secgateway/kernel/linux-4.14.83/drivers/net/phy/fsl_backplane.c

1781 lines
44 KiB
C
Executable File

// SPDX-License-Identifier: GPL-2.0+
/*
* DPAA backplane driver.
* Author: Shaohui Xie <Shaohui.Xie@freescale.com>
* Florinel Iordache <florinel.iordache@nxp.com>
*
* Copyright 2015 Freescale Semiconductor, Inc.
* Copyright 2018 NXP
*
* Licensed under the GPL-2 or later.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mii.h>
#include <linux/mdio.h>
#include <linux/ethtool.h>
#include <linux/phy.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/timer.h>
#include <linux/delay.h>
#include <linux/workqueue.h>
#include <linux/netdevice.h>
#include "fsl_backplane.h"
/* PCS Device Identifier */
#define PCS_PHY_DEVICE_ID 0x0083e400
#define PCS_PHY_DEVICE_ID_MASK 0xffffffff
/* 10G Long cables setup: 1 m to 2 m cables */
#define RATIO_PREQ_10G 0x3
#define RATIO_PST1Q_10G 0xd
#define RATIO_EQ_10G 0x20
/* 10G Short cables setup: up to 30 cm cable */
//#define RATIO_PREQ_10G 0x3
//#define RATIO_PST1Q_10G 0xa
//#define RATIO_EQ_10G 0x29
/* 40G Long cables setup: 1 m to 2 m cables */
#define RATIO_PREQ_40G 0x2
#define RATIO_PST1Q_40G 0xd
#define RATIO_EQ_40G 0x20
/* 40G Short cables setup: up to 30 cm cable */
//#define RATIO_PREQ_40G 0x1
//#define RATIO_PST1Q_40G 0x3
//#define RATIO_EQ_40G 0x29
/* LX2 2x40G default RCW setup */
//#define RATIO_PREQ_40G 0x0
//#define RATIO_PST1Q_40G 0x3
//#define RATIO_EQ_40G 0x30
/* Max/Min coefficient values */
#define PRE_COE_MAX 0x0
#define PRE_COE_MIN 0x8
#define POST_COE_MAX 0x0
#define POST_COE_MIN 0x10
#define ZERO_COE_MAX 0x30
#define ZERO_COE_MIN 0x0
/* KR PMD defines */
#define PMD_RESET 0x1
#define PMD_STATUS_SUP_STAT 0x4
#define PMD_STATUS_FRAME_LOCK 0x2
#define TRAIN_EN 0x3
#define TRAIN_DISABLE 0x1
#define RX_STAT 0x1
/* PCS Link up */
#define XFI_PCS_SR1 0x20
#define KR_RX_LINK_STAT_MASK 0x1000
/* KX PCS mode register */
#define KX_PCS_IF_MODE 0x8014
/* KX PCS mode register init value */
#define KX_IF_MODE_INIT 0x8
/* KX/KR AN registers */
#define AN_CTRL_INIT 0x1200
#define KX_AN_AD1_INIT 0x25
#define KR_AN_AD1_INIT_10G 0x85
#define KR_AN_AD1_INIT_40G 0x105
#define AN_LNK_UP_MASK 0x4
#define KR_AN_MASK_10G 0x8
#define KR_AN_MASK_40G 0x20
#define TRAIN_FAIL 0x8
#define KR_AN_40G_MDIO_OFFSET 4
/* XGKR Timeouts */
#define XGKR_TIMEOUT 1050
#define XGKR_DENY_RT_INTERVAL 3000
#define XGKR_AN_WAIT_ITERATIONS 5
/* XGKR Increment/Decrement Requests */
#define INCREMENT 1
#define DECREMENT 2
#define TIMEOUT_LONG 3
#define TIMEOUT_M1 3
/* XGKR Masks */
#define RX_READY_MASK 0x8000
#define PRESET_MASK 0x2000
#define INIT_MASK 0x1000
#define COP1_MASK 0x30
#define COP1_SHIFT 4
#define COZ_MASK 0xc
#define COZ_SHIFT 2
#define COM1_MASK 0x3
#define COM1_SHIFT 0
#define REQUEST_MASK 0x3f
#define LD_ALL_MASK (PRESET_MASK | INIT_MASK | \
COP1_MASK | COZ_MASK | COM1_MASK)
/* Lanes definitions */
#define MASTER_LANE 0
#define SINGLE_LANE 0
#define MAX_PHY_LANES_NO 4
/* Invalid value */
#define VAL_INVALID 0xff
/* New XGKR Training Algorithm */
#define NEW_ALGORITHM_TRAIN_TX
#ifdef NEW_ALGORITHM_TRAIN_TX
#define FORCE_INC_COP1_NUMBER 0
#define FORCE_INC_COM1_NUMBER 1
#endif
/* Link_Training_Registers offsets */
static int lt_MDIO_MMD = 0;
static u32 lt_KR_PMD_CTRL = 0;
static u32 lt_KR_PMD_STATUS = 0;
static u32 lt_KR_LP_CU = 0;
static u32 lt_KR_LP_STATUS = 0;
static u32 lt_KR_LD_CU = 0;
static u32 lt_KR_LD_STATUS = 0;
/* KX/KR AN registers offsets */
static u32 g_an_AD1 = 0;
static u32 g_an_BP_STAT = 0;
static const u32 preq_table[] = {0x0, 0x1, 0x3, 0x5,
0x7, 0x9, 0xb, 0xc, VAL_INVALID};
static const u32 pst1q_table[] = {0x0, 0x1, 0x3, 0x5, 0x7,
0x9, 0xb, 0xd, 0xf, 0x10, VAL_INVALID};
enum backplane_mode {
PHY_BACKPLANE_1000BASE_KX,
PHY_BACKPLANE_10GBASE_KR,
PHY_BACKPLANE_40GBASE_KR,
PHY_BACKPLANE_INVAL
};
enum serdes_type {
SERDES_10G,
SERDES_28G,
SERDES_INVAL
};
enum coe_filed {
COE_COP1,
COE_COZ,
COE_COM
};
enum coe_update {
COE_NOTUPDATED,
COE_UPDATED,
COE_MIN,
COE_MAX,
COE_INV
};
enum train_state {
DETECTING_LP,
TRAINED,
};
struct tx_condition {
bool bin_m1_late_early;
bool bin_long_late_early;
bool bin_m1_stop;
bool bin_long_stop;
bool tx_complete;
bool sent_init;
int m1_min_max_cnt;
int long_min_max_cnt;
#ifdef NEW_ALGORITHM_TRAIN_TX
int pre_inc;
int post_inc;
#endif
};
struct xgkr_params {
void *reg_base; /* lane memory map: registers base address */
int idx; /* lane relative index inside a multi-lane PHY */
struct phy_device *phydev;
struct serdes_access *srds;
struct tx_condition tx_c;
struct delayed_work xgkr_wk;
enum train_state state;
int an_wait_count;
unsigned long rt_time;
u32 ld_update;
u32 ld_status;
u32 ratio_preq;
u32 ratio_pst1q;
u32 adpt_eq;
u32 tuned_ratio_preq;
u32 tuned_ratio_pst1q;
u32 tuned_adpt_eq;
};
struct xgkr_phy_data {
int bp_mode;
u32 phy_lanes;
struct mutex phy_lock;
bool aneg_done;
struct xgkr_params xgkr[MAX_PHY_LANES_NO];
};
static void setup_an_lt_ls(void)
{
/* KR PMD registers */
lt_MDIO_MMD = MDIO_MMD_PMAPMD;
lt_KR_PMD_CTRL = 0x96;
lt_KR_PMD_STATUS = 0x97;
lt_KR_LP_CU = 0x98;
lt_KR_LP_STATUS = 0x99;
lt_KR_LD_CU = 0x9a;
lt_KR_LD_STATUS = 0x9b;
/* KX/KR AN registers */
g_an_AD1 = 0x11;
g_an_BP_STAT = 0x30;
}
static void setup_an_lt_lx(void)
{
/* Auto-Negotiation and Link Training Core Registers page 1: 256 = 0x100 */
lt_MDIO_MMD = MDIO_MMD_AN;
lt_KR_PMD_CTRL = 0x100;
lt_KR_PMD_STATUS = 0x101;
lt_KR_LP_CU = 0x102;
lt_KR_LP_STATUS = 0x103;
lt_KR_LD_CU = 0x104;
lt_KR_LD_STATUS = 0x105;
/* KX/KR AN registers */
g_an_AD1 = 0x03;
g_an_BP_STAT = 0x0F;
}
static u32 le_ioread32(u32 *reg)
{
return ioread32(reg);
}
static void le_iowrite32(u32 value, u32 *reg)
{
iowrite32(value, reg);
}
static u32 be_ioread32(u32 *reg)
{
return ioread32be(reg);
}
static void be_iowrite32(u32 value, u32 *reg)
{
iowrite32be(value, reg);
}
/**
* xgkr_phy_write_mmd - Wrapper function for phy_write_mmd
* for writing a register on an MMD on a given PHY.
*
* Same rules as for phy_write_mmd();
*/
static int xgkr_phy_write_mmd(struct xgkr_params *xgkr, int devad, u32 regnum, u16 val)
{
struct phy_device *phydev = xgkr->phydev;
struct xgkr_phy_data *xgkr_inst = phydev->priv;
int mdio_addr = phydev->mdio.addr;
int err;
mutex_lock(&xgkr_inst->phy_lock);
if (xgkr_inst->bp_mode == PHY_BACKPLANE_40GBASE_KR && devad == MDIO_MMD_AN) {
//40G AN: prepare mdio address for writing phydev AN registers for 40G on respective lane
phydev->mdio.addr = KR_AN_40G_MDIO_OFFSET + xgkr->idx;
}
err = phy_write_mmd(phydev, devad, regnum, val);
if (err)
dev_err(&phydev->mdio.dev, "Writing PHY (%p) MMD = 0x%02x register = 0x%02x failed with error code: 0x%08x \n", phydev, devad, regnum, err);
if (xgkr_inst->bp_mode == PHY_BACKPLANE_40GBASE_KR && devad == MDIO_MMD_AN) {
//40G AN: restore mdio address
phydev->mdio.addr = mdio_addr;
}
mutex_unlock(&xgkr_inst->phy_lock);
return err;
}
/**
* xgkr_phy_read_mmd - Wrapper function for phy_read_mmd
* for reading a register from an MMD on a given PHY.
*
* Same rules as for phy_read_mmd();
*/
static int xgkr_phy_read_mmd(struct xgkr_params *xgkr, int devad, u32 regnum)
{
struct phy_device *phydev = xgkr->phydev;
struct xgkr_phy_data *xgkr_inst = phydev->priv;
int mdio_addr = phydev->mdio.addr;
int ret;
mutex_lock(&xgkr_inst->phy_lock);
if (xgkr_inst->bp_mode == PHY_BACKPLANE_40GBASE_KR && devad == MDIO_MMD_AN) {
//40G AN: prepare mdio address for reading phydev AN registers for 40G on respective lane
phydev->mdio.addr = KR_AN_40G_MDIO_OFFSET + xgkr->idx;
}
ret = phy_read_mmd(phydev, devad, regnum);
if (xgkr_inst->bp_mode == PHY_BACKPLANE_40GBASE_KR && devad == MDIO_MMD_AN) {
//40G AN: restore mdio address
phydev->mdio.addr = mdio_addr;
}
mutex_unlock(&xgkr_inst->phy_lock);
return ret;
}
static void tx_condition_init(struct tx_condition *tx_c)
{
tx_c->bin_m1_late_early = true;
tx_c->bin_long_late_early = false;
tx_c->bin_m1_stop = false;
tx_c->bin_long_stop = false;
tx_c->tx_complete = false;
tx_c->sent_init = false;
tx_c->m1_min_max_cnt = 0;
tx_c->long_min_max_cnt = 0;
#ifdef NEW_ALGORITHM_TRAIN_TX
tx_c->pre_inc = FORCE_INC_COM1_NUMBER;
tx_c->post_inc = FORCE_INC_COP1_NUMBER;
#endif
}
void tune_tecr(struct xgkr_params *xgkr)
{
struct phy_device *phydev = xgkr->phydev;
struct xgkr_phy_data *xgkr_inst = phydev->priv;
bool reset = false;
if (xgkr_inst->bp_mode == PHY_BACKPLANE_40GBASE_KR) {
/* Reset only the Master Lane */
reset = (xgkr->idx == MASTER_LANE);
} else {
reset = true;
}
xgkr->srds->tune_tecr(xgkr->reg_base, xgkr->ratio_preq, xgkr->ratio_pst1q, xgkr->adpt_eq, reset);
xgkr->tuned_ratio_preq = xgkr->ratio_preq;
xgkr->tuned_ratio_pst1q = xgkr->ratio_pst1q;
xgkr->tuned_adpt_eq = xgkr->adpt_eq;
}
static void start_lt(struct xgkr_params *xgkr)
{
xgkr_phy_write_mmd(xgkr, lt_MDIO_MMD, lt_KR_PMD_CTRL, TRAIN_EN);
}
static void stop_lt(struct xgkr_params *xgkr)
{
xgkr_phy_write_mmd(xgkr, lt_MDIO_MMD, lt_KR_PMD_CTRL, TRAIN_DISABLE);
}
static void reset_lt(struct xgkr_params *xgkr)
{
xgkr_phy_write_mmd(xgkr, lt_MDIO_MMD, MDIO_CTRL1, PMD_RESET);
xgkr_phy_write_mmd(xgkr, lt_MDIO_MMD, lt_KR_PMD_CTRL, TRAIN_DISABLE);
xgkr_phy_write_mmd(xgkr, lt_MDIO_MMD, lt_KR_LD_CU, 0);
xgkr_phy_write_mmd(xgkr, lt_MDIO_MMD, lt_KR_LD_STATUS, 0);
xgkr_phy_write_mmd(xgkr, lt_MDIO_MMD, lt_KR_PMD_STATUS, 0);
xgkr_phy_write_mmd(xgkr, lt_MDIO_MMD, lt_KR_LP_CU, 0);
xgkr_phy_write_mmd(xgkr, lt_MDIO_MMD, lt_KR_LP_STATUS, 0);
}
static void ld_coe_status(struct xgkr_params *xgkr)
{
xgkr_phy_write_mmd(xgkr, lt_MDIO_MMD,
lt_KR_LD_STATUS, xgkr->ld_status);
}
static void ld_coe_update(struct xgkr_params *xgkr)
{
dev_dbg(&xgkr->phydev->mdio.dev, "sending request: %x\n", xgkr->ld_update);
xgkr_phy_write_mmd(xgkr, lt_MDIO_MMD,
lt_KR_LD_CU, xgkr->ld_update);
}
static void start_xgkr_state_machine(struct delayed_work *work)
{
queue_delayed_work(system_power_efficient_wq, work,
msecs_to_jiffies(XGKR_TIMEOUT));
}
static void start_xgkr_an(struct xgkr_params *xgkr)
{
struct phy_device *phydev = xgkr->phydev;
struct xgkr_phy_data *xgkr_inst = phydev->priv;
int i;
int err;
switch (xgkr_inst->bp_mode)
{
case PHY_BACKPLANE_1000BASE_KX:
dev_err(&phydev->mdio.dev, "Wrong call path for 1000Base-KX \n");
break;
case PHY_BACKPLANE_10GBASE_KR:
err = xgkr_phy_write_mmd(xgkr, MDIO_MMD_AN, g_an_AD1, KR_AN_AD1_INIT_10G);
if (err)
dev_err(&phydev->mdio.dev, "Setting AN register 0x%02x failed with error code: 0x%08x \n", g_an_AD1, err);
udelay(1);
err = xgkr_phy_write_mmd(xgkr, MDIO_MMD_AN, MDIO_CTRL1, AN_CTRL_INIT);
if (err)
dev_err(&phydev->mdio.dev, "Setting AN register 0x%02x failed with error code: 0x%08x \n", MDIO_CTRL1, err);
break;
case PHY_BACKPLANE_40GBASE_KR:
if (xgkr->idx == MASTER_LANE) {
for (i = 0; i < xgkr_inst->phy_lanes; i++) {
err = xgkr_phy_write_mmd(&xgkr_inst->xgkr[i], MDIO_MMD_AN, g_an_AD1, KR_AN_AD1_INIT_40G);
if (err)
dev_err(&phydev->mdio.dev, "Setting AN register 0x%02x on lane %d failed with error code: 0x%08x \n", g_an_AD1, xgkr_inst->xgkr[i].idx, err);
}
udelay(1);
err = xgkr_phy_write_mmd(xgkr, MDIO_MMD_AN, MDIO_CTRL1, AN_CTRL_INIT);
if (err)
dev_err(&phydev->mdio.dev, "Setting AN register 0x%02x on Master Lane failed with error code: 0x%08x \n", MDIO_CTRL1, err);
}
break;
}
}
static void start_1gkx_an(struct phy_device *phydev)
{
phy_write_mmd(phydev, MDIO_MMD_PCS, KX_PCS_IF_MODE, KX_IF_MODE_INIT);
phy_write_mmd(phydev, MDIO_MMD_AN, g_an_AD1, KX_AN_AD1_INIT);
phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_STAT1);
phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_CTRL1, AN_CTRL_INIT);
}
static void reset_tecr(struct xgkr_params *xgkr)
{
struct phy_device *phydev = xgkr->phydev;
struct xgkr_phy_data *xgkr_inst = phydev->priv;
switch (xgkr_inst->bp_mode)
{
case PHY_BACKPLANE_1000BASE_KX:
dev_err(&phydev->mdio.dev, "Wrong call path for 1000Base-KX \n");
break;
case PHY_BACKPLANE_10GBASE_KR:
xgkr->ratio_preq = RATIO_PREQ_10G;
xgkr->ratio_pst1q = RATIO_PST1Q_10G;
xgkr->adpt_eq = RATIO_EQ_10G;
break;
case PHY_BACKPLANE_40GBASE_KR:
xgkr->ratio_preq = RATIO_PREQ_40G;
xgkr->ratio_pst1q = RATIO_PST1Q_40G;
xgkr->adpt_eq = RATIO_EQ_40G;
break;
}
tune_tecr(xgkr);
}
static void init_xgkr(struct xgkr_params *xgkr, int reset)
{
if (reset)
reset_tecr(xgkr);
tx_condition_init(&xgkr->tx_c);
xgkr->state = DETECTING_LP;
xgkr->ld_status &= RX_READY_MASK;
ld_coe_status(xgkr);
xgkr->ld_update = 0;
xgkr->ld_status &= ~RX_READY_MASK;
ld_coe_status(xgkr);
}
static void initialize(struct xgkr_params *xgkr)
{
reset_tecr(xgkr);
xgkr->ld_status &= ~(COP1_MASK | COZ_MASK | COM1_MASK);
xgkr->ld_status |= COE_UPDATED << COP1_SHIFT |
COE_UPDATED << COZ_SHIFT |
COE_UPDATED << COM1_SHIFT;
ld_coe_status(xgkr);
}
static void train_remote_tx(struct xgkr_params *xgkr)
{
struct tx_condition *tx_c = &xgkr->tx_c;
bool bin_m1_early, bin_long_early;
u32 lp_status, old_ld_update;
u32 status_cop1, status_coz, status_com1;
u32 req_cop1, req_coz, req_com1, req_preset, req_init;
u32 temp;
#ifdef NEW_ALGORITHM_TRAIN_TX
u32 median_gaink2;
#endif
recheck:
if (tx_c->bin_long_stop && tx_c->bin_m1_stop) {
tx_c->tx_complete = true;
xgkr->ld_status |= RX_READY_MASK;
ld_coe_status(xgkr);
/* tell LP we are ready */
xgkr_phy_write_mmd(xgkr, lt_MDIO_MMD,
lt_KR_PMD_STATUS, RX_STAT);
return;
}
/* We start by checking the current LP status. If we got any responses,
* we can clear up the appropriate update request so that the
* subsequent code may easily issue new update requests if needed.
*/
lp_status = xgkr_phy_read_mmd(xgkr, lt_MDIO_MMD, lt_KR_LP_STATUS) &
REQUEST_MASK;
status_cop1 = (lp_status & COP1_MASK) >> COP1_SHIFT;
status_coz = (lp_status & COZ_MASK) >> COZ_SHIFT;
status_com1 = (lp_status & COM1_MASK) >> COM1_SHIFT;
old_ld_update = xgkr->ld_update;
req_cop1 = (old_ld_update & COP1_MASK) >> COP1_SHIFT;
req_coz = (old_ld_update & COZ_MASK) >> COZ_SHIFT;
req_com1 = (old_ld_update & COM1_MASK) >> COM1_SHIFT;
req_preset = old_ld_update & PRESET_MASK;
req_init = old_ld_update & INIT_MASK;
/* IEEE802.3-2008, 72.6.10.2.3.1
* We may clear PRESET when all coefficients show UPDATED or MAX.
*/
if (req_preset) {
if ((status_cop1 == COE_UPDATED || status_cop1 == COE_MAX) &&
(status_coz == COE_UPDATED || status_coz == COE_MAX) &&
(status_com1 == COE_UPDATED || status_com1 == COE_MAX)) {
xgkr->ld_update &= ~PRESET_MASK;
}
}
/* IEEE802.3-2008, 72.6.10.2.3.2
* We may clear INITIALIZE when no coefficients show NOT UPDATED.
*/
if (req_init) {
if (status_cop1 != COE_NOTUPDATED &&
status_coz != COE_NOTUPDATED &&
status_com1 != COE_NOTUPDATED) {
xgkr->ld_update &= ~INIT_MASK;
}
}
/* IEEE802.3-2008, 72.6.10.2.3.2
* we send initialize to the other side to ensure default settings
* for the LP. Naturally, we should do this only once.
*/
if (!tx_c->sent_init) {
if (!lp_status && !(old_ld_update & (LD_ALL_MASK))) {
xgkr->ld_update = INIT_MASK;
tx_c->sent_init = true;
}
}
/* IEEE802.3-2008, 72.6.10.2.3.3
* We set coefficient requests to HOLD when we get the information
* about any updates On clearing our prior response, we also update
* our internal status.
*/
if (status_cop1 != COE_NOTUPDATED) {
if (req_cop1) {
xgkr->ld_update &= ~COP1_MASK;
#ifdef NEW_ALGORITHM_TRAIN_TX
if (tx_c->post_inc) {
if (req_cop1 == INCREMENT &&
status_cop1 == COE_MAX) {
tx_c->post_inc = 0;
tx_c->bin_long_stop = true;
tx_c->bin_m1_stop = true;
} else {
tx_c->post_inc -= 1;
}
ld_coe_update(xgkr);
goto recheck;
}
#endif
if ((req_cop1 == DECREMENT && status_cop1 == COE_MIN) ||
(req_cop1 == INCREMENT && status_cop1 == COE_MAX)) {
dev_dbg(&xgkr->phydev->mdio.dev, "COP1 hit limit %s",
(status_cop1 == COE_MIN) ?
"DEC MIN" : "INC MAX");
tx_c->long_min_max_cnt++;
if (tx_c->long_min_max_cnt >= TIMEOUT_LONG) {
tx_c->bin_long_stop = true;
ld_coe_update(xgkr);
goto recheck;
}
}
}
}
if (status_coz != COE_NOTUPDATED) {
if (req_coz)
xgkr->ld_update &= ~COZ_MASK;
}
if (status_com1 != COE_NOTUPDATED) {
if (req_com1) {
xgkr->ld_update &= ~COM1_MASK;
#ifdef NEW_ALGORITHM_TRAIN_TX
if (tx_c->pre_inc) {
if (req_com1 == INCREMENT &&
status_com1 == COE_MAX)
tx_c->pre_inc = 0;
else
tx_c->pre_inc -= 1;
ld_coe_update(xgkr);
goto recheck;
}
#endif
/* Stop If we have reached the limit for a parameter. */
if ((req_com1 == DECREMENT && status_com1 == COE_MIN) ||
(req_com1 == INCREMENT && status_com1 == COE_MAX)) {
dev_dbg(&xgkr->phydev->mdio.dev, "COM1 hit limit %s",
(status_com1 == COE_MIN) ?
"DEC MIN" : "INC MAX");
tx_c->m1_min_max_cnt++;
if (tx_c->m1_min_max_cnt >= TIMEOUT_M1) {
tx_c->bin_m1_stop = true;
ld_coe_update(xgkr);
goto recheck;
}
}
}
}
if (old_ld_update != xgkr->ld_update) {
ld_coe_update(xgkr);
/* Redo these status checks and updates until we have no more
* changes, to speed up the overall process.
*/
goto recheck;
}
/* Do nothing if we have pending request. */
if ((req_coz || req_com1 || req_cop1))
return;
else if (lp_status)
/* No pending request but LP status was not reverted to
* not updated.
*/
return;
#ifdef NEW_ALGORITHM_TRAIN_TX
if (!(xgkr->ld_update & (PRESET_MASK | INIT_MASK))) {
if (tx_c->pre_inc) {
xgkr->ld_update = INCREMENT << COM1_SHIFT;
ld_coe_update(xgkr);
return;
}
if (status_cop1 != COE_MAX) {
median_gaink2 = xgkr->srds->get_median_gaink2(xgkr->reg_base);
if (median_gaink2 == 0xf) {
tx_c->post_inc = 1;
} else {
/* Gaink2 median lower than "F" */
tx_c->bin_m1_stop = true;
tx_c->bin_long_stop = true;
goto recheck;
}
} else {
/* C1 MAX */
tx_c->bin_m1_stop = true;
tx_c->bin_long_stop = true;
goto recheck;
}
if (tx_c->post_inc) {
xgkr->ld_update = INCREMENT << COP1_SHIFT;
ld_coe_update(xgkr);
return;
}
}
#endif
/* snapshot and select bin */
bin_m1_early = xgkr->srds->is_bin_early(BIN_M1, xgkr->reg_base);
bin_long_early = xgkr->srds->is_bin_early(BIN_LONG, xgkr->reg_base);
if (!tx_c->bin_m1_stop && !tx_c->bin_m1_late_early && bin_m1_early) {
tx_c->bin_m1_stop = true;
goto recheck;
}
if (!tx_c->bin_long_stop &&
tx_c->bin_long_late_early && !bin_long_early) {
tx_c->bin_long_stop = true;
goto recheck;
}
/* IEEE802.3-2008, 72.6.10.2.3.3
* We only request coefficient updates when no PRESET/INITIALIZE is
* pending. We also only request coefficient updates when the
* corresponding status is NOT UPDATED and nothing is pending.
*/
if (!(xgkr->ld_update & (PRESET_MASK | INIT_MASK))) {
if (!tx_c->bin_long_stop) {
/* BinM1 correction means changing COM1 */
if (!status_com1 && !(xgkr->ld_update & COM1_MASK)) {
/* Avoid BinM1Late by requesting an
* immediate decrement.
*/
if (!bin_m1_early) {
/* request decrement c(-1) */
temp = DECREMENT << COM1_SHIFT;
xgkr->ld_update = temp;
ld_coe_update(xgkr);
tx_c->bin_m1_late_early = bin_m1_early;
return;
}
}
/* BinLong correction means changing COP1 */
if (!status_cop1 && !(xgkr->ld_update & COP1_MASK)) {
/* Locate BinLong transition point (if any)
* while avoiding BinM1Late.
*/
if (bin_long_early) {
/* request increment c(1) */
temp = INCREMENT << COP1_SHIFT;
xgkr->ld_update = temp;
} else {
/* request decrement c(1) */
temp = DECREMENT << COP1_SHIFT;
xgkr->ld_update = temp;
}
ld_coe_update(xgkr);
tx_c->bin_long_late_early = bin_long_early;
}
/* We try to finish BinLong before we do BinM1 */
return;
}
if (!tx_c->bin_m1_stop) {
/* BinM1 correction means changing COM1 */
if (!status_com1 && !(xgkr->ld_update & COM1_MASK)) {
/* Locate BinM1 transition point (if any) */
if (bin_m1_early) {
/* request increment c(-1) */
temp = INCREMENT << COM1_SHIFT;
xgkr->ld_update = temp;
} else {
/* request decrement c(-1) */
temp = DECREMENT << COM1_SHIFT;
xgkr->ld_update = temp;
}
ld_coe_update(xgkr);
tx_c->bin_m1_late_early = bin_m1_early;
}
}
}
}
static int is_link_up(struct phy_device *phydev)
{
struct xgkr_phy_data *xgkr_inst = phydev->priv;
int val = 0;
mutex_lock(&xgkr_inst->phy_lock);
val = phy_read_mmd(phydev, MDIO_MMD_PCS, XFI_PCS_SR1);
mutex_unlock(&xgkr_inst->phy_lock);
return (val & KR_RX_LINK_STAT_MASK) ? 1 : 0;
}
static int is_link_training_fail(struct xgkr_params *xgkr)
{
struct phy_device *phydev = xgkr->phydev;
int val;
int timeout = 100;
val = xgkr_phy_read_mmd(xgkr, lt_MDIO_MMD, lt_KR_PMD_STATUS);
if (!(val & TRAIN_FAIL) && (val & RX_STAT)) {
/* check LNK_STAT for sure */
while (timeout--) {
if (is_link_up(phydev))
return 0;
usleep_range(100, 500);
}
}
return 1;
}
static int check_rx(struct xgkr_params *xgkr)
{
return xgkr_phy_read_mmd(xgkr, lt_MDIO_MMD, lt_KR_LP_STATUS) &
RX_READY_MASK;
}
/* Coefficient values have hardware restrictions */
static int is_ld_valid(struct xgkr_params *xgkr)
{
u32 ratio_pst1q = xgkr->ratio_pst1q;
u32 adpt_eq = xgkr->adpt_eq;
u32 ratio_preq = xgkr->ratio_preq;
if ((ratio_pst1q + adpt_eq + ratio_preq) > 48)
return 0;
if (((ratio_pst1q + adpt_eq + ratio_preq) * 4) >=
((adpt_eq - ratio_pst1q - ratio_preq) * 17))
return 0;
if (ratio_preq > ratio_pst1q)
return 0;
if (ratio_preq > 8)
return 0;
if (adpt_eq < 26)
return 0;
if (ratio_pst1q > 16)
return 0;
return 1;
}
static int is_value_allowed(const u32 *val_table, u32 val)
{
int i;
for (i = 0;; i++) {
if (*(val_table + i) == VAL_INVALID)
return 0;
if (*(val_table + i) == val)
return 1;
}
}
static enum coe_update inc_dec(struct xgkr_params *xgkr, int field, int request)
{
u32 ld_limit[3], ld_coe[3], step[3];
ld_coe[0] = xgkr->ratio_pst1q;
ld_coe[1] = xgkr->adpt_eq;
ld_coe[2] = xgkr->ratio_preq;
/* Information specific to the SerDes for 10GBase-KR:
* Incrementing C(+1) means *decrementing* RATIO_PST1Q
* Incrementing C(0) means incrementing ADPT_EQ
* Incrementing C(-1) means *decrementing* RATIO_PREQ
*/
step[0] = -1;
step[1] = 1;
step[2] = -1;
switch (request) {
case INCREMENT:
ld_limit[0] = POST_COE_MAX;
ld_limit[1] = ZERO_COE_MAX;
ld_limit[2] = PRE_COE_MAX;
if (ld_coe[field] != ld_limit[field])
ld_coe[field] += step[field];
else
/* MAX */
return COE_MAX;
break;
case DECREMENT:
ld_limit[0] = POST_COE_MIN;
ld_limit[1] = ZERO_COE_MIN;
ld_limit[2] = PRE_COE_MIN;
if (ld_coe[field] != ld_limit[field])
ld_coe[field] -= step[field];
else
/* MIN */
return COE_MIN;
break;
default:
break;
}
if (is_ld_valid(xgkr)) {
/* accept new ld */
xgkr->ratio_pst1q = ld_coe[0];
xgkr->adpt_eq = ld_coe[1];
xgkr->ratio_preq = ld_coe[2];
/* only some values for preq and pst1q can be used.
* for preq: 0x0, 0x1, 0x3, 0x5, 0x7, 0x9, 0xb, 0xc.
* for pst1q: 0x0, 0x1, 0x3, 0x5, 0x7, 0x9, 0xb, 0xd, 0xf, 0x10.
*/
if (!is_value_allowed((const u32 *)&preq_table, ld_coe[2])) {
dev_dbg(&xgkr->phydev->mdio.dev,
"preq skipped value: %d\n", ld_coe[2]);
/* NOT UPDATED */
return COE_NOTUPDATED;
}
if (!is_value_allowed((const u32 *)&pst1q_table, ld_coe[0])) {
dev_dbg(&xgkr->phydev->mdio.dev,
"pst1q skipped value: %d\n", ld_coe[0]);
/* NOT UPDATED */
return COE_NOTUPDATED;
}
tune_tecr(xgkr);
} else {
if (request == DECREMENT)
/* MIN */
return COE_MIN;
if (request == INCREMENT)
/* MAX */
return COE_MAX;
}
/* UPDATED */
return COE_UPDATED;
}
static void min_max_updated(struct xgkr_params *xgkr, int field, enum coe_update cs)
{
u32 mask, val;
u32 ld_cs = cs;
if (cs == COE_INV)
return;
switch (field) {
case COE_COP1:
mask = COP1_MASK;
val = ld_cs << COP1_SHIFT;
break;
case COE_COZ:
mask = COZ_MASK;
val = ld_cs << COZ_SHIFT;
break;
case COE_COM:
mask = COM1_MASK;
val = ld_cs << COM1_SHIFT;
break;
default:
return;
}
xgkr->ld_status &= ~mask;
xgkr->ld_status |= val;
}
static void check_request(struct xgkr_params *xgkr, int request)
{
int cop1_req, coz_req, com_req;
int old_status;
enum coe_update cu;
cop1_req = (request & COP1_MASK) >> COP1_SHIFT;
coz_req = (request & COZ_MASK) >> COZ_SHIFT;
com_req = (request & COM1_MASK) >> COM1_SHIFT;
/* IEEE802.3-2008, 72.6.10.2.5
* Ensure we only act on INCREMENT/DECREMENT when we are in NOT UPDATED
*/
old_status = xgkr->ld_status;
if (cop1_req && !(xgkr->ld_status & COP1_MASK)) {
cu = inc_dec(xgkr, COE_COP1, cop1_req);
min_max_updated(xgkr, COE_COP1, cu);
}
if (coz_req && !(xgkr->ld_status & COZ_MASK)) {
cu = inc_dec(xgkr, COE_COZ, coz_req);
min_max_updated(xgkr, COE_COZ, cu);
}
if (com_req && !(xgkr->ld_status & COM1_MASK)) {
cu = inc_dec(xgkr, COE_COM, com_req);
min_max_updated(xgkr, COE_COM, cu);
}
if (old_status != xgkr->ld_status)
ld_coe_status(xgkr);
}
static void preset(struct xgkr_params *xgkr)
{
/* These are all MAX values from the IEEE802.3 perspective. */
xgkr->ratio_pst1q = POST_COE_MAX;
xgkr->adpt_eq = ZERO_COE_MAX;
xgkr->ratio_preq = PRE_COE_MAX;
tune_tecr(xgkr);
xgkr->ld_status &= ~(COP1_MASK | COZ_MASK | COM1_MASK);
xgkr->ld_status |= COE_MAX << COP1_SHIFT |
COE_MAX << COZ_SHIFT |
COE_MAX << COM1_SHIFT;
ld_coe_status(xgkr);
}
static void train_local_tx(struct xgkr_params *xgkr)
{
int request, old_ld_status;
/* get request from LP */
request = xgkr_phy_read_mmd(xgkr, lt_MDIO_MMD, lt_KR_LP_CU) &
(LD_ALL_MASK);
old_ld_status = xgkr->ld_status;
/* IEEE802.3-2008, 72.6.10.2.5
* Ensure we always go to NOT UDPATED for status reporting in
* response to HOLD requests.
* IEEE802.3-2008, 72.6.10.2.3.1/2
* ... but only if PRESET/INITIALIZE are not active to ensure
* we keep status until they are released.
*/
if (!(request & (PRESET_MASK | INIT_MASK))) {
if (!(request & COP1_MASK))
xgkr->ld_status &= ~COP1_MASK;
if (!(request & COZ_MASK))
xgkr->ld_status &= ~COZ_MASK;
if (!(request & COM1_MASK))
xgkr->ld_status &= ~COM1_MASK;
if (old_ld_status != xgkr->ld_status)
ld_coe_status(xgkr);
}
/* As soon as the LP shows ready, no need to do any more updates. */
if (check_rx(xgkr)) {
/* LP receiver is ready */
if (xgkr->ld_status & (COP1_MASK | COZ_MASK | COM1_MASK)) {
xgkr->ld_status &= ~(COP1_MASK | COZ_MASK | COM1_MASK);
ld_coe_status(xgkr);
}
} else {
/* IEEE802.3-2008, 72.6.10.2.3.1/2
* only act on PRESET/INITIALIZE if all status is NOT UPDATED.
*/
if (request & (PRESET_MASK | INIT_MASK)) {
if (!(xgkr->ld_status &
(COP1_MASK | COZ_MASK | COM1_MASK))) {
if (request & PRESET_MASK)
preset(xgkr);
if (request & INIT_MASK)
initialize(xgkr);
}
}
/* LP Coefficient are not in HOLD */
if (request & REQUEST_MASK)
check_request(xgkr, request & REQUEST_MASK);
}
}
static void xgkr_start_train(struct xgkr_params *xgkr)
{
struct phy_device *phydev = xgkr->phydev;
struct xgkr_phy_data *xgkr_inst = phydev->priv;
struct tx_condition *tx_c = &xgkr->tx_c;
int val = 0, i, j;
int lt_state;
unsigned long dead_line;
int lp_rx_ready, tx_training_complete;
u32 lt_timeout = 500;
init_xgkr(xgkr, 0);
start_lt(xgkr);
if (xgkr_inst->bp_mode == PHY_BACKPLANE_40GBASE_KR) {
lt_timeout = 2000;
}
for (i = 0; i < 2;) {
dead_line = jiffies + msecs_to_jiffies(lt_timeout);
while (time_before(jiffies, dead_line)) {
val = xgkr_phy_read_mmd(xgkr, lt_MDIO_MMD,
lt_KR_PMD_STATUS);
if (val & TRAIN_FAIL) {
/* LT failed already, reset lane to avoid
* it run into hanging, then start LT again.
*/
if (xgkr_inst->bp_mode == PHY_BACKPLANE_40GBASE_KR) {
/* Reset only the Master Lane */
if (xgkr->idx == MASTER_LANE)
xgkr->srds->reset_lane(xgkr->reg_base);
} else {
xgkr->srds->reset_lane(xgkr->reg_base);
}
start_lt(xgkr);
} else if ((val & PMD_STATUS_SUP_STAT) &&
(val & PMD_STATUS_FRAME_LOCK))
break;
usleep_range(100, 500);
}
if (!((val & PMD_STATUS_FRAME_LOCK) &&
(val & PMD_STATUS_SUP_STAT))) {
i++;
continue;
}
/* init process */
lp_rx_ready = false;
tx_training_complete = false;
/* the LT should be finished in 500ms, failed or OK. */
dead_line = jiffies + msecs_to_jiffies(lt_timeout);
while (time_before(jiffies, dead_line)) {
/* check if the LT is already failed */
lt_state = xgkr_phy_read_mmd(xgkr, lt_MDIO_MMD,
lt_KR_PMD_STATUS);
if (lt_state & TRAIN_FAIL) {
if (xgkr_inst->bp_mode == PHY_BACKPLANE_40GBASE_KR) {
/* Reset only the Master Lane */
if (xgkr->idx == MASTER_LANE)
xgkr->srds->reset_lane(xgkr->reg_base);
} else {
xgkr->srds->reset_lane(xgkr->reg_base);
}
break;
}
lp_rx_ready = check_rx(xgkr);
tx_training_complete = tx_c->tx_complete;
if (lp_rx_ready && tx_training_complete)
break;
if (!lp_rx_ready)
train_local_tx(xgkr);
if (!tx_training_complete)
train_remote_tx(xgkr);
usleep_range(100, 500);
}
i++;
/* check LT result */
if (is_link_training_fail(xgkr)) {
init_xgkr(xgkr, 0);
continue;
} else {
stop_lt(xgkr);
xgkr->state = TRAINED;
switch (xgkr_inst->bp_mode)
{
case PHY_BACKPLANE_10GBASE_KR:
if (phydev->attached_dev == NULL)
dev_info(&phydev->mdio.dev, "10GBase-KR link trained (Tx equalization: RATIO_PREQ = 0x%x, RATIO_PST1Q = 0x%x, ADPT_EQ = 0x%x)\n",
xgkr->tuned_ratio_preq, xgkr->tuned_ratio_pst1q, xgkr->tuned_adpt_eq);
else
dev_info(&phydev->mdio.dev, "%s %s: 10GBase-KR link trained (Tx equalization: RATIO_PREQ = 0x%x, RATIO_PST1Q = 0x%x, ADPT_EQ = 0x%x)\n",
dev_driver_string(phydev->attached_dev->dev.parent),
dev_name(phydev->attached_dev->dev.parent),
xgkr->tuned_ratio_preq, xgkr->tuned_ratio_pst1q, xgkr->tuned_adpt_eq);
break;
case PHY_BACKPLANE_40GBASE_KR:
if (xgkr->idx == xgkr_inst->phy_lanes - 1) {
if (phydev->attached_dev == NULL)
dev_info(&phydev->mdio.dev, "40GBase-KR link trained at lanes Tx equalization:\n");
else
dev_info(&phydev->mdio.dev, "%s %s: 40GBase-KR link trained at lanes Tx equalization:\n",
dev_driver_string(phydev->attached_dev->dev.parent),
dev_name(phydev->attached_dev->dev.parent));
for (j = 0; j < xgkr_inst->phy_lanes; j++) {
if (phydev->attached_dev == NULL)
dev_info(&phydev->mdio.dev, "40GBase-KR Lane %d: RATIO_PREQ = 0x%x, RATIO_PST1Q = 0x%x, ADPT_EQ = 0x%x\n",
j, xgkr_inst->xgkr[j].tuned_ratio_preq, xgkr_inst->xgkr[j].tuned_ratio_pst1q, xgkr_inst->xgkr[j].tuned_adpt_eq);
else
dev_info(&phydev->mdio.dev, "%s %s: 40GBase-KR Lane %d: RATIO_PREQ = 0x%x, RATIO_PST1Q = 0x%x, ADPT_EQ = 0x%x\n",
dev_driver_string(phydev->attached_dev->dev.parent),
dev_name(phydev->attached_dev->dev.parent),
j, xgkr_inst->xgkr[j].tuned_ratio_preq, xgkr_inst->xgkr[j].tuned_ratio_pst1q, xgkr_inst->xgkr[j].tuned_adpt_eq);
}
}
break;
}
break;
}
}
}
static void xgkr_request_restart_an(struct xgkr_params *xgkr)
{
struct phy_device *phydev = xgkr->phydev;
struct xgkr_phy_data *xgkr_inst = phydev->priv;
int i;
if (time_before(jiffies, xgkr->rt_time))
return;
switch (xgkr_inst->bp_mode)
{
case PHY_BACKPLANE_1000BASE_KX:
dev_err(&phydev->mdio.dev, "Wrong call path for 1000Base-KX \n");
break;
case PHY_BACKPLANE_10GBASE_KR:
init_xgkr(xgkr, 0);
reset_lt(xgkr);
xgkr->state = DETECTING_LP;
start_xgkr_an(xgkr);
start_xgkr_state_machine(&xgkr->xgkr_wk);
break;
case PHY_BACKPLANE_40GBASE_KR:
for (i = 0; i < xgkr_inst->phy_lanes; i++) {
init_xgkr(&xgkr_inst->xgkr[i], 0);
reset_lt(&xgkr_inst->xgkr[i]);
xgkr_inst->xgkr[i].state = DETECTING_LP;
}
//Start AN only for Master Lane
start_xgkr_an(&xgkr_inst->xgkr[MASTER_LANE]);
//start state machine
for (i = 0; i < xgkr_inst->phy_lanes; i++) {
start_xgkr_state_machine(&xgkr_inst->xgkr[i].xgkr_wk);
}
break;
}
xgkr->rt_time = jiffies + msecs_to_jiffies(XGKR_DENY_RT_INTERVAL);
}
static void xgkr_state_machine(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct xgkr_params *xgkr = container_of(dwork,
struct xgkr_params, xgkr_wk);
struct phy_device *phydev = xgkr->phydev;
struct xgkr_phy_data *xgkr_inst = phydev->priv;
int an_state;
bool start_train = false;
bool all_lanes_trained = false;
int i;
if (!xgkr_inst->aneg_done) {
start_xgkr_state_machine(&xgkr->xgkr_wk);
return;
}
mutex_lock(&phydev->lock);
switch (xgkr->state) {
case DETECTING_LP:
switch (xgkr_inst->bp_mode)
{
case PHY_BACKPLANE_1000BASE_KX:
dev_err(&phydev->mdio.dev, "Wrong call path for 1000Base-KX \n");
break;
case PHY_BACKPLANE_10GBASE_KR:
an_state = xgkr_phy_read_mmd(xgkr, MDIO_MMD_AN, g_an_BP_STAT);
if (an_state & KR_AN_MASK_10G) {
//AN acquired: Train the lane
xgkr->an_wait_count = 0;
start_train = true;
} else {
//AN lost or not yet acquired
if (!is_link_up(phydev)) {
//Link is down: restart training
xgkr->an_wait_count = 0;
xgkr_request_restart_an(xgkr);
} else {
//Link is up: wait few iterations for AN to be acquired
if (xgkr->an_wait_count >= XGKR_AN_WAIT_ITERATIONS) {
xgkr->an_wait_count = 0;
xgkr_request_restart_an(xgkr);
} else {
xgkr->an_wait_count++;
}
}
}
break;
case PHY_BACKPLANE_40GBASE_KR:
//Check AN state only on Master Lane
an_state = xgkr_phy_read_mmd(&xgkr_inst->xgkr[MASTER_LANE], MDIO_MMD_AN, g_an_BP_STAT);
if (an_state & KR_AN_MASK_40G) {
//AN acquired: Train all lanes in order starting with Master Lane
xgkr->an_wait_count = 0;
if (xgkr->idx == MASTER_LANE) {
start_train = true;
}
else if (xgkr_inst->xgkr[xgkr->idx - 1].state == TRAINED) {
start_train = true;
}
} else {
//AN lost or not yet acquired
if (!is_link_up(phydev)) {
//Link is down: restart training
xgkr->an_wait_count = 0;
xgkr_request_restart_an(xgkr);
} else {
//Link is up: wait few iterations for AN to be acquired
if (xgkr->an_wait_count >= XGKR_AN_WAIT_ITERATIONS) {
xgkr->an_wait_count = 0;
xgkr_request_restart_an(xgkr);
} else {
xgkr->an_wait_count++;
}
}
}
break;
}
break;
case TRAINED:
if (!is_link_up(phydev)) {
switch (xgkr_inst->bp_mode)
{
case PHY_BACKPLANE_1000BASE_KX:
dev_err(&phydev->mdio.dev, "Wrong call path for 1000Base-KX \n");
break;
case PHY_BACKPLANE_10GBASE_KR:
dev_info(&phydev->mdio.dev, "Detect hotplug, restart training\n");
xgkr_request_restart_an(xgkr);
break;
case PHY_BACKPLANE_40GBASE_KR:
if (xgkr->idx == MASTER_LANE) {
//check if all lanes are trained only on Master Lane
all_lanes_trained = true;
for (i = 0; i < xgkr_inst->phy_lanes; i++) {
if (xgkr_inst->xgkr[i].state != TRAINED) {
all_lanes_trained = false;
break;
}
}
if (all_lanes_trained) {
dev_info(&phydev->mdio.dev, "Detect hotplug, restart training\n");
xgkr_request_restart_an(xgkr);
}
}
break;
}
}
break;
}
if (start_train) {
xgkr_start_train(xgkr);
}
mutex_unlock(&phydev->lock);
start_xgkr_state_machine(&xgkr->xgkr_wk);
}
static int fsl_backplane_probe(struct phy_device *phydev)
{
struct xgkr_phy_data *xgkr_inst;
struct device_node *phy_node, *lane_node;
struct resource res_lane;
struct serdes_access *srds = NULL;
int serdes_type;
const char *st;
const char *bm;
int ret, i, phy_lanes;
int bp_mode;
u32 lane_base_addr[MAX_PHY_LANES_NO], lane_memmap_size;
phy_node = phydev->mdio.dev.of_node;
if (!phy_node) {
dev_err(&phydev->mdio.dev, "No associated device tree node\n");
return -EINVAL;
}
bp_mode = of_property_read_string(phy_node, "backplane-mode", &bm);
if (bp_mode < 0)
return -EINVAL;
phy_lanes = 1;
if (!strcasecmp(bm, "1000base-kx")) {
bp_mode = PHY_BACKPLANE_1000BASE_KX;
} else if (!strcasecmp(bm, "10gbase-kr")) {
bp_mode = PHY_BACKPLANE_10GBASE_KR;
} else if (!strcasecmp(bm, "40gbase-kr")) {
bp_mode = PHY_BACKPLANE_40GBASE_KR;
phy_lanes = 4;
} else {
dev_err(&phydev->mdio.dev, "Unknown backplane-mode\n");
return -EINVAL;
}
lane_node = of_parse_phandle(phy_node, "fsl,lane-handle", 0);
if (!lane_node) {
dev_err(&phydev->mdio.dev, "parse fsl,lane-handle failed\n");
return -EINVAL;
}
ret = of_property_read_string(lane_node, "compatible", &st);
if (ret < 0) {
//assume SERDES-10G if compatible property is not specified
serdes_type = SERDES_10G;
}
else if (!strcasecmp(st, "fsl,serdes-10g")) {
serdes_type = SERDES_10G;
} else if (!strcasecmp(st, "fsl,serdes-28g")) {
serdes_type = SERDES_28G;
} else {
dev_err(&phydev->mdio.dev, "Unknown serdes-type\n");
return -EINVAL;
}
ret = of_address_to_resource(lane_node, 0, &res_lane);
if (ret) {
dev_err(&phydev->mdio.dev, "could not obtain memory map\n");
return ret;
}
of_node_put(lane_node);
ret = of_property_read_u32_array(phy_node, "fsl,lane-reg",
(u32 *)lane_base_addr, phy_lanes);
if (ret) {
dev_err(&phydev->mdio.dev, "could not get fsl,lane-reg\n");
return -EINVAL;
}
switch (serdes_type)
{
case SERDES_10G:
setup_an_lt_ls();
srds = setup_serdes_access_10g();
break;
case SERDES_28G:
setup_an_lt_lx();
srds = setup_serdes_access_28g();
break;
default:
dev_err(&phydev->mdio.dev, "Unsupported serdes-type\n");
return -EINVAL;
}
if (!srds) {
dev_err(&phydev->mdio.dev, "Unsupported serdes-type\n");
return -EINVAL;
}
srds->serdes_type = serdes_type;
srds->is_little_endian = of_property_read_bool(lane_node, "little-endian");
if (srds->is_little_endian) {
srds->ioread32 = le_ioread32;
srds->iowrite32 = le_iowrite32;
} else {
srds->ioread32 = be_ioread32;
srds->iowrite32 = be_iowrite32;
}
xgkr_inst = devm_kzalloc(&phydev->mdio.dev,
sizeof(*xgkr_inst), GFP_KERNEL);
if (!xgkr_inst)
return -ENOMEM;
xgkr_inst->phy_lanes = phy_lanes;
xgkr_inst->bp_mode = bp_mode;
mutex_init(&xgkr_inst->phy_lock);
lane_memmap_size = srds->get_lane_memmap_size();
for (i = 0; i < phy_lanes; i++) {
xgkr_inst->xgkr[i].idx = i;
xgkr_inst->xgkr[i].phydev = phydev;
xgkr_inst->xgkr[i].srds = srds;
xgkr_inst->xgkr[i].reg_base = devm_ioremap_nocache(&phydev->mdio.dev,
res_lane.start + lane_base_addr[i],
lane_memmap_size);
if (!xgkr_inst->xgkr[i].reg_base) {
dev_err(&phydev->mdio.dev, "ioremap_nocache failed\n");
return -ENOMEM;
}
xgkr_inst->xgkr[i].rt_time = jiffies + msecs_to_jiffies(XGKR_DENY_RT_INTERVAL);
}
phydev->priv = xgkr_inst;
switch (bp_mode)
{
case PHY_BACKPLANE_1000BASE_KX:
phydev->speed = SPEED_1000;
/* configure the lane for 1000BASE-KX */
srds->lane_set_1gkx(xgkr_inst->xgkr[SINGLE_LANE].reg_base);
break;
case PHY_BACKPLANE_10GBASE_KR:
phydev->speed = SPEED_10000;
INIT_DELAYED_WORK(&xgkr_inst->xgkr[SINGLE_LANE].xgkr_wk, xgkr_state_machine);
break;
case PHY_BACKPLANE_40GBASE_KR:
phydev->speed = SPEED_40000;
for (i = 0; i < phy_lanes; i++)
INIT_DELAYED_WORK(&xgkr_inst->xgkr[i].xgkr_wk, xgkr_state_machine);
break;
}
return 0;
}
static int fsl_backplane_aneg_done(struct phy_device *phydev)
{
struct xgkr_phy_data *xgkr_inst = phydev->priv;
if (!phydev->mdio.dev.of_node) {
dev_err(&phydev->mdio.dev, "No associated device tree node\n");
return -EINVAL;
}
xgkr_inst->aneg_done = true;
return 1;
}
static int fsl_backplane_config_aneg(struct phy_device *phydev)
{
struct xgkr_phy_data *xgkr_inst = phydev->priv;
int i;
if (!phydev->mdio.dev.of_node) {
dev_err(&phydev->mdio.dev, "No associated device tree node\n");
return -EINVAL;
}
switch (phydev->speed)
{
case SPEED_1000:
phydev->supported |= SUPPORTED_1000baseKX_Full;
start_1gkx_an(phydev);
break;
case SPEED_10000:
phydev->supported |= SUPPORTED_10000baseKR_Full;
reset_lt(&xgkr_inst->xgkr[SINGLE_LANE]);
start_xgkr_an(&xgkr_inst->xgkr[SINGLE_LANE]);
/* start state machine*/
start_xgkr_state_machine(&xgkr_inst->xgkr[SINGLE_LANE].xgkr_wk);
break;
case SPEED_40000:
phydev->supported |= SUPPORTED_40000baseKR4_Full;
for (i = 0; i < xgkr_inst->phy_lanes; i++) {
reset_lt(&xgkr_inst->xgkr[i]);
}
//Start AN only for Master Lane
start_xgkr_an(&xgkr_inst->xgkr[MASTER_LANE]);
/* start state machine*/
for (i = 0; i < xgkr_inst->phy_lanes; i++) {
start_xgkr_state_machine(&xgkr_inst->xgkr[i].xgkr_wk);
}
break;
}
phydev->advertising = phydev->supported;
phydev->duplex = 1;
return 0;
}
static int fsl_backplane_suspend(struct phy_device *phydev)
{
int i;
if (!phydev->mdio.dev.of_node) {
dev_err(&phydev->mdio.dev, "No associated device tree node\n");
return -EINVAL;
}
if (phydev->speed == SPEED_10000 || phydev->speed == SPEED_40000) {
struct xgkr_phy_data *xgkr_inst = phydev->priv;
for (i = 0; i < xgkr_inst->phy_lanes; i++)
cancel_delayed_work_sync(&xgkr_inst->xgkr[i].xgkr_wk);
}
return 0;
}
static int fsl_backplane_resume(struct phy_device *phydev)
{
struct xgkr_phy_data *xgkr_inst = phydev->priv;
int i;
if (!phydev->mdio.dev.of_node) {
dev_err(&phydev->mdio.dev, "No associated device tree node\n");
return -EINVAL;
}
if (phydev->speed == SPEED_10000 || phydev->speed == SPEED_40000) {
for (i = 0; i < xgkr_inst->phy_lanes; i++) {
init_xgkr(&xgkr_inst->xgkr[i], 1);
start_xgkr_state_machine(&xgkr_inst->xgkr[i].xgkr_wk);
}
}
return 0;
}
static int fsl_backplane_read_status(struct phy_device *phydev)
{
if (!phydev->mdio.dev.of_node) {
dev_err(&phydev->mdio.dev, "No associated device tree node\n");
return -EINVAL;
}
if (is_link_up(phydev))
phydev->link = 1;
else
phydev->link = 0;
return 0;
}
static int fsl_backplane_match_phy_device(struct phy_device *phydev)
{
struct device_node *phy_node, *lane_node;
const char *st;
int serdes_type, i, ret;
const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids);
if (!phydev->mdio.dev.of_node) {
return 0;
}
// WORKAROUND:
// Required for LX2 devices
// where PHY ID cannot be verified in PCS
// because PCS Device Identifier Upper and Lower registers are hidden
// and always return 0 when they are read:
// 2 02 Device_ID0 RO Bits 15:0 0
// val = phy_read_mmd(phydev, MDIO_MMD_PCS, 0x2);
// 3 03 Device_ID1 RO Bits 31:16 0
// val = phy_read_mmd(phydev, MDIO_MMD_PCS, 0x3);
//
// To be removed: After the issue will be fixed on LX2 devices
if (!phydev->is_c45)
return 0;
phy_node = phydev->mdio.dev.of_node;
lane_node = of_parse_phandle(phy_node, "fsl,lane-handle", 0);
if (!lane_node) {
dev_err(&phydev->mdio.dev, "parse fsl,lane-handle failed\n");
return 0;
}
ret = of_property_read_string(lane_node, "compatible", &st);
if (ret < 0) {
//assume SERDES-10G if compatible property is not specified
serdes_type = SERDES_10G;
}
else if (!strcasecmp(st, "fsl,serdes-10g")) {
serdes_type = SERDES_10G;
} else if (!strcasecmp(st, "fsl,serdes-28g")) {
serdes_type = SERDES_28G;
} else {
dev_err(&phydev->mdio.dev, "Unknown serdes-type\n");
return 0;
}
if (serdes_type == SERDES_10G) {
//On LS devices we must find the c45 device with correct PHY ID
//Implementation similar with the one existent in phy_device: @function: phy_bus_match
for (i = 1; i < num_ids; i++) {
if (!(phydev->c45_ids.devices_in_package & (1 << i)))
continue;
if ((PCS_PHY_DEVICE_ID & PCS_PHY_DEVICE_ID_MASK) ==
(phydev->c45_ids.device_ids[i] & PCS_PHY_DEVICE_ID_MASK))
{
return 1;
}
}
return 0;
}
//On LX devices we cannot verify PHY ID
//so we are happy only with preliminary verifications already made: mdio.dev.of_node and is_c45
//because we already filtered other undesired devices: non clause 45
return 1;
}
static struct phy_driver fsl_backplane_driver[] = {
{
.phy_id = PCS_PHY_DEVICE_ID,
.name = "Freescale Backplane",
.phy_id_mask = PCS_PHY_DEVICE_ID_MASK,
.features = SUPPORTED_Backplane | SUPPORTED_Autoneg |
SUPPORTED_MII,
.probe = fsl_backplane_probe,
.aneg_done = fsl_backplane_aneg_done,
.config_aneg = fsl_backplane_config_aneg,
.read_status = fsl_backplane_read_status,
.suspend = fsl_backplane_suspend,
.resume = fsl_backplane_resume,
.match_phy_device = fsl_backplane_match_phy_device,
},
};
module_phy_driver(fsl_backplane_driver);
static struct mdio_device_id __maybe_unused freescale_tbl[] = {
{ PCS_PHY_DEVICE_ID, PCS_PHY_DEVICE_ID_MASK },
{ }
};
MODULE_DEVICE_TABLE(mdio, freescale_tbl);
MODULE_DESCRIPTION("Freescale Backplane driver");
MODULE_AUTHOR("Shaohui Xie <Shaohui.Xie@freescale.com>");
MODULE_LICENSE("GPL v2");