secgateway/kernel/linux-4.14.83/drivers/mtd/spi-nor/nxp-flexspi.c

1405 lines
38 KiB
C
Executable File

/*
* NXP FSPI(FlexSPI controller) driver.
*
* Copyright 2018 NXP
* Author: Yogesh Gaur <yogeshnarayan.gaur@nxp.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/timer.h>
#include <linux/jiffies.h>
#include <linux/completion.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>
#include <linux/mutex.h>
#include <linux/pm_qos.h>
#include <linux/pci.h>
/* The registers */
#define FSPI_MCR0 0x00
#define FSPI_MCR0_AHB_TIMEOUT_SHIFT 24
#define FSPI_MCR0_AHB_TIMEOUT_MASK (0xFF << FSPI_MCR0_AHB_TIMEOUT_SHIFT)
#define FSPI_MCR0_IP_TIMEOUT_SHIFT 16
#define FSPI_MCR0_IP_TIMEOUT_MASK (0xFF << FSPI_MCR0_IP_TIMEOUT_SHIFT)
#define FSPI_MCR0_LEARN_EN_SHIFT 15
#define FSPI_MCR0_LEARN_EN_MASK (1 << FSPI_MCR0_LEARN_EN_SHIFT)
#define FSPI_MCR0_SCRFRUN_EN_SHIFT 14
#define FSPI_MCR0_SCRFRUN_EN_MASK (1 << FSPI_MCR0_SCRFRUN_EN_SHIFT)
#define FSPI_MCR0_OCTCOMB_EN_SHIFT 13
#define FSPI_MCR0_OCTCOMB_EN_MASK (1 << FSPI_MCR0_OCTCOMB_EN_SHIFT)
#define FSPI_MCR0_DOZE_EN_SHIFT 12
#define FSPI_MCR0_DOZE_EN_MASK (1 << FSPI_MCR0_DOZE_EN_SHIFT)
#define FSPI_MCR0_HSEN_SHIFT 11
#define FSPI_MCR0_HSEN_MASK (1 << FSPI_MCR0_HSEN_SHIFT)
#define FSPI_MCR0_SERCLKDIV_SHIFT 8
#define FSPI_MCR0_SERCLKDIV_MASK (7 << FSPI_MCR0_SERCLKDIV_SHIFT)
#define FSPI_MCR0_ATDF_EN_SHIFT 7
#define FSPI_MCR0_ATDF_EN_MASK (1 << FSPI_MCR0_ATDF_EN_SHIFT)
#define FSPI_MCR0_ARDF_EN_SHIFT 6
#define FSPI_MCR0_ARDF_EN_MASK (1 << FSPI_MCR0_ARDF_EN_SHIFT)
#define FSPI_MCR0_RXCLKSRC_SHIFT 4
#define FSPI_MCR0_RXCLKSRC_MASK (3 << FSPI_MCR0_RXCLKSRC_SHIFT)
#define FSPI_MCR0_END_CFG_SHIFT 2
#define FSPI_MCR0_END_CFG_MASK (3 << FSPI_MCR0_END_CFG_SHIFT)
#define FSPI_MCR0_MDIS_SHIFT 1
#define FSPI_MCR0_MDIS_MASK (1 << FSPI_MCR0_MDIS_SHIFT)
#define FSPI_MCR0_SWRST_SHIFT 0
#define FSPI_MCR0_SWRST_MASK (1 << FSPI_MCR0_SWRST_SHIFT)
#define FSPI_MCR1 0x04
#define FSPI_MCR1_SEQ_TIMEOUT_SHIFT 16
#define FSPI_MCR1_SEQ_TIMEOUT_MASK \
(0xFFFF << FSPI_MCR1_SEQ_TIMEOUT_SHIFT)
#define FSPI_MCR1_AHB_TIMEOUT_SHIFT 0
#define FSPI_MCR1_AHB_TIMEOUT_MASK \
(0xFFFF << FSPI_MCR1_AHB_TIMEOUT_SHIFT)
#define FSPI_MCR2 0x08
#define FSPI_MCR2_IDLE_WAIT_SHIFT 24
#define FSPI_MCR2_IDLE_WAIT_MASK (0xFF << FSPI_MCR2_IDLE_WAIT_SHIFT)
#define FSPI_MCR2_SAMEFLASH_SHIFT 15
#define FSPI_MCR2_SAMEFLASH_MASK (1 << FSPI_MCR2_SAMEFLASH_SHIFT)
#define FSPI_MCR2_CLRLRPHS_SHIFT 14
#define FSPI_MCR2_CLRLRPHS_MASK (1 << FSPI_MCR2_CLRLRPHS_SHIFT)
#define FSPI_MCR2_ABRDATSZ_SHIFT 8
#define FSPI_MCR2_ABRDATSZ_MASK (1 << FSPI_MCR2_ABRDATSZ_SHIFT)
#define FSPI_MCR2_ABRLEARN_SHIFT 7
#define FSPI_MCR2_ABRLEARN_MASK (1 << FSPI_MCR2_ABRLEARN_SHIFT)
#define FSPI_MCR2_ABR_READ_SHIFT 6
#define FSPI_MCR2_ABR_READ_MASK (1 << FSPI_MCR2_ABR_READ_SHIFT)
#define FSPI_MCR2_ABRWRITE_SHIFT 5
#define FSPI_MCR2_ABRWRITE_MASK (1 << FSPI_MCR2_ABRWRITE_SHIFT)
#define FSPI_MCR2_ABRDUMMY_SHIFT 4
#define FSPI_MCR2_ABRDUMMY_MASK (1 << FSPI_MCR2_ABRDUMMY_SHIFT)
#define FSPI_MCR2_ABR_MODE_SHIFT 3
#define FSPI_MCR2_ABR_MODE_MASK (1 << FSPI_MCR2_ABR_MODE_SHIFT)
#define FSPI_MCR2_ABRCADDR_SHIFT 2
#define FSPI_MCR2_ABRCADDR_MASK (1 << FSPI_MCR2_ABRCADDR_SHIFT)
#define FSPI_MCR2_ABRRADDR_SHIFT 1
#define FSPI_MCR2_ABRRADDR_MASK (1 << FSPI_MCR2_ABRRADDR_SHIFT)
#define FSPI_MCR2_ABR_CMD_SHIFT 0
#define FSPI_MCR2_ABR_CMD_MASK (1 << FSPI_MCR2_ABR_CMD_SHIFT)
#define FSPI_AHBCR 0x0c
#define FSPI_AHBCR_RDADDROPT_SHIFT 6
#define FSPI_AHBCR_RDADDROPT_MASK (1 << FSPI_AHBCR_RDADDROPT_SHIFT)
#define FSPI_AHBCR_PREF_EN_SHIFT 5
#define FSPI_AHBCR_PREF_EN_MASK (1 << FSPI_AHBCR_PREF_EN_SHIFT)
#define FSPI_AHBCR_BUFF_EN_SHIFT 4
#define FSPI_AHBCR_BUFF_EN_MASK (1 << FSPI_AHBCR_BUFF_EN_SHIFT)
#define FSPI_AHBCR_CACH_EN_SHIFT 3
#define FSPI_AHBCR_CACH_EN_MASK (1 << FSPI_AHBCR_CACH_EN_SHIFT)
#define FSPI_AHBCR_CLRTXBUF_SHIFT 2
#define FSPI_AHBCR_CLRTXBUF_MASK (1 << FSPI_AHBCR_CLRTXBUF_SHIFT)
#define FSPI_AHBCR_CLRRXBUF_SHIFT 1
#define FSPI_AHBCR_CLRRXBUF_MASK (1 << FSPI_AHBCR_CLRRXBUF_SHIFT)
#define FSPI_AHBCR_PAR_EN_SHIFT 0
#define FSPI_AHBCR_PAR_EN_MASK (1 << FSPI_AHBCR_PAR_EN_SHIFT)
#define FSPI_INTEN 0x10
#define FSPI_INTEN_SCLKSBWR_SHIFT 9
#define FSPI_INTEN_SCLKSBWR_MASK (1 << FSPI_INTEN_SCLKSBWR_SHIFT)
#define FSPI_INTEN_SCLKSBRD_SHIFT 8
#define FSPI_INTEN_SCLKSBRD_MASK (1 << FSPI_INTEN_SCLKSBRD_SHIFT)
#define FSPI_INTEN_DATALRNFL_SHIFT 7
#define FSPI_INTEN_DATALRNFL_MASK (1 << FSPI_INTEN_DATALRNFL_SHIFT)
#define FSPI_INTEN_IPTXWE_SHIFT 6
#define FSPI_INTEN_IPTXWE_MASK (1 << FSPI_INTEN_IPTXWE_SHIFT)
#define FSPI_INTEN_IPRXWA_SHIFT 5
#define FSPI_INTEN_IPRXWA_MASK (1 << FSPI_INTEN_IPRXWA_SHIFT)
#define FSPI_INTEN_AHBCMDERR_SHIFT 4
#define FSPI_INTEN_AHBCMDERR_MASK (1 << FSPI_INTEN_AHBCMDERR_SHIFT)
#define FSPI_INTEN_IPCMDERR_SHIFT 3
#define FSPI_INTEN_IPCMDERR_MASK (1 << FSPI_INTEN_IPCMDERR_SHIFT)
#define FSPI_INTEN_AHBCMDGE_SHIFT 2
#define FSPI_INTEN_AHBCMDGE_MASK (1 << FSPI_INTEN_AHBCMDGE_SHIFT)
#define FSPI_INTEN_IPCMDGE_SHIFT 1
#define FSPI_INTEN_IPCMDGE_MASK (1 << FSPI_INTEN_IPCMDGE_SHIFT)
#define FSPI_INTEN_IPCMDDONE_SHIFT 0
#define FSPI_INTEN_IPCMDDONE_MASK (1 << FSPI_INTEN_IPCMDDONE_SHIFT)
#define FSPI_INTR 0x14
#define FSPI_INTR_SCLKSBWR_SHIFT 9
#define FSPI_INTR_SCLKSBWR_MASK (1 << FSPI_INTR_SCLKSBWR_SHIFT)
#define FSPI_INTR_SCLKSBRD_SHIFT 8
#define FSPI_INTR_SCLKSBRD_MASK (1 << FSPI_INTR_SCLKSBRD_SHIFT)
#define FSPI_INTR_DATALRNFL_SHIFT 7
#define FSPI_INTR_DATALRNFL_MASK (1 << FSPI_INTR_DATALRNFL_SHIFT)
#define FSPI_INTR_IPTXWE_SHIFT 6
#define FSPI_INTR_IPTXWE_MASK (1 << FSPI_INTR_IPTXWE_SHIFT)
#define FSPI_INTR_IPRXWA_SHIFT 5
#define FSPI_INTR_IPRXWA_MASK (1 << FSPI_INTR_IPRXWA_SHIFT)
#define FSPI_INTR_AHBCMDERR_SHIFT 4
#define FSPI_INTR_AHBCMDERR_MASK (1 << FSPI_INTR_AHBCMDERR_SHIFT)
#define FSPI_INTR_IPCMDERR_SHIFT 3
#define FSPI_INTR_IPCMDERR_MASK (1 << FSPI_INTR_IPCMDERR_SHIFT)
#define FSPI_INTR_AHBCMDGE_SHIFT 2
#define FSPI_INTR_AHBCMDGE_MASK (1 << FSPI_INTR_AHBCMDGE_SHIFT)
#define FSPI_INTR_IPCMDGE_SHIFT 1
#define FSPI_INTR_IPCMDGE_MASK (1 << FSPI_INTR_IPCMDGE_SHIFT)
#define FSPI_INTR_IPCMDDONE_SHIFT 0
#define FSPI_INTR_IPCMDDONE_MASK (1 << FSPI_INTR_IPCMDDONE_SHIFT)
#define FSPI_LUTKEY 0x18
#define FSPI_LUTKEY_VALUE 0x5AF05AF0
#define FSPI_LCKCR 0x1C
#define FSPI_LCKER_LOCK 0x1
#define FSPI_LCKER_UNLOCK 0x2
#define FSPI_BUFXCR_INVALID_MSTRID 0xe
#define FSPI_AHBRX_BUF0CR0 0x20
#define FSPI_AHBRX_BUF1CR0 0x24
#define FSPI_AHBRX_BUF2CR0 0x28
#define FSPI_AHBRX_BUF3CR0 0x2C
#define FSPI_AHBRX_BUF4CR0 0x30
#define FSPI_AHBRX_BUF5CR0 0x34
#define FSPI_AHBRX_BUF6CR0 0x38
#define FSPI_AHBRX_BUF7CR0 0x3C
#define FSPI_AHBRXBUF0CR7_PREF_SHIFT 31
#define FSPI_AHBRXBUF0CR7_PREF_MASK (1 << FSPI_AHBRXBUF0CR7_PREF_SHIFT)
#define FSPI_AHBRX_BUF0CR1 0x40
#define FSPI_AHBRX_BUF1CR1 0x44
#define FSPI_AHBRX_BUF2CR1 0x48
#define FSPI_AHBRX_BUF3CR1 0x4C
#define FSPI_AHBRX_BUF4CR1 0x50
#define FSPI_AHBRX_BUF5CR1 0x54
#define FSPI_AHBRX_BUF6CR1 0x58
#define FSPI_AHBRX_BUF7CR1 0x5C
#define FSPI_BUFXCR1_MSID_SHIFT 0
#define FSPI_BUFXCR1_MSID_MASK (0xF << FSPI_BUFXCR1_MSID_SHIFT)
#define FSPI_BUFXCR1_PRIO_SHIFT 8
#define FSPI_BUFXCR1_PRIO_MASK (0x7 << FSPI_BUFXCR1_PRIO_SHIFT)
#define FSPI_FLSHA1CR0 0x60
#define FSPI_FLSHA2CR0 0x64
#define FSPI_FLSHB1CR0 0x68
#define FSPI_FLSHB2CR0 0x6C
#define FSPI_FLSHXCR0_SZ_SHIFT 10
#define FSPI_FLSHXCR0_SZ_MASK (0x3FFFFF << FSPI_FLSHXCR0_SZ_SHIFT)
#define FSPI_FLSHA1CR1 0x70
#define FSPI_FLSHA2CR1 0x74
#define FSPI_FLSHB1CR1 0x78
#define FSPI_FLSHB2CR1 0x7C
#define FSPI_FLSHXCR1_CSINTR_SHIFT 16
#define FSPI_FLSHXCR1_CSINTR_MASK \
(0xFFFF << FSPI_FLSHXCR1_CSINTR_SHIFT)
#define FSPI_FLSHXCR1_CAS_SHIFT 11
#define FSPI_FLSHXCR1_CAS_MASK (0xF << FSPI_FLSHXCR1_CAS_SHIFT)
#define FSPI_FLSHXCR1_WA_SHIFT 10
#define FSPI_FLSHXCR1_WA_MASK (1 << FSPI_FLSHXCR1_WA_SHIFT)
#define FSPI_FLSHXCR1_TCSH_SHIFT 5
#define FSPI_FLSHXCR1_TCSH_MASK (0x1F << FSPI_FLSHXCR1_TCSH_SHIFT)
#define FSPI_FLSHXCR1_TCSS_SHIFT 0
#define FSPI_FLSHXCR1_TCSS_MASK (0x1F << FSPI_FLSHXCR1_TCSS_SHIFT)
#define FSPI_FLSHA1CR2 0x80
#define FSPI_FLSHA2CR2 0x84
#define FSPI_FLSHB1CR2 0x88
#define FSPI_FLSHB2CR2 0x8C
#define FSPI_FLSHXCR2_CLRINSP_SHIFT 24
#define FSPI_FLSHXCR2_CLRINSP_MASK (1 << FSPI_FLSHXCR2_CLRINSP_SHIFT)
#define FSPI_FLSHXCR2_AWRWAIT_SHIFT 16
#define FSPI_FLSHXCR2_AWRWAIT_MASK (0xFF << FSPI_FLSHXCR2_AWRWAIT_SHIFT)
#define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
#define FSPI_FLSHXCR2_AWRSEQN_MASK (0x7 << FSPI_FLSHXCR2_AWRSEQN_SHIFT)
#define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
#define FSPI_FLSHXCR2_AWRSEQI_MASK (0xF << FSPI_FLSHXCR2_AWRSEQI_SHIFT)
#define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
#define FSPI_FLSHXCR2_ARDSEQN_MASK (0x7 << FSPI_FLSHXCR2_ARDSEQN_SHIFT)
#define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
#define FSPI_FLSHXCR2_ARDSEQI_MASK (0xF << FSPI_FLSHXCR2_ARDSEQI_SHIFT)
#define FSPI_IPCR0 0xA0
#define FSPI_IPCR1 0xA4
#define FSPI_IPCR1_IPAREN_SHIFT 31
#define FSPI_IPCR1_IPAREN_MASK (1 << FSPI_IPCR1_IPAREN_SHIFT)
#define FSPI_IPCR1_SEQNUM_SHIFT 24
#define FSPI_IPCR1_SEQNUM_MASK (0xF << FSPI_IPCR1_SEQNUM_SHIFT)
#define FSPI_IPCR1_SEQID_SHIFT 16
#define FSPI_IPCR1_SEQID_MASK (0xF << FSPI_IPCR1_SEQID_SHIFT)
#define FSPI_IPCR1_IDATSZ_SHIFT 0
#define FSPI_IPCR1_IDATSZ_MASK (0xFFFF << FSPI_IPCR1_IDATSZ_SHIFT)
#define FSPI_IPCMD 0xB0
#define FSPI_IPCMD_TRG_SHIFT 0
#define FSPI_IPCMD_TRG_MASK (1 << FSPI_IPCMD_TRG_SHIFT)
#define FSPI_DLPR 0xB4
#define FSPI_IPRXFCR 0xB8
#define FSPI_IPRXFCR_CLR_SHIFT 0
#define FSPI_IPRXFCR_CLR_MASK (1 << FSPI_IPRXFCR_CLR_SHIFT)
#define FSPI_IPRXFCR_DMA_EN_SHIFT 1
#define FSPI_IPRXFCR_DMA_EN_MASK (1 << FSPI_IPRXFCR_DMA_EN_SHIFT)
#define FSPI_IPRXFCR_WMRK_SHIFT 2
#define FSPI_IPRXFCR_WMRK_MASK (0x1F << FSPI_IPRXFCR_WMRK_SHIFT)
#define FSPI_IPTXFCR 0xBC
#define FSPI_IPTXFCR_CLR_SHIFT 0
#define FSPI_IPTXFCR_CLR_MASK (1 << FSPI_IPTXFCR_CLR_SHIFT)
#define FSPI_IPTXFCR_DMA_EN_SHIFT 1
#define FSPI_IPTXFCR_DMA_EN_MASK (1 << FSPI_IPTXFCR_DMA_EN_SHIFT)
#define FSPI_IPTXFCR_WMRK_SHIFT 2
#define FSPI_IPTXFCR_WMRK_MASK (0x1F << FSPI_IPTXFCR_WMRK_SHIFT)
#define FSPI_DLLACR 0xC0
#define FSPI_DLLACR_OVRDEN_SHIFT 8
#define FSPI_DLLACR_OVRDEN_MASK (1 << FSPI_DLLACR_OVRDEN_SHIFT)
#define FSPI_DLLBCR 0xC4
#define FSPI_DLLBCR_OVRDEN_SHIFT 8
#define FSPI_DLLBCR_OVRDEN_MASK (1 << FSPI_DLLBCR_OVRDEN_SHIFT)
#define FSPI_STS0 0xE0
#define FSPI_STS0_DLPHA_SHIFT 9
#define FSPI_STS0_DLPHA_MASK (0x1F << FSPI_STS0_DLPHA_SHIFT)
#define FSPI_STS0_DLPHB_SHIFT 4
#define FSPI_STS0_DLPHB_MASK (0x1F << FSPI_STS0_DLPHB_SHIFT)
#define FSPI_STS0_CMD_SRC_SHIFT 2
#define FSPI_STS0_CMD_SRC_MASK (3 << FSPI_STS0_CMD_SRC_SHIFT)
#define FSPI_STS0_ARB_IDLE_SHIFT 1
#define FSPI_STS0_ARB_IDLE_MASK (1 << FSPI_STS0_ARB_IDLE_SHIFT)
#define FSPI_STS0_SEQ_IDLE_SHIFT 0
#define FSPI_STS0_SEQ_IDLE_MASK (1 << FSPI_STS0_SEQ_IDLE_SHIFT)
#define FSPI_STS1 0xE4
#define FSPI_STS1_IP_ERRCD_SHIFT 24
#define FSPI_STS1_IP_ERRCD_MASK (0xF << FSPI_STS1_IP_ERRCD_SHIFT)
#define FSPI_STS1_IP_ERRID_SHIFT 16
#define FSPI_STS1_IP_ERRID_MASK (0xF << FSPI_STS1_IP_ERRID_SHIFT)
#define FSPI_STS1_AHB_ERRCD_SHIFT 8
#define FSPI_STS1_AHB_ERRCD_MASK (0xF << FSPI_STS1_AHB_ERRCD_SHIFT)
#define FSPI_STS1_AHB_ERRID_SHIFT 0
#define FSPI_STS1_AHB_ERRID_MASK (0xF << FSPI_STS1_AHB_ERRID_SHIFT)
#define FSPI_AHBSPNST 0xEC
#define FSPI_AHBSPNST_DATLFT_SHIFT 16
#define FSPI_AHBSPNST_DATLFT_MASK \
(0xFFFF << FSPI_AHBSPNST_DATLFT_SHIFT)
#define FSPI_AHBSPNST_BUFID_SHIFT 1
#define FSPI_AHBSPNST_BUFID_MASK (7 << FSPI_AHBSPNST_BUFID_SHIFT)
#define FSPI_AHBSPNST_ACTIVE_SHIFT 0
#define FSPI_AHBSPNST_ACTIVE_MASK (1 << FSPI_AHBSPNST_ACTIVE_SHIFT)
#define FSPI_IPRXFSTS 0xF0
#define FSPI_IPRXFSTS_RDCNTR_SHIFT 16
#define FSPI_IPRXFSTS_RDCNTR_MASK \
(0xFFFF << FSPI_IPRXFSTS_RDCNTR_SHIFT)
#define FSPI_IPRXFSTS_FILL_SHIFT 0
#define FSPI_IPRXFSTS_FILL_MASK (0xFF << FSPI_IPRXFSTS_FILL_SHIFT)
#define FSPI_IPTXFSTS 0xF4
#define FSPI_IPTXFSTS_WRCNTR_SHIFT 16
#define FSPI_IPTXFSTS_WRCNTR_MASK \
(0xFFFF << FSPI_IPTXFSTS_WRCNTR_SHIFT)
#define FSPI_IPTXFSTS_FILL_SHIFT 0
#define FSPI_IPTXFSTS_FILL_MASK (0xFF << FSPI_IPTXFSTS_FILL_SHIFT)
#define FSPI_RFDR 0x100
#define FSPI_TFDR 0x180
#define FSPI_LUT_BASE 0x200
/* register map end */
/*
* The definition of the LUT register shows below:
*
* ---------------------------------------------------
* | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
* ---------------------------------------------------
*/
#define OPRND0_SHIFT 0
#define PAD0_SHIFT 8
#define INSTR0_SHIFT 10
#define OPRND1_SHIFT 16
/* Instruction set for the LUT register. */
#define LUT_STOP 0x00
#define LUT_CMD 0x01
#define LUT_ADDR 0x02
#define LUT_CADDR_SDR 0x03
#define LUT_MODE 0x04
#define LUT_MODE2 0x05
#define LUT_MODE4 0x06
#define LUT_MODE8 0x07
#define LUT_NXP_WRITE 0x08
#define LUT_NXP_READ 0x09
#define LUT_LEARN_SDR 0x0A
#define LUT_DATSZ_SDR 0x0B
#define LUT_DUMMY 0x0C
#define LUT_DUMMY_RWDS_SDR 0x0D
#define LUT_JMP_ON_CS 0x1F
#define LUT_CMD_DDR 0x21
#define LUT_ADDR_DDR 0x22
#define LUT_CADDR_DDR 0x23
#define LUT_MODE_DDR 0x24
#define LUT_MODE2_DDR 0x25
#define LUT_MODE4_DDR 0x26
#define LUT_MODE8_DDR 0x27
#define LUT_WRITE_DDR 0x28
#define LUT_READ_DDR 0x29
#define LUT_LEARN_DDR 0x2A
#define LUT_DATSZ_DDR 0x2B
#define LUT_DUMMY_DDR 0x2C
#define LUT_DUMMY_RWDS_DDR 0x2D
/*
* The PAD definitions for LUT register.
*
* The pad stands for the lines number of IO[0:3].
* For example, the Quad read need four IO lines, so you should
* set LUT_PAD4 which means we use four IO lines.
*/
#define LUT_PAD1 0
#define LUT_PAD2 1
#define LUT_PAD4 2
#define LUT_PAD8 3
/* Oprands for the LUT register. */
#define ADDR24BIT 0x18
#define ADDR32BIT 0x20
/* Macros for constructing the LUT register. */
#define LUT0(ins, pad, opr) \
(((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
((LUT_##ins) << INSTR0_SHIFT))
#define LUT1(ins, pad, opr) (LUT0(ins, pad, opr) << OPRND1_SHIFT)
/* other macros for LUT register. */
#define FSPI_LUT(x) (FSPI_LUT_BASE + (x) * 4)
#define FSPI_LUT_NUM 128
/* SEQID -- we can have 32 seqids at most. */
#define SEQID_READ 0
#define SEQID_WREN 1
#define SEQID_WRDI 2
#define SEQID_RDSR 3
#define SEQID_SE 4
#define SEQID_CHIP_ERASE 5
#define SEQID_PP 6
#define SEQID_RDID 7
#define SEQID_WRSR 8
#define SEQID_RDCR 9
#define SEQID_EN4B 10
#define SEQID_BRWR 11
#define SEQID_RD_EVCR 12
#define SEQID_WD_EVCR 13
#define SEQID_RDFSR 14
#define FSPI_MIN_IOMAP SZ_4M
#define FSPI_RX_MAX_IPBUF_SIZE 0x200 /* 64 * 64bits */
#define FSPI_TX_MAX_IPBUF_SIZE 0x400 /* 128 * 64bits */
#define FSPI_RX_MAX_AHBBUF_SIZE 0x800 /* 256 * 64bits */
#define FSPI_TX_MAX_AHBBUF_SIZE 0x40 /* 8 * 64bits */
#define TX_IPBUF_SIZE FSPI_TX_MAX_IPBUF_SIZE
#define RX_IPBUF_SIZE FSPI_RX_MAX_IPBUF_SIZE
#define RX_AHBBUF_SIZE FSPI_RX_MAX_AHBBUF_SIZE
#define TX_AHBBUF_SIZE FSPI_TX_MAX_AHBBUF_SIZE
#define FSPI_SINGLE_MODE 1
#define FSPI_OCTAL_MODE 8
#define FSPINOR_OP_READ_1_1_8_4B 0x7c
enum nxp_fspi_devtype {
NXP_FSPI_LX2160A,
};
struct nxp_fspi_devtype_data {
enum nxp_fspi_devtype devtype;
int rxfifo;
int txfifo;
int ahb_buf_size;
int driver_data;
};
static struct nxp_fspi_devtype_data lx2160a_data = {
.devtype = NXP_FSPI_LX2160A,
.rxfifo = RX_IPBUF_SIZE,
.txfifo = TX_IPBUF_SIZE,
.ahb_buf_size = RX_AHBBUF_SIZE,
.driver_data = 0,
};
#define NXP_FSPI_MAX_CHIP 4
struct nxp_fspi {
struct mtd_info mtd[NXP_FSPI_MAX_CHIP];
struct spi_nor nor[NXP_FSPI_MAX_CHIP];
void __iomem *iobase;
void __iomem *ahb_addr;
u32 memmap_phy;
u32 memmap_offs;
u32 memmap_len;
struct clk *clk, *clk_en;
struct device *dev;
struct completion c;
struct nxp_fspi_devtype_data *devtype_data;
u32 nor_size;
u32 nor_num;
u32 clk_rate;
u32 spi_rx_bus_width;
u32 spi_tx_bus_width;
unsigned int chip_base_addr; /* We may support two chips. */
bool has_second_chip;
struct mutex lock;
struct pm_qos_request pm_qos_req;
};
static inline void nxp_fspi_unlock_lut(struct nxp_fspi *fspi)
{
writel(FSPI_LUTKEY_VALUE, fspi->iobase + FSPI_LUTKEY);
writel(FSPI_LCKER_UNLOCK, fspi->iobase + FSPI_LCKCR);
}
static inline void nxp_fspi_lock_lut(struct nxp_fspi *fspi)
{
writel(FSPI_LUTKEY_VALUE, fspi->iobase + FSPI_LUTKEY);
writel(FSPI_LCKER_LOCK, fspi->iobase + FSPI_LCKCR);
}
static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
{
struct nxp_fspi *fspi = dev_id;
u32 reg;
reg = readl(fspi->iobase + FSPI_INTR);
writel(FSPI_INTR_IPCMDDONE_MASK, fspi->iobase + FSPI_INTR);
if (reg & FSPI_INTR_IPCMDDONE_MASK)
complete(&fspi->c);
return IRQ_HANDLED;
}
static void nxp_fspi_init_lut(struct nxp_fspi *fspi)
{
void __iomem *base = fspi->iobase;
struct spi_nor *nor = &fspi->nor[0];
u8 addrlen = (nor->addr_width == 3) ? ADDR24BIT : ADDR32BIT;
u32 lut_base;
u8 op, dm;
int i;
nxp_fspi_unlock_lut(fspi);
/* Clear all the LUT table */
for (i = 0; i < FSPI_LUT_NUM; i++)
writel(0, base + FSPI_LUT_BASE + i * 4);
/* Read */
lut_base = SEQID_READ * 4;
op = nor->read_opcode;
dm = nor->read_dummy;
if (fspi->spi_rx_bus_width == FSPI_OCTAL_MODE) {
dm = 8;
op = FSPINOR_OP_READ_1_1_8_4B;
writel(LUT0(CMD, PAD1, op) | LUT1(ADDR, PAD1, addrlen),
base + FSPI_LUT(lut_base));
writel(LUT0(DUMMY, PAD8, dm) | LUT1(NXP_READ, PAD8, 0),
base + FSPI_LUT(lut_base + 1));
} else {
if ((op == SPINOR_OP_READ_FAST_4B) ||
(op == SPINOR_OP_READ_FAST) ||
(op == SPINOR_OP_READ) ||
(op == SPINOR_OP_READ_4B)) {
dm = 8;
writel(LUT0(CMD, PAD1, op) | LUT1(ADDR, PAD1, addrlen),
base + FSPI_LUT(lut_base));
writel(LUT0(DUMMY, PAD1, dm) | LUT1(NXP_READ, PAD1, 0),
base + FSPI_LUT(lut_base + 1));
} else if (nor->read_proto == SNOR_PROTO_1_4_4) {
dev_dbg(nor->dev, "Unsupported opcode : 0x%.2x\n", op);
/* TODO Add support for other Read ops. */
} else {
dev_dbg(nor->dev, "Unsupported opcode : 0x%.2x\n", op);
}
}
/* Write enable */
lut_base = SEQID_WREN * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_WREN), base + FSPI_LUT(lut_base));
/* Page Program */
lut_base = SEQID_PP * 4;
writel(LUT0(CMD, PAD1, nor->program_opcode) | LUT1(ADDR, PAD1, addrlen),
base + FSPI_LUT(lut_base));
writel(LUT0(NXP_WRITE, PAD1, 0), base + FSPI_LUT(lut_base + 1));
/* Read Status */
lut_base = SEQID_RDSR * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_RDSR) | LUT1(NXP_READ, PAD1, 0x1),
base + FSPI_LUT(lut_base));
/* Erase a sector */
lut_base = SEQID_SE * 4;
writel(LUT0(CMD, PAD1, nor->erase_opcode) | LUT1(ADDR, PAD1, addrlen),
base + FSPI_LUT(lut_base));
/* Erase the whole chip */
lut_base = SEQID_CHIP_ERASE * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
base + FSPI_LUT(lut_base));
/* READ ID */
lut_base = SEQID_RDID * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_RDID) | LUT1(NXP_READ, PAD1, 0x8),
base + FSPI_LUT(lut_base));
/* Write Register */
lut_base = SEQID_WRSR * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_WRSR) | LUT1(NXP_WRITE, PAD1, 0x2),
base + FSPI_LUT(lut_base));
/* Read Configuration Register */
lut_base = SEQID_RDCR * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_RDCR) | LUT1(NXP_READ, PAD1, 0x1),
base + FSPI_LUT(lut_base));
/* Write disable */
lut_base = SEQID_WRDI * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_WRDI), base + FSPI_LUT(lut_base));
/* Enter 4 Byte Mode (Micron) */
lut_base = SEQID_EN4B * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_EN4B), base + FSPI_LUT(lut_base));
/* Enter 4 Byte Mode (Spansion) */
lut_base = SEQID_BRWR * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_BRWR), base + FSPI_LUT(lut_base));
/* Read EVCR register */
lut_base = SEQID_RD_EVCR * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_RD_EVCR),
base + FSPI_LUT(lut_base));
/* Write EVCR register */
lut_base = SEQID_WD_EVCR * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_WD_EVCR),
base + FSPI_LUT(lut_base));
/* Read Flag Status */
lut_base = SEQID_RDFSR * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_RDFSR) | LUT1(NXP_READ, PAD1, 0x1),
base + FSPI_LUT(lut_base));
nxp_fspi_lock_lut(fspi);
}
/* Get the SEQID for the command */
static int nxp_fspi_get_seqid(struct nxp_fspi *fspi, u8 cmd)
{
switch (cmd) {
case SPINOR_OP_READ_1_1_4_4B:
case SPINOR_OP_READ_1_1_4:
case SPINOR_OP_READ:
case SPINOR_OP_READ_4B:
case SPINOR_OP_READ_FAST:
case SPINOR_OP_READ_FAST_4B:
return SEQID_READ;
case SPINOR_OP_WREN:
return SEQID_WREN;
case SPINOR_OP_WRDI:
return SEQID_WRDI;
case SPINOR_OP_RDSR:
return SEQID_RDSR;
case SPINOR_OP_RDFSR:
return SEQID_RDFSR;
case SPINOR_OP_BE_4K:
case SPINOR_OP_SE:
case SPINOR_OP_SE_4B:
case SPINOR_OP_BE_4K_4B:
return SEQID_SE;
case SPINOR_OP_CHIP_ERASE:
return SEQID_CHIP_ERASE;
case SPINOR_OP_PP:
case SPINOR_OP_PP_4B:
return SEQID_PP;
case SPINOR_OP_RDID:
return SEQID_RDID;
case SPINOR_OP_WRSR:
return SEQID_WRSR;
case SPINOR_OP_RDCR:
return SEQID_RDCR;
case SPINOR_OP_EN4B:
return SEQID_EN4B;
case SPINOR_OP_BRWR:
return SEQID_BRWR;
case SPINOR_OP_RD_EVCR:
return SEQID_RD_EVCR;
case SPINOR_OP_WD_EVCR:
return SEQID_WD_EVCR;
default:
dev_err(fspi->dev, "Unsupported cmd 0x%.2x\n", cmd);
break;
}
return -EINVAL;
}
static int
nxp_fspi_runcmd(struct nxp_fspi *fspi, u8 cmd, unsigned int addr, int len)
{
void __iomem *base = fspi->iobase;
int seqid;
int seqnum = 0;
u32 reg;
int err;
int iprxfcr = 0;
iprxfcr = readl(fspi->iobase + FSPI_IPRXFCR);
/* invalid RXFIFO first */
iprxfcr &= ~FSPI_IPRXFCR_DMA_EN_MASK;
iprxfcr = iprxfcr | FSPI_IPRXFCR_CLR_MASK;
writel(iprxfcr, fspi->iobase + FSPI_IPRXFCR);
init_completion(&fspi->c);
dev_dbg(fspi->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
fspi->chip_base_addr, addr, len, cmd);
/* write address */
writel(fspi->chip_base_addr + addr, base + FSPI_IPCR0);
seqid = nxp_fspi_get_seqid(fspi, cmd);
writel((seqnum << FSPI_IPCR1_SEQNUM_SHIFT) |
(seqid << FSPI_IPCR1_SEQID_SHIFT) | len,
base + FSPI_IPCR1);
/* wait till controller is idle */
do {
reg = readl(base + FSPI_STS0);
if ((reg & FSPI_STS0_ARB_IDLE_MASK) &&
(reg & FSPI_STS0_SEQ_IDLE_MASK))
break;
udelay(1);
dev_dbg(fspi->dev, "The controller is busy, 0x%x\n", reg);
} while (1);
/* trigger the LUT now */
writel(1, base + FSPI_IPCMD);
/* Wait for the interrupt. */
if (!wait_for_completion_timeout(&fspi->c, msecs_to_jiffies(1000))) {
dev_err(fspi->dev,
"cmd 0x%.2x timeout, addr@%.8x, Status0:0x%.8x, Status1:0x%.8x\n",
cmd, addr, readl(base + FSPI_STS0),
readl(base + FSPI_STS1));
err = -ETIMEDOUT;
} else {
err = 0;
dev_dbg(fspi->dev, "FSPI Intr done,INTR:<0x%.8x>\n",
readl(base + FSPI_INTR));
}
return err;
}
/* Read out the data from the FSPI_RBDR buffer registers. */
static void nxp_fspi_read_data(struct nxp_fspi *fspi, int len, u8 *rxbuf)
{
int i = 0, j = 0, tmp_size = 0;
int size;
u32 tmp = 0;
while (len > 0) {
size = len / 8;
for (i = 0; i < size; ++i) {
/* Wait for RXFIFO available*/
while (!(readl(fspi->iobase + FSPI_INTR)
& FSPI_INTR_IPRXWA_MASK))
;
j = 0;
tmp_size = 8;
while (tmp_size > 0) {
tmp = 0;
tmp = readl(fspi->iobase + FSPI_RFDR + j * 4);
memcpy(rxbuf, &tmp, 4);
tmp_size -= 4;
j++;
rxbuf += 4;
}
/* move the FIFO pointer */
writel(FSPI_INTR_IPRXWA_MASK,
fspi->iobase + FSPI_INTR);
len -= 8;
}
size = len % 8;
j = 0;
if (size) {
/* Wait for RXFIFO available*/
while (!(readl(fspi->iobase + FSPI_INTR)
& FSPI_INTR_IPRXWA_MASK))
;
while (len > 0) {
tmp = 0;
size = (len < 4) ? len : 4;
tmp = readl(fspi->iobase + FSPI_RFDR + j * 4);
memcpy(rxbuf, &tmp, size);
len -= size;
j++;
rxbuf += size;
}
}
/* invalid the RXFIFO */
writel(FSPI_IPRXFCR_CLR_MASK,
fspi->iobase + FSPI_IPRXFCR);
writel(FSPI_INTR_IPRXWA_MASK,
fspi->iobase + FSPI_INTR);
}
}
static inline void nxp_fspi_invalid(struct nxp_fspi *fspi)
{
u32 reg;
reg = readl(fspi->iobase + FSPI_MCR0);
writel(reg | FSPI_MCR0_SWRST_MASK, fspi->iobase + FSPI_MCR0);
/*
* The minimum delay : 1 AHB + 2 SFCK clocks.
* Delay 1 us is enough.
*/
while (readl(fspi->iobase + FSPI_MCR0) & FSPI_MCR0_SWRST_MASK)
;
}
static ssize_t nxp_fspi_nor_write(struct nxp_fspi *fspi,
struct spi_nor *nor, u8 opcode,
unsigned int to, u32 *txbuf,
unsigned int count)
{
int ret, i, j;
int size, tmp_size;
u32 data = 0;
dev_dbg(fspi->dev, "nor write to 0x%.8x:0x%.8x, len : %d\n",
fspi->chip_base_addr, to, count);
/* clear the TX FIFO. */
writel(FSPI_IPTXFCR_CLR_MASK, fspi->iobase + FSPI_IPTXFCR);
size = count / 8;
for (i = 0; i < size; i++) {
/* Wait for TXFIFO empty*/
while (!(readl(fspi->iobase + FSPI_INTR)
& FSPI_INTR_IPTXWE_MASK))
;
j = 0;
tmp_size = 8;
while (tmp_size > 0) {
data = 0;
memcpy(&data, txbuf, 4);
writel(data, fspi->iobase + FSPI_TFDR + j * 4);
tmp_size -= 4;
j++;
txbuf += 1;
}
writel(FSPI_INTR_IPTXWE_MASK, fspi->iobase + FSPI_INTR);
}
size = count % 8;
if (size) {
/* Wait for TXFIFO empty*/
while (!(readl(fspi->iobase + FSPI_INTR)
& FSPI_INTR_IPTXWE_MASK))
;
j = 0;
tmp_size = 0;
while (size > 0) {
data = 0;
tmp_size = (size < 4) ? size : 4;
memcpy(&data, txbuf, tmp_size);
writel(data, fspi->iobase + FSPI_TFDR + j * 4);
size -= tmp_size;
j++;
txbuf += 1;
}
writel(FSPI_INTR_IPTXWE_MASK, fspi->iobase + FSPI_INTR);
}
/* Trigger it */
ret = nxp_fspi_runcmd(fspi, opcode, to, count);
if (ret == 0)
return count;
return ret;
}
static void nxp_fspi_set_map_addr(struct nxp_fspi *fspi)
{
int nor_size = fspi->nor_size >> 10;
void __iomem *base = fspi->iobase;
/*
* Supporting same flash device as slaves on different chip-select.
* As SAMEDEVICEEN bit set, by default, in mcr2 reg then need not to
* configure FLSHA2CRx/FLSHB1CRx/FLSHB2CRx register as setting for
* these would be ignored.
* Need to Reset SAMEDEVICEEN bit in mcr2 reg, when require to add
* support for different flashes.
*/
writel(nor_size, base + FSPI_FLSHA1CR0);
writel(0, base + FSPI_FLSHA2CR0);
writel(0, base + FSPI_FLSHB1CR0);
writel(0, base + FSPI_FLSHB2CR0);
}
static void nxp_fspi_init_ahb_read(struct nxp_fspi *fspi)
{
void __iomem *base = fspi->iobase;
struct spi_nor *nor = &fspi->nor[0];
int i = 0;
int seqid;
/* AHB configuration for access buffer 0~7. */
for (i = 0; i < 7; i++)
writel(0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
/*
* Set ADATSZ with the maximum AHB buffer size to improve the read
* performance.
*/
writel((fspi->devtype_data->ahb_buf_size / 8 |
FSPI_AHBRXBUF0CR7_PREF_MASK), base + FSPI_AHBRX_BUF7CR0);
/* prefetch and no start address alignment limitation */
writel(FSPI_AHBCR_PREF_EN_MASK | FSPI_AHBCR_RDADDROPT_MASK,
base + FSPI_AHBCR);
/* Set the default lut sequence for AHB Read. */
seqid = nxp_fspi_get_seqid(fspi, nor->read_opcode);
writel(seqid, base + FSPI_FLSHA1CR2);
}
/* This function was used to prepare and enable FSPI clock */
static int nxp_fspi_clk_prep_enable(struct nxp_fspi *fspi)
{
int ret;
ret = clk_prepare_enable(fspi->clk_en);
if (ret)
return ret;
ret = clk_prepare_enable(fspi->clk);
if (ret) {
clk_disable_unprepare(fspi->clk_en);
return ret;
}
return 0;
}
/* This function was used to disable and unprepare FSPI clock */
static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *fspi)
{
clk_disable_unprepare(fspi->clk);
clk_disable_unprepare(fspi->clk_en);
}
/* We use this function to do some basic init for spi_nor_scan(). */
static int nxp_fspi_nor_setup(struct nxp_fspi *fspi)
{
void __iomem *base = fspi->iobase;
u32 reg;
/* Reset the module */
writel(FSPI_MCR0_SWRST_MASK, base + FSPI_MCR0);
do {
udelay(1);
} while (0x1 & readl(base + FSPI_MCR0));
/* Disable the module */
writel(FSPI_MCR0_MDIS_MASK, base + FSPI_MCR0);
/* Reset the DLL register to default value */
writel(FSPI_DLLACR_OVRDEN_MASK, base + FSPI_DLLACR);
writel(FSPI_DLLBCR_OVRDEN_MASK, base + FSPI_DLLBCR);
/* enable module */
writel(FSPI_MCR0_AHB_TIMEOUT_MASK | FSPI_MCR0_IP_TIMEOUT_MASK,
base + FSPI_MCR0);
/* Read the register value */
reg = readl(base + FSPI_MCR0);
/* Init the LUT table. */
nxp_fspi_init_lut(fspi);
/* enable the interrupt */
writel(FSPI_INTEN_IPCMDDONE_MASK, fspi->iobase + FSPI_INTEN);
return 0;
}
static int nxp_fspi_nor_setup_last(struct nxp_fspi *fspi)
{
unsigned long rate = fspi->clk_rate;
int ret;
/* disable and unprepare clock to avoid glitch pass to controller */
nxp_fspi_clk_disable_unprep(fspi);
ret = clk_set_rate(fspi->clk, rate);
if (ret)
return ret;
ret = nxp_fspi_clk_prep_enable(fspi);
if (ret)
return ret;
/* Init the LUT table again. */
nxp_fspi_init_lut(fspi);
/* Init for AHB read */
nxp_fspi_init_ahb_read(fspi);
return 0;
}
static void nxp_fspi_set_base_addr(struct nxp_fspi *fspi,
struct spi_nor *nor)
{
fspi->chip_base_addr = fspi->nor_size * (nor - fspi->nor);
}
static int nxp_fspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
int len)
{
int ret;
struct nxp_fspi *fspi = nor->priv;
ret = nxp_fspi_runcmd(fspi, opcode, 0, len);
if (ret)
return ret;
nxp_fspi_read_data(fspi, len, buf);
return 0;
}
static int nxp_fspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
int len)
{
struct nxp_fspi *fspi = nor->priv;
int ret;
if (!buf) {
ret = nxp_fspi_runcmd(fspi, opcode, 0, 1);
if (ret)
return ret;
if (opcode == SPINOR_OP_CHIP_ERASE)
nxp_fspi_invalid(fspi);
} else if (len > 0) {
ret = nxp_fspi_nor_write(fspi, nor, opcode, 0,
(u32 *)buf, len);
} else {
dev_err(fspi->dev, "invalid cmd %d\n", opcode);
ret = -EINVAL;
}
return ret;
}
static ssize_t nxp_fspi_write(struct spi_nor *nor, loff_t to,
size_t len, const u_char *buf)
{
struct nxp_fspi *fspi = nor->priv;
ssize_t tx_size = 0, act_wrt = 0, ret = 0;
while (len > 0) {
tx_size = (len > TX_IPBUF_SIZE) ? TX_IPBUF_SIZE : len;
act_wrt = nxp_fspi_nor_write(fspi, nor, nor->program_opcode, to,
(u32 *)buf, tx_size);
len -= tx_size;
to += tx_size;
ret += act_wrt;
}
/* invalid the data in the AHB buffer. */
nxp_fspi_invalid(fspi);
return ret;
}
static ssize_t nxp_fspi_read(struct spi_nor *nor, loff_t from,
size_t len, u_char *buf)
{
struct nxp_fspi *fspi = nor->priv;
/* if necessary, ioremap buffer before AHB read, */
if (!fspi->ahb_addr) {
fspi->memmap_offs = fspi->chip_base_addr + from;
fspi->memmap_len = len > FSPI_MIN_IOMAP ?
len : FSPI_MIN_IOMAP;
fspi->ahb_addr = ioremap_nocache(
fspi->memmap_phy + fspi->memmap_offs,
fspi->memmap_len);
if (!fspi->ahb_addr) {
dev_err(fspi->dev, "ioremap failed\n");
return -ENOMEM;
}
/* ioremap if the data requested is out of range */
} else if (fspi->chip_base_addr + from < fspi->memmap_offs
|| fspi->chip_base_addr + from + len >
fspi->memmap_offs + fspi->memmap_len) {
iounmap(fspi->ahb_addr);
fspi->memmap_offs = fspi->chip_base_addr + from;
fspi->memmap_len = len > FSPI_MIN_IOMAP ?
len : FSPI_MIN_IOMAP;
fspi->ahb_addr = ioremap_nocache(
fspi->memmap_phy + fspi->memmap_offs,
fspi->memmap_len);
if (!fspi->ahb_addr) {
dev_err(fspi->dev, "ioremap failed\n");
return -ENOMEM;
}
}
dev_dbg(fspi->dev, "cmd [%x],read from %p, len:%zd\n",
nor->read_opcode, fspi->ahb_addr + fspi->chip_base_addr
+ from - fspi->memmap_offs, len);
/* Read out the data directly from the AHB buffer.*/
memcpy_toio(buf, fspi->ahb_addr + fspi->chip_base_addr
+ from - fspi->memmap_offs, len);
return len;
}
static int nxp_fspi_erase(struct spi_nor *nor, loff_t offs)
{
struct nxp_fspi *fspi = nor->priv;
int ret;
dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
nor->mtd.erasesize / 1024, fspi->chip_base_addr, (u32)offs);
ret = nxp_fspi_runcmd(fspi, nor->erase_opcode, offs, 0);
if (ret)
return ret;
nxp_fspi_invalid(fspi);
return 0;
}
static int nxp_fspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
struct nxp_fspi *fspi = nor->priv;
int ret;
mutex_lock(&fspi->lock);
ret = nxp_fspi_clk_prep_enable(fspi);
if (ret)
goto err_mutex;
nxp_fspi_set_base_addr(fspi, nor);
return 0;
err_mutex:
mutex_unlock(&fspi->lock);
return ret;
}
static void nxp_fspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
struct nxp_fspi *fspi = nor->priv;
nxp_fspi_clk_disable_unprep(fspi);
mutex_unlock(&fspi->lock);
}
static const struct of_device_id nxp_fspi_dt_ids[] = {
{ .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
static int nxp_fspi_probe(struct platform_device *pdev)
{
struct spi_nor_hwcaps hwcaps = {
.mask = SPINOR_OP_READ_FAST_4B |
SPINOR_OP_READ_4B |
SNOR_HWCAPS_PP
};
struct device_node *np = pdev->dev.of_node;
struct device *dev = &pdev->dev;
struct nxp_fspi *fspi;
struct resource *res;
struct spi_nor *nor;
struct mtd_info *mtd;
int ret, i = 0;
int find_node = 0;
const struct of_device_id *of_id =
of_match_device(nxp_fspi_dt_ids, &pdev->dev);
fspi = devm_kzalloc(dev, sizeof(*fspi), GFP_KERNEL);
if (!fspi)
return -ENOMEM;
fspi->nor_num = of_get_child_count(dev->of_node);
if (!fspi->nor_num || fspi->nor_num > 4)
return -ENODEV;
fspi->dev = dev;
fspi->devtype_data = (struct nxp_fspi_devtype_data *)of_id->data;
platform_set_drvdata(pdev, fspi);
/* find the resources */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "FSPI");
if (!res) {
dev_err(dev, "FSPI get resource IORESOURCE_MEM failed\n");
return -ENODEV;
}
fspi->iobase = devm_ioremap_resource(dev, res);
if (IS_ERR(fspi->iobase))
return PTR_ERR(fspi->iobase);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"FSPI-memory");
if (!res) {
dev_err(dev,
"FSPI-memory get resource IORESOURCE_MEM failed\n");
return -ENODEV;
}
if (!devm_request_mem_region(dev, res->start, resource_size(res),
res->name)) {
dev_err(dev, "can't request region for resource %pR\n", res);
return -EBUSY;
}
fspi->memmap_phy = res->start;
/* find the clocks */
fspi->clk_en = devm_clk_get(dev, "fspi_en");
if (IS_ERR(fspi->clk_en))
return PTR_ERR(fspi->clk_en);
fspi->clk = devm_clk_get(dev, "fspi");
if (IS_ERR(fspi->clk))
return PTR_ERR(fspi->clk);
ret = nxp_fspi_clk_prep_enable(fspi);
if (ret) {
dev_err(dev, "can not enable the clock\n");
goto clk_failed;
}
/* find the irq */
ret = platform_get_irq(pdev, 0);
if (ret < 0) {
dev_err(dev, "failed to get the irq: %d\n", ret);
goto irq_failed;
}
ret = devm_request_irq(dev, ret,
nxp_fspi_irq_handler, 0, pdev->name, fspi);
if (ret) {
dev_err(dev, "failed to request irq: %d\n", ret);
goto irq_failed;
}
ret = nxp_fspi_nor_setup(fspi);
if (ret)
goto irq_failed;
if (of_get_property(np, "nxp,fspi-has-second-chip", NULL))
fspi->has_second_chip = true;
mutex_init(&fspi->lock);
find_node = 0;
/* iterate the subnodes. */
for_each_available_child_of_node(dev->of_node, np) {
/* skip the holes */
if (!fspi->has_second_chip)
i *= 2;
nor = &fspi->nor[i];
mtd = &nor->mtd;
nor->dev = dev;
spi_nor_set_flash_node(nor, np);
nor->priv = fspi;
/* fill the hooks */
nor->read_reg = nxp_fspi_read_reg;
nor->write_reg = nxp_fspi_write_reg;
nor->read = nxp_fspi_read;
nor->write = nxp_fspi_write;
nor->erase = nxp_fspi_erase;
nor->prepare = nxp_fspi_prep;
nor->unprepare = nxp_fspi_unprep;
ret = of_property_read_u32(np, "spi-max-frequency",
&fspi->clk_rate);
if (ret < 0)
goto next_node;
/* set the chip address for READID */
nxp_fspi_set_base_addr(fspi, nor);
ret = of_property_read_u32(np, "spi-rx-bus-width",
&fspi->spi_rx_bus_width);
if (ret < 0)
fspi->spi_rx_bus_width = FSPI_SINGLE_MODE;
ret = of_property_read_u32(np, "spi-tx-bus-width",
&fspi->spi_tx_bus_width);
if (ret < 0)
fspi->spi_tx_bus_width = FSPI_SINGLE_MODE;
ret = spi_nor_scan(nor, NULL, &hwcaps);
if (ret)
goto next_node;
ret = mtd_device_register(mtd, NULL, 0);
if (ret)
goto next_node;
/* Set the correct NOR size now. */
if (fspi->nor_size == 0) {
fspi->nor_size = mtd->size;
/* Map the SPI NOR to accessiable address */
nxp_fspi_set_map_addr(fspi);
}
/*
* The write is working in the unit of the TX FIFO,
* not in the unit of the SPI NOR's page size.
*
* So shrink the spi_nor->page_size if it is larger then the
* TX FIFO.
*/
if (nor->page_size > fspi->devtype_data->txfifo)
nor->page_size = fspi->devtype_data->txfifo;
find_node++;
next_node:
i++;
}
if (find_node == 0)
goto mutex_failed;
/* finish the rest init. */
ret = nxp_fspi_nor_setup_last(fspi);
if (ret)
goto last_init_failed;
nxp_fspi_clk_disable_unprep(fspi);
return 0;
last_init_failed:
for (i = 0; i < fspi->nor_num; i++) {
/* skip the holes */
if (!fspi->has_second_chip)
i *= 2;
mtd_device_unregister(&fspi->mtd[i]);
}
mutex_failed:
mutex_destroy(&fspi->lock);
irq_failed:
nxp_fspi_clk_disable_unprep(fspi);
clk_failed:
dev_err(dev, "NXP FSPI probe failed\n");
return ret;
}
static int nxp_fspi_remove(struct platform_device *pdev)
{
struct nxp_fspi *fspi = platform_get_drvdata(pdev);
int i;
for (i = 0; i < fspi->nor_num; i++) {
/* skip the holes */
if (!fspi->has_second_chip)
i *= 2;
mtd_device_unregister(&fspi->nor[i].mtd);
}
/* disable the hardware */
writel(FSPI_MCR0_MDIS_MASK, fspi->iobase + FSPI_MCR0);
mutex_destroy(&fspi->lock);
if (fspi->ahb_addr)
iounmap(fspi->ahb_addr);
return 0;
}
static int nxp_fspi_suspend(struct platform_device *pdev, pm_message_t state)
{
return 0;
}
static int nxp_fspi_resume(struct platform_device *pdev)
{
return 0;
}
static struct platform_driver nxp_fspi_driver = {
.driver = {
.name = "nxp-fspi",
.bus = &platform_bus_type,
.of_match_table = nxp_fspi_dt_ids,
},
.probe = nxp_fspi_probe,
.remove = nxp_fspi_remove,
.suspend = nxp_fspi_suspend,
.resume = nxp_fspi_resume,
};
module_platform_driver(nxp_fspi_driver);
MODULE_DESCRIPTION("NXP FSPI Controller Driver");
MODULE_AUTHOR("NXP Semiconductor");
MODULE_LICENSE("GPL v2");