f_type;

 uint64_t f_bsize;

 uint64_t f_blocks;

 uint64_t f_bfree;

 uint64_t f_bavail;

 uint64_t f_files;

 uint64_t f_ffree;

 uint64_t f_spare[4];

} uv_statfs_t;

uv_dir_t

Data type used for streaming directory iteration. Used by

uv_fs_opendir(), uv_fs_readdir(), and uv_fs_closedir().

dirents represents a user provided array of uv_dirent_t`s

used to hold results. `nentries is the user provided

maximum array size of dirents.

typedef struct uv_dir_s {

 uv_dirent_t* dirents;

 size_t nentries;

} uv_dir_t;

Public members

uv_loop_t* uv_fs_t.loop

Loop that started this request and where completion will

be reported. Readonly.

uv_fs_type uv_fs_t.fs_type

FS request type.

const char* uv_fs_t.path

Path affecting the request.

ssize_t uv_fs_t.result

Result of the request. < 0 means error, success

otherwise. On requests such as uv_fs_read() or

uv_fs_write() it indicates the amount of data that was

read or written, respectively.

uv_stat_t uv_fs_t.statbuf

Stores the result of uv_fs_stat() and other stat requests.

void* uv_fs_t.ptr

Stores the result of uv_fs_readlink() and uv_fs_realpath()

and serves as an alias to statbuf.

See also

The uv_req_t members also apply.

API

void uv_fs_req_cleanup(uv_fs_t* req)

Cleanup request. Must be called after a request is

finished to deallocate any memory libuv might have

allocated.

int uv_fs_close(uv_loop_t* loop, uv_fs_t* req, uv_file file,

uv_fs_cb cb)

Equivalent to close(2) [https://man7.org/linux/man-

pages/man2/close.2.html].

int uv_fs_open(uv_loop_t* loop, uv_fs_t* req, const

char* path, int flags, int mode, uv_fs_cb cb)

Equivalent to open(2) [https://man7.org/linux/man-

pages/man2/open.2.html].

Note

On Windows libuv uses CreateFileW and thus the file is

always opened in binary mode. Because of this the

O_BINARY and O_TEXT flags are not supported.

int uv_fs_read(uv_loop_t* loop, uv_fs_t* req, uv_file file,

const uv_buf_t bufs[], unsigned int nbufs, int64_t offset,

uv_fs_cb cb)

Equivalent to preadv(2) [https://man7.org/linux/man-

pages/man2/preadv.2.html].

Warning

On Windows, under non-MSVC environments (e.g. when

GCC or Clang is used to build libuv), files opened using

UV_FS_O_FILEMAP may cause a fatal crash if the memory

mapped read operation fails.

https://man7.org/linux/man-pages/man2/close.2.html
https://man7.org/linux/man-pages/man2/open.2.html
https://man7.org/linux/man-pages/man2/preadv.2.html

int uv_fs_unlink(uv_loop_t* loop, uv_fs_t* req, const

char* path, uv_fs_cb cb)

Equivalent to unlink(2) [https://man7.org/linux/man-

pages/man2/unlink.2.html].

int uv_fs_write(uv_loop_t* loop, uv_fs_t* req, uv_file file,

const uv_buf_t bufs[], unsigned int nbufs, int64_t offset,

uv_fs_cb cb)

Equivalent to pwritev(2) [https://man7.org/linux/man-

pages/man2/pwritev.2.html].

Warning

On Windows, under non-MSVC environments (e.g. when

GCC or Clang is used to build libuv), files opened using

UV_FS_O_FILEMAP may cause a fatal crash if the memory

mapped write operation fails.

int uv_fs_mkdir(uv_loop_t* loop, uv_fs_t* req, const

char* path, int mode, uv_fs_cb cb)

Equivalent to mkdir(2) [https://man7.org/linux/man-

pages/man2/mkdir.2.html].

Note

mode is currently not implemented on Windows.

int uv_fs_mkdtemp(uv_loop_t* loop, uv_fs_t* req, const

char* tpl, uv_fs_cb cb)

Equivalent to mkdtemp(3) [https://man7.org/linux/man-

pages/man3/mkdtemp.3.html]. The result can be found as a null

terminated string at req->path.

https://man7.org/linux/man-pages/man2/unlink.2.html
https://man7.org/linux/man-pages/man2/pwritev.2.html
https://man7.org/linux/man-pages/man2/mkdir.2.html
https://man7.org/linux/man-pages/man3/mkdtemp.3.html

int uv_fs_mkstemp(uv_loop_t* loop, uv_fs_t* req, const

char* tpl, uv_fs_cb cb)

Equivalent to mkstemp(3) [https://man7.org/linux/man-

pages/man3/mkstemp.3.html]. The created file path can be

found as a null terminated string at req->path. The file

descriptor can be found as an integer at req->result.

New in version 1.34.0.

int uv_fs_rmdir(uv_loop_t* loop, uv_fs_t* req, const

char* path, uv_fs_cb cb)

Equivalent to rmdir(2) [https://man7.org/linux/man-

pages/man2/rmdir.2.html].

int uv_fs_opendir(uv_loop_t* loop, uv_fs_t* req, const

char* path, uv_fs_cb cb)

Opens path as a directory stream. On success, a uv_dir_t

is allocated and returned via req->ptr. This memory is

not freed by uv_fs_req_cleanup(), although req->ptr is

set to NULL. The allocated memory must be freed by

calling uv_fs_closedir(). On failure, no memory is

allocated.

The contents of the directory can be iterated over by

passing the resulting uv_dir_t to uv_fs_readdir().

New in version 1.28.0.

int uv_fs_closedir(uv_loop_t* loop, uv_fs_t* req,

uv_dir_t* dir, uv_fs_cb cb)

Closes the directory stream represented by dir and frees

the memory allocated by uv_fs_opendir().

New in version 1.28.0.

https://man7.org/linux/man-pages/man3/mkstemp.3.html
https://man7.org/linux/man-pages/man2/rmdir.2.html

int uv_fs_readdir(uv_loop_t* loop, uv_fs_t* req, uv_dir_t* dir,

uv_fs_cb cb)

Iterates over the directory stream, dir, returned by a

successful uv_fs_opendir() call. Prior to invoking

uv_fs_readdir(), the caller must set dir->dirents and dir-

>nentries, representing the array of uv_dirent_t elements

used to hold the read directory entries and its size.

On success, the result is an integer >= 0 representing

the number of entries read from the stream.

New in version 1.28.0.

Warning

uv_fs_readdir() is not thread safe.

Note

This function does not return the “.” and “..” entries.

Note

On success this function allocates memory that must be

freed using uv_fs_req_cleanup(). uv_fs_req_cleanup()

must be called before closing the directory with

uv_fs_closedir().

int uv_fs_scandir(uv_loop_t* loop, uv_fs_t* req, const

char* path, int flags, uv_fs_cb cb)

int uv_fs_scandir_next(uv_fs_t* req, uv_dirent_t* ent)

Equivalent to scandir(3) [https://man7.org/linux/man-

pages/man3/scandir.3.html], with a slightly different API. Once

the callback for the request is called, the user can use

https://man7.org/linux/man-pages/man3/scandir.3.html

uv_fs_scandir_next() to get ent populated with the next

directory entry data. When there are no more entries

UV_EOF will be returned.

Note

Unlike scandir(3), this function does not return the “.”

and “..” entries.

Note

On Linux, getting the type of an entry is only supported

by some file systems (btrfs, ext2, ext3 and ext4 at the

time of this writing), check the getdents(2)

[https://man7.org/linux/man-pages/man2/getdents.2.html] man page.

int uv_fs_stat(uv_loop_t* loop, uv_fs_t* req, const

char* path, uv_fs_cb cb)

int uv_fs_fstat(uv_loop_t* loop, uv_fs_t* req, uv_file file,

uv_fs_cb cb)

int uv_fs_lstat(uv_loop_t* loop, uv_fs_t* req, const

char* path, uv_fs_cb cb)

Equivalent to stat(2) [https://man7.org/linux/man-

pages/man2/stat.2.html], fstat(2) [https://man7.org/linux/man-

pages/man2/fstat.2.html] and lstat(2) [https://man7.org/linux/man-

pages/man2/lstat.2.html] respectively.

int uv_fs_statfs(uv_loop_t* loop, uv_fs_t* req, const

char* path, uv_fs_cb cb)

Equivalent to statfs(2) [https://man7.org/linux/man-

pages/man2/statfs.2.html]. On success, a uv_statfs_t is

https://man7.org/linux/man-pages/man2/getdents.2.html
https://man7.org/linux/man-pages/man2/stat.2.html
https://man7.org/linux/man-pages/man2/fstat.2.html
https://man7.org/linux/man-pages/man2/lstat.2.html
https://man7.org/linux/man-pages/man2/statfs.2.html

allocated and returned via req->ptr. This memory is

freed by uv_fs_req_cleanup().

Note

Any fields in the resulting uv_statfs_t that are not

supported by the underlying operating system are set

to zero.

New in version 1.31.0.

int uv_fs_rename(uv_loop_t* loop, uv_fs_t* req, const

char* path, const char* new_path, uv_fs_cb cb)

Equivalent to rename(2) [https://man7.org/linux/man-

pages/man2/rename.2.html].

int uv_fs_fsync(uv_loop_t* loop, uv_fs_t* req, uv_file file,

uv_fs_cb cb)

Equivalent to fsync(2) [https://man7.org/linux/man-

pages/man2/fsync.2.html].

Note

For AIX, uv_fs_fsync returns UV_EBADF on file

descriptors referencing non regular files.

int uv_fs_fdatasync(uv_loop_t* loop, uv_fs_t* req,

uv_file file, uv_fs_cb cb)

Equivalent to fdatasync(2) [https://man7.org/linux/man-

pages/man2/fdatasync.2.html].

int uv_fs_ftruncate(uv_loop_t* loop, uv_fs_t* req,

uv_file file, int64_t offset, uv_fs_cb cb)

https://man7.org/linux/man-pages/man2/rename.2.html
https://man7.org/linux/man-pages/man2/fsync.2.html
https://man7.org/linux/man-pages/man2/fdatasync.2.html

Equivalent to ftruncate(2) [https://man7.org/linux/man-

pages/man2/ftruncate.2.html].

int uv_fs_copyfile(uv_loop_t* loop, uv_fs_t* req, const

char* path, const char* new_path, int flags, uv_fs_cb cb)

Copies a file from path to new_path. Supported flags are

described below.

UV_FS_COPYFILE_EXCL: If present, uv_fs_copyfile()

will fail with UV_EEXIST if the destination path

already exists. The default behavior is to overwrite

the destination if it exists.

UV_FS_COPYFILE_FICLONE: If present, uv_fs_copyfile()

will attempt to create a copy-on-write reflink. If the

underlying platform does not support copy-on-write,

or an error occurs while attempting to use copy-on-

write, a fallback copy mechanism based on

uv_fs_sendfile() is used.

UV_FS_COPYFILE_FICLONE_FORCE: If present,

uv_fs_copyfile() will attempt to create a copy-on-write

reflink. If the underlying platform does not support

copy-on-write, or an error occurs while attempting to

use copy-on-write, then an error is returned.

Warning

If the destination path is created, but an error occurs

while copying the data, then the destination path is

removed. There is a brief window of time between

closing and removing the file where another process

could access the file.

New in version 1.14.0.

Changed in version 1.20.0: UV_FS_COPYFILE_FICLONE

and UV_FS_COPYFILE_FICLONE_FORCE are supported.

https://man7.org/linux/man-pages/man2/ftruncate.2.html

Changed in version 1.33.0: If an error occurs while using

UV_FS_COPYFILE_FICLONE_FORCE, that error is returned.

Previously, all errors were mapped to UV_ENOTSUP.

int uv_fs_sendfile(uv_loop_t* loop, uv_fs_t* req,

uv_file out_fd, uv_file in_fd, int64_t in_offset, size_t length,

uv_fs_cb cb)

Limited equivalent to sendfile(2) [https://man7.org/linux/man-

pages/man2/sendfile.2.html].

int uv_fs_access(uv_loop_t* loop, uv_fs_t* req, const

char* path, int mode, uv_fs_cb cb)

Equivalent to access(2) [https://man7.org/linux/man-

pages/man2/access.2.html] on Unix. Windows uses

GetFileAttributesW().

int uv_fs_chmod(uv_loop_t* loop, uv_fs_t* req, const

char* path, int mode, uv_fs_cb cb)

int uv_fs_fchmod(uv_loop_t* loop, uv_fs_t* req, uv_file file,

int mode, uv_fs_cb cb)

Equivalent to chmod(2) [https://man7.org/linux/man-

pages/man2/chmod.2.html] and fchmod(2)

[https://man7.org/linux/man-pages/man2/fchmod.2.html] respectively.

int uv_fs_utime(uv_loop_t* loop, uv_fs_t* req, const

char* path, double atime, double mtime, uv_fs_cb cb)

int uv_fs_futime(uv_loop_t* loop, uv_fs_t* req, uv_file file,

double atime, double mtime, uv_fs_cb cb)

int uv_fs_lutime(uv_loop_t* loop, uv_fs_t* req, const

char* path, double atime, double mtime, uv_fs_cb cb)

https://man7.org/linux/man-pages/man2/sendfile.2.html
https://man7.org/linux/man-pages/man2/access.2.html
https://man7.org/linux/man-pages/man2/chmod.2.html
https://man7.org/linux/man-pages/man2/fchmod.2.html

Equivalent to utime(2) [https://man7.org/linux/man-

pages/man2/utime.2.html], futimes(3) [https://man7.org/linux/man-

pages/man3/futimes.3.html] and lutimes(3)

[https://man7.org/linux/man-pages/man3/lutimes.3.html] respectively.

Note

z/OS: uv_fs_lutime() is not implemented for z/OS. It can

still be called but will return UV_ENOSYS.

Note

AIX: uv_fs_futime() and uv_fs_lutime() functions only

work for AIX 7.1 and newer. They can still be called on

older versions but will return UV_ENOSYS.

Changed in version 1.10.0: sub-second precission is

supported on Windows

int uv_fs_link(uv_loop_t* loop, uv_fs_t* req, const

char* path, const char* new_path, uv_fs_cb cb)

Equivalent to link(2) [https://man7.org/linux/man-

pages/man2/link.2.html].

int uv_fs_symlink(uv_loop_t* loop, uv_fs_t* req, const

char* path, const char* new_path, int flags, uv_fs_cb cb)

Equivalent to symlink(2) [https://man7.org/linux/man-

pages/man2/symlink.2.html].

Note

On Windows the flags parameter can be specified to

control how the symlink will be created:

UV_FS_SYMLINK_DIR: indicates that path points to a

directory.

https://man7.org/linux/man-pages/man2/utime.2.html
https://man7.org/linux/man-pages/man3/futimes.3.html
https://man7.org/linux/man-pages/man3/lutimes.3.html
https://man7.org/linux/man-pages/man2/link.2.html
https://man7.org/linux/man-pages/man2/symlink.2.html

UV_FS_SYMLINK_JUNCTION: request that the symlink

is created using junction points.

int uv_fs_readlink(uv_loop_t* loop, uv_fs_t* req, const

char* path, uv_fs_cb cb)

Equivalent to readlink(2) [https://man7.org/linux/man-

pages/man2/readlink.2.html]. The resulting string is stored in

req->ptr.

int uv_fs_realpath(uv_loop_t* loop, uv_fs_t* req, const

char* path, uv_fs_cb cb)

Equivalent to realpath(3) [https://man7.org/linux/man-

pages/man3/realpath.3.html] on Unix. Windows uses

GetFinalPathNameByHandle [https://docs.microsoft.com/en-

us/windows/win32/api/fileapi/nf-fileapi-getfinalpathnamebyhandlea]. The

resulting string is stored in req->ptr.

Warning

This function has certain platform-specific caveats that

were discovered when used in Node.

macOS and other BSDs: this function will fail with

UV_ELOOP if more than 32 symlinks are found while

resolving the given path. This limit is hardcoded and

cannot be sidestepped.

Windows: while this function works in the common

case, there are a number of corner cases where it

doesn’t:

Paths in ramdisk volumes created by tools

which sidestep the Volume Manager (such as

ImDisk) cannot be resolved.

Inconsistent casing when using drive letters.

Resolved path bypasses subst’d drives.

https://man7.org/linux/man-pages/man2/readlink.2.html
https://man7.org/linux/man-pages/man3/realpath.3.html
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-getfinalpathnamebyhandlea

While this function can still be used, it’s not

recommended if scenarios such as the above need to

be supported.

The background story and some more details on these

issues can be checked here

[https://github.com/nodejs/node/issues/7726].

Note

This function is not implemented on Windows XP and

Windows Server 2003. On these systems, UV_ENOSYS is

returned.

New in version 1.8.0.

int uv_fs_chown(uv_loop_t* loop, uv_fs_t* req, const

char* path, uv_uid_t uid, uv_gid_t gid, uv_fs_cb cb)

int uv_fs_fchown(uv_loop_t* loop, uv_fs_t* req, uv_file file,

uv_uid_t uid, uv_gid_t gid, uv_fs_cb cb)

int uv_fs_lchown(uv_loop_t* loop, uv_fs_t* req, const

char* path, uv_uid_t uid, uv_gid_t gid, uv_fs_cb cb)

Equivalent to chown(2) [https://man7.org/linux/man-

pages/man2/chown.2.html], fchown(2) [https://man7.org/linux/man-

pages/man2/fchown.2.html] and lchown(2)

[https://man7.org/linux/man-pages/man2/lchown.2.html] respectively.

Note

These functions are not implemented on Windows.

Changed in version 1.21.0: implemented uv_fs_lchown

https://github.com/nodejs/node/issues/7726
https://man7.org/linux/man-pages/man2/chown.2.html
https://man7.org/linux/man-pages/man2/fchown.2.html
https://man7.org/linux/man-pages/man2/lchown.2.html

uv_fs_type uv_fs_get_type(const uv_fs_t* req)

Returns req->fs_type.

New in version 1.19.0.

ssize_t uv_fs_get_result(const uv_fs_t* req)

Returns req->result.

New in version 1.19.0.

int uv_fs_get_system_error(const uv_fs_t* req)

Returns the platform specific error code - GetLastError()

value on Windows and -(req->result) on other platforms.

New in version 1.38.0.

void* uv_fs_get_ptr(const uv_fs_t* req)

Returns req->ptr.

New in version 1.19.0.

const char* uv_fs_get_path(const uv_fs_t* req)

Returns req->path.

New in version 1.19.0.

uv_stat_t* uv_fs_get_statbuf(uv_fs_t* req)

Returns &req->statbuf.

New in version 1.19.0.

See also

The uv_req_t API functions also apply.

Helper functions

uv_os_fd_t uv_get_osfhandle(int fd)

For a file descriptor in the C runtime, get the OS-

dependent handle. On UNIX, returns the fd intact. On

Windows, this calls _get_osfhandle

[https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/get-

osfhandle?view=vs-2019]. Note that the return value is still

owned by the C runtime, any attempts to close it or to

use it after closing the fd may lead to malfunction.

New in version 1.12.0.

int uv_open_osfhandle(uv_os_fd_t os_fd)

For a OS-dependent handle, get the file descriptor in the

C runtime. On UNIX, returns the os_fd intact. On Windows,

this calls _open_osfhandle [https://docs.microsoft.com/en-us/cpp/c-

runtime-library/reference/open-osfhandle?view=vs-2019]. Note that

this consumes the argument, any attempts to close it or

to use it after closing the return value may lead to

malfunction.

New in version 1.23.0.

File open constants

UV_FS_O_APPEND

The file is opened in append mode. Before each write,

the file offset is positioned at the end of the file.

UV_FS_O_CREAT

The file is created if it does not already exist.

UV_FS_O_DIRECT

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/get-osfhandle?view=vs-2019
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/open-osfhandle?view=vs-2019

File I/O is done directly to and from user-space buffers,

which must be aligned. Buffer size and address should be

a multiple of the physical sector size of the block device.

Note

UV_FS_O_DIRECT is supported on Linux, and on

Windows via FILE_FLAG_NO_BUFFERING

[https://docs.microsoft.com/en-us/windows/win32/fileio/file-buffering].

UV_FS_O_DIRECT is not supported on macOS.

UV_FS_O_DIRECTORY

If the path is not a directory, fail the open.

Note

UV_FS_O_DIRECTORY is not supported on Windows.

UV_FS_O_DSYNC

The file is opened for synchronous I/O. Write operations

will complete once all data and a minimum of metadata

are flushed to disk.

Note

UV_FS_O_DSYNC is supported on Windows via

FILE_FLAG_WRITE_THROUGH [https://docs.microsoft.com/en-

us/windows/win32/fileio/file-buffering].

UV_FS_O_EXCL

If the O_CREAT flag is set and the file already exists, fail

the open.

Note

https://docs.microsoft.com/en-us/windows/win32/fileio/file-buffering
https://docs.microsoft.com/en-us/windows/win32/fileio/file-buffering

In general, the behavior of O_EXCL is undefined if it is

used without O_CREAT. There is one exception: on Linux

2.6 and later, O_EXCL can be used without O_CREAT if

pathname refers to a block device. If the block device is

in use by the system (e.g., mounted), the open will fail

with the error EBUSY.

UV_FS_O_EXLOCK

Atomically obtain an exclusive lock.

Note

UV_FS_O_EXLOCK is only supported on macOS and

Windows.

Changed in version 1.17.0: support is added for Windows.

UV_FS_O_FILEMAP

Use a memory file mapping to access the file. When

using this flag, the file cannot be open multiple times

concurrently.

Note

UV_FS_O_FILEMAP is only supported on Windows.

UV_FS_O_NOATIME

Do not update the file access time when the file is read.

Note

UV_FS_O_NOATIME is not supported on Windows.

UV_FS_O_NOCTTY

If the path identifies a terminal device, opening the path

will not cause that terminal to become the controlling

terminal for the process (if the process does not already

have one).

Note

UV_FS_O_NOCTTY is not supported on Windows.

UV_FS_O_NOFOLLOW

If the path is a symbolic link, fail the open.

Note

UV_FS_O_NOFOLLOW is not supported on Windows.

UV_FS_O_NONBLOCK

Open the file in nonblocking mode if possible.

Note

UV_FS_O_NONBLOCK is not supported on Windows.

UV_FS_O_RANDOM

Access is intended to be random. The system can use

this as a hint to optimize file caching.

Note

UV_FS_O_RANDOM is only supported on Windows via

FILE_FLAG_RANDOM_ACCESS [https://docs.microsoft.com/en-

us/windows/win32/api/fileapi/nf-fileapi-createfilea].

UV_FS_O_RDONLY

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea

Open the file for read-only access.

UV_FS_O_RDWR

Open the file for read-write access.

UV_FS_O_SEQUENTIAL

Access is intended to be sequential from beginning to

end. The system can use this as a hint to optimize file

caching.

Note

UV_FS_O_SEQUENTIAL is only supported on Windows via

FILE_FLAG_SEQUENTIAL_SCAN [https://docs.microsoft.com/en-

us/windows/win32/api/fileapi/nf-fileapi-createfilea].

UV_FS_O_SHORT_LIVED

The file is temporary and should not be flushed to disk if

possible.

Note

UV_FS_O_SHORT_LIVED is only supported on Windows

via FILE_ATTRIBUTE_TEMPORARY

[https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-

createfilea].

UV_FS_O_SYMLINK

Open the symbolic link itself rather than the resource it

points to.

UV_FS_O_SYNC

The file is opened for synchronous I/O. Write operations

will complete once all data and all metadata are flushed

to disk.

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea

Note

UV_FS_O_SYNC is supported on Windows via

FILE_FLAG_WRITE_THROUGH [https://docs.microsoft.com/en-

us/windows/win32/fileio/file-buffering].

UV_FS_O_TEMPORARY

The file is temporary and should not be flushed to disk if

possible.

Note

UV_FS_O_TEMPORARY is only supported on Windows via

FILE_ATTRIBUTE_TEMPORARY [https://docs.microsoft.com/en-

us/windows/win32/api/fileapi/nf-fileapi-createfilea].

UV_FS_O_TRUNC

If the file exists and is a regular file, and the file is

opened successfully for write access, its length shall be

truncated to zero.

UV_FS_O_WRONLY

Open the file for write-only access.

https://docs.microsoft.com/en-us/windows/win32/fileio/file-buffering
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea

Thread pool work

scheduling

libuv provides a threadpool which can be used to run user

code and get notified in the loop thread. This thread pool is

internally used to run all file system operations, as well as

getaddrinfo and getnameinfo requests.

Its default size is 4, but it can be changed at startup time by

setting the UV_THREADPOOL_SIZE environment variable to any

value (the absolute maximum is 1024).

Changed in version 1.30.0: the maximum

UV_THREADPOOL_SIZE allowed was increased from 128 to

1024.

The threadpool is global and shared across all event loops.

When a particular function makes use of the threadpool (i.e.

when using uv_queue_work()) libuv preallocates and initializes

the maximum number of threads allowed by

UV_THREADPOOL_SIZE. This causes a relatively minor memory

overhead (~1MB for 128 threads) but increases the

performance of threading at runtime.

Note

Note that even though a global thread pool which is shared

across all events loops is used, the functions are not

thread safe.

Data types

uv_work_t

Work request type.

void (*uv_work_cb)(uv_work_t* req)

Callback passed to uv_queue_work() which will be run on

the thread pool.

void (*uv_after_work_cb)(uv_work_t* req, int status)

Callback passed to uv_queue_work() which will be called on

the loop thread after the work on the threadpool has

been completed. If the work was cancelled using

uv_cancel() status will be UV_ECANCELED.

Public members

uv_loop_t* uv_work_t.loop

Loop that started this request and where completion will

be reported. Readonly.

See also

The uv_req_t members also apply.

API

int uv_queue_work(uv_loop_t* loop, uv_work_t* req,

uv_work_cb work_cb, uv_after_work_cb after_work_cb)

Initializes a work request which will run the given

work_cb in a thread from the threadpool. Once work_cb is

completed, after_work_cb will be called on the loop

thread.

This request can be cancelled with uv_cancel().

See also

The uv_req_t API functions also apply.

DNS utility functions

libuv provides asynchronous variants of getaddrinfo and

getnameinfo.

Data types

uv_getaddrinfo_t

getaddrinfo request type.

void (*uv_getaddrinfo_cb)(uv_getaddrinfo_t* req, int status,

struct addrinfo* res)

Callback which will be called with the getaddrinfo request

result once complete. In case it was cancelled, status will

have a value of UV_ECANCELED.

uv_getnameinfo_t

getnameinfo request type.

void (*uv_getnameinfo_cb)(uv_getnameinfo_t* req,

int status, const char* hostname, const char* service)

Callback which will be called with the getnameinfo

request result once complete. In case it was cancelled,

status will have a value of UV_ECANCELED.

Public members

uv_loop_t* uv_getaddrinfo_t.loop

Loop that started this getaddrinfo request and where

completion will be reported. Readonly.

struct addrinfo* uv_getaddrinfo_t.addrinfo

Pointer to a struct addrinfo containing the result. Must be

freed by the user with uv_freeaddrinfo().

Changed in version 1.3.0: the field is declared as public.

uv_loop_t* uv_getnameinfo_t.loop

Loop that started this getnameinfo request and where

completion will be reported. Readonly.

char[NI_MAXHOST] uv_getnameinfo_t.host

Char array containing the resulting host. It’s null

terminated.

Changed in version 1.3.0: the field is declared as public.

char[NI_MAXSERV] uv_getnameinfo_t.service

Char array containing the resulting service. It’s null

terminated.

Changed in version 1.3.0: the field is declared as public.

See also

The uv_req_t members also apply.

API

int uv_getaddrinfo(uv_loop_t* loop, uv_getaddrinfo_t* req,

uv_getaddrinfo_cb getaddrinfo_cb, const char* node, const

char* service, const struct addrinfo* hints)

Asynchronous getaddrinfo(3) [https://man7.org/linux/man-

pages/man3/getaddrinfo.3.html].

Either node or service may be NULL but not both.

https://man7.org/linux/man-pages/man3/getaddrinfo.3.html

hints is a pointer to a struct addrinfo with additional

address type constraints, or NULL. Consult man -s 3

getaddrinfo for more details.

Returns 0 on success or an error code < 0 on failure. If

successful, the callback will get called sometime in the

future with the lookup result, which is either:

status == 0, the res argument points to a valid struct

addrinfo, or

status < 0, the res argument is NULL. See the

UV_EAI_* constants.

Call uv_freeaddrinfo() to free the addrinfo structure.

Changed in version 1.3.0: the callback parameter is now

allowed to be NULL, in which case the request will run

synchronously.

void uv_freeaddrinfo(struct addrinfo* ai)

Free the struct addrinfo. Passing NULL is allowed and is a

no-op.

int uv_getnameinfo(uv_loop_t* loop, uv_getnameinfo_t* req,

uv_getnameinfo_cb getnameinfo_cb, const struct

sockaddr* addr, int flags)

Asynchronous getnameinfo(3) [https://man7.org/linux/man-

pages/man3/getnameinfo.3.html].

Returns 0 on success or an error code < 0 on failure. If

successful, the callback will get called sometime in the

future with the lookup result. Consult man -s 3

getnameinfo for more details.

Changed in version 1.3.0: the callback parameter is now

allowed to be NULL, in which case the request will run

synchronously.

https://man7.org/linux/man-pages/man3/getnameinfo.3.html

See also

The uv_req_t API functions also apply.

Shared library handling

libuv provides cross platform utilities for loading shared

libraries and retrieving symbols from them, using the

following API.

Data types

uv_lib_t

Shared library data type.

Public members

N/A

API

int uv_dlopen(const char* filename, uv_lib_t* lib)

Opens a shared library. The filename is in utf-8. Returns 0

on success and -1 on error. Call uv_dlerror() to get the

error message.

void uv_dlclose(uv_lib_t* lib)

Close the shared library.

int uv_dlsym(uv_lib_t* lib, const char* name, void** ptr)

Retrieves a data pointer from a dynamic library. It is legal

for a symbol to map to NULL. Returns 0 on success and

-1 if the symbol was not found.

const char* uv_dlerror(const uv_lib_t* lib)

Returns the last uv_dlopen() or uv_dlsym() error

message.

Threading and

synchronization utilities

libuv provides cross-platform implementations for multiple

threading and synchronization primitives. The API largely

follows the pthreads API.

Data types

uv_thread_t

Thread data type.

void (*uv_thread_cb)(void* arg)

Callback that is invoked to initialize thread execution. arg

is the same value that was passed to uv_thread_create().

uv_key_t

Thread-local key data type.

uv_once_t

Once-only initializer data type.

uv_mutex_t

Mutex data type.

uv_rwlock_t

Read-write lock data type.

uv_sem_t

Semaphore data type.

uv_cond_t

Condition data type.

uv_barrier_t

Barrier data type.

API

Threads

uv_thread_options_t

Options for spawning a new thread (passed to

uv_thread_create_ex()).

typedef struct uv_thread_options_s {

 enum {

 UV_THREAD_NO_FLAGS = 0x00,

 UV_THREAD_HAS_STACK_SIZE = 0x01

 } flags;

 size_t stack_size;

} uv_thread_options_t;

More fields may be added to this struct at any time, so its

exact layout and size should not be relied upon.

New in version 1.26.0.

int uv_thread_create(uv_thread_t* tid, uv_thread_cb entry,

void* arg)

Changed in version 1.4.1: returns a UV_E* error code on

failure

int uv_thread_create_ex(uv_thread_t* tid, const

uv_thread_options_t* params, uv_thread_cb entry,

void* arg)

Like uv_thread_create(), but additionally specifies options

for creating a new thread.

If UV_THREAD_HAS_STACK_SIZE is set, stack_size

specifies a stack size for the new thread. 0 indicates that

the default value should be used, i.e. behaves as if the

flag was not set. Other values will be rounded up to the

nearest page boundary.

New in version 1.26.0.

uv_thread_t uv_thread_self(void)

int uv_thread_join(uv_thread_t *tid)

int uv_thread_equal(const uv_thread_t* t1, const

uv_thread_t* t2)

Thread-local storage

Note

The total thread-local storage size may be limited. That is,

it may not be possible to create many TLS keys.

int uv_key_create(uv_key_t* key)

void uv_key_delete(uv_key_t* key)

void* uv_key_get(uv_key_t* key)

void uv_key_set(uv_key_t* key, void* value)

Once-only initialization

Runs a function once and only once. Concurrent calls to

uv_once() with the same guard will block all callers except

one (it’s unspecified which one). The guard should be

initialized statically with the UV_ONCE_INIT macro.

void uv_once(uv_once_t* guard, void (*callback)(void))

Mutex locks

Functions return 0 on success or an error code < 0 (unless

the return type is void, of course).

int uv_mutex_init(uv_mutex_t* handle)

int uv_mutex_init_recursive(uv_mutex_t* handle)

void uv_mutex_destroy(uv_mutex_t* handle)

void uv_mutex_lock(uv_mutex_t* handle)

int uv_mutex_trylock(uv_mutex_t* handle)

void uv_mutex_unlock(uv_mutex_t* handle)

Read-write locks

Functions return 0 on success or an error code < 0 (unless

the return type is void, of course).

int uv_rwlock_init(uv_rwlock_t* rwlock)

void uv_rwlock_destroy(uv_rwlock_t* rwlock)

void uv_rwlock_rdlock(uv_rwlock_t* rwlock)

int uv_rwlock_tryrdlock(uv_rwlock_t* rwlock)

void uv_rwlock_rdunlock(uv_rwlock_t* rwlock)

void uv_rwlock_wrlock(uv_rwlock_t* rwlock)

int uv_rwlock_trywrlock(uv_rwlock_t* rwlock)

void uv_rwlock_wrunlock(uv_rwlock_t* rwlock)

Semaphores

Functions return 0 on success or an error code < 0 (unless

the return type is void, of course).

int uv_sem_init(uv_sem_t* sem, unsigned int value)

void uv_sem_destroy(uv_sem_t* sem)

void uv_sem_post(uv_sem_t* sem)

void uv_sem_wait(uv_sem_t* sem)

int uv_sem_trywait(uv_sem_t* sem)

Conditions

Functions return 0 on success or an error code < 0 (unless

the return type is void, of course).

Note

1. Callers should be prepared to deal with spurious

wakeups on uv_cond_wait() and uv_cond_timedwait().

2. The timeout parameter for uv_cond_timedwait() is

relative to the time at which function is called.

3. On z/OS, the timeout parameter for uv_cond_timedwait()

is converted to an absolute system time at which the

wait expires. If the current system clock time passes

the absolute time calculated before the condition is

signaled, an ETIMEDOUT error results. After the wait

begins, the wait time is not affected by changes to the

system clock.

int uv_cond_init(uv_cond_t* cond)

void uv_cond_destroy(uv_cond_t* cond)

void uv_cond_signal(uv_cond_t* cond)

void uv_cond_broadcast(uv_cond_t* cond)

void uv_cond_wait(uv_cond_t* cond, uv_mutex_t* mutex)

int uv_cond_timedwait(uv_cond_t* cond, uv_mutex_t* mutex,

uint64_t timeout)

Barriers

Functions return 0 on success or an error code < 0 (unless

the return type is void, of course).

Note

uv_barrier_wait() returns a value > 0 to an arbitrarily

chosen “serializer” thread to facilitate cleanup, i.e.

if (uv_barrier_wait(&barrier) > 0)

 uv_barrier_destroy(&barrier);

int uv_barrier_init(uv_barrier_t* barrier, unsigned

int count)

void uv_barrier_destroy(uv_barrier_t* barrier)

int uv_barrier_wait(uv_barrier_t* barrier)

Miscellaneous utilities

This section contains miscellaneous functions that don’t

really belong in any other section.

Data types

uv_buf_t

Buffer data type.

char* uv_buf_t.base

Pointer to the base of the buffer.

size_t uv_buf_t.len

Total bytes in the buffer.

Note

On Windows this field is ULONG.

void* (*uv_malloc_func)(size_t size)

Replacement function for malloc(3) [https://man7.org/linux/man-

pages/man3/malloc.3.html]. See uv_replace_allocator().

void* (*uv_realloc_func)(void* ptr, size_t size)

Replacement function for realloc(3) [https://man7.org/linux/man-

pages/man3/realloc.3.html]. See uv_replace_allocator().

void* (*uv_calloc_func)(size_t count, size_t size)

Replacement function for calloc(3) [https://man7.org/linux/man-

pages/man3/calloc.3.html]. See uv_replace_allocator().

https://man7.org/linux/man-pages/man3/malloc.3.html
https://man7.org/linux/man-pages/man3/realloc.3.html
https://man7.org/linux/man-pages/man3/calloc.3.html

void (*uv_free_func)(void* ptr)

Replacement function for free(3) [https://man7.org/linux/man-

pages/man3/free.3.html]. See uv_replace_allocator().

void (*uv_random_cb)(uv_random_t* req, int status,

void* buf, size_t buflen)

Callback passed to uv_random(). status is non-zero in case

of error. The buf pointer is the same pointer that was

passed to uv_random().

uv_file

Cross platform representation of a file handle.

uv_os_sock_t

Cross platform representation of a socket handle.

uv_os_fd_t

Abstract representation of a file descriptor. On Unix

systems this is a typedef of int and on Windows a

HANDLE.

uv_pid_t

Cross platform representation of a pid_t.

New in version 1.16.0.

uv_timeval_t

Data type for storing times.

typedef struct {

 long tv_sec;

 long tv_usec;

} uv_timeval_t;

uv_timeval64_t

Alternative data type for storing times.

https://man7.org/linux/man-pages/man3/free.3.html

typedef struct {

 int64_t tv_sec;

 int32_t tv_usec;

} uv_timeval64_t;

uv_rusage_t

Data type for resource usage results.

typedef struct {

 uv_timeval_t ru_utime; /* user CPU time used */

 uv_timeval_t ru_stime; /* system CPU time used */

 uint64_t ru_maxrss; /* maximum resident set size */

 uint64_t ru_ixrss; /* integral shared memory size (X) */

 uint64_t ru_idrss; /* integral unshared data size (X) */

 uint64_t ru_isrss; /* integral unshared stack size (X)

*/

 uint64_t ru_minflt; /* page reclaims (soft page faults)

(X) */

 uint64_t ru_majflt; /* page faults (hard page faults) */

 uint64_t ru_nswap; /* swaps (X) */

 uint64_t ru_inblock; /* block input operations */

 uint64_t ru_oublock; /* block output operations */

 uint64_t ru_msgsnd; /* IPC messages sent (X) */

 uint64_t ru_msgrcv; /* IPC messages received (X) */

 uint64_t ru_nsignals; /* signals received (X) */

 uint64_t ru_nvcsw; /* voluntary context switches (X) */

 uint64_t ru_nivcsw; /* involuntary context switches (X)

*/

} uv_rusage_t;

Members marked with (X) are unsupported on Windows.

See getrusage(2) [https://man7.org/linux/man-

pages/man2/getrusage.2.html] for supported fields on Unix

uv_cpu_info_t

Data type for CPU information.

typedef struct uv_cpu_info_s {

 char* model;

 int speed;

 struct uv_cpu_times_s {

 uint64_t user; /* milliseconds */

 uint64_t nice; /* milliseconds */

https://man7.org/linux/man-pages/man2/getrusage.2.html

 uint64_t sys; /* milliseconds */

 uint64_t idle; /* milliseconds */

 uint64_t irq; /* milliseconds */

 } cpu_times;

} uv_cpu_info_t;

uv_interface_address_t

Data type for interface addresses.

typedef struct uv_interface_address_s {

 char* name;

 char phys_addr[6];

 int is_internal;

 union {

 struct sockaddr_in address4;

 struct sockaddr_in6 address6;

 } address;

 union {

 struct sockaddr_in netmask4;

 struct sockaddr_in6 netmask6;

 } netmask;

} uv_interface_address_t;

uv_passwd_t

Data type for password file information.

typedef struct uv_passwd_s {

 char* username;

 long uid;

 long gid;

 char* shell;

 char* homedir;

} uv_passwd_t;

uv_utsname_t

Data type for operating system name and version

information.

typedef struct uv_utsname_s {

 char sysname[256];

 char release[256];

 char version[256];

 char machine[256];

} uv_utsname_t;

uv_env_item_t

Data type for environment variable storage.

typedef struct uv_env_item_s {

 char* name;

 char* value;

} uv_env_item_t;

uv_random_t

Random data request type.

API

uv_handle_type uv_guess_handle(uv_file file)

Used to detect what type of stream should be used with

a given file descriptor. Usually this will be used during

initialization to guess the type of the stdio streams.

For isatty(3) [https://man7.org/linux/man-pages/man3/isatty.3.html]

equivalent functionality use this function and test for

UV_TTY.

int uv_replace_allocator(uv_malloc_func malloc_func,

uv_realloc_func realloc_func, uv_calloc_func calloc_func,

uv_free_func free_func)

New in version 1.6.0.

Override the use of the standard library’s malloc(3)

[https://man7.org/linux/man-pages/man3/malloc.3.html], calloc(3)

[https://man7.org/linux/man-pages/man3/calloc.3.html], realloc(3)

[https://man7.org/linux/man-pages/man3/realloc.3.html], free(3)

[https://man7.org/linux/man-pages/man3/free.3.html], memory

allocation functions.

https://man7.org/linux/man-pages/man3/isatty.3.html
https://man7.org/linux/man-pages/man3/malloc.3.html
https://man7.org/linux/man-pages/man3/calloc.3.html
https://man7.org/linux/man-pages/man3/realloc.3.html
https://man7.org/linux/man-pages/man3/free.3.html

This function must be called before any other libuv

function is called or after all resources have been freed

and thus libuv doesn’t reference any allocated memory

chunk.

On success, it returns 0, if any of the function pointers is

NULL it returns UV_EINVAL.

Warning

There is no protection against changing the allocator

multiple times. If the user changes it they are

responsible for making sure the allocator is changed

while no memory was allocated with the previous

allocator, or that they are compatible.

Warning

Allocator must be thread-safe.

void uv_library_shutdown(void);

New in version 1.38.0.

Release any global state that libuv is holding onto. Libuv

will normally do so automatically when it is unloaded but

it can be instructed to perform cleanup manually.

Warning

Only call uv_library_shutdown() once.

Warning

Don’t call uv_library_shutdown() when there are still

event loops or I/O requests active.

Warning

Don’t call libuv functions after calling

uv_library_shutdown().

uv_buf_t uv_buf_init(char* base, unsigned int len)

Constructor for uv_buf_t.

Due to platform differences the user cannot rely on the

ordering of the base and len members of the uv_buf_t

struct. The user is responsible for freeing base after the

uv_buf_t is done. Return struct passed by value.

char** uv_setup_args(int argc, char** argv)

Store the program arguments. Required for getting /

setting the process title or the executable path. Libuv

may take ownership of the memory that argv points to.

This function should be called exactly once, at program

start-up.

Example:

argv = uv_setup_args(argc, argv); /* May return a copy of

argv. */

int uv_get_process_title(char* buffer, size_t size)

Gets the title of the current process. You must call

uv_setup_args before calling this function on Unix and

AIX systems. If uv_setup_args has not been called on

systems that require it, then UV_ENOBUFS is returned. If

buffer is NULL or size is zero, UV_EINVAL is returned. If

size cannot accommodate the process title and

terminating nul character, the function returns

UV_ENOBUFS.

Note

On BSD systems, uv_setup_args is needed for getting

the initial process title. The process title returned will be

an empty string until either uv_setup_args or

uv_set_process_title is called.

Changed in version 1.18.1: now thread-safe on all

supported platforms.

Changed in version 1.39.0: now returns an error if

uv_setup_args is needed but hasn’t been called.

int uv_set_process_title(const char* title)

Sets the current process title. You must call

uv_setup_args before calling this function on Unix and

AIX systems. If uv_setup_args has not been called on

systems that require it, then UV_ENOBUFS is returned.

On platforms with a fixed size buffer for the process title

the contents of title will be copied to the buffer and

truncated if larger than the available space. Other

platforms will return UV_ENOMEM if they cannot allocate

enough space to duplicate the contents of title.

Changed in version 1.18.1: now thread-safe on all

supported platforms.

Changed in version 1.39.0: now returns an error if

uv_setup_args is needed but hasn’t been called.

int uv_resident_set_memory(size_t* rss)

Gets the resident set size (RSS) for the current process.

int uv_uptime(double* uptime)

Gets the current system uptime. Depending on the

system full or fractional seconds are returned.

int uv_getrusage(uv_rusage_t* rusage)

Gets the resource usage measures for the current

process.

Note

On Windows not all fields are set, the unsupported

fields are filled with zeroes. See uv_rusage_t for more

details.

uv_pid_t uv_os_getpid(void)

Returns the current process ID.

New in version 1.18.0.

uv_pid_t uv_os_getppid(void)

Returns the parent process ID.

New in version 1.16.0.

unsigned int uv_available_parallelism(void)

Returns an estimate of the default amount of parallelism

a program should use. Always returns a non-zero value.

On Linux, inspects the calling thread’s CPU affinity mask

to determine if it has been pinned to specific CPUs.

On Windows, the available parallelism may be

underreported on systems with more than 64 logical

CPUs.

On other platforms, reports the number of CPUs that the

operating system considers to be online.

New in version 1.44.0.

int uv_cpu_info(uv_cpu_info_t** cpu_infos, int* count)

Gets information about the CPUs on the system. The

cpu_infos array will have count elements and needs to be

freed with uv_free_cpu_info().

Use uv_available_parallelism() if you need to know how

many CPUs are available for threads or child processes.

void uv_free_cpu_info(uv_cpu_info_t* cpu_infos, int count)

Frees the cpu_infos array previously allocated with

uv_cpu_info().

int

uv_interface_addresses(uv_interface_address_t** addresses

, int* count)

Gets address information about the network interfaces

on the system. An array of count elements is allocated

and returned in addresses. It must be freed by the user,

calling uv_free_interface_addresses().

void

uv_free_interface_addresses(uv_interface_address_t* addre

sses, int count)

Free an array of uv_interface_address_t which was returned

by uv_interface_addresses().

void uv_loadavg(double avg[3])

Gets the load average. See:

https://en.wikipedia.org/wiki/Load_(computing)

Note

Returns [0,0,0] on Windows (i.e., it’s not implemented).

https://en.wikipedia.org/wiki/Load_(computing)

int uv_ip4_addr(const char* ip, int port, struct

sockaddr_in* addr)

Convert a string containing an IPv4 addresses to a binary

structure.

int uv_ip6_addr(const char* ip, int port, struct

sockaddr_in6* addr)

Convert a string containing an IPv6 addresses to a binary

structure.

int uv_ip4_name(const struct sockaddr_in* src, char* dst,

size_t size)

Convert a binary structure containing an IPv4 address to

a string.

int uv_ip6_name(const struct sockaddr_in6* src, char* dst,

size_t size)

Convert a binary structure containing an IPv6 address to

a string.

int uv_ip_name(const struct sockaddr *src, char *dst,

size_t size)

Convert a binary structure containing an IPv4 address or

an IPv6 address to a string.

int uv_inet_ntop(int af, const void* src, char* dst,

size_t size)

int uv_inet_pton(int af, const char* src, void* dst)

Cross-platform IPv6-capable implementation of

inet_ntop(3) [https://man7.org/linux/man-pages/man3/inet_ntop.3.html]

and inet_pton(3) [https://man7.org/linux/man-

pages/man3/inet_pton.3.html]. On success they return 0. In case

of error the target dst pointer is unmodified.

https://man7.org/linux/man-pages/man3/inet_ntop.3.html
https://man7.org/linux/man-pages/man3/inet_pton.3.html

UV_IF_NAMESIZE

Maximum IPv6 interface identifier name length. Defined

as IFNAMSIZ on Unix and IF_NAMESIZE on Linux and

Windows.

New in version 1.16.0.

int uv_if_indextoname(unsigned int ifindex, char* buffer,

size_t* size)

IPv6-capable implementation of if_indextoname(3)

[https://man7.org/linux/man-pages/man3/if_indextoname.3.html]. When

called, *size indicates the length of the buffer, which is

used to store the result. On success, zero is returned,

buffer contains the interface name, and *size represents

the string length of the buffer, excluding the NUL

terminator byte from *size. On error, a negative result is

returned. If buffer is not large enough to hold the result,

UV_ENOBUFS is returned, and *size represents the

necessary size in bytes, including the NUL terminator

byte into the *size.

On Unix, the returned interface name can be used

directly as an interface identifier in scoped IPv6

addresses, e.g. fe80::abc:def1:2345%en0.

On Windows, the returned interface cannot be used as an

interface identifier, as Windows uses numerical interface

identifiers, e.g. fe80::abc:def1:2345%5.

To get an interface identifier in a cross-platform

compatible way, use uv_if_indextoiid().

Example:

char ifname[UV_IF_NAMESIZE];

size_t size = sizeof(ifname);

uv_if_indextoname(sin6->sin6_scope_id, ifname, &size);

https://man7.org/linux/man-pages/man3/if_indextoname.3.html

New in version 1.16.0.

int uv_if_indextoiid(unsigned int ifindex, char* buffer,

size_t* size)

Retrieves a network interface identifier suitable for use in

an IPv6 scoped address. On Windows, returns the

numeric ifindex as a string. On all other platforms,

uv_if_indextoname() is called. The result is written to

buffer, with *size indicating the length of buffer. If buffer

is not large enough to hold the result, then UV_ENOBUFS

is returned, and *size represents the size, including the

NUL byte, required to hold the result.

See uv_if_indextoname for further details.

New in version 1.16.0.

int uv_exepath(char* buffer, size_t* size)

Gets the executable path. You must call uv_setup_args

before calling this function.

int uv_cwd(char* buffer, size_t* size)

Gets the current working directory, and stores it in buffer.

If the current working directory is too large to fit in

buffer, this function returns UV_ENOBUFS, and sets size

to the required length, including the null terminator.

Changed in version 1.1.0: On Unix the path no longer

ends in a slash.

Changed in version 1.9.0: the returned length includes

the terminating null byte on UV_ENOBUFS, and the buffer

is null terminated on success.

int uv_chdir(const char* dir)

Changes the current working directory.

int uv_os_homedir(char* buffer, size_t* size)

Gets the current user’s home directory. On Windows,

uv_os_homedir() first checks the USERPROFILE

environment variable using GetEnvironmentVariableW().

If USERPROFILE is not set, GetUserProfileDirectoryW() is

called. On all other operating systems, uv_os_homedir()

first checks the HOME environment variable using

getenv(3) [https://man7.org/linux/man-pages/man3/getenv.3.html]. If

HOME is not set, getpwuid_r(3) [https://man7.org/linux/man-

pages/man3/getpwuid_r.3.html] is called. The user’s home

directory is stored in buffer. When uv_os_homedir() is

called, size indicates the maximum size of buffer. On

success size is set to the string length of buffer. On

UV_ENOBUFS failure size is set to the required length for

buffer, including the null byte.

Warning

uv_os_homedir() is not thread safe.

New in version 1.6.0.

int uv_os_tmpdir(char* buffer, size_t* size)

Gets the temp directory. On Windows, uv_os_tmpdir()

uses GetTempPathW(). On all other operating systems,

uv_os_tmpdir() uses the first environment variable found

in the ordered list TMPDIR, TMP, TEMP, and TEMPDIR. If

none of these are found, the path “/tmp” is used, or, on

Android, “/data/local/tmp” is used. The temp directory is

stored in buffer. When uv_os_tmpdir() is called, size

indicates the maximum size of buffer. On success size is

set to the string length of buffer (which does not include

the terminating null). On UV_ENOBUFS failure size is set

to the required length for buffer, including the null byte.

https://man7.org/linux/man-pages/man3/getenv.3.html
https://man7.org/linux/man-pages/man3/getpwuid_r.3.html

Warning

uv_os_tmpdir() is not thread safe.

New in version 1.9.0.

int uv_os_get_passwd(uv_passwd_t* pwd)

Gets a subset of the password file entry for the current

effective uid (not the real uid). The populated data

includes the username, euid, gid, shell, and home

directory. On non-Windows systems, all data comes from

getpwuid_r(3) [https://man7.org/linux/man-

pages/man3/getpwuid_r.3.html]. On Windows, uid and gid are set

to -1 and have no meaning, and shell is NULL. After

successfully calling this function, the memory allocated

to pwd needs to be freed with uv_os_free_passwd().

New in version 1.9.0.

void uv_os_free_passwd(uv_passwd_t* pwd)

Frees the pwd memory previously allocated with

uv_os_get_passwd().

New in version 1.9.0.

uint64_t uv_get_free_memory(void)

Gets the amount of free memory available in the system,

as reported by the kernel (in bytes).

uint64_t uv_get_total_memory(void)

Gets the total amount of physical memory in the system

(in bytes).

uint64_t uv_get_constrained_memory(void)

https://man7.org/linux/man-pages/man3/getpwuid_r.3.html

Gets the amount of memory available to the process (in

bytes) based on limits imposed by the OS. If there is no

such constraint, or the constraint is unknown, 0 is

returned. Note that it is not unusual for this value to be

less than or greater than uv_get_total_memory().

Note

This function currently only returns a non-zero value on

Linux, based on cgroups if it is present, and on z/OS

based on RLIMIT_MEMLIMIT.

New in version 1.29.0.

uint64_t uv_hrtime(void)

Returns the current high-resolution real time. This is

expressed in nanoseconds. It is relative to an arbitrary

time in the past. It is not related to the time of day and

therefore not subject to clock drift. The primary use is for

measuring performance between intervals.

Note

Not every platform can support nanosecond resolution;

however, this value will always be in nanoseconds.

void uv_print_all_handles(uv_loop_t* loop, FILE* stream)

Prints all handles associated with the given loop to the

given stream.

Example:

uv_print_all_handles(uv_default_loop(), stderr);

/*

[--I] signal 0x1a25ea8

[-AI] async 0x1a25cf0

[R--] idle 0x1a7a8c8

*/

The format is [flags] handle-type handle-address. For

flags:

R is printed for a handle that is referenced

A is printed for a handle that is active

I is printed for a handle that is internal

Warning

This function is meant for ad hoc debugging, there is no

API/ABI stability guarantees.

New in version 1.8.0.

void uv_print_active_handles(uv_loop_t* loop, FILE* stream)

This is the same as uv_print_all_handles() except only

active handles are printed.

Warning

This function is meant for ad hoc debugging, there is no

API/ABI stability guarantees.

New in version 1.8.0.

int uv_os_environ(uv_env_item_t** envitems, int* count)

Retrieves all environment variables. This function will

allocate memory which must be freed by calling

uv_os_free_environ().

Warning

This function is not thread safe.

New in version 1.31.0.

void uv_os_free_environ(uv_env_item_t* envitems, int

count);

Frees the memory allocated for the environment

variables by uv_os_environ().

New in version 1.31.0.

int uv_os_getenv(const char* name, char* buffer,

size_t* size)

Retrieves the environment variable specified by name,

copies its value into buffer, and sets size to the string

length of the value. When calling this function, size must

be set to the amount of storage available in buffer,

including the null terminator. If the environment variable

exceeds the storage available in buffer, UV_ENOBUFS is

returned, and size is set to the amount of storage

required to hold the value. If no matching environment

variable exists, UV_ENOENT is returned.

Warning

This function is not thread safe.

New in version 1.12.0.

int uv_os_setenv(const char* name, const char* value)

Creates or updates the environment variable specified by

name with value.

Warning

This function is not thread safe.

New in version 1.12.0.

int uv_os_unsetenv(const char* name)

Deletes the environment variable specified by name. If

no such environment variable exists, this function returns

successfully.

Warning

This function is not thread safe.

New in version 1.12.0.

int uv_os_gethostname(char* buffer, size_t* size)

Returns the hostname as a null-terminated string in

buffer, and sets size to the string length of the hostname.

When calling this function, size must be set to the

amount of storage available in buffer, including the null

terminator. If the hostname exceeds the storage

available in buffer, UV_ENOBUFS is returned, and size is

set to the amount of storage required to hold the value.

New in version 1.12.0.

Changed in version 1.26.0: UV_MAXHOSTNAMESIZE is

available and represents the maximum buffer size

required to store a hostname and terminating nul

character.

int uv_os_getpriority(uv_pid_t pid, int* priority)

Retrieves the scheduling priority of the process specified

by pid. The returned value of priority is between -20

(high priority) and 19 (low priority).

Note

On Windows, the returned priority will equal one of the

UV_PRIORITY constants.

New in version 1.23.0.

int uv_os_setpriority(uv_pid_t pid, int priority)

Sets the scheduling priority of the process specified by

pid. The priority value range is between -20 (high

priority) and 19 (low priority). The constants

UV_PRIORITY_LOW, UV_PRIORITY_BELOW_NORMAL,

UV_PRIORITY_NORMAL, UV_PRIORITY_ABOVE_NORMAL,

UV_PRIORITY_HIGH, and UV_PRIORITY_HIGHEST are also

provided for convenience.

Note

On Windows, this function utilizes SetPriorityClass().

The priority argument is mapped to a Windows priority

class. When retrieving the process priority, the result

will equal one of the UV_PRIORITY constants, and not

necessarily the exact value of priority.

Note

On Windows, setting PRIORITY_HIGHEST will only work

for elevated user, for others it will be silently reduced to

PRIORITY_HIGH.

Note

On IBM i PASE, the highest process priority is -10. The

constant UV_PRIORITY_HIGHEST is -10,

UV_PRIORITY_HIGH is -7, UV_PRIORITY_ABOVE_NORMAL

is -4, UV_PRIORITY_NORMAL is 0,

UV_PRIORITY_BELOW_NORMAL is 15 and

UV_PRIORITY_LOW is 39.

Note

On IBM i PASE, you are not allowed to change your

priority unless you have the *JOBCTL special authority

(even to lower it).

New in version 1.23.0.

int uv_os_uname(uv_utsname_t* buffer)

Retrieves system information in buffer. The populated

data includes the operating system name, release,

version, and machine. On non-Windows systems,

uv_os_uname() is a thin wrapper around uname(2)

[https://man7.org/linux/man-pages/man2/uname.2.html]. Returns zero

on success, and a non-zero error value otherwise.

New in version 1.25.0.

int uv_gettimeofday(uv_timeval64_t* tv)

Cross-platform implementation of gettimeofday(2)

[https://man7.org/linux/man-pages/man2/gettimeofday.2.html]. The

timezone argument to gettimeofday() is not supported,

as it is considered obsolete.

New in version 1.28.0.

int uv_random(uv_loop_t* loop, uv_random_t* req, void* buf,

size_t buflen, unsigned int flags, uv_random_cb cb)

Fill buf with exactly buflen cryptographically strong

random bytes acquired from the system CSPRNG. flags is

reserved for future extension and must currently be 0.

Short reads are not possible. When less than buflen

random bytes are available, a non-zero error value is

returned or passed to the callback.

https://man7.org/linux/man-pages/man2/uname.2.html
https://man7.org/linux/man-pages/man2/gettimeofday.2.html

Returns:

The synchronous version may block indefinitely when not

enough entropy is available. The asynchronous version

may not ever finish when the system is low on entropy.

Sources of entropy:

Windows: RtlGenRandom

<https://docs.microsoft.com/en-

us/windows/desktop/api/ntsecapi/nf-ntsecapi-

rtlgenrandom>_.

Linux, Android: getrandom(2) [https://man7.org/linux/man-

pages/man2/getrandom.2.html] if available, or urandom(4)

[https://man7.org/linux/man-pages/man4/urandom.4.html] after

reading from /dev/random once, or the

KERN_RANDOM sysctl(2) [https://man7.org/linux/man-

pages/man2/sysctl.2.html].

FreeBSD: getrandom(2)

<https://www.freebsd.org/cgi/man.cgi?

query=getrandom&sektion=2>_, or /dev/urandom

after reading from /dev/random once.

NetBSD: KERN_ARND sysctl(7)

<https://man.netbsd.org/sysctl.7>_

macOS, OpenBSD: getentropy(2)

<https://man.openbsd.org/getentropy.2>_ if

available, or /dev/urandom after reading from

/dev/random once.

AIX: /dev/random.

IBM i: /dev/urandom.

Other UNIX: /dev/urandom after reading from

/dev/random once.

0 on success, or an error code < 0 on

failure. The contents of buf is undefined

after an error.

Note

https://man7.org/linux/man-pages/man2/getrandom.2.html
https://man7.org/linux/man-pages/man4/urandom.4.html
https://man7.org/linux/man-pages/man2/sysctl.2.html

When using the synchronous version, both loop and req

parameters are not used and can be set to NULL.

New in version 1.33.0.

void uv_sleep(unsigned int msec)

Causes the calling thread to sleep for msec milliseconds.

New in version 1.34.0.

Metrics operations

libuv provides a metrics API to track the amount of time the

event loop has spent idle in the kernel’s event provider.

API

uint64_t uv_metrics_idle_time(uv_loop_t* loop)

Retrieve the amount of time the event loop has been idle

in the kernel’s event provider (e.g. epoll_wait). The call is

thread safe.

The return value is the accumulated time spent idle in

the kernel’s event provider starting from when the

uv_loop_t was configured to collect the idle time.

Note

The event loop will not begin accumulating the event

provider’s idle time until calling uv_loop_configure with

UV_METRICS_IDLE_TIME.

New in version 1.39.0.

User guide

Warning

The contents of this guide have been recently incorporated

into the libuv documentation and it hasn’t gone through

thorough review yet. If you spot a mistake please file an

issue, or better yet, open a pull request!

Introduction

Who this book is for

Background

Code

Basics of libuv

Event loops

Hello World

Error handling

Handles and Requests

Filesystem

Reading/Writing files

Filesystem operations

Buffers and Streams

File change events

Networking

TCP

UDP

Querying DNS

Network interfaces

Threads

Core thread operations

Synchronization Primitives

libuv work queue

Inter-thread communication

Processes

Spawning child processes

Changing process parameters

Detaching processes

Sending signals to processes

Signals

Child Process I/O

Parent-child IPC

Advanced event loops

Stopping an event loop

Utilities

Timers

Event loop reference count

Idler pattern

Passing data to worker thread

External I/O with polling

Check & Prepare watchers

Loading libraries

TTY

About

Introduction

This ‘book’ is a small set of tutorials about using libuv

[https://github.com/libuv/libuv] as a high performance evented I/O

library which offers the same API on Windows and Unix.

It is meant to cover the main areas of libuv, but is not a

comprehensive reference discussing every function and

data structure. The official libuv documentation

[https://docs.libuv.org/en/v1.x/] may be consulted for full details.

This book is still a work in progress, so sections may be

incomplete, but I hope you will enjoy it as it grows.

https://github.com/libuv/libuv
https://docs.libuv.org/en/v1.x/

Who this book is for

If you are reading this book, you are either:

1. a systems programmer, creating low-level programs

such as daemons or network services and clients. You

have found that the event loop approach is well suited

for your application and decided to use libuv.

2. a node.js module writer, who wants to wrap platform

APIs written in C or C++ with a set of (a)synchronous

APIs that are exposed to JavaScript. You will use libuv

purely in the context of node.js. For this you will require

some other resources as the book does not cover parts

specific to v8/node.js.

This book assumes that you are comfortable with the C

programming language.

Background

The node.js [https://www.nodejs.org] project began in 2009 as a

JavaScript environment decoupled from the browser. Using

Google’s V8 [https://v8.dev] and Marc Lehmann’s libev

[http://software.schmorp.de/pkg/libev.html], node.js combined a model

of I/O – evented – with a language that was well suited to

the style of programming; due to the way it had been

shaped by browsers. As node.js grew in popularity, it was

important to make it work on Windows, but libev ran only on

Unix. The Windows equivalent of kernel event notification

mechanisms like kqueue or (e)poll is IOCP. libuv was an

abstraction around libev or IOCP depending on the platform,

providing users an API based on libev. In the node-v0.9.0

version of libuv libev was removed

[https://github.com/joyent/libuv/issues/485].

https://www.nodejs.org/
https://v8.dev/
http://software.schmorp.de/pkg/libev.html
https://github.com/joyent/libuv/issues/485

Since then libuv has continued to mature and become a

high quality standalone library for system programming.

Users outside of node.js include Mozilla’s Rust [https://www.rust-

lang.org] programming language, and a variety

[https://github.com/libuv/libuv/blob/v1.x/LINKS.md] of language bindings.

This book and the code is based on libuv version v1.42.0

[https://github.com/libuv/libuv/releases/tag/v1.42.0].

Code

All the example code and the source of the book is included

as part of the libuv [https://github.com/libuv/libuv] project on

GitHub. Clone or Download libuv [https://github.com/libuv/libuv],

then build it:

sh autogen.sh

./configure

make

There is no need to make install. To build the examples run

make in the docs/code/ directory.

https://www.rust-lang.org/
https://github.com/libuv/libuv/blob/v1.x/LINKS.md
https://github.com/libuv/libuv/releases/tag/v1.42.0
https://github.com/libuv/libuv
https://github.com/libuv/libuv

Basics of libuv

libuv enforces an asynchronous, event-driven style of

programming. Its core job is to provide an event loop and

callback based notifications of I/O and other activities. libuv

offers core utilities like timers, non-blocking networking

support, asynchronous file system access, child processes

and more.

Event loops

In event-driven programming, an application expresses

interest in certain events and respond to them when they

occur. The responsibility of gathering events from the

operating system or monitoring other sources of events is

handled by libuv, and the user can register callbacks to be

invoked when an event occurs. The event-loop usually keeps

running forever. In pseudocode:

while there are still events to process:

 e = get the next event

 if there is a callback associated with e:

 call the callback

Some examples of events are:

File is ready for writing

A socket has data ready to be read

A timer has timed out

This event loop is encapsulated by uv_run() – the end-all

function when using libuv.

The most common activity of systems programs is to deal

with input and output, rather than a lot of number-

crunching. The problem with using conventional

input/output functions (read, fprintf, etc.) is that they are

blocking. The actual write to a hard disk or reading from a

network, takes a disproportionately long time compared to

the speed of the processor. The functions don’t return until

the task is done, so that your program is doing nothing. For

programs which require high performance this is a major

roadblock as other activities and other I/O operations are

kept waiting.

One of the standard solutions is to use threads. Each

blocking I/O operation is started in a separate thread (or in a

thread pool). When the blocking function gets invoked in the

thread, the operating system can schedule another thread

to run, which actually needs the CPU.

The approach followed by libuv uses another style, which is

the asynchronous, non-blocking style. Most modern

operating systems provide event notification subsystems.

For example, a normal read call on a socket would block until

the sender actually sent something. Instead, the application

can request the operating system to watch the socket and

put an event notification in the queue. The application can

inspect the events at its convenience (perhaps doing some

number crunching before to use the processor to the

maximum) and grab the data. It is asynchronous because

the application expressed interest at one point, then used

the data at another point (in time and space). It is non-

blocking because the application process was free to do

other tasks. This fits in well with libuv’s event-loop

approach, since the operating system events can be treated

as just another libuv event. The non-blocking ensures that

other events can continue to be handled as fast as they

come in [1].

Note

How the I/O is run in the background is not of our concern,

but due to the way our computer hardware works, with the

thread as the basic unit of the processor, libuv and OSes

will usually run background/worker threads and/or polling

to perform tasks in a non-blocking manner.

Bert Belder, one of the libuv core developers has a small

video explaining the architecture of libuv and its

background. If you have no prior experience with either

libuv or libev, it is a quick, useful watch.

libuv’s event loop is explained in more detail in the

documentation [https://docs.libuv.org/en/v1.x/design.html#the-i-o-loop].

Hello World

With the basics out of the way, let’s write our first libuv

program. It does nothing, except start a loop which will exit

immediately.

https://docs.libuv.org/en/v1.x/design.html#the-i-o-loop

helloworld/main.c

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

#include <stdio.h>

#include <stdlib.h>

#include <uv.h>

int main() {

 uv_loop_t *loop = malloc(sizeof(uv_loop_t));

 uv_loop_init(loop);

 printf("Now quitting.\n");

 uv_run(loop, UV_RUN_DEFAULT);

 uv_loop_close(loop);

 free(loop);

 return 0;

}

This program quits immediately because it has no events to

process. A libuv event loop has to be told to watch out for

events using the various API functions.

Starting with libuv v1.0, users should allocate the memory

for the loops before initializing it with uv_loop_init(uv_loop_t

*). This allows you to plug in custom memory management.

Remember to de-initialize the loop using

uv_loop_close(uv_loop_t *) and then delete the storage. The

examples never close loops since the program quits after

the loop ends and the system will reclaim memory.

Production grade projects, especially long running systems

programs, should take care to release correctly.

Default loop

A default loop is provided by libuv and can be accessed

using uv_default_loop(). You should use this loop if you only

want a single loop.

default-loop/main.c

1

2

3

4

5

6

7

8

9

10

11

12

#include <stdio.h>

#include <uv.h>

int main() {

 uv_loop_t *loop = uv_default_loop();

 printf("Default loop.\n");

 uv_run(loop, UV_RUN_DEFAULT);

 uv_loop_close(loop);

 return 0;

}

Note

node.js uses the default loop as its main loop. If you are

writing bindings you should be aware of this.

Error handling

Initialization functions or synchronous functions which may

fail return a negative number on error. Async functions that

may fail will pass a status parameter to their callbacks. The

error messages are defined as UV_E* constants

[https://docs.libuv.org/en/v1.x/errors.html#error-constants].

You can use the uv_strerror(int) and uv_err_name(int)

functions to get a const char * describing the error or the

error name respectively.

I/O read callbacks (such as for files and sockets) are passed

a parameter nread. If nread is less than 0, there was an error

(UV_EOF is the end of file error, which you may want to

handle differently).

https://docs.libuv.org/en/v1.x/errors.html#error-constants

Handles and Requests

libuv works by the user expressing interest in particular

events. This is usually done by creating a handle to an I/O

device, timer or process. Handles are opaque structs named

as uv_TYPE_t where type signifies what the handle is used for.

libuv watchers

/* Handle types. */

typedef struct uv_loop_s uv_loop_t;

typedef struct uv_handle_s uv_handle_t;

typedef struct uv_dir_s uv_dir_t;

typedef struct uv_stream_s uv_stream_t;

typedef struct uv_tcp_s uv_tcp_t;

typedef struct uv_udp_s uv_udp_t;

typedef struct uv_pipe_s uv_pipe_t;

typedef struct uv_tty_s uv_tty_t;

typedef struct uv_poll_s uv_poll_t;

typedef struct uv_timer_s uv_timer_t;

typedef struct uv_prepare_s uv_prepare_t;

typedef struct uv_check_s uv_check_t;

typedef struct uv_idle_s uv_idle_t;

typedef struct uv_async_s uv_async_t;

typedef struct uv_process_s uv_process_t;

typedef struct uv_fs_event_s uv_fs_event_t;

typedef struct uv_fs_poll_s uv_fs_poll_t;

typedef struct uv_signal_s uv_signal_t;

/* Request types. */

typedef struct uv_req_s uv_req_t;

typedef struct uv_getaddrinfo_s uv_getaddrinfo_t;

typedef struct uv_getnameinfo_s uv_getnameinfo_t;

typedef struct uv_shutdown_s uv_shutdown_t;

typedef struct uv_write_s uv_write_t;

typedef struct uv_connect_s uv_connect_t;

typedef struct uv_udp_send_s uv_udp_send_t;

typedef struct uv_fs_s uv_fs_t;

typedef struct uv_work_s uv_work_t;

typedef struct uv_random_s uv_random_t;

/* None of the above. */

typedef struct uv_env_item_s uv_env_item_t;

typedef struct uv_cpu_info_s uv_cpu_info_t;

typedef struct uv_interface_address_s uv_interface_address_t;

typedef struct uv_dirent_s uv_dirent_t;

typedef struct uv_passwd_s uv_passwd_t;

typedef struct uv_utsname_s uv_utsname_t;

typedef struct uv_statfs_s uv_statfs_t;

Handles represent long-lived objects. Async operations on

such handles are identified using requests. A request is

short-lived (usually used across only one callback) and

usually indicates one I/O operation on a handle. Requests

are used to preserve context between the initiation and the

callback of individual actions. For example, an UDP socket is

represented by a uv_udp_t, while individual writes to the

socket use a uv_udp_send_t structure that is passed to the

callback after the write is done.

Handles are setup by a corresponding:

uv_TYPE_init(uv_loop_t *, uv_TYPE_t *)

function.

Callbacks are functions which are called by libuv whenever

an event the watcher is interested in has taken place.

Application specific logic will usually be implemented in the

callback. For example, an IO watcher’s callback will receive

the data read from a file, a timer callback will be triggered

on timeout and so on.

Idling

Here is an example of using an idle handle. The callback is

called once on every turn of the event loop. A use case for

idle handles is discussed in Utilities. Let us use an idle

watcher to look at the watcher life cycle and see how

uv_run() will now block because a watcher is present. The

idle watcher is stopped when the count is reached and

uv_run() exits since no event watchers are active.

idle-basic/main.c

#include <stdio.h>

#include <uv.h>

int64_t counter = 0;

void wait_for_a_while(uv_idle_t* handle) {

 counter++;

 if (counter >= 10e6)

 uv_idle_stop(handle);

}

int main() {

 uv_idle_t idler;

 uv_idle_init(uv_default_loop(), &idler);

 uv_idle_start(&idler, wait_for_a_while);

 printf("Idling...\n");

 uv_run(uv_default_loop(), UV_RUN_DEFAULT);

 uv_loop_close(uv_default_loop());

 return 0;

}

Storing context

In callback based programming style you’ll often want to

pass some ‘context’ – application specific information –

between the call site and the callback. All handles and

requests have a void* data member which you can set to the

context and cast back in the callback. This is a common

pattern used throughout the C library ecosystem. In addition

uv_loop_t also has a similar data member.

[1] Depending on the capacity of the hardware of course.

Filesystem

Simple filesystem read/write is achieved using the uv_fs_*

functions and the uv_fs_t struct.

Note

The libuv filesystem operations are different from socket

operations. Socket operations use the non-blocking

operations provided by the operating system. Filesystem

operations use blocking functions internally, but invoke

these functions in a thread pool

[https://docs.libuv.org/en/v1.x/threadpool.html#thread-pool-work-scheduling]

and notify watchers registered with the event loop when

application interaction is required.

All filesystem functions have two forms - synchronous and

asynchronous.

The synchronous forms automatically get called (and block)

if the callback is null. The return value of functions is a libuv

error code. This is usually only useful for synchronous calls.

The asynchronous form is called when a callback is passed

and the return value is 0.

Reading/Writing files

A file descriptor is obtained using

int uv_fs_open(uv_loop_t* loop, uv_fs_t* req, const char* path,

int flags, int mode, uv_fs_cb cb)

https://docs.libuv.org/en/v1.x/threadpool.html#thread-pool-work-scheduling

flags and mode are standard Unix flags [https://man7.org/linux/man-

pages/man2/open.2.html]. libuv takes care of converting to the

appropriate Windows flags.

File descriptors are closed using

int uv_fs_close(uv_loop_t* loop, uv_fs_t* req, uv_file file,

uv_fs_cb cb)

Filesystem operation callbacks have the signature:

void callback(uv_fs_t* req);

Let’s see a simple implementation of cat. We start with

registering a callback for when the file is opened:

uvcat/main.c - opening a file

1

2

3

4

5

6

7

8

9

10

11

12

13

 // The request passed to the callback is the same

as the one the call setup

 // function was passed.

 assert(req == &open_req);

 if (req->result >= 0) {

 iov = uv_buf_init(buffer, sizeof(buffer));

 uv_fs_read(uv_default_loop(), &read_req, req-

>result,

 &iov, 1, -1, on_read);

 }

 else {

 fprintf(stderr, "error opening file: %s\n",

uv_strerror((int)req->result));

 }

}

The result field of a uv_fs_t is the file descriptor in case of

the uv_fs_open callback. If the file is successfully opened, we

start reading it.

https://man7.org/linux/man-pages/man2/open.2.html

uvcat/main.c - read callback

1

2

3

4

5

6

7

8

9

10

11

12

13

14

 if (req->result < 0) {

 fprintf(stderr, "Read error: %s\n",

uv_strerror(req->result));

 }

 else if (req->result == 0) {

 uv_fs_t close_req;

 // synchronous

 uv_fs_close(uv_default_loop(), &close_req,

open_req.result, NULL);

 }

 else if (req->result > 0) {

 iov.len = req->result;

 uv_fs_write(uv_default_loop(), &write_req, 1,

&iov, 1, -1, on_write);

 }

}

In the case of a read call, you should pass an initialized

buffer which will be filled with data before the read callback

is triggered. The uv_fs_* operations map almost directly to

certain POSIX functions, so EOF is indicated in this case by

result being 0. In the case of streams or pipes, the UV_EOF

constant would have been passed as a status instead.

Here you see a common pattern when writing asynchronous

programs. The uv_fs_close() call is performed synchronously.

Usually tasks which are one-off, or are done as part of the

startup or shutdown stage are performed synchronously,

since we are interested in fast I/O when the program is

going about its primary task and dealing with multiple I/O

sources. For solo tasks the performance difference usually is

negligible and may lead to simpler code.

Filesystem writing is similarly simple using uv_fs_write().

Your callback will be triggered after the write is complete. In

our case the callback simply drives the next read. Thus read

and write proceed in lockstep via callbacks.

uvcat/main.c - write callback

1

2

3

4

5

6

7

8

 if (req->result < 0) {

 fprintf(stderr, "Write error: %s\n",

uv_strerror((int)req->result));

 }

 else {

 uv_fs_read(uv_default_loop(), &read_req,

open_req.result, &iov, 1, -1, on_read);

 }

}

Warning

Due to the way filesystems and disk drives are configured

for performance, a write that ‘succeeds’ may not be

committed to disk yet.

We set the dominos rolling in main():

uvcat/main.c

1

2

3

4

5

6

7

8

 uv_fs_open(uv_default_loop(), &open_req, argv[1],

O_RDONLY, 0, on_open);

 uv_run(uv_default_loop(), UV_RUN_DEFAULT);

 uv_fs_req_cleanup(&open_req);

 uv_fs_req_cleanup(&read_req);

 uv_fs_req_cleanup(&write_req);

 return 0;

}

Warning

The uv_fs_req_cleanup() function must always be called on

filesystem requests to free internal memory allocations in

libuv.

Filesystem operations

All the standard filesystem operations like unlink, rmdir, stat

are supported asynchronously and have intuitive argument

order. They follow the same patterns as the read/write/open

calls, returning the result in the uv_fs_t.result field. The full

list:

Filesystem operations

int uv_fs_close(uv_loop_t* loop, uv_fs_t* req, uv_file file,

uv_fs_cb cb);

int uv_fs_open(uv_loop_t* loop, uv_fs_t* req, const char* path,

int flags, int mode, uv_fs_cb cb);

int uv_fs_read(uv_loop_t* loop, uv_fs_t* req, uv_file file,

const uv_buf_t bufs[], unsigned int nbufs, int64_t offset,

uv_fs_cb cb);

int uv_fs_unlink(uv_loop_t* loop, uv_fs_t* req, const char*

path, uv_fs_cb cb);

int uv_fs_write(uv_loop_t* loop, uv_fs_t* req, uv_file file,

const uv_buf_t bufs[], unsigned int nbufs, int64_t offset,

uv_fs_cb cb);

int uv_fs_copyfile(uv_loop_t* loop, uv_fs_t* req, const char*

path, const char* new_path, int flags, uv_fs_cb cb);

int uv_fs_mkdir(uv_loop_t* loop, uv_fs_t* req, const char*

path, int mode, uv_fs_cb cb);

int uv_fs_mkdtemp(uv_loop_t* loop, uv_fs_t* req, const char*

tpl, uv_fs_cb cb);

int uv_fs_mkstemp(uv_loop_t* loop, uv_fs_t* req, const char*

tpl, uv_fs_cb cb);

int uv_fs_rmdir(uv_loop_t* loop, uv_fs_t* req, const char*

path, uv_fs_cb cb);

int uv_fs_scandir(uv_loop_t* loop, uv_fs_t* req, const char*

path, int flags, uv_fs_cb cb);

int uv_fs_scandir_next(uv_fs_t* req, uv_dirent_t* ent);

int uv_fs_opendir(uv_loop_t* loop, uv_fs_t* req, const char*

path, uv_fs_cb cb);

int uv_fs_readdir(uv_loop_t* loop, uv_fs_t* req, uv_dir_t* dir,

uv_fs_cb cb);

int uv_fs_closedir(uv_loop_t* loop, uv_fs_t* req, uv_dir_t*

dir, uv_fs_cb cb);

int uv_fs_stat(uv_loop_t* loop, uv_fs_t* req, const char* path,

uv_fs_cb cb);

int uv_fs_fstat(uv_loop_t* loop, uv_fs_t* req, uv_file file,

uv_fs_cb cb);

int uv_fs_rename(uv_loop_t* loop, uv_fs_t* req, const char*

path, const char* new_path, uv_fs_cb cb);

int uv_fs_fsync(uv_loop_t* loop, uv_fs_t* req, uv_file file,

uv_fs_cb cb);

int uv_fs_fdatasync(uv_loop_t* loop, uv_fs_t* req, uv_file

file, uv_fs_cb cb);

int uv_fs_ftruncate(uv_loop_t* loop, uv_fs_t* req, uv_file

file, int64_t offset, uv_fs_cb cb);

int uv_fs_sendfile(uv_loop_t* loop, uv_fs_t* req, uv_file

out_fd, uv_file in_fd, int64_t in_offset, size_t length,

uv_fs_cb cb);

int uv_fs_access(uv_loop_t* loop, uv_fs_t* req, const char*

path, int mode, uv_fs_cb cb);

int uv_fs_chmod(uv_loop_t* loop, uv_fs_t* req, const char*

path, int mode, uv_fs_cb cb);

int uv_fs_utime(uv_loop_t* loop, uv_fs_t* req, const char*

path, double atime, double mtime, uv_fs_cb cb);

int uv_fs_futime(uv_loop_t* loop, uv_fs_t* req, uv_file file,

double atime, double mtime, uv_fs_cb cb);

int uv_fs_lutime(uv_loop_t* loop, uv_fs_t* req, const char*

path, double atime, double mtime, uv_fs_cb cb);

int uv_fs_lstat(uv_loop_t* loop, uv_fs_t* req, const char*

path, uv_fs_cb cb);

int uv_fs_link(uv_loop_t* loop, uv_fs_t* req, const char* path,

const char* new_path, uv_fs_cb cb);

int uv_fs_symlink(uv_loop_t* loop, uv_fs_t* req, const char*

path, const char* new_path, int flags, uv_fs_cb cb);

int uv_fs_readlink(uv_loop_t* loop, uv_fs_t* req, const char*

path, uv_fs_cb cb);

int uv_fs_realpath(uv_loop_t* loop, uv_fs_t* req, const char*

path, uv_fs_cb cb);

int uv_fs_fchmod(uv_loop_t* loop, uv_fs_t* req, uv_file file,

int mode, uv_fs_cb cb);

int uv_fs_chown(uv_loop_t* loop, uv_fs_t* req, const char*

path, uv_uid_t uid, uv_gid_t gid, uv_fs_cb cb);

int uv_fs_fchown(uv_loop_t* loop, uv_fs_t* req, uv_file file,

uv_uid_t uid, uv_gid_t gid, uv_fs_cb cb);

int uv_fs_lchown(uv_loop_t* loop, uv_fs_t* req, const char*

path, uv_uid_t uid, uv_gid_t gid, uv_fs_cb cb);

int uv_fs_statfs(uv_loop_t* loop, uv_fs_t* req, const char*

path, uv_fs_cb cb);

Buffers and Streams

The basic I/O handle in libuv is the stream (uv_stream_t). TCP

sockets, UDP sockets, and pipes for file I/O and IPC are all

treated as stream subclasses.

Streams are initialized using custom functions for each

subclass, then operated upon using

int uv_read_start(uv_stream_t*, uv_alloc_cb alloc_cb,

uv_read_cb read_cb);

int uv_read_stop(uv_stream_t*);

int uv_write(uv_write_t* req, uv_stream_t* handle,

 const uv_buf_t bufs[], unsigned int nbufs,

uv_write_cb cb);

The stream based functions are simpler to use than the

filesystem ones and libuv will automatically keep reading

from a stream when uv_read_start() is called once, until

uv_read_stop() is called.

The discrete unit of data is the buffer – uv_buf_t. This is

simply a collection of a pointer to bytes (uv_buf_t.base) and

the length (uv_buf_t.len). The uv_buf_t is lightweight and

passed around by value. What does require management is

the actual bytes, which have to be allocated and freed by

the application.

Error

THIS PROGRAM DOES NOT ALWAYS WORK, NEED

SOMETHING BETTER

To demonstrate streams we will need to use uv_pipe_t. This

allows streaming local files [2]. Here is a simple tee utility

using libuv. Doing all operations asynchronously shows the

power of evented I/O. The two writes won’t block each

other, but we have to be careful to copy over the buffer data

to ensure we don’t free a buffer until it has been written.

The program is to be executed as:

./uvtee <output_file>

We start off opening pipes on the files we require. libuv

pipes to a file are opened as bidirectional by default.

uvtee/main.c - read on pipes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

 loop = uv_default_loop();

 uv_pipe_init(loop, &stdin_pipe, 0);

 uv_pipe_open(&stdin_pipe, 0);

 uv_pipe_init(loop, &stdout_pipe, 0);

 uv_pipe_open(&stdout_pipe, 1);

 uv_fs_t file_req;

 int fd = uv_fs_open(loop, &file_req, argv[1],

O_CREAT | O_RDWR, 0644, NULL);

 uv_pipe_init(loop, &file_pipe, 0);

 uv_pipe_open(&file_pipe, fd);

 uv_read_start((uv_stream_t*)&stdin_pipe,

alloc_buffer, read_stdin);

 uv_run(loop, UV_RUN_DEFAULT);

 return 0;

}

The third argument of uv_pipe_init() should be set to 1 for

IPC using named pipes. This is covered in Processes. The

uv_pipe_open() call associates the pipe with the file

descriptor, in this case 0 (standard input).

We start monitoring stdin. The alloc_buffer callback is

invoked as new buffers are required to hold incoming data.

read_stdin will be called with these buffers.

uvtee/main.c - reading buffers

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

 buf = uv_buf_init((char) malloc(suggested_size),

suggested_size);

}

void free_write_req(uv_write_t *req) {

 if (nread < 0){

 if (nread == UV_EOF){

 // end of file

 uv_close((uv_handle_t *)&stdin_pipe, NULL);

 uv_close((uv_handle_t *)&stdout_pipe,

NULL);

 uv_close((uv_handle_t *)&file_pipe, NULL);

 }

 } else if (nread > 0) {

 write_data((uv_stream_t *)&stdout_pipe, nread,

*buf, on_stdout_write);

 write_data((uv_stream_t *)&file_pipe, nread,

*buf, on_file_write);

 }

 // OK to free buffer as write_data copies it.

 if (buf->base)

 free(buf->base);

}

The standard malloc is sufficient here, but you can use any

memory allocation scheme. For example, node.js uses its

own slab allocator which associates buffers with V8 objects.

The read callback nread parameter is less than 0 on any

error. This error might be EOF, in which case we close all the

streams, using the generic close function uv_close() which

deals with the handle based on its internal type. Otherwise

nread is a non-negative number and we can attempt to write

that many bytes to the output streams. Finally remember

that buffer allocation and deallocation is application

responsibility, so we free the data.

The allocation callback may return a buffer with length zero

if it fails to allocate memory. In this case, the read callback

is invoked with error UV_ENOBUFS. libuv will continue to

attempt to read the stream though, so you must explicitly

call uv_close() if you want to stop when allocation fails.

The read callback may be called with nread = 0, indicating

that at this point there is nothing to be read. Most

applications will just ignore this.

uvtee/main.c - Write to pipe

1

2

3

4

5

6

7

8

9

10

11

12

13

 uv_write_t req;

 uv_buf_t buf;

} write_req_t;

uv_loop_t *loop;

 write_req_t *wr = (write_req_t*) req;

 free(wr->buf.base);

 free(wr);

}

void on_stdout_write(uv_write_t *req, int status) {

 free_write_req(req);

}

14

15

16

17

18

19

20

21

22

23

24

25

void on_file_write(uv_write_t *req, int status) {

 free_write_req(req);

}

void write_data(uv_stream_t *dest, size_t size,

uv_buf_t buf, uv_write_cb cb) {

 write_req_t *req = (write_req_t*)

malloc(sizeof(write_req_t));

 req->buf = uv_buf_init((char*) malloc(size), size);

 memcpy(req->buf.base, buf.base, size);

 uv_write((uv_write_t*) req, (uv_stream_t*)dest,

&req->buf, 1, cb);

}

write_data() makes a copy of the buffer obtained from read.

This buffer does not get passed through to the write

callback trigged on write completion. To get around this we

wrap a write request and a buffer in write_req_t and unwrap

it in the callbacks. We make a copy so we can free the two

buffers from the two calls to write_data independently of

each other. While acceptable for a demo program like this,

you’ll probably want smarter memory management, like

reference counted buffers or a pool of buffers in any major

application.

Warning

If your program is meant to be used with other programs it

may knowingly or unknowingly be writing to a pipe. This

makes it susceptible to aborting on receiving a SIGPIPE

[http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod#The_special_problem_of_

SIGPIPE]. It is a good idea to insert:

signal(SIGPIPE, SIG_IGN)

in the initialization stages of your application.

http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod#The_special_problem_of_SIGPIPE

File change events

All modern operating systems provide APIs to put watches

on individual files or directories and be informed when the

files are modified. libuv wraps common file change

notification libraries [1]. This is one of the more inconsistent

parts of libuv. File change notification systems are

themselves extremely varied across platforms so getting

everything working everywhere is difficult. To demonstrate,

I’m going to build a simple utility which runs a command

whenever any of the watched files change:

./onchange <command> <file1> [file2] ...

Note

Currently this example only works on OSX and Windows.

Refer to the notes of uv_fs_event_start

[https://docs.libuv.org/en/v1.x/fs_event.html#c.uv_fs_event_start] function.

The file change notification is started using

uv_fs_event_init():

onchange/main.c - The setup

1

2

3

4

5

6

7

8

9

10

11

int main(int argc, char **argv) {

 if (argc <= 2) {

 fprintf(stderr, "Usage: %s <command> <file1>

[file2 ...]\n", argv[0]);

 return 1;

 }

 loop = uv_default_loop();

 command = argv[1];

 while (argc-- > 2) {

https://docs.libuv.org/en/v1.x/fs_event.html#c.uv_fs_event_start

12

13

14

15

16

17

18

19

 fprintf(stderr, "Adding watch on %s\n",

argv[argc]);

 uv_fs_event_t *fs_event_req =

malloc(sizeof(uv_fs_event_t));

 uv_fs_event_init(loop, fs_event_req);

 // The recursive flag watches subdirectories

too.

 uv_fs_event_start(fs_event_req, run_command,

argv[argc], UV_FS_EVENT_RECURSIVE);

 }

 return uv_run(loop, UV_RUN_DEFAULT);

}

The third argument is the actual file or directory to monitor.

The last argument, flags, can be:

/*

 * Flags to be passed to uv_fs_event_start().

 */

enum uv_fs_event_flags {

 UV_FS_EVENT_WATCH_ENTRY = 1,

 UV_FS_EVENT_STAT = 2,

 UV_FS_EVENT_RECURSIVE = 4

};

UV_FS_EVENT_WATCH_ENTRY and UV_FS_EVENT_STAT don’t do anything

(yet). UV_FS_EVENT_RECURSIVE will start watching subdirectories

as well on supported platforms.

The callback will receive the following arguments:

1. uv_fs_event_t *handle - The handle. The path field of

the handle is the file on which the watch was set.

2. const char *filename - If a directory is being

monitored, this is the file which was changed. Only

non-null on Linux and Windows. May be null even

on those platforms.

3. int events - one of UV_RENAME or UV_CHANGE, or a bitwise

OR of both.

[1]

[2]

4. int status - If status < 0, there is an libuv error.

In our example we simply print the arguments and run the

command using system().

onchange/main.c - file change notification callback

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

void run_command(uv_fs_event_t *handle, const char

*filename, int events, int status) {

 char path[1024];

 size_t size = 1023;

 // Does not handle error if path is longer than

1023.

 uv_fs_event_getpath(handle, path, &size);

 path[size] = '\0';

 fprintf(stderr, "Change detected in %s: ", path);

 if (events & UV_RENAME)

 fprintf(stderr, "renamed");

 if (events & UV_CHANGE)

 fprintf(stderr, "changed");

 fprintf(stderr, " %s\n", filename ? filename : "");

 system(command);

}

inotify on Linux, FSEvents on Darwin, kqueue on BSDs,

ReadDirectoryChangesW on Windows, event ports on

Solaris, unsupported on Cygwin

see Parent-child IPC

Networking

Networking in libuv is not much different from directly using

the BSD socket interface, some things are easier, all are

non-blocking, but the concepts stay the same. In addition

libuv offers utility functions to abstract the annoying,

repetitive and low-level tasks like setting up sockets using

the BSD socket structures, DNS lookup, and tweaking

various socket parameters.

The uv_tcp_t and uv_udp_t structures are used for network I/O.

Note

The code samples in this chapter exist to show certain

libuv APIs. They are not examples of good quality code.

They leak memory and don’t always close connections

properly.

TCP

TCP is a connection oriented, stream protocol and is

therefore based on the libuv streams infrastructure.

Server

Server sockets proceed by:

1. uv_tcp_init the TCP handle.

2. uv_tcp_bind it.

3. Call uv_listen on the handle to have a callback invoked

whenever a new connection is established by a client.

4. Use uv_accept to accept the connection.

5. Use stream operations to communicate with the client.

Here is a simple echo server

tcp-echo-server/main.c - The listen socket

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 uv_close((uv_handle_t*) client, on_close);

 }

}

int main() {

 loop = uv_default_loop();

 uv_tcp_t server;

 uv_tcp_init(loop, &server);

 uv_ip4_addr("0.0.0.0", DEFAULT_PORT, &addr);

 uv_tcp_bind(&server, (const struct sockaddr*)&addr,

0);

 int r = uv_listen((uv_stream_t*) &server,

DEFAULT_BACKLOG, on_new_connection);

 if (r) {

 fprintf(stderr, "Listen error %s\n",

uv_strerror(r));

 return 1;

 }

 return uv_run(loop, UV_RUN_DEFAULT);

}

You can see the utility function uv_ip4_addr being used to

convert from a human readable IP address, port pair to the

sockaddr_in structure required by the BSD socket APIs. The

reverse can be obtained using uv_ip4_name.

Note

There are uv_ip6_* analogues for the ip4 functions.

Most of the setup functions are synchronous since they are

CPU-bound. uv_listen is where we return to libuv’s callback

style. The second arguments is the backlog queue – the

maximum length of queued connections.

When a connection is initiated by clients, the callback is

required to set up a handle for the client socket and

associate the handle using uv_accept. In this case we also

establish interest in reading from this stream.

tcp-echo-server/main.c - Accepting the client

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

 free(buf->base);

}

void on_new_connection(uv_stream_t *server, int status)

{

 if (status < 0) {

 fprintf(stderr, "New connection error %s\n",

uv_strerror(status));

 // error!

 return;

 }

 uv_tcp_t *client = (uv_tcp_t*)

malloc(sizeof(uv_tcp_t));

 uv_tcp_init(loop, client);

 if (uv_accept(server, (uv_stream_t*) client) == 0)

{

 uv_read_start((uv_stream_t*) client,

alloc_buffer, echo_read);

 }

The remaining set of functions is very similar to the streams

example and can be found in the code. Just remember to

call uv_close when the socket isn’t required. This can be

done even in the uv_listen callback if you are not interested

in accepting the connection.

Client

Where you do bind/listen/accept on the server, on the client

side it’s simply a matter of calling uv_tcp_connect. The same

uv_connect_cb style callback of uv_listen is used by

uv_tcp_connect. Try:

uv_tcp_t* socket = (uv_tcp_t*)malloc(sizeof(uv_tcp_t));

uv_tcp_init(loop, socket);

uv_connect_t* connect =

(uv_connect_t*)malloc(sizeof(uv_connect_t));

struct sockaddr_in dest;

uv_ip4_addr("127.0.0.1", 80, &dest);

uv_tcp_connect(connect, socket, (const struct sockaddr*)&dest,

on_connect);

where on_connect will be called after the connection is

established. The callback receives the uv_connect_t struct,

which has a member .handle pointing to the socket.

UDP

The User Datagram Protocol

[https://en.wikipedia.org/wiki/User_Datagram_Protocol] offers

connectionless, unreliable network communication. Hence

libuv doesn’t offer a stream. Instead libuv provides non-

blocking UDP support via the uv_udp_t handle (for receiving)

and uv_udp_send_t request (for sending) and related

functions. That said, the actual API for reading/writing is

very similar to normal stream reads. To look at how UDP can

be used, the example shows the first stage of obtaining an

https://en.wikipedia.org/wiki/User_Datagram_Protocol

IP address from a DHCP [https://tools.ietf.org/html/rfc2131] server –

DHCP Discover.

Note

You will have to run udp-dhcp as root since it uses well

known port numbers below 1024.

udp-dhcp/main.c - Setup and send UDP packets

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

uv_loop_t *loop;

uv_udp_t send_socket;

uv_udp_t recv_socket;

int main() {

 loop = uv_default_loop();

 uv_udp_init(loop, &recv_socket);

 struct sockaddr_in recv_addr;

 uv_ip4_addr("0.0.0.0", 68, &recv_addr);

 uv_udp_bind(&recv_socket, (const struct sockaddr

*)&recv_addr, UV_UDP_REUSEADDR);

 uv_udp_recv_start(&recv_socket, alloc_buffer,

on_read);

 uv_udp_init(loop, &send_socket);

 struct sockaddr_in broadcast_addr;

 uv_ip4_addr("0.0.0.0", 0, &broadcast_addr);

 uv_udp_bind(&send_socket, (const struct sockaddr

*)&broadcast_addr, 0);

 uv_udp_set_broadcast(&send_socket, 1);

 uv_udp_send_t send_req;

 uv_buf_t discover_msg = make_discover_msg();

 struct sockaddr_in send_addr;

 uv_ip4_addr("255.255.255.255", 67, &send_addr);

 uv_udp_send(&send_req, &send_socket, &discover_msg,

https://tools.ietf.org/html/rfc2131

1, (const struct sockaddr *)&send_addr, on_send);

 return uv_run(loop, UV_RUN_DEFAULT);

}

Note

The IP address 0.0.0.0 is used to bind to all interfaces. The

IP address 255.255.255.255 is a broadcast address meaning

that packets will be sent to all interfaces on the subnet.

port 0 means that the OS randomly assigns a port.

First we setup the receiving socket to bind on all interfaces

on port 68 (DHCP client) and start a read on it. This will read

back responses from any DHCP server that replies. We use

the UV_UDP_REUSEADDR flag to play nice with any other

system DHCP clients that are running on this computer on

the same port. Then we setup a similar send socket and use

uv_udp_send to send a broadcast message on port 67 (DHCP

server).

It is necessary to set the broadcast flag, otherwise you will

get an EACCES error [1]. The exact message being sent is not

relevant to this book and you can study the code if you are

interested. As usual the read and write callbacks will receive

a status code of < 0 if something went wrong.

Since UDP sockets are not connected to a particular peer,

the read callback receives an extra parameter about the

sender of the packet.

nread may be zero if there is no more data to be read. If addr

is NULL, it indicates there is nothing to read (the callback

shouldn’t do anything), if not NULL, it indicates that an

empty datagram was received from the host at addr. The

flags parameter may be UV_UDP_PARTIAL if the buffer provided

by your allocator was not large enough to hold the data. In

this case the OS will discard the data that could not fit

(That’s UDP for you!).

udp-dhcp/main.c - Reading packets

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

void on_read(uv_udp_t *req, ssize_t nread, const

uv_buf_t *buf, const struct sockaddr *addr, unsigned

flags) {

 if (nread < 0) {

 fprintf(stderr, "Read error %s\n",

uv_err_name(nread));

 uv_close((uv_handle_t*) req, NULL);

 free(buf->base);

 return;

 }

 char sender[17] = { 0 };

 uv_ip4_name((const struct sockaddr_in*) addr,

sender, 16);

 fprintf(stderr, "Recv from %s\n", sender);

 // ... DHCP specific code

 unsigned int *as_integer = (unsigned int*)buf-

>base;

 unsigned int ipbin = ntohl(as_integer[4]);

 unsigned char ip[4] = {0};

 int i;

 for (i = 0; i < 4; i++)

 ip[i] = (ipbin >> i*8) & 0xff;

 fprintf(stderr, "Offered IP %d.%d.%d.%d\n", ip[3],

ip[2], ip[1], ip[0]);

 free(buf->base);

 uv_udp_recv_stop(req);

}

UDP Options

Time-to-live

The TTL of packets sent on the socket can be changed using

uv_udp_set_ttl.

IPv6 stack only

IPv6 sockets can be used for both IPv4 and IPv6

communication. If you want to restrict the socket to IPv6

only, pass the UV_UDP_IPV6ONLY flag to uv_udp_bind [2].

Multicast

A socket can (un)subscribe to a multicast group using:

where membership is UV_JOIN_GROUP or UV_LEAVE_GROUP.

The concepts of multicasting are nicely explained in this

guide [https://www.tldp.org/HOWTO/Multicast-HOWTO-2.html].

Local loopback of multicast packets is enabled by default

[3], use uv_udp_set_multicast_loop to switch it off.

The packet time-to-live for multicast packets can be

changed using uv_udp_set_multicast_ttl.

Querying DNS

libuv provides asynchronous DNS resolution. For this it

provides its own getaddrinfo replacement [4]. In the callback

you can perform normal socket operations on the retrieved

addresses. Let’s connect to Libera.chat to see an example of

DNS resolution.

dns/main.c

1

https://www.tldp.org/HOWTO/Multicast-HOWTO-2.html

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

int main() {

 loop = uv_default_loop();

 struct addrinfo hints;

 hints.ai_family = PF_INET;

 hints.ai_socktype = SOCK_STREAM;

 hints.ai_protocol = IPPROTO_TCP;

 hints.ai_flags = 0;

 uv_getaddrinfo_t resolver;

 fprintf(stderr, "irc.libera.chat is... ");

 int r = uv_getaddrinfo(loop, &resolver,

on_resolved, "irc.libera.chat", "6667", &hints);

 if (r) {

 fprintf(stderr, "getaddrinfo call error %s\n",

uv_err_name(r));

 return 1;

 }

 return uv_run(loop, UV_RUN_DEFAULT);

}

If uv_getaddrinfo returns non-zero, something went wrong in

the setup and your callback won’t be invoked at all. All

arguments can be freed immediately after uv_getaddrinfo

returns. The hostname, servname and hints structures are

documented in the getaddrinfo man page

[https://man7.org/linux/man-pages/man3/getaddrinfo.3.html]. The callback

can be NULL in which case the function will run

synchronously.

In the resolver callback, you can pick any IP from the linked

list of struct addrinfo(s). This also demonstrates

uv_tcp_connect. It is necessary to call uv_freeaddrinfo in the

callback.

dns/main.c

1

https://man7.org/linux/man-pages/man3/getaddrinfo.3.html

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

void on_resolved(uv_getaddrinfo_t *resolver, int

status, struct addrinfo *res) {

 if (status < 0) {

 fprintf(stderr, "getaddrinfo callback error

%s\n", uv_err_name(status));

 return;

 }

 char addr[17] = {'\0'};

 uv_ip4_name((struct sockaddr_in*) res->ai_addr,

addr, 16);

 fprintf(stderr, "%s\n", addr);

 uv_connect_t *connect_req = (uv_connect_t*)

malloc(sizeof(uv_connect_t));

 uv_tcp_t *socket = (uv_tcp_t*)

malloc(sizeof(uv_tcp_t));

 uv_tcp_init(loop, socket);

 uv_tcp_connect(connect_req, socket, (const struct

sockaddr*) res->ai_addr, on_connect);

 uv_freeaddrinfo(res);

}

libuv also provides the inverse uv_getnameinfo

[http://docs.libuv.org/en/v1.x/dns.html#c.uv_getnameinfo].

Network interfaces

Information about the system’s network interfaces can be

obtained through libuv using uv_interface_addresses. This

simple program just prints out all the interface details so

you get an idea of the fields that are available. This is useful

to allow your service to bind to IP addresses when it starts.

interfaces/main.c

1 #include <stdio.h>

http://docs.libuv.org/en/v1.x/dns.html#c.uv_getnameinfo

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

#include <uv.h>

int main() {

 char buf[512];

 uv_interface_address_t *info;

 int count, i;

 uv_interface_addresses(&info, &count);

 i = count;

 printf("Number of interfaces: %d\n", count);

 while (i--) {

 uv_interface_address_t interface_a = info[i];

 printf("Name: %s\n", interface_a.name);

 printf("Internal? %s\n",

interface_a.is_internal ? "Yes" : "No");

 if (interface_a.address.address4.sin_family ==

AF_INET) {

 uv_ip4_name(&interface_a.address.address4,

buf, sizeof(buf));

 printf("IPv4 address: %s\n", buf);

 }

 else if

(interface_a.address.address4.sin_family == AF_INET6) {

 uv_ip6_name(&interface_a.address.address6,

buf, sizeof(buf));

 printf("IPv6 address: %s\n", buf);

 }

 printf("\n");

 }

 uv_free_interface_addresses(info, count);

 return 0;

}

is_internal is true for loopback interfaces. Note that if a

physical interface has multiple IPv4/IPv6 addresses, the

name will be reported multiple times, with each address

being reported once.

[1]

[2]

[3]

[4]

https://beej.us/guide/bgnet/html/#broadcast-

packetshello-world

on Windows only supported on Windows Vista and later.

https://www.tldp.org/HOWTO/Multicast-HOWTO-

6.html#ss6.1

libuv use the system getaddrinfo in the libuv threadpool.

libuv v0.8.0 and earlier also included c-ares [https://c-

ares.haxx.se] as an alternative, but this has been removed

in v0.9.0.

https://beej.us/guide/bgnet/html/#broadcast-packetshello-world
https://www.tldp.org/HOWTO/Multicast-HOWTO-6.html#ss6.1
https://c-ares.haxx.se/

Threads

Wait a minute? Why are we on threads? Aren’t event loops

supposed to be the way to do web-scale programming?

Well… no. Threads are still the medium in which processors

do their jobs. Threads are therefore mighty useful

sometimes, even though you might have to wade through

various synchronization primitives.

Threads are used internally to fake the asynchronous nature

of all of the system calls. libuv also uses threads to allow

you, the application, to perform a task asynchronously that

is actually blocking, by spawning a thread and collecting the

result when it is done.

Today there are two predominant thread libraries: the

Windows threads implementation and POSIX’s pthreads(7)

[https://man7.org/linux/man-pages/man7/pthreads.7.html]. libuv’s thread

API is analogous to the pthreads API and often has similar

semantics.

A notable aspect of libuv’s thread facilities is that it is a self

contained section within libuv. Whereas other features

intimately depend on the event loop and callback principles,

threads are complete agnostic, they block as required,

signal errors directly via return values, and, as shown in the

first example, don’t even require a running event loop.

libuv’s thread API is also very limited since the semantics

and syntax of threads are different on all platforms, with

different levels of completeness.

This chapter makes the following assumption: There is

only one event loop, running in one thread (the main

https://man7.org/linux/man-pages/man7/pthreads.7.html

thread). No other thread interacts with the event loop

(except using uv_async_send).

Core thread operations

There isn’t much here, you just start a thread using

uv_thread_create() and wait for it to close using

uv_thread_join().

thread-create/main.c

1

2

3

4

5

6

7

8

9

10

 int tracklen = 10;

 uv_thread_t hare_id;

 uv_thread_t tortoise_id;

 uv_thread_create(&hare_id, hare, &tracklen);

 uv_thread_create(&tortoise_id, tortoise,

&tracklen);

 uv_thread_join(&hare_id);

 uv_thread_join(&tortoise_id);

 return 0;

}

Tip

uv_thread_t is just an alias for pthread_t on Unix, but this is

an implementation detail, avoid depending on it to always

be true.

The second parameter is the function which will serve as the

entry point for the thread, the last parameter is a void *

argument which can be used to pass custom parameters to

the thread. The function hare will now run in a separate

thread, scheduled pre-emptively by the operating system:

thread-create/main.c

1

2

3

4

5

6

7

8

9

 int tracklen = *((int *) arg);

 while (tracklen) {

 tracklen--;

 uv_sleep(1000);

 fprintf(stderr, "Hare ran another step\n");

 }

 fprintf(stderr, "Hare done running!\n");

}

Unlike pthread_join() which allows the target thread to pass

back a value to the calling thread using a second

parameter, uv_thread_join() does not. To send values use

Inter-thread communication.

Synchronization Primitives

This section is purposely spartan. This book is not about

threads, so I only catalogue any surprises in the libuv APIs

here. For the rest you can look at the pthreads(7)

[https://man7.org/linux/man-pages/man7/pthreads.7.html] man pages.

Mutexes

The mutex functions are a direct map to the pthread

equivalents.

libuv mutex functions

int uv_mutex_init(uv_mutex_t* handle);

int uv_mutex_init_recursive(uv_mutex_t* handle);

void uv_mutex_destroy(uv_mutex_t* handle);

void uv_mutex_lock(uv_mutex_t* handle);

int uv_mutex_trylock(uv_mutex_t* handle);

void uv_mutex_unlock(uv_mutex_t* handle);

https://man7.org/linux/man-pages/man7/pthreads.7.html

The uv_mutex_init(), uv_mutex_init_recursive() and

uv_mutex_trylock() functions will return 0 on success, and an

error code otherwise.

If libuv has been compiled with debugging enabled,

uv_mutex_destroy(), uv_mutex_lock() and uv_mutex_unlock() will

abort() on error. Similarly uv_mutex_trylock() will abort if the

error is anything other than EAGAIN or EBUSY.

Recursive mutexes are supported, but you should not rely

on them. Also, they should not be used with uv_cond_t

variables.

The default BSD mutex implementation will raise an error if

a thread which has locked a mutex attempts to lock it again.

For example, a construct like:

uv_mutex_init(a_mutex);

uv_mutex_lock(a_mutex);

uv_thread_create(thread_id, entry, (void *)a_mutex);

uv_mutex_lock(a_mutex);

// more things here

can be used to wait until another thread initializes some

stuff and then unlocks a_mutex but will lead to your program

crashing if in debug mode, or return an error in the second

call to uv_mutex_lock().

Note

Mutexes on Windows are always recursive.

Locks

Read-write locks are a more granular access mechanism.

Two readers can access shared memory at the same time. A

writer may not acquire the lock when it is held by a reader.

A reader or writer may not acquire a lock when a writer is

holding it. Read-write locks are frequently used in

databases. Here is a toy example.

locks/main.c - simple rwlocks

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

#include <stdio.h>

#include <uv.h>

uv_barrier_t blocker;

uv_rwlock_t numlock;

int shared_num;

void reader(void *n)

{

 int num = *(int *)n;

 int i;

 for (i = 0; i < 20; i++) {

 uv_rwlock_rdlock(&numlock);

 printf("Reader %d: acquired lock\n", num);

 printf("Reader %d: shared num = %d\n", num,

shared_num);

 uv_rwlock_rdunlock(&numlock);

 printf("Reader %d: released lock\n", num);

 }

 uv_barrier_wait(&blocker);

}

void writer(void *n)

{

 int num = *(int *)n;

 int i;

 for (i = 0; i < 20; i++) {

 uv_rwlock_wrlock(&numlock);

 printf("Writer %d: acquired lock\n", num);

 shared_num++;

 printf("Writer %d: incremented shared num =

%d\n", num, shared_num);

 uv_rwlock_wrunlock(&numlock);

 printf("Writer %d: released lock\n", num);

 }

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

 uv_barrier_wait(&blocker);

}

int main()

{

 uv_barrier_init(&blocker, 4);

 shared_num = 0;

 uv_rwlock_init(&numlock);

 uv_thread_t threads[3];

 int thread_nums[] = {1, 2, 1};

 uv_thread_create(&threads[0], reader,

&thread_nums[0]);

 uv_thread_create(&threads[1], reader,

&thread_nums[1]);

 uv_thread_create(&threads[2], writer,

&thread_nums[2]);

 uv_barrier_wait(&blocker);

 uv_barrier_destroy(&blocker);

 uv_rwlock_destroy(&numlock);

 return 0;

}

Run this and observe how the readers will sometimes

overlap. In case of multiple writers, schedulers will usually

give them higher priority, so if you add two writers, you’ll

see that both writers tend to finish first before the readers

get a chance again.

We also use barriers in the above example so that the main

thread can wait for all readers and writers to indicate they

have ended.

Others

libuv also supports semaphores

[https://en.wikipedia.org/wiki/Semaphore_(programming)], condition

variables

[https://en.wikipedia.org/wiki/Monitor_(synchronization)#Condition_variables_2]

and barriers [https://en.wikipedia.org/wiki/Barrier_(computer_science)] with

APIs very similar to their pthread counterparts.

In addition, libuv provides a convenience function uv_once().

Multiple threads can attempt to call uv_once() with a given

guard and a function pointer, only the first one will win,

the function will be called once and only once:

/* Initialize guard */

static uv_once_t once_only = UV_ONCE_INIT;

int i = 0;

void increment() {

 i++;

}

void thread1() {

 /* ... work */

 uv_once(once_only, increment);

}

void thread2() {

 /* ... work */

 uv_once(once_only, increment);

}

int main() {

 /* ... spawn threads */

}

After all threads are done, i == 1.

libuv v0.11.11 onwards also added a uv_key_t struct and api

[http://docs.libuv.org/en/v1.x/threading.html#thread-local-storage] for

thread-local storage.

https://en.wikipedia.org/wiki/Semaphore_(programming)
https://en.wikipedia.org/wiki/Monitor_(synchronization)#Condition_variables_2
https://en.wikipedia.org/wiki/Barrier_(computer_science)
http://docs.libuv.org/en/v1.x/threading.html#thread-local-storage

libuv work queue

uv_queue_work() is a convenience function that allows an

application to run a task in a separate thread, and have a

callback that is triggered when the task is done. A

seemingly simple function, what makes uv_queue_work()

tempting is that it allows potentially any third-party libraries

to be used with the event-loop paradigm. When you use

event loops, it is imperative to make sure that no function

which runs periodically in the loop thread blocks when

performing I/O or is a serious CPU hog, because this means

that the loop slows down and events are not being handled

at full capacity.

However, a lot of existing code out there features blocking

functions (for example a routine which performs I/O under

the hood) to be used with threads if you want

responsiveness (the classic ‘one thread per client’ server

model), and getting them to play with an event loop library

generally involves rolling your own system of running the

task in a separate thread. libuv just provides a convenient

abstraction for this.

Here is a simple example inspired by node.js is cancer

[http://widgetsandshit.com/teddziuba/2011/10/node-js-is-cancer.html]. We are

going to calculate fibonacci numbers, sleeping a bit along

the way, but run it in a separate thread so that the blocking

and CPU bound task does not prevent the event loop from

performing other activities.

queue-work/main.c - lazy fibonacci

1

2

3

void fib(uv_work_t *req) {

 int n = *(int *) req->data;

 if (random() % 2)

http://widgetsandshit.com/teddziuba/2011/10/node-js-is-cancer.html

4

5

6

7

8

9

10

11

12

13

 sleep(1);

 else

 sleep(3);

 long fib = fib_(n);

 fprintf(stderr, "%dth fibonacci is %lu\n", n, fib);

}

void after_fib(uv_work_t *req, int status) {

 fprintf(stderr, "Done calculating %dth

fibonacci\n", *(int *) req->data);

}

The actual task function is simple, nothing to show that it is

going to be run in a separate thread. The uv_work_t structure

is the clue. You can pass arbitrary data through it using the

void* data field and use it to communicate to and from the

thread. But be sure you are using proper locks if you are

changing things while both threads may be running.

The trigger is uv_queue_work:

queue-work/main.c

1

2

3

4

5

6

7

8

9

10

11

12

13

14

int main() {

 loop = uv_default_loop();

 int data[FIB_UNTIL];

 uv_work_t req[FIB_UNTIL];

 int i;

 for (i = 0; i < FIB_UNTIL; i++) {

 data[i] = i;

 req[i].data = (void *) &data[i];

 uv_queue_work(loop, &req[i], fib, after_fib);

 }

 return uv_run(loop, UV_RUN_DEFAULT);

}

The thread function will be launched in a separate thread,

passed the uv_work_t structure and once the function returns,

the after function will be called on the thread the event loop

is running in. It will be passed the same structure.

For writing wrappers to blocking libraries, a common pattern

is to use a baton to exchange data.

Since libuv version 0.9.4 an additional function, uv_cancel(),

is available. This allows you to cancel tasks on the libuv

work queue. Only tasks that are yet to be started can be

cancelled. If a task has already started executing, or it has

finished executing, uv_cancel() will fail.

uv_cancel() is useful to cleanup pending tasks if the user

requests termination. For example, a music player may

queue up multiple directories to be scanned for audio files.

If the user terminates the program, it should quit quickly

and not wait until all pending requests are run.

Let’s modify the fibonacci example to demonstrate

uv_cancel(). We first set up a signal handler for termination.

queue-cancel/main.c

1

2

3

4

5

6

7

8

9

10

11

12

13

int main() {

 loop = uv_default_loop();

 int data[FIB_UNTIL];

 int i;

 for (i = 0; i < FIB_UNTIL; i++) {

 data[i] = i;

 fib_reqs[i].data = (void *) &data[i];

 uv_queue_work(loop, &fib_reqs[i], fib,

after_fib);

 }

 uv_signal_t sig;

14

15

16

17

 uv_signal_init(loop, &sig);

 uv_signal_start(&sig, signal_handler, SIGINT);

 return uv_run(loop, UV_RUN_DEFAULT);

}

When the user triggers the signal by pressing Ctrl+C we

send uv_cancel() to all the workers. uv_cancel() will return 0

for those that are already executing or finished.

queue-cancel/main.c

1

2

3

4

5

6

7

8

9

void signal_handler(uv_signal_t *req, int signum)

{

 printf("Signal received!\n");

 int i;

 for (i = 0; i < FIB_UNTIL; i++) {

 uv_cancel((uv_req_t*) &fib_reqs[i]);

 }

 uv_signal_stop(req);

}

For tasks that do get cancelled successfully, the after

function is called with status set to UV_ECANCELED.

queue-cancel/main.c

1

2

3

4

void after_fib(uv_work_t *req, int status) {

 if (status == UV_ECANCELED)

 fprintf(stderr, "Calculation of %d

cancelled.\n", *(int *) req->data);

}

uv_cancel() can also be used with uv_fs_t and uv_getaddrinfo_t

requests. For the filesystem family of functions,

uv_fs_t.errorno will be set to UV_ECANCELED.

Tip

A well designed program would have a way to terminate

long running workers that have already started executing.

Such a worker could periodically check for a variable that

only the main process sets to signal termination.

Inter-thread communication

Sometimes you want various threads to actually send each

other messages while they are running. For example you

might be running some long duration task in a separate

thread (perhaps using uv_queue_work) but want to notify

progress to the main thread. This is a simple example of

having a download manager informing the user of the status

of running downloads.

progress/main.c

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

uv_loop_t *loop;

uv_async_t async;

int main() {

 loop = uv_default_loop();

 uv_work_t req;

 int size = 10240;

 req.data = (void*) &size;

 uv_async_init(loop, &async, print_progress);

 uv_queue_work(loop, &req, fake_download, after);

 return uv_run(loop, UV_RUN_DEFAULT);

}

The async thread communication works on loops so

although any thread can be the message sender, only

threads with libuv loops can be receivers (or rather the loop

is the receiver). libuv will invoke the callback (print_progress)

with the async watcher whenever it receives a message.

Warning

It is important to realize that since the message send is

async, the callback may be invoked immediately after

uv_async_send is called in another thread, or it may be

invoked after some time. libuv may also combine multiple

calls to uv_async_send and invoke your callback only once.

The only guarantee that libuv makes is – The callback

function is called at least once after the call to

uv_async_send. If you have no pending calls to uv_async_send,

the callback won’t be called. If you make two or more calls,

and libuv hasn’t had a chance to run the callback yet, it

may invoke your callback only once for the multiple

invocations of uv_async_send. Your callback will never be

called twice for just one event.

progress/main.c

1

2

3

4

5

6

7

8

9

10

11

12

double percentage;

void fake_download(uv_work_t *req) {

 int size = *((int*) req->data);

 int downloaded = 0;

 while (downloaded < size) {

 percentage = downloaded*100.0/size;

 async.data = (void*) &percentage;

 uv_async_send(&async);

 sleep(1);

 downloaded += (200+random())%1000; // can only

13

14

15

download max 1000bytes/sec,

 // but at

least a 200;

 }

}

In the download function, we modify the progress indicator

and queue the message for delivery with uv_async_send.

Remember: uv_async_send is also non-blocking and will return

immediately.

progress/main.c

1

2

3

4

void print_progress(uv_async_t *handle) {

 double percentage = *((double*) handle->data);

 fprintf(stderr, "Downloaded %.2f%%\n", percentage);

}

The callback is a standard libuv pattern, extracting the data

from the watcher.

Finally it is important to remember to clean up the watcher.

progress/main.c

1

2

3

4

void after(uv_work_t *req, int status) {

 fprintf(stderr, "Download complete\n");

 uv_close((uv_handle_t*) &async, NULL);

}

After this example, which showed the abuse of the data field,

bnoordhuis [https://github.com/bnoordhuis] pointed out that using

the data field is not thread safe, and uv_async_send() is

actually only meant to wake up the event loop. Use a mutex

https://github.com/bnoordhuis

or rwlock to ensure accesses are performed in the right

order.

Note

mutexes and rwlocks DO NOT work inside a signal

handler, whereas uv_async_send does.

One use case where uv_async_send is required is when

interoperating with libraries that require thread affinity for

their functionality. For example in node.js, a v8 engine

instance, contexts and its objects are bound to the thread

that the v8 instance was started in. Interacting with v8 data

structures from another thread can lead to undefined

results. Now consider some node.js module which binds a

third party library. It may go something like this:

1. In node, the third party library is set up with a JavaScript

callback to be invoked for more information:

var lib = require('lib');

lib.on_progress(function() {

 console.log("Progress");

});

lib.do();

// do other stuff

2. lib.do is supposed to be non-blocking but the third party

lib is blocking, so the binding uses uv_queue_work.

3. The actual work being done in a separate thread wants

to invoke the progress callback, but cannot directly call

into v8 to interact with JavaScript. So it uses

uv_async_send.

4. The async callback, invoked in the main loop thread,

which is the v8 thread, then interacts with v8 to invoke

the JavaScript callback.

Processes

libuv offers considerable child process management,

abstracting the platform differences and allowing

communication with the child process using streams or

named pipes.

A common idiom in Unix is for every process to do one thing

and do it well. In such a case, a process often uses multiple

child processes to achieve tasks (similar to using pipes in

shells). A multi-process model with messages may also be

easier to reason about compared to one with threads and

shared memory.

A common refrain against event-based programs is that

they cannot take advantage of multiple cores in modern

computers. In a multi-threaded program the kernel can

perform scheduling and assign different threads to different

cores, improving performance. But an event loop has only

one thread. The workaround can be to launch multiple

processes instead, with each process running an event loop,

and each process getting assigned to a separate CPU core.

Spawning child processes

The simplest case is when you simply want to launch a

process and know when it exits. This is achieved using

uv_spawn.

spawn/main.c

1

2

uv_loop_t *loop;

uv_process_t child_req;

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

uv_process_options_t options;

int main() {

 loop = uv_default_loop();

 char* args[3];

 args[0] = "mkdir";

 args[1] = "test-dir";

 args[2] = NULL;

 options.exit_cb = on_exit;

 options.file = "mkdir";

 options.args = args;

 int r;

 if ((r = uv_spawn(loop, &child_req, &options))) {

 fprintf(stderr, "%s\n", uv_strerror(r));

 return 1;

 } else {

 fprintf(stderr, "Launched process with ID

%d\n", child_req.pid);

 }

 return uv_run(loop, UV_RUN_DEFAULT);

}

Note

options is implicitly initialized with zeros since it is a global

variable. If you change options to a local variable,

remember to initialize it to null out all unused fields:

uv_process_options_t options = {0};

The uv_process_t struct only acts as the handle, all options

are set via uv_process_options_t. To simply launch a process,

you need to set only the file and args fields. file is the

program to execute. Since uv_spawn uses execvp(3)

[https://man7.org/linux/man-pages/man3/execvp.3.html] internally, there

is no need to supply the full path. Finally as per underlying

conventions, the arguments array has to be one larger

https://man7.org/linux/man-pages/man3/execvp.3.html

than the number of arguments, with the last element

being NULL.

After the call to uv_spawn, uv_process_t.pid will contain the

process ID of the child process.

The exit callback will be invoked with the exit status and the

type of signal which caused the exit.

spawn/main.c

1

2

3

4

void on_exit(uv_process_t *req, int64_t exit_status, int

term_signal) {

 fprintf(stderr, "Process exited with status %"

PRId64 ", signal %d\n", exit_status, term_signal);

 uv_close((uv_handle_t*) req, NULL);

It is required to close the process watcher after the process

exits.

Changing process parameters

Before the child process is launched you can control the

execution environment using fields in uv_process_options_t.

Change execution directory

Set uv_process_options_t.cwd to the corresponding directory.

Set environment variables

uv_process_options_t.env is a null-terminated array of strings,

each of the form VAR=VALUE used to set up the environment

variables for the process. Set this to NULL to inherit the

environment from the parent (this) process.

Option flags

Setting uv_process_options_t.flags to a bitwise OR of the

following flags, modifies the child process behaviour:

UV_PROCESS_SETUID - sets the child’s execution user ID to

uv_process_options_t.uid.

UV_PROCESS_SETGID - sets the child’s execution group ID to

uv_process_options_t.gid.

Changing the UID/GID is only supported on Unix, uv_spawn

will fail on Windows with UV_ENOTSUP.

UV_PROCESS_WINDOWS_VERBATIM_ARGUMENTS - No quoting or

escaping of uv_process_options_t.args is done on

Windows. Ignored on Unix.

UV_PROCESS_DETACHED - Starts the child process in a new

session, which will keep running after the parent process

exits. See example below.

Detaching processes

Passing the flag UV_PROCESS_DETACHED can be used to launch

daemons, or child processes which are independent of the

parent so that the parent exiting does not affect it.

detach/main.c

1

2

3

4

5

int main() {

 loop = uv_default_loop();

 char* args[3];

 args[0] = "sleep";

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

 args[1] = "100";

 args[2] = NULL;

 options.exit_cb = NULL;

 options.file = "sleep";

 options.args = args;

 options.flags = UV_PROCESS_DETACHED;

 int r;

 if ((r = uv_spawn(loop, &child_req, &options))) {

 fprintf(stderr, "%s\n", uv_strerror(r));

 return 1;

 }

 fprintf(stderr, "Launched sleep with PID %d\n",

child_req.pid);

 uv_unref((uv_handle_t*) &child_req);

 return uv_run(loop, UV_RUN_DEFAULT);

Just remember that the handle is still monitoring the child,

so your program won’t exit. Use uv_unref() if you want to be

more fire-and-forget.

Sending signals to processes

libuv wraps the standard kill(2) system call on Unix and

implements one with similar semantics on Windows, with

one caveat: all of SIGTERM, SIGINT and SIGKILL, lead to

termination of the process. The signature of uv_kill is:

uv_err_t uv_kill(int pid, int signum);

For processes started using libuv, you may use

uv_process_kill instead, which accepts the uv_process_t

watcher as the first argument, rather than the pid. In this

case, remember to call uv_close on the watcher.

Signals

libuv provides wrappers around Unix signals with some

Windows support [http://docs.libuv.org/en/v1.x/signal.html#signal] as

well.

Use uv_signal_init() to initialize a handle and associate it

with a loop. To listen for particular signals on that handler,

use uv_signal_start() with the handler function. Each handler

can only be associated with one signal number, with

subsequent calls to uv_signal_start() overwriting earlier

associations. Use uv_signal_stop() to stop watching. Here is a

small example demonstrating the various possibilities:

signal/main.c

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <uv.h>

uv_loop_t* create_loop()

{

 uv_loop_t *loop = malloc(sizeof(uv_loop_t));

 if (loop) {

 uv_loop_init(loop);

 }

 return loop;

}

void signal_handler(uv_signal_t *handle, int signum)

{

 printf("Signal received: %d\n", signum);

 uv_signal_stop(handle);

}

// two signal handlers in one loop

void thread1_worker(void *userp)

{

 uv_loop_t *loop1 = create_loop();

 uv_signal_t sig1a, sig1b;

http://docs.libuv.org/en/v1.x/signal.html#signal

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

 uv_signal_init(loop1, &sig1a);

 uv_signal_start(&sig1a, signal_handler, SIGUSR1);

 uv_signal_init(loop1, &sig1b);

 uv_signal_start(&sig1b, signal_handler, SIGUSR1);

 uv_run(loop1, UV_RUN_DEFAULT);

}

// two signal handlers, each in its own loop

void thread2_worker(void *userp)

{

 uv_loop_t *loop2 = create_loop();

 uv_loop_t *loop3 = create_loop();

 uv_signal_t sig2;

 uv_signal_init(loop2, &sig2);

 uv_signal_start(&sig2, signal_handler, SIGUSR1);

 uv_signal_t sig3;

 uv_signal_init(loop3, &sig3);

 uv_signal_start(&sig3, signal_handler, SIGUSR1);

 while (uv_run(loop2, UV_RUN_NOWAIT) ||

uv_run(loop3, UV_RUN_NOWAIT)) {

 }

}

int main()

{

 printf("PID %d\n", getpid());

 uv_thread_t thread1, thread2;

 uv_thread_create(&thread1, thread1_worker, 0);

 uv_thread_create(&thread2, thread2_worker, 0);

 uv_thread_join(&thread1);

 uv_thread_join(&thread2);

 return 0;

}

Note

uv_run(loop, UV_RUN_NOWAIT) is similar to uv_run(loop,

UV_RUN_ONCE) in that it will process only one event.

UV_RUN_ONCE blocks if there are no pending events, while

UV_RUN_NOWAIT will return immediately. We use NOWAIT

so that one of the loops isn’t starved because the other

one has no pending activity.

Send SIGUSR1 to the process, and you’ll find the handler

being invoked 4 times, one for each uv_signal_t. The handler

just stops each handle, so that the program exits. This sort

of dispatch to all handlers is very useful. A server using

multiple event loops could ensure that all data was safely

saved before termination, simply by every loop adding a

watcher for SIGINT.

Child Process I/O

A normal, newly spawned process has its own set of file

descriptors, with 0, 1 and 2 being stdin, stdout and stderr

respectively. Sometimes you may want to share file

descriptors with the child. For example, perhaps your

applications launches a sub-command and you want any

errors to go in the log file, but ignore stdout. For this you’d

like to have stderr of the child be the same as the stderr of

the parent. In this case, libuv supports inheriting file

descriptors. In this sample, we invoke the test program,

which is:

proc-streams/test.c

#include <stdio.h>

int main()

{

 fprintf(stderr, "This is stderr\n");

 printf("This is stdout\n");

 return 0;

}

The actual program proc-streams runs this while sharing only

stderr. The file descriptors of the child process are set using

the stdio field in uv_process_options_t. First set the stdio_count

field to the number of file descriptors being set.

uv_process_options_t.stdio is an array of uv_stdio_container_t,

which is:

typedef struct uv_stdio_container_s {

 uv_stdio_flags flags;

 union {

 uv_stream_t* stream;

 int fd;

 } data;

} uv_stdio_container_t;

where flags can have several values. Use UV_IGNORE if it isn’t

going to be used. If the first three stdio fields are marked as

UV_IGNORE they’ll redirect to /dev/null.

Since we want to pass on an existing descriptor, we’ll use

UV_INHERIT_FD. Then we set the fd to stderr.

proc-streams/main.c

1

2

3

4

5

6

7

8

9

10

11

int main() {

 loop = uv_default_loop();

 /* ... */

 options.stdio_count = 3;

 uv_stdio_container_t child_stdio[3];

 child_stdio[0].flags = UV_IGNORE;

 child_stdio[1].flags = UV_IGNORE;

 child_stdio[2].flags = UV_INHERIT_FD;

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

 child_stdio[2].data.fd = 2;

 options.stdio = child_stdio;

 options.exit_cb = on_exit;

 options.file = args[0];

 options.args = args;

 int r;

 if ((r = uv_spawn(loop, &child_req, &options))) {

 fprintf(stderr, "%s\n", uv_strerror(r));

 return 1;

 }

 return uv_run(loop, UV_RUN_DEFAULT);

}

If you run proc-stream you’ll see that only the line “This is

stderr” will be displayed. Try marking stdout as being

inherited and see the output.

It is dead simple to apply this redirection to streams. By

setting flags to UV_INHERIT_STREAM and setting data.stream to

the stream in the parent process, the child process can treat

that stream as standard I/O. This can be used to implement

something like CGI

[https://en.wikipedia.org/wiki/Common_Gateway_Interface].

A sample CGI script/executable is:

cgi/tick.c

#include <stdio.h>

#include <unistd.h>

int main() {

 int i;

 for (i = 0; i < 10; i++) {

 printf("tick\n");

 fflush(stdout);

 sleep(1);

https://en.wikipedia.org/wiki/Common_Gateway_Interface

 }

 printf("BOOM!\n");

 return 0;

}

The CGI server combines the concepts from this chapter and

Networking so that every client is sent ten ticks after which

that connection is closed.

cgi/main.c

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

void on_new_connection(uv_stream_t *server, int status)

{

 if (status == -1) {

 // error!

 return;

 }

 uv_tcp_t *client = (uv_tcp_t*)

malloc(sizeof(uv_tcp_t));

 uv_tcp_init(loop, client);

 if (uv_accept(server, (uv_stream_t*) client) == 0)

{

 invoke_cgi_script(client);

 }

 else {

 uv_close((uv_handle_t*) client, NULL);

 }

Here we simply accept the TCP connection and pass on the

socket (stream) to invoke_cgi_script.

cgi/main.c

1

2

3

4

 args[1] = NULL;

 /* ... finding the executable path and setting up

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

arguments ... */

 options.stdio_count = 3;

 uv_stdio_container_t child_stdio[3];

 child_stdio[0].flags = UV_IGNORE;

 child_stdio[1].flags = UV_INHERIT_STREAM;

 child_stdio[1].data.stream = (uv_stream_t*) client;

 child_stdio[2].flags = UV_IGNORE;

 options.stdio = child_stdio;

 options.exit_cb = cleanup_handles;

 options.file = args[0];

 options.args = args;

 // Set this so we can close the socket after the

child process exits.

 child_req.data = (void*) client;

 int r;

 if ((r = uv_spawn(loop, &child_req, &options))) {

 fprintf(stderr, "%s\n", uv_strerror(r));

The stdout of the CGI script is set to the socket so that

whatever our tick script prints, gets sent to the client. By

using processes, we can offload the read/write buffering to

the operating system, so in terms of convenience this is

great. Just be warned that creating processes is a costly

task.

Parent-child IPC

A parent and child can have one or two way communication

over a pipe created by settings uv_stdio_container_t.flags to

a bit-wise combination of UV_CREATE_PIPE and UV_READABLE_PIPE

or UV_WRITABLE_PIPE. The read/write flag is from the

perspective of the child process. In this case, the

uv_stream_t* stream field must be set to point to an initialized,

unopened uv_pipe_t instance.

New stdio Pipes

The uv_pipe_t structure represents more than just pipe(7)

[https://man7.org/linux/man-pages/man7/pipe.7.html] (or |), but supports

any streaming file-like objects. On Windows, the only object

of that description is the Named Pipe

[https://docs.microsoft.com/en-us/windows/win32/ipc/named-pipes]. On Unix,

this could be any of Unix Domain Socket

[https://man7.org/linux/man-pages/man7/unix.7.html], or derived from

mkfifo(1) [https://man7.org/linux/man-pages/man1/mkfifo.1.html], or it

could actually be a pipe(7) [https://man7.org/linux/man-

pages/man7/pipe.7.html]. When uv_spawn initializes a uv_pipe_t due

to the UV_CREATE_PIPE flag, it opts for creating a

socketpair(2) [https://man7.org/linux/man-pages/man2/socketpair.2.html].

This is intended for the purpose of allowing multiple libuv

processes to communicate with IPC. This is discussed below.

Arbitrary process IPC

Since domain sockets [1] can have a well known name and

a location in the file-system they can be used for IPC

between unrelated processes. The D-BUS

[https://www.freedesktop.org/wiki/Software/dbus] system used by open

source desktop environments uses domain sockets for event

notification. Various applications can then react when a

contact comes online or new hardware is detected. The

MySQL server also runs a domain socket on which clients

can interact with it.

When using domain sockets, a client-server pattern is

usually followed with the creator/owner of the socket acting

as the server. After the initial setup, messaging is no

different from TCP, so we’ll re-use the echo server example.

pipe-echo-server/main.c

https://man7.org/linux/man-pages/man7/pipe.7.html
https://docs.microsoft.com/en-us/windows/win32/ipc/named-pipes
https://man7.org/linux/man-pages/man7/unix.7.html
https://man7.org/linux/man-pages/man1/mkfifo.1.html
https://man7.org/linux/man-pages/man7/pipe.7.html
https://man7.org/linux/man-pages/man2/socketpair.2.html
https://www.freedesktop.org/wiki/Software/dbus

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

void remove_sock(int sig) {

 uv_fs_t req;

 uv_fs_unlink(loop, &req, PIPENAME, NULL);

 exit(0);

}

int main() {

 loop = uv_default_loop();

 uv_pipe_t server;

 uv_pipe_init(loop, &server, 0);

 signal(SIGINT, remove_sock);

 int r;

 if ((r = uv_pipe_bind(&server, PIPENAME))) {

 fprintf(stderr, "Bind error %s\n",

uv_err_name(r));

 return 1;

 }

 if ((r = uv_listen((uv_stream_t*) &server, 128,

on_new_connection))) {

 fprintf(stderr, "Listen error %s\n",

uv_err_name(r));

 return 2;

 }

 return uv_run(loop, UV_RUN_DEFAULT);

}

We name the socket echo.sock which means it will be created

in the local directory. This socket now behaves no different

from TCP sockets as far as the stream API is concerned. You

can test this server using socat [http://www.dest-unreach.org/socat/]:

$ socat - /path/to/socket

A client which wants to connect to a domain socket will use:

void uv_pipe_connect(uv_connect_t *req, uv_pipe_t *handle,

const char *name, uv_connect_cb cb);

http://www.dest-unreach.org/socat/

where name will be echo.sock or similar. On Unix systems, name

must point to a valid file (e.g. /tmp/echo.sock). On Windows,

name follows a \\?\pipe\echo.sock format.

Sending file descriptors over pipes

The cool thing about domain sockets is that file descriptors

can be exchanged between processes by sending them over

a domain socket. This allows processes to hand off their I/O

to other processes. Applications include load-balancing

servers, worker processes and other ways to make optimum

use of CPU. libuv only supports sending TCP sockets or

other pipes over pipes for now.

To demonstrate, we will look at a echo server

implementation that hands of clients to worker processes in

a round-robin fashion. This program is a bit involved, and

while only snippets are included in the book, it is

recommended to read the full code to really understand it.

The worker process is quite simple, since the file-descriptor

is handed over to it by the master.

multi-echo-server/worker.c

1

2

3

4

5

6

7

8

9

10

11

uv_loop_t *loop;

uv_pipe_t queue;

int main() {

 loop = uv_default_loop();

 uv_pipe_init(loop, &queue, 1 /* ipc */);

 uv_pipe_open(&queue, 0);

 uv_read_start((uv_stream_t*)&queue, alloc_buffer,

on_new_connection);

 return uv_run(loop, UV_RUN_DEFAULT);

}

queue is the pipe connected to the master process on the

other end, along which new file descriptors get sent. It is

important to set the ipc argument of uv_pipe_init to 1 to

indicate this pipe will be used for inter-process

communication! Since the master will write the file handle

to the standard input of the worker, we connect the pipe to

stdin using uv_pipe_open.

multi-echo-server/worker.c

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

void on_new_connection(uv_stream_t *q, ssize_t nread,

const uv_buf_t *buf) {

 if (nread < 0) {

 if (nread != UV_EOF)

 fprintf(stderr, "Read error %s\n",

uv_err_name(nread));

 uv_close((uv_handle_t*) q, NULL);

 return;

 }

 uv_pipe_t *pipe = (uv_pipe_t*) q;

 if (!uv_pipe_pending_count(pipe)) {

 fprintf(stderr, "No pending count\n");

 return;

 }

 uv_handle_type pending =

uv_pipe_pending_type(pipe);

 assert(pending == UV_TCP);

 uv_tcp_t *client = (uv_tcp_t*)

malloc(sizeof(uv_tcp_t));

 uv_tcp_init(loop, client);

 if (uv_accept(q, (uv_stream_t*) client) == 0) {

 uv_os_fd_t fd;

 uv_fileno((const uv_handle_t*) client, &fd);

 fprintf(stderr, "Worker %d: Accepted fd %d\n",

getpid(), fd);

 uv_read_start((uv_stream_t*) client,

alloc_buffer, echo_read);

 }

 else {

 uv_close((uv_handle_t*) client, NULL);

 }

}

First we call uv_pipe_pending_count() to ensure that a handle is

available to read out. If your program could deal with

different types of handles, uv_pipe_pending_type() can be used

to determine the type. Although accept seems odd in this

code, it actually makes sense. What accept traditionally does

is get a file descriptor (the client) from another file

descriptor (The listening socket). Which is exactly what we

do here. Fetch the file descriptor (client) from queue. From

this point the worker does standard echo server stuff.

Turning now to the master, let’s take a look at how the

workers are launched to allow load balancing.

multi-echo-server/main.c

1

2

3

4

5

struct child_worker {

 uv_process_t req;

 uv_process_options_t options;

 uv_pipe_t pipe;

} *workers;

The child_worker structure wraps the process, and the pipe

between the master and the individual process.

multi-echo-server/main.c

1

2

3

4

void setup_workers() {

 round_robin_counter = 0;

 // ...

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

 // launch same number of workers as number of CPUs

 uv_cpu_info_t *info;

 int cpu_count;

 uv_cpu_info(&info, &cpu_count);

 uv_free_cpu_info(info, cpu_count);

 child_worker_count = cpu_count;

 workers = calloc(cpu_count, sizeof(struct

child_worker));

 while (cpu_count--) {

 struct child_worker *worker =

&workers[cpu_count];

 uv_pipe_init(loop, &worker->pipe, 1);

 uv_stdio_container_t child_stdio[3];

 child_stdio[0].flags = UV_CREATE_PIPE |

UV_READABLE_PIPE;

 child_stdio[0].data.stream = (uv_stream_t*)

&worker->pipe;

 child_stdio[1].flags = UV_IGNORE;

 child_stdio[2].flags = UV_INHERIT_FD;

 child_stdio[2].data.fd = 2;

 worker->options.stdio = child_stdio;

 worker->options.stdio_count = 3;

 worker->options.exit_cb = close_process_handle;

 worker->options.file = args[0];

 worker->options.args = args;

 uv_spawn(loop, &worker->req, &worker->options);

 fprintf(stderr, "Started worker %d\n", worker-

>req.pid);

 }

}

In setting up the workers, we use the nifty libuv function

uv_cpu_info to get the number of CPUs so we can launch an

equal number of workers. Again it is important to initialize

the pipe acting as the IPC channel with the third argument

as 1. We then indicate that the child process’ stdin is to be a

readable pipe (from the point of view of the child).

Everything is straightforward till here. The workers are

launched and waiting for file descriptors to be written to

their standard input.

It is in on_new_connection (the TCP infrastructure is initialized

in main()), that we accept the client socket and pass it along

to the next worker in the round-robin.

multi-echo-server/main.c

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

void on_new_connection(uv_stream_t *server, int status)

{

 if (status == -1) {

 // error!

 return;

 }

 uv_tcp_t *client = (uv_tcp_t*)

malloc(sizeof(uv_tcp_t));

 uv_tcp_init(loop, client);

 if (uv_accept(server, (uv_stream_t*) client) == 0)

{

 uv_write_t *write_req = (uv_write_t*)

malloc(sizeof(uv_write_t));

 dummy_buf = uv_buf_init("a", 1);

 struct child_worker *worker =

&workers[round_robin_counter];

 uv_write2(write_req, (uv_stream_t*) &worker-

>pipe, &dummy_buf, 1, (uv_stream_t*) client, NULL);

 round_robin_counter = (round_robin_counter + 1)

% child_worker_count;

 }

 else {

 uv_close((uv_handle_t*) client, NULL);

 }

}

The uv_write2 call handles all the abstraction and it is simply

a matter of passing in the handle (client) as the right

[1]

argument. With this our multi-process echo server is

operational.

Thanks to Kyle for pointing out

[https://github.com/nikhilm/uvbook/issues/56] that uv_write2() requires

a non-empty buffer even when sending handles.

In this section domain sockets stands in for named pipes

on Windows as well.

https://github.com/nikhilm/uvbook/issues/56

Advanced event loops

libuv provides considerable user control over event loops,

and you can achieve interesting results by juggling multiple

loops. You can also embed libuv’s event loop into another

event loop based library – imagine a Qt based UI, and Qt’s

event loop driving a libuv backend which does intensive

system level tasks.

Stopping an event loop

uv_stop() can be used to stop an event loop. The earliest the

loop will stop running is on the next iteration, possibly later.

This means that events that are ready to be processed in

this iteration of the loop will still be processed, so uv_stop()

can’t be used as a kill switch. When uv_stop() is called, the

loop won’t block for i/o on this iteration. The semantics of

these things can be a bit difficult to understand, so let’s look

at uv_run() where all the control flow occurs.

src/unix/core.c - uv_run

1

2

3

4

5

6

7

8

9

10

11

12

13

 break;

 case UV_UDP:

 uv__udp_finish_close((uv_udp_t*)handle);

 break;

 default:

 assert(0);

 break;

 }

 uv__handle_unref(handle);

 QUEUE_REMOVE(&handle->handle_queue);

14

15

16

17

18

19

20

21

 if (handle->close_cb) {

 handle->close_cb(handle);

 }

}

static void uv__run_closing_handles(uv_loop_t* loop) {

stop_flag is set by uv_stop(). Now all libuv callbacks are

invoked within the event loop, which is why invoking

uv_stop() in them will still lead to this iteration of the loop

occurring. First libuv updates timers, then runs pending

timer, idle and prepare callbacks, and invokes any pending

I/O callbacks. If you were to call uv_stop() in any of them,

stop_flag would be set. This causes uv_backend_timeout() to

return 0, which is why the loop does not block on I/O. If on

the other hand, you called uv_stop() in one of the check

handlers, I/O has already finished and is not affected.

uv_stop() is useful to shutdown a loop when a result has

been computed or there is an error, without having to

ensure that all handlers are stopped one by one.

Here is a simple example that stops the loop and

demonstrates how the current iteration of the loop still takes

places.

uvstop/main.c

1

2

3

4

5

6

7

#include <stdio.h>

#include <uv.h>

int64_t counter = 0;

void idle_cb(uv_idle_t *handle) {

 printf("Idle callback\n");

 counter++;

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

 if (counter >= 5) {

 uv_stop(uv_default_loop());

 printf("uv_stop() called\n");

 }

}

void prep_cb(uv_prepare_t *handle) {

 printf("Prep callback\n");

}

int main() {

 uv_idle_t idler;

 uv_prepare_t prep;

 uv_idle_init(uv_default_loop(), &idler);

 uv_idle_start(&idler, idle_cb);

 uv_prepare_init(uv_default_loop(), &prep);

 uv_prepare_start(&prep, prep_cb);

 uv_run(uv_default_loop(), UV_RUN_DEFAULT);

 return 0;

}

Utilities

This chapter catalogues tools and techniques which are

useful for common tasks. The libev man page

[http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod#COMMON_OR_USEFUL_IDI

OMS_OR_BOTH] already covers some patterns which can be

adopted to libuv through simple API changes. It also covers

parts of the libuv API that don’t require entire chapters

dedicated to them.

Timers

Timers invoke the callback after a certain time has elapsed

since the timer was started. libuv timers can also be set to

invoke at regular intervals instead of just once.

Simple use is to init a watcher and start it with a timeout, and

optional repeat. Timers can be stopped at any time.

uv_timer_t timer_req;

uv_timer_init(loop, &timer_req);

uv_timer_start(&timer_req, callback, 5000, 2000);

will start a repeating timer, which first starts 5 seconds (the

timeout) after the execution of uv_timer_start, then repeats

every 2 seconds (the repeat). Use:

uv_timer_stop(&timer_req);

to stop the timer. This can be used safely from within the

callback as well.

The repeat interval can be modified at any time with:

http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod#COMMON_OR_USEFUL_IDIOMS_OR_BOTH

uv_timer_set_repeat(uv_timer_t *timer, int64_t repeat);

which will take effect when possible. If this function is

called from a timer callback, it means:

If the timer was non-repeating, the timer has already

been stopped. Use uv_timer_start again.

If the timer is repeating, the next timeout has already

been scheduled, so the old repeat interval will be used

once more before the timer switches to the new

interval.

The utility function:

int uv_timer_again(uv_timer_t *)

applies only to repeating timers and is equivalent to

stopping the timer and then starting it with both initial

timeout and repeat set to the old repeat value. If the timer

hasn’t been started it fails (error code UV_EINVAL) and returns

-1.

An actual timer example is in the reference count section.

Event loop reference count

The event loop only runs as long as there are active

handles. This system works by having every handle increase

the reference count of the event loop when it is started and

decreasing the reference count when stopped. It is also

possible to manually change the reference count of handles

using:

void uv_ref(uv_handle_t*);

void uv_unref(uv_handle_t*);

These functions can be used to allow a loop to exit even

when a watcher is active or to use custom objects to keep

the loop alive.

The latter can be used with interval timers. You might have

a garbage collector which runs every X seconds, or your

network service might send a heartbeat to others

periodically, but you don’t want to have to stop them along

all clean exit paths or error scenarios. Or you want the

program to exit when all your other watchers are done. In

that case just unref the timer immediately after creation so

that if it is the only watcher running then uv_run will still exit.

This is also used in node.js where some libuv methods are

being bubbled up to the JS API. A uv_handle_t (the superclass

of all watchers) is created per JS object and can be

ref/unrefed.

ref-timer/main.c

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

uv_loop_t *loop;

uv_timer_t gc_req;

uv_timer_t fake_job_req;

int main() {

 loop = uv_default_loop();

 uv_timer_init(loop, &gc_req);

 uv_unref((uv_handle_t*) &gc_req);

 uv_timer_start(&gc_req, gc, 0, 2000);

 // could actually be a TCP download or something

 uv_timer_init(loop, &fake_job_req);

 uv_timer_start(&fake_job_req, fake_job, 9000, 0);

 return uv_run(loop, UV_RUN_DEFAULT);

}

We initialize the garbage collector timer, then immediately

unref it. Observe how after 9 seconds, when the fake job is

done, the program automatically exits, even though the

garbage collector is still running.

Idler pattern

The callbacks of idle handles are invoked once per event

loop. The idle callback can be used to perform some very

low priority activity. For example, you could dispatch a

summary of the daily application performance to the

developers for analysis during periods of idleness, or use

the application’s CPU time to perform SETI calculations :) An

idle watcher is also useful in a GUI application. Say you are

using an event loop for a file download. If the TCP socket is

still being established and no other events are present your

event loop will pause (block), which means your progress

bar will freeze and the user will face an unresponsive

application. In such a case queue up and idle watcher to

keep the UI operational.

idle-compute/main.c

1

2

3

4

5

6

7

8

9

10

11

12

13

uv_loop_t *loop;

uv_fs_t stdin_watcher;

uv_idle_t idler;

char buffer[1024];

int main() {

 loop = uv_default_loop();

 uv_idle_init(loop, &idler);

 uv_buf_t buf = uv_buf_init(buffer, 1024);

 uv_fs_read(loop, &stdin_watcher, 0, &buf, 1, -1,

on_type);

 uv_idle_start(&idler, crunch_away);

14

15

 return uv_run(loop, UV_RUN_DEFAULT);

}

Here we initialize the idle watcher and queue it up along

with the actual events we are interested in. crunch_away will

now be called repeatedly until the user types something and

presses Return. Then it will be interrupted for a brief amount

as the loop deals with the input data, after which it will keep

calling the idle callback again.

idle-compute/main.c

1

2

3

4

5

6

7

8

9

10

void crunch_away(uv_idle_t* handle) {

 // Compute extra-terrestrial life

 // fold proteins

 // computer another digit of PI

 // or similar

 fprintf(stderr, "Computing PI...\n");

 // just to avoid overwhelming your terminal

emulator

 uv_idle_stop(handle);

}

Passing data to worker thread

When using uv_queue_work you’ll usually need to pass

complex data through to the worker thread. The solution is

to use a struct and set uv_work_t.data to point to it. A slight

variation is to have the uv_work_t itself as the first member of

this struct (called a baton [1]). This allows cleaning up the

work request and all the data in one free call.

1

2

struct ftp_baton {

 uv_work_t req;

 char *host;

3

4

5

6

7

 int port;

 char *username;

 char *password;

}

1

2

3

4

5

6

7

ftp_baton *baton = (ftp_baton*)

malloc(sizeof(ftp_baton));

baton->req.data = (void*) baton;

baton->host = strdup("my.webhost.com");

baton->port = 21;

// ...

uv_queue_work(loop, &baton->req, ftp_session,

ftp_cleanup);

Here we create the baton and queue the task.

Now the task function can extract the data it needs:

1

2

3

4

5

6

7

8

9

10

11

12

13

void ftp_session(uv_work_t *req) {

 ftp_baton *baton = (ftp_baton*) req->data;

 fprintf(stderr, "Connecting to %s\n", baton->host);

}

void ftp_cleanup(uv_work_t *req) {

 ftp_baton *baton = (ftp_baton*) req->data;

 free(baton->host);

 // ...

 free(baton);

}

We then free the baton which also frees the watcher.

External I/O with polling

Usually third-party libraries will handle their own I/O, and

keep track of their sockets and other files internally. In this

case it isn’t possible to use the standard stream I/O

operations, but the library can still be integrated into the

libuv event loop. All that is required is that the library allow

you to access the underlying file descriptors and provide

functions that process tasks in small increments as decided

by your application. Some libraries though will not allow

such access, providing only a standard blocking function

which will perform the entire I/O transaction and only then

return. It is unwise to use these in the event loop thread,

use the Thread pool work scheduling instead. Of course, this

will also mean losing granular control on the library.

The uv_poll section of libuv simply watches file descriptors

using the operating system notification mechanism. In some

sense, all the I/O operations that libuv implements itself are

also backed by uv_poll like code. Whenever the OS notices a

change of state in file descriptors being polled, libuv will

invoke the associated callback.

Here we will walk through a simple download manager that

will use libcurl [https://curl.haxx.se/libcurl/] to download files.

Rather than give all control to libcurl, we’ll instead be using

the libuv event loop, and use the non-blocking, async multi

[https://curl.haxx.se/libcurl/c/libcurl-multi.html] interface to progress

with the download whenever libuv notifies of I/O readiness.

uvwget/main.c - The setup

1

2

3

4

5

6

#include <assert.h>

#include <stdio.h>

#include <stdlib.h>

#include <uv.h>

#include <curl/curl.h>

https://curl.haxx.se/libcurl/
https://curl.haxx.se/libcurl/c/libcurl-multi.html

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

uv_loop_t *loop;

CURLM *curl_handle;

uv_timer_t timeout;

int main(int argc, char **argv) {

 loop = uv_default_loop();

 if (argc <= 1)

 return 0;

 if (curl_global_init(CURL_GLOBAL_ALL)) {

 fprintf(stderr, "Could not init cURL\n");

 return 1;

 }

 uv_timer_init(loop, &timeout);

 curl_handle = curl_multi_init();

 curl_multi_setopt(curl_handle,

CURLMOPT_SOCKETFUNCTION, handle_socket);

 curl_multi_setopt(curl_handle,

CURLMOPT_TIMERFUNCTION, start_timeout);

 while (argc-- > 1) {

 add_download(argv[argc], argc);

 }

 uv_run(loop, UV_RUN_DEFAULT);

 curl_multi_cleanup(curl_handle);

 return 0;

}

The way each library is integrated with libuv will vary. In the

case of libcurl, we can register two callbacks. The socket

callback handle_socket is invoked whenever the state of a

socket changes and we have to start polling it. start_timeout

is called by libcurl to notify us of the next timeout interval,

after which we should drive libcurl forward regardless of I/O

status. This is so that libcurl can handle errors or do

whatever else is required to get the download moving.

Our downloader is to be invoked as:

$./uvwget [url1] [url2] ...

So we add each argument as an URL

uvwget/main.c - Adding urls

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

void add_download(const char *url, int num) {

 char filename[50];

 sprintf(filename, "%d.download", num);

 FILE *file;

 file = fopen(filename, "w");

 if (file == NULL) {

 fprintf(stderr, "Error opening %s\n",

filename);

 return;

 }

 CURL *handle = curl_easy_init();

 curl_easy_setopt(handle, CURLOPT_WRITEDATA, file);

 curl_easy_setopt(handle, CURLOPT_URL, url);

 curl_multi_add_handle(curl_handle, handle);

 fprintf(stderr, "Added download %s -> %s\n", url,

filename);

}

We let libcurl directly write the data to a file, but much more

is possible if you so desire.

start_timeout will be called immediately the first time by

libcurl, so things are set in motion. This simply starts a libuv

timer which drives curl_multi_socket_action with

CURL_SOCKET_TIMEOUT whenever it times out.

curl_multi_socket_action is what drives libcurl, and what we

call whenever sockets change state. But before we go into

that, we need to poll on sockets whenever handle_socket is

called.

uvwget/main.c - Setting up polling

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

void start_timeout(CURLM *multi, long timeout_ms, void

*userp) {

 if (timeout_ms <= 0)

 timeout_ms = 1; /* 0 means directly call

socket_action, but we'll do it in a bit */

 uv_timer_start(&timeout, on_timeout, timeout_ms,

0);

}

int handle_socket(CURL *easy, curl_socket_t s, int

action, void *userp, void *socketp) {

 curl_context_t *curl_context;

 if (action == CURL_POLL_IN || action ==

CURL_POLL_OUT) {

 if (socketp) {

 curl_context = (curl_context_t*) socketp;

 }

 else {

 curl_context = create_curl_context(s);

 curl_multi_assign(curl_handle, s, (void *)

curl_context);

 }

 }

 switch (action) {

 case CURL_POLL_IN:

 uv_poll_start(&curl_context->poll_handle,

UV_READABLE, curl_perform);

 break;

 case CURL_POLL_OUT:

 uv_poll_start(&curl_context->poll_handle,

UV_WRITABLE, curl_perform);

 break;

 case CURL_POLL_REMOVE:

 if (socketp) {

 uv_poll_stop(&

((curl_context_t*)socketp)->poll_handle);

 destroy_curl_context((curl_context_t*)

socketp);

 curl_multi_assign(curl_handle, s,

NULL);

 }

 break;

 default:

 abort();

 }

 return 0;

}

We are interested in the socket fd s, and the action. For

every socket we create a uv_poll_t handle if it doesn’t exist,

and associate it with the socket using curl_multi_assign. This

way socketp points to it whenever the callback is invoked.

In the case that the download is done or fails, libcurl

requests removal of the poll. So we stop and free the poll

handle.

Depending on what events libcurl wishes to watch for, we

start polling with UV_READABLE or UV_WRITABLE. Now libuv will

invoke the poll callback whenever the socket is ready for

reading or writing. Calling uv_poll_start multiple times on

the same handle is acceptable, it will just update the events

mask with the new value. curl_perform is the crux of this

program.

uvwget/main.c - Driving libcurl.

1

2

3

4

5

6

7

8

9

10

void curl_perform(uv_poll_t *req, int status, int

events) {

 uv_timer_stop(&timeout);

 int running_handles;

 int flags = 0;

 if (status < 0) flags =

CURL_CSELECT_ERR;

 if (!status && events & UV_READABLE) flags |=

CURL_CSELECT_IN;

 if (!status && events & UV_WRITABLE) flags |=

11

12

13

14

15

CURL_CSELECT_OUT;

 curl_context_t *context;

 context = (curl_context_t*)req;

 curl_multi_socket_action(curl_handle, context-

>sockfd, flags, &running_handles);

 check_multi_info();

}

The first thing we do is to stop the timer, since there has

been some progress in the interval. Then depending on

what event triggered the callback, we set the correct flags.

Then we call curl_multi_socket_action with the socket that

progressed and the flags informing about what events

happened. At this point libcurl does all of its internal tasks in

small increments, and will attempt to return as fast as

possible, which is exactly what an evented program wants

in its main thread. libcurl keeps queueing messages into its

own queue about transfer progress. In our case we are only

interested in transfers that are completed. So we extract

these messages, and clean up handles whose transfers are

done.

uvwget/main.c - Reading transfer status.

1

2

3

4

5

6

7

8

9

10

11

void check_multi_info(void) {

 char *done_url;

 CURLMsg *message;

 int pending;

 while ((message = curl_multi_info_read(curl_handle,

&pending))) {

 switch (message->msg) {

 case CURLMSG_DONE:

 curl_easy_getinfo(message->easy_handle,

CURLINFO_EFFECTIVE_URL,

 &done_url);

12

13

14

15

16

17

18

19

20

21

22

 printf("%s DONE\n", done_url);

 curl_multi_remove_handle(curl_handle,

message->easy_handle);

 curl_easy_cleanup(message->easy_handle);

 break;

 default:

 fprintf(stderr, "CURLMSG default\n");

 abort();

 }

 }

}

Check & Prepare watchers

TODO

Loading libraries

libuv provides a cross platform API to dynamically load

shared libraries

[https://en.wikipedia.org/wiki/Shared_library#Shared_libraries]. This can be

used to implement your own plugin/extension/module

system and is used by node.js to implement require()

support for bindings. The usage is quite simple as long as

your library exports the right symbols. Be careful with sanity

and security checks when loading third party code,

otherwise your program will behave unpredictably. This

example implements a very simple plugin system which

does nothing except print the name of the plugin.

Let us first look at the interface provided to plugin authors.

plugin/plugin.h

https://en.wikipedia.org/wiki/Shared_library#Shared_libraries

1

2

3

4

5

6

7

#ifndef UVBOOK_PLUGIN_SYSTEM

#define UVBOOK_PLUGIN_SYSTEM

// Plugin authors should use this to register their

plugins with mfp.

void mfp_register(const char *name);

#endif

You can similarly add more functions that plugin authors can

use to do useful things in your application [2]. A sample

plugin using this API is:

plugin/hello.c

1

2

3

4

5

#include "plugin.h"

void initialize() {

 mfp_register("Hello World!");

}

Our interface defines that all plugins should have an

initialize function which will be called by the application.

This plugin is compiled as a shared library and can be

loaded by running our application:

$./plugin libhello.dylib

Loading libhello.dylib

Registered plugin "Hello World!"

Note

The shared library filename will be different depending on

platforms. On Linux it is libhello.so.

This is done by using uv_dlopen to first load the shared library

libhello.dylib. Then we get access to the initialize function

using uv_dlsym and invoke it.

plugin/main.c

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

#include "plugin.h"

typedef void (*init_plugin_function)();

void mfp_register(const char *name) {

 fprintf(stderr, "Registered plugin \"%s\"\n",

name);

}

int main(int argc, char **argv) {

 if (argc == 1) {

 fprintf(stderr, "Usage: %s [plugin1] [plugin2]

...\n", argv[0]);

 return 0;

 }

 uv_lib_t *lib = (uv_lib_t*)

malloc(sizeof(uv_lib_t));

 while (--argc) {

 fprintf(stderr, "Loading %s\n", argv[argc]);

 if (uv_dlopen(argv[argc], lib)) {

 fprintf(stderr, "Error: %s\n",

uv_dlerror(lib));

 continue;

 }

 init_plugin_function init_plugin;

 if (uv_dlsym(lib, "initialize", (void **)

&init_plugin)) {

 fprintf(stderr, "dlsym error: %s\n",

uv_dlerror(lib));

 continue;

 }

 init_plugin();

 }

 return 0;

}

uv_dlopen expects a path to the shared library and sets the

opaque uv_lib_t pointer. It returns 0 on success, -1 on error.

Use uv_dlerror to get the error message.

uv_dlsym stores a pointer to the symbol in the second

argument in the third argument. init_plugin_function is a

function pointer to the sort of function we are looking for in

the application’s plugins.

TTY

Text terminals have supported basic formatting for a long

time, with a pretty standardised

[https://en.wikipedia.org/wiki/ANSI_escape_sequences] command set. This

formatting is often used by programs to improve the

readability of terminal output. For example grep --colour.

libuv provides the uv_tty_t abstraction (a stream) and

related functions to implement the ANSI escape codes

across all platforms. By this I mean that libuv converts ANSI

codes to the Windows equivalent, and provides functions to

get terminal information.

The first thing to do is to initialize a uv_tty_t with the file

descriptor it reads/writes from. This is achieved with:

int uv_tty_init(uv_loop_t*, uv_tty_t*, uv_file fd, int unused)

The unused parameter is now auto-detected and ignored. It

previously needed to be set to use uv_read_start() on the

stream.

https://en.wikipedia.org/wiki/ANSI_escape_sequences

It is then best to use uv_tty_set_mode to set the mode to

normal which enables most TTY formatting, flow-control and

other settings. Other

[http://docs.libuv.org/en/v1.x/tty.html#c.uv_tty_mode_t] modes are also

available.

Remember to call uv_tty_reset_mode when your program exits

to restore the state of the terminal. Just good manners.

Another set of good manners is to be aware of redirection. If

the user redirects the output of your command to a file,

control sequences should not be written as they impede

readability and grep. To check if the file descriptor is indeed

a TTY, call uv_guess_handle with the file descriptor and

compare the return value with UV_TTY.

Here is a simple example which prints white text on a red

background:

tty/main.c

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <uv.h>

uv_loop_t *loop;

uv_tty_t tty;

int main() {

 loop = uv_default_loop();

 uv_tty_init(loop, &tty, STDOUT_FILENO, 0);

 uv_tty_set_mode(&tty, UV_TTY_MODE_NORMAL);

 if (uv_guess_handle(1) == UV_TTY) {

 uv_write_t req;

 uv_buf_t buf;

 buf.base = "\033[41;37m";

 buf.len = strlen(buf.base);

 uv_write(&req, (uv_stream_t*) &tty, &buf, 1,

http://docs.libuv.org/en/v1.x/tty.html#c.uv_tty_mode_t

20

21

22

23

24

25

26

27

28

29

NULL);

 }

 uv_write_t req;

 uv_buf_t buf;

 buf.base = "Hello TTY\n";

 buf.len = strlen(buf.base);

 uv_write(&req, (uv_stream_t*) &tty, &buf, 1, NULL);

 uv_tty_reset_mode();

 return uv_run(loop, UV_RUN_DEFAULT);

}

The final TTY helper is uv_tty_get_winsize() which is used to

get the width and height of the terminal and returns 0 on

success. Here is a small program which does some

animation using the function and character position escape

codes.

tty-gravity/main.c

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <uv.h>

uv_loop_t *loop;

uv_tty_t tty;

uv_timer_t tick;

uv_write_t write_req;

int width, height;

int pos = 0;

char *message = " Hello TTY ";

void update(uv_timer_t *req) {

 char data[500];

 uv_buf_t buf;

 buf.base = data;

 buf.len = sprintf(data,

"\033[2J\033[H\033[%dB\033[%luC\033[42;37m%s",

 pos,

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

 (unsigned long) (width-

strlen(message))/2,

 message);

 uv_write(&write_req, (uv_stream_t*) &tty, &buf, 1,

NULL);

 pos++;

 if (pos > height) {

 uv_tty_reset_mode();

 uv_timer_stop(&tick);

 }

}

int main() {

 loop = uv_default_loop();

 uv_tty_init(loop, &tty, STDOUT_FILENO, 0);

 uv_tty_set_mode(&tty, 0);

 if (uv_tty_get_winsize(&tty, &width, &height)) {

 fprintf(stderr, "Could not get TTY

information\n");

 uv_tty_reset_mode();

 return 1;

 }

 fprintf(stderr, "Width %d, height %d\n", width,

height);

 uv_timer_init(loop, &tick);

 uv_timer_start(&tick, update, 200, 200);

 return uv_run(loop, UV_RUN_DEFAULT);

}

The escape codes are:

Code Meaning

2 J Clear part of the screen, 2 is entire screen

[1]

[2]

Code Meaning

H Moves cursor to certain position, default top-left

n B Moves cursor down by n lines

n C Moves cursor right by n columns

m
Obeys string of display settings, in this case green

background (40+2), white text (30+7)

As you can see this is very useful to produce nicely

formatted output, or even console based arcade games if

that tickles your fancy. For fancier control you can try

ncurses [https://www.gnu.org/software/ncurses/ncurses.html].

Changed in version 1.23.1:: the readable parameter is now

unused and ignored. The appropriate value will now be

auto-detected from the kernel.

I was first introduced to the term baton in this context,

in Konstantin Käfer’s excellent slides on writing node.js

bindings – https://kkaefer.com/node-cpp-

modules/#baton

mfp is My Fancy Plugin

https://www.gnu.org/software/ncurses/ncurses.html
https://kkaefer.com/node-cpp-modules/#baton

About

Nikhil Marathe [https://nikhilism.com] started writing this book

one afternoon (June 16, 2012) when he didn’t feel like

programming. He had recently been stung by the lack of

good documentation on libuv while working on node-taglib

[https://github.com/nikhilm/node-taglib]. Although reference

documentation was present, there were no comprehensive

tutorials. This book is the output of that need and tries to be

accurate. That said, the book may have mistakes. Pull

requests are encouraged.

Nikhil is indebted to Marc Lehmann’s comprehensive man

page [http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod] about libev

which describes much of the semantics of the two libraries.

This book was made using Sphinx [https://www.sphinx-doc.org] and

vim [https://www.vim.org].

Note

In 2017 the libuv project incorporated the Nikhil’s work

into the official documentation and it’s maintained there

henceforth.

https://nikhilism.com/
https://github.com/nikhilm/node-taglib
http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod
https://www.sphinx-doc.org/
https://www.vim.org/

Upgrading

Migration guides for different libuv versions, starting with

1.0.

libuv 0.10 -> 1.0.0 migration guide

libuv 0.10 -> 1.0.0

migration guide

Some APIs changed quite a bit throughout the 1.0.0

development process. Here is a migration guide for the

most significant changes that happened after 0.10 was

released.

Loop initialization and closing

In libuv 0.10 (and previous versions), loops were created

with uv_loop_new, which allocated memory for a new loop

and initialized it; and destroyed with uv_loop_delete, which

destroyed the loop and freed the memory. Starting with 1.0,

those are deprecated and the user is responsible for

allocating the memory and then initializing the loop.

libuv 0.10

uv_loop_t* loop = uv_loop_new();

...

uv_loop_delete(loop);

libuv 1.0

uv_loop_t* loop = malloc(sizeof *loop);

uv_loop_init(loop);

...

uv_loop_close(loop);

free(loop);

Note

Error handling was omitted for brevity. Check the

documentation for uv_loop_init() and uv_loop_close().

Error handling

Error handling had a major overhaul in libuv 1.0. In general,

functions and status parameters would get 0 for success

and -1 for failure on libuv 0.10, and the user had to use

uv_last_error to fetch the error code, which was a positive

number.

In 1.0, functions and status parameters contain the actual

error code, which is 0 for success, or a negative number in

case of error.

libuv 0.10

... assume 'server' is a TCP server which is already listening

r = uv_listen((uv_stream_t*) server, 511, NULL);

if (r == -1) {

 uv_err_t err = uv_last_error(uv_default_loop());

 /* err.code contains UV_EADDRINUSE */

}

libuv 1.0

... assume 'server' is a TCP server which is already listening

r = uv_listen((uv_stream_t*) server, 511, NULL);

if (r < 0) {

 /* r contains UV_EADDRINUSE */

}

Threadpool changes

In libuv 0.10 Unix used a threadpool which defaulted to 4

threads, while Windows used the QueueUserWorkItem API,

which uses a Windows internal threadpool, which defaults to

512 threads per process.

In 1.0, we unified both implementations, so Windows now

uses the same implementation Unix does. The threadpool

size can be set by exporting the UV_THREADPOOL_SIZE

environment variable. See Thread pool work scheduling.

Allocation callback API change

In libuv 0.10 the callback had to return a filled uv_buf_t by

value:

uv_buf_t alloc_cb(uv_handle_t* handle, size_t size) {

 return uv_buf_init(malloc(size), size);

}

In libuv 1.0 a pointer to a buffer is passed to the callback,

which the user needs to fill:

void alloc_cb(uv_handle_t* handle, size_t size, uv_buf_t* buf)

{

 buf->base = malloc(size);

 buf->len = size;

}

Unification of IPv4 / IPv6 APIs

libuv 1.0 unified the IPv4 and IPv6 APIS. There is no longer a

uv_tcp_bind and uv_tcp_bind6 duality, there is only

uv_tcp_bind() now.

IPv4 functions took struct sockaddr_in structures by value,

and IPv6 functions took struct sockaddr_in6. Now functions

take a struct sockaddr* (note it’s a pointer). It can be stack

allocated.

libuv 0.10

struct sockaddr_in addr = uv_ip4_addr("0.0.0.0", 1234);

...

uv_tcp_bind(&server, addr)

libuv 1.0

struct sockaddr_in addr;

uv_ip4_addr("0.0.0.0", 1234, &addr)

...

uv_tcp_bind(&server, (const struct sockaddr*) &addr, 0);

The IPv4 and IPv6 struct creating functions (uv_ip4_addr()

and uv_ip6_addr()) have also changed, make sure you check

the documentation.

..note::

This change applies to all functions that made a

distinction between IPv4 and IPv6 addresses.

Streams / UDP data receive callback

API change

The streams and UDP data receive callbacks now get a

pointer to a uv_buf_t buffer, not a structure by value.

libuv 0.10

void on_read(uv_stream_t* handle,

 ssize_t nread,

 uv_buf_t buf) {

 ...

}

void recv_cb(uv_udp_t* handle,

 ssize_t nread,

 uv_buf_t buf,

 struct sockaddr* addr,

 unsigned flags) {

 ...

}

libuv 1.0

void on_read(uv_stream_t* handle,

 ssize_t nread,

 const uv_buf_t* buf) {

 ...

}

void recv_cb(uv_udp_t* handle,

 ssize_t nread,

 const uv_buf_t* buf,

 const struct sockaddr* addr,

 unsigned flags) {

 ...

}

Receiving handles over pipes API

change

In libuv 0.10 (and earlier versions) the uv_read2_start

function was used to start reading data on a pipe, which

could also result in the reception of handles over it. The

callback for such function looked like this:

void on_read(uv_pipe_t* pipe,

 ssize_t nread,

 uv_buf_t buf,

 uv_handle_type pending) {

 ...

}

In libuv 1.0, uv_read2_start was removed, and the user

needs to check if there are pending handles using

uv_pipe_pending_count() and uv_pipe_pending_type() while in the

read callback:

void on_read(uv_stream_t* handle,

 ssize_t nread,

 const uv_buf_t* buf) {

 ...

 while (uv_pipe_pending_count((uv_pipe_t*) handle) != 0) {

 pending = uv_pipe_pending_type((uv_pipe_t*) handle);

 ...

 }

 ...

}

Extracting the file descriptor out of a

handle

While it wasn’t supported by the API, users often accessed

the libuv internals in order to get access to the file

descriptor of a TCP handle, for example.

fd = handle->io_watcher.fd;

This is now properly exposed through the uv_fileno()

function.

uv_fs_readdir rename and API change

uv_fs_readdir returned a list of strings in the req->ptr field

upon completion in libuv 0.10. In 1.0, this function got

renamed to uv_fs_scandir(), since it’s actually implemented

using scandir(3).

In addition, instead of allocating a full list strings, the user is

able to get one result at a time by using the

uv_fs_scandir_next() function. This function does not need to

make a roundtrip to the threadpool, because libuv will keep

the list of dents returned by scandir(3) around.

Index

U

U

uv_accept (C function)

uv_after_work_cb (C type)

uv_alloc_cb (C type)

uv_any_handle (C type)

uv_any_req (C type)

uv_async_cb (C type)

uv_async_init (C function)

uv_async_send (C function)

uv_async_t (C type)

uv_available_parallelism (C

function)

uv_backend_fd (C function)

uv_backend_timeout (C

function)

uv_barrier_destroy (C

function)

uv_barrier_init (C function)

uv_barrier_t (C type)

uv_barrier_wait (C function)

uv_buf_init (C function)

uv_buf_t (C type)

uv_buf_t.uv_buf_t.base (C

member)

uv_buf_t.uv_buf_t.len (C

member)

uv_calloc_func (C type)

uv_cancel (C function)

uv_chdir (C function)

uv_check_cb (C type)

uv_check_init (C function)

uv_check_start (C function)

uv_check_stop (C function)

UV_IF_NAMESIZE (C macro)

uv_inet_ntop (C function)

uv_inet_pton (C function)

uv_interface_address_t (C type)

uv_interface_addresses (C

function)

uv_ip4_addr (C function)

uv_ip4_name (C function)

uv_ip6_addr (C function)

uv_ip6_name (C function)

uv_ip_name (C function)

uv_is_active (C function)

uv_is_closing (C function)

uv_is_readable (C function)

uv_is_writable (C function)

uv_key_create (C function)

uv_key_delete (C function)

uv_key_get (C function)

uv_key_set (C function)

uv_key_t (C type)

uv_kill (C function)

uv_lib_t (C type)

uv_listen (C function)

uv_loadavg (C function)

uv_loop_alive (C function)

uv_loop_close (C function)

uv_loop_configure (C function)

uv_loop_fork (C function)

uv_loop_get_data (C function)

uv_loop_init (C function)

uv_loop_set_data (C function)

uv_loop_size (C function)

uv_check_t (C type)

uv_close (C function)

uv_close_cb (C type)

uv_cond_broadcast (C

function)

uv_cond_destroy (C

function)

uv_cond_init (C function)

uv_cond_signal (C function)

uv_cond_t (C type)

uv_cond_timedwait (C

function)

uv_cond_wait (C function)

uv_connect_cb (C type)

uv_connect_t (C type)

uv_connect_t.handle (C

member)

uv_connection_cb (C type)

uv_cpu_info (C function)

uv_cpu_info_t (C type)

uv_cwd (C function)

uv_default_loop (C function)

uv_dir_t (C type)

uv_disable_stdio_inheritance

(C function)

uv_dlclose (C function)

uv_dlerror (C function)

uv_dlopen (C function)

uv_dlsym (C function)

UV_E2BIG (C macro)

UV_EACCES (C macro)

UV_EADDRINUSE (C macro)

UV_EADDRNOTAVAIL (C

macro)

UV_EAFNOSUPPORT (C

macro)

UV_EAGAIN (C macro)

UV_EAI_ADDRFAMILY (C

macro)

UV_EAI_AGAIN (C macro)

uv_loop_t (C type)

uv_loop_t.data (C member)

uv_malloc_func (C type)

uv_metrics_idle_time (C function)

uv_mutex_destroy (C function)

uv_mutex_init (C function)

uv_mutex_init_recursive (C

function)

uv_mutex_lock (C function)

uv_mutex_t (C type)

uv_mutex_trylock (C function)

uv_mutex_unlock (C function)

uv_now (C function)

uv_once (C function)

uv_once_t (C type)

uv_open_osfhandle (C function)

uv_os_environ (C function)

uv_os_fd_t (C type)

uv_os_free_passwd (C function)

uv_os_get_passwd (C function)

uv_os_getenv (C function)

uv_os_gethostname (C function)

uv_os_getpid (C function)

uv_os_getppid (C function)

uv_os_getpriority (C function)

uv_os_homedir (C function)

uv_os_setenv (C function)

uv_os_setpriority (C function)

uv_os_sock_t (C type)

uv_os_tmpdir (C function)

uv_os_uname (C function)

uv_os_unsetenv (C function)

uv_passwd_t (C type)

uv_pid_t (C type)

uv_pipe (C function)

uv_pipe_bind (C function)

uv_pipe_chmod (C function)

uv_pipe_connect (C function)

uv_pipe_getpeername (C

function)

UV_EAI_BADFLAGS (C

macro)

UV_EAI_BADHINTS (C

macro)

UV_EAI_CANCELED (C

macro)

UV_EAI_FAIL (C macro)

UV_EAI_FAMILY (C macro)

UV_EAI_MEMORY (C macro)

UV_EAI_NODATA (C macro)

UV_EAI_NONAME (C macro)

UV_EAI_OVERFLOW (C

macro)

UV_EAI_PROTOCOL (C

macro)

UV_EAI_SERVICE (C macro)

UV_EAI_SOCKTYPE (C macro)

UV_EALREADY (C macro)

UV_EBADF (C macro)

UV_EBUSY (C macro)

UV_ECANCELED (C macro)

UV_ECHARSET (C macro)

UV_ECONNABORTED (C

macro)

UV_ECONNREFUSED (C

macro)

UV_ECONNRESET (C macro)

UV_EDESTADDRREQ (C

macro)

UV_EEXIST (C macro)

UV_EFAULT (C macro)

UV_EFBIG (C macro)

UV_EFTYPE (C macro)

UV_EHOSTUNREACH (C

macro)

UV_EILSEQ (C macro)

UV_EINTR (C macro)

UV_EINVAL (C macro)

UV_EIO (C macro)

UV_EISCONN (C macro)

UV_EISDIR (C macro)

uv_pipe_getsockname (C

function)

uv_pipe_init (C function)

uv_pipe_open (C function)

uv_pipe_pending_count (C

function)

uv_pipe_pending_instances (C

function)

uv_pipe_pending_type (C

function)

uv_pipe_t (C type)

uv_pipe_t.ipc (C member)

uv_poll_cb (C type)

uv_poll_event (C type)

uv_poll_init (C function)

uv_poll_init_socket (C function)

uv_poll_start (C function)

uv_poll_stop (C function)

uv_poll_t (C type)

uv_prepare_cb (C type)

uv_prepare_init (C function)

uv_prepare_start (C function)

uv_prepare_stop (C function)

uv_prepare_t (C type)

uv_print_active_handles (C

function)

uv_print_all_handles (C function)

uv_process_flags (C type)

uv_process_get_pid (C function)

uv_process_kill (C function)

uv_process_options_t (C type)

uv_process_options_t.args (C

member)

uv_process_options_t.cwd (C

member)

uv_process_options_t.env (C

member)

uv_process_options_t.exit_cb (C

member)

uv_process_options_t.file (C

member)

UV_ELOOP (C macro)

UV_EMFILE (C macro)

UV_EMLINK (C macro)

UV_EMSGSIZE (C macro)

UV_ENAMETOOLONG (C

macro)

UV_ENETDOWN (C macro)

UV_ENETUNREACH (C

macro)

UV_ENFILE (C macro)

UV_ENOBUFS (C macro)

UV_ENODEV (C macro)

UV_ENOENT (C macro)

UV_ENOMEM (C macro)

UV_ENONET (C macro)

UV_ENOPROTOOPT (C

macro)

UV_ENOSPC (C macro)

UV_ENOSYS (C macro)

UV_ENOTCONN (C macro)

UV_ENOTDIR (C macro)

UV_ENOTEMPTY (C macro)

UV_ENOTSOCK (C macro)

UV_ENOTSUP (C macro)

UV_ENOTTY (C macro)

uv_env_item_t (C type)

UV_ENXIO (C macro)

UV_EOF (C macro)

UV_EOVERFLOW (C macro)

UV_EPERM (C macro)

UV_EPIPE (C macro)

UV_EPROTO (C macro)

UV_EPROTONOSUPPORT (C

macro)

UV_EPROTOTYPE (C macro)

UV_ERANGE (C macro)

UV_EROFS (C macro)

uv_err_name (C function)

uv_err_name_r (C function)

UV_ERRNO_MAP (C macro)

UV_ESHUTDOWN (C macro)

uv_process_options_t.flags (C

member)

uv_process_options_t.gid (C

member)

uv_process_options_t.stdio (C

member)

uv_process_options_t.stdio_count

(C member)

uv_process_options_t.uid (C

member)

uv_process_t (C type)

uv_process_t.pid (C member)

uv_queue_work (C function)

uv_random (C function)

uv_random_cb (C type)

uv_random_t (C type)

uv_read_cb (C type)

uv_read_start (C function)

uv_read_stop (C function)

uv_realloc_func (C type)

uv_recv_buffer_size (C function)

uv_ref (C function)

uv_replace_allocator (C function)

uv_req_get_data (C function)

uv_req_get_type (C function)

uv_req_set_data (C function)

uv_req_size (C function)

uv_req_t (C type)

uv_req_t.data (C member)

uv_req_t.type (C member)

UV_REQ_TYPE_MAP (C macro)

uv_req_type_name (C function)

uv_resident_set_memory (C

function)

uv_run (C function)

uv_rusage_t (C type)

uv_rwlock_destroy (C function)

uv_rwlock_init (C function)

uv_rwlock_rdlock (C function)

uv_rwlock_rdunlock (C function)

uv_rwlock_t (C type)

UV_ESOCKTNOSUPPORT (C

macro)

UV_ESPIPE (C macro)

UV_ESRCH (C macro)

UV_ETIMEDOUT (C macro)

UV_ETXTBSY (C macro)

UV_EXDEV (C macro)

uv_exepath (C function)

uv_exit_cb (C type)

uv_file (C type)

uv_fileno (C function)

uv_free_cpu_info (C

function)

uv_free_func (C type)

uv_free_interface_addresses

(C function)

uv_freeaddrinfo (C function)

uv_fs_access (C function)

uv_fs_chmod (C function)

uv_fs_chown (C function)

uv_fs_close (C function)

uv_fs_closedir (C function)

uv_fs_copyfile (C function)

uv_fs_event (C type)

uv_fs_event_cb (C type)

uv_fs_event_flags (C type)

uv_fs_event_getpath (C

function)

uv_fs_event_init (C function)

uv_fs_event_start (C

function)

uv_fs_event_stop (C

function)

uv_fs_event_t (C type)

uv_fs_fchmod (C function)

uv_fs_fchown (C function)

uv_fs_fdatasync (C function)

uv_fs_fstat (C function)

uv_fs_fsync (C function)

uv_fs_ftruncate (C function)

uv_fs_futime (C function)

uv_rwlock_tryrdlock (C function)

uv_rwlock_trywrlock (C function)

uv_rwlock_wrlock (C function)

uv_rwlock_wrunlock (C function)

uv_sem_destroy (C function)

uv_sem_init (C function)

uv_sem_post (C function)

uv_sem_t (C type)

uv_sem_trywait (C function)

uv_sem_wait (C function)

uv_send_buffer_size (C function)

uv_set_process_title (C function)

uv_setup_args (C function)

uv_shutdown (C function)

uv_shutdown_cb (C type)

uv_shutdown_t (C type)

uv_shutdown_t.handle (C

member)

uv_signal_cb (C type)

uv_signal_init (C function)

uv_signal_start (C function)

uv_signal_start_oneshot (C

function)

uv_signal_stop (C function)

uv_signal_t (C type)

uv_signal_t.signum (C member)

uv_sleep (C function)

uv_socketpair (C function)

uv_spawn (C function)

uv_stat_t (C type)

uv_statfs_t (C type)

uv_stdio_container_t (C type)

uv_stdio_container_t.data (C

member)

uv_stdio_container_t.flags (C

member)

uv_stop (C function)

uv_stream_get_write_queue_size

(C function)

uv_stream_set_blocking (C

function)

uv_fs_get_path (C function)

uv_fs_get_ptr (C function)

uv_fs_get_result (C function)

uv_fs_get_statbuf (C

function)

uv_fs_get_system_error (C

function)

uv_fs_get_type (C function)

uv_fs_lchown (C function)

uv_fs_link (C function)

uv_fs_lstat (C function)

uv_fs_lutime (C function)

uv_fs_mkdir (C function)

uv_fs_mkdtemp (C function)

uv_fs_mkstemp (C function)

UV_FS_O_APPEND (C macro)

UV_FS_O_CREAT (C macro)

UV_FS_O_DIRECT (C macro)

UV_FS_O_DIRECTORY (C

macro)

UV_FS_O_DSYNC (C macro)

UV_FS_O_EXCL (C macro)

UV_FS_O_EXLOCK (C macro)

UV_FS_O_FILEMAP (C macro)

UV_FS_O_NOATIME (C

macro)

UV_FS_O_NOCTTY (C macro)

UV_FS_O_NOFOLLOW (C

macro)

UV_FS_O_NONBLOCK (C

macro)

UV_FS_O_RANDOM (C

macro)

UV_FS_O_RDONLY (C macro)

UV_FS_O_RDWR (C macro)

UV_FS_O_SEQUENTIAL (C

macro)

UV_FS_O_SHORT_LIVED (C

macro)

UV_FS_O_SYMLINK (C

macro)

uv_stream_t (C type)

uv_stream_t.write_queue_size (C

member)

uv_strerror (C function)

uv_strerror_r (C function)

uv_tcp_bind (C function)

uv_tcp_close_reset (C function)

uv_tcp_connect (C function)

uv_tcp_getpeername (C function)

uv_tcp_getsockname (C function)

uv_tcp_init (C function)

uv_tcp_init_ex (C function)

uv_tcp_keepalive (C function)

uv_tcp_nodelay (C function)

uv_tcp_open (C function)

uv_tcp_simultaneous_accepts (C

function)

uv_tcp_t (C type)

uv_thread_cb (C type)

uv_thread_create (C function)

uv_thread_create_ex (C function)

uv_thread_equal (C function)

uv_thread_join (C function)

uv_thread_options_t (C type)

uv_thread_self (C function)

uv_thread_t (C type)

uv_timer_again (C function)

uv_timer_cb (C type)

uv_timer_get_due_in (C function)

uv_timer_get_repeat (C function)

uv_timer_init (C function)

uv_timer_set_repeat (C function)

uv_timer_start (C function)

uv_timer_stop (C function)

uv_timer_t (C type)

uv_timespec_t (C type)

uv_timeval64_t (C type)

uv_timeval_t (C type)

uv_translate_sys_error (C

function)

uv_try_write (C function)

UV_FS_O_SYNC (C macro)

UV_FS_O_TEMPORARY (C

macro)

UV_FS_O_TRUNC (C macro)

UV_FS_O_WRONLY (C macro)

uv_fs_open (C function)

uv_fs_opendir (C function)

uv_fs_poll_cb (C type)

uv_fs_poll_getpath (C

function)

uv_fs_poll_init (C function)

uv_fs_poll_start (C function)

uv_fs_poll_stop (C function)

uv_fs_poll_t (C type)

uv_fs_read (C function)

uv_fs_readdir (C function)

uv_fs_readlink (C function)

uv_fs_realpath (C function)

uv_fs_rename (C function)

uv_fs_req_cleanup (C

function)

uv_fs_rmdir (C function)

uv_fs_scandir (C function)

uv_fs_scandir_next (C

function)

uv_fs_sendfile (C function)

uv_fs_stat (C function)

uv_fs_statfs (C function)

uv_fs_symlink (C function)

uv_fs_t (C type)

uv_fs_t.fs_type (C member)

uv_fs_t.loop (C member)

uv_fs_t.path (C member)

uv_fs_t.ptr (C member)

uv_fs_t.result (C member)

uv_fs_t.statbuf (C member)

uv_fs_unlink (C function)

uv_fs_utime (C function)

uv_fs_write (C function)

uv_get_constrained_memory

(C function)

uv_try_write2 (C function)

uv_tty_get_vterm_state (C

function)

uv_tty_get_winsize (C function)

uv_tty_init (C function)

uv_tty_reset_mode (C function)

uv_tty_set_mode (C function)

uv_tty_set_vterm_state (C

function)

uv_tty_t (C type)

uv_udp_bind (C function)

uv_udp_connect (C function)

uv_udp_flags (C type)

uv_udp_get_send_queue_count

(C function)

uv_udp_get_send_queue_size (C

function)

uv_udp_getpeername (C

function)

uv_udp_getsockname (C

function)

uv_udp_init (C function)

uv_udp_init_ex (C function)

uv_udp_open (C function)

uv_udp_recv_cb (C type)

uv_udp_recv_start (C function)

uv_udp_recv_stop (C function)

uv_udp_send (C function)

uv_udp_send_cb (C type)

uv_udp_send_t (C type)

uv_udp_send_t.handle (C

member)

uv_udp_set_broadcast (C

function)

uv_udp_set_membership (C

function)

uv_udp_set_multicast_interface

(C function)

uv_udp_set_multicast_loop (C

function)

uv_get_free_memory (C

function)

uv_get_osfhandle (C

function)

uv_get_process_title (C

function)

uv_get_total_memory (C

function)

uv_getaddrinfo (C function)

uv_getaddrinfo_cb (C type)

uv_getaddrinfo_t (C type)

uv_getaddrinfo_t.addrinfo (C

member)

uv_getaddrinfo_t.loop (C

member)

uv_getnameinfo (C function)

uv_getnameinfo_cb (C type)

uv_getnameinfo_t (C type)

uv_getnameinfo_t.host (C

member)

uv_getnameinfo_t.loop (C

member)

uv_getnameinfo_t.service (C

member)

uv_getrusage (C function)

uv_gettimeofday (C

function)

uv_guess_handle (C

function)

uv_handle_get_data (C

function)

uv_handle_get_loop (C

function)

uv_handle_get_type (C

function)

uv_handle_set_data (C

function)

uv_handle_size (C function)

uv_handle_t (C type)

uv_handle_t.data (C

member)

uv_udp_set_multicast_ttl (C

function)

uv_udp_set_source_membership

(C function)

uv_udp_set_ttl (C function)

uv_udp_t (C type)

uv_udp_t.send_queue_count (C

member)

uv_udp_t.send_queue_size (C

member)

uv_udp_try_send (C function)

uv_udp_using_recvmmsg (C

function)

UV_UNKNOWN (C macro)

uv_unref (C function)

uv_update_time (C function)

uv_uptime (C function)

uv_utsname_t (C type)

uv_version (C function)

UV_VERSION_HEX (C macro)

UV_VERSION_IS_RELEASE (C

macro)

UV_VERSION_MAJOR (C macro)

UV_VERSION_MINOR (C macro)

UV_VERSION_PATCH (C macro)

uv_version_string (C function)

UV_VERSION_SUFFIX (C macro)

uv_walk (C function)

uv_walk_cb (C type)

uv_work_cb (C type)

uv_work_t (C type)

uv_work_t.loop (C member)

uv_write (C function)

uv_write2 (C function)

uv_write_cb (C type)

uv_write_t (C type)

uv_write_t.handle (C member)

uv_write_t.send_handle (C

member)

uv_handle_t.loop (C

member)

uv_handle_t.type (C

member)

UV_HANDLE_TYPE_MAP (C

macro)

uv_handle_type_name (C

function)

uv_has_ref (C function)

uv_hrtime (C function)

uv_idle_cb (C type)

uv_idle_init (C function)

uv_idle_start (C function)

uv_idle_stop (C function)

uv_idle_t (C type)

uv_if_indextoiid (C function)

uv_if_indextoname (C

function)

	Welcome to the libuv documentation
	Design overview
	Handles and requests
	The I/O loop
	File I/O

	API documentation
	Error handling
	Error constants
	API

	Version-checking macros and functions
	Macros
	Functions

	uv_loop_t — Event loop
	Data types
	API

	uv_handle_t — Base handle
	Data types
	API
	Miscellaneous API functions
	Reference counting

	uv_req_t — Base request
	Data types
	API

	uv_timer_t — Timer handle
	Data types
	API

	uv_prepare_t — Prepare handle
	Data types
	API

	uv_check_t — Check handle
	Data types
	API

	uv_idle_t — Idle handle
	Data types
	API

	uv_async_t — Async handle
	Data types
	API

	uv_poll_t — Poll handle
	Data types
	API

	uv_signal_t — Signal handle
	Windows notes
	Unix notes
	Data types
	API

	uv_process_t — Process handle
	Data types
	API

	uv_stream_t — Stream handle
	Data types
	API

	uv_tcp_t — TCP handle
	Data types
	API

	uv_pipe_t — Pipe handle
	Data types
	API

	uv_tty_t — TTY handle
	Data types
	API

	uv_udp_t — UDP handle
	Data types
	API

	uv_fs_event_t — FS Event handle
	Data types
	API

	uv_fs_poll_t — FS Poll handle
	Data types
	API

	File system operations
	Data types
	API
	Helper functions
	File open constants

	Thread pool work scheduling
	Data types
	API

	DNS utility functions
	Data types
	API

	Shared library handling
	Data types
	API

	Threading and synchronization utilities
	Data types
	API

	Miscellaneous utilities
	Data types
	API

	Metrics operations
	API

	User guide
	Introduction
	Who this book is for
	Background
	Code

	Basics of libuv
	Event loops
	Hello World
	Error handling
	Handles and Requests

	Filesystem
	Reading/Writing files
	Filesystem operations
	Buffers and Streams
	File change events

	Networking
	TCP
	UDP
	Querying DNS
	Network interfaces

	Threads
	Core thread operations
	Synchronization Primitives
	libuv work queue
	Inter-thread communication

	Processes
	Spawning child processes
	Changing process parameters
	Detaching processes
	Sending signals to processes
	Signals
	Child Process I/O
	Parent-child IPC

	Advanced event loops
	Stopping an event loop

	Utilities
	Timers
	Event loop reference count
	Idler pattern
	Passing data to worker thread
	External I/O with polling
	Check & Prepare watchers
	Loading libraries
	TTY

	About

	Upgrading
	libuv 0.10 -> 1.0.0 migration guide
	Loop initialization and closing
	Error handling
	Threadpool changes
	Allocation callback API change
	Unification of IPv4 / IPv6 APIs
	Streams / UDP data receive callback API change
	Receiving handles over pipes API change
	Extracting the file descriptor out of a handle
	uv_fs_readdir rename and API change

