f-stack/freebsd/contrib/dev/ath/ath_hal/ar9300/ar9300_eeprom.c

4816 lines
163 KiB
C

/*
* Copyright (c) 2013 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ah_devid.h"
#ifdef AH_DEBUG
#include "ah_desc.h" /* NB: for HAL_PHYERR* */
#endif
#include "ar9300/ar9300.h"
#include "ar9300/ar9300eep.h"
#include "ar9300/ar9300template_generic.h"
#include "ar9300/ar9300template_xb112.h"
#include "ar9300/ar9300template_hb116.h"
#include "ar9300/ar9300template_xb113.h"
#include "ar9300/ar9300template_hb112.h"
#include "ar9300/ar9300template_ap121.h"
#include "ar9300/ar9300template_osprey_k31.h"
#include "ar9300/ar9300template_wasp_2.h"
#include "ar9300/ar9300template_wasp_k31.h"
#include "ar9300/ar9300template_aphrodite.h"
#include "ar9300/ar9300reg.h"
#include "ar9300/ar9300phy.h"
#if AH_BYTE_ORDER == AH_BIG_ENDIAN
void ar9300_swap_eeprom(ar9300_eeprom_t *eep);
void ar9300_eeprom_template_swap(void);
#endif
static u_int16_t ar9300_eeprom_get_spur_chan(struct ath_hal *ah,
int spur_chan, HAL_BOOL is_2ghz);
#ifdef UNUSED
static inline HAL_BOOL ar9300_fill_eeprom(struct ath_hal *ah);
static inline HAL_STATUS ar9300_check_eeprom(struct ath_hal *ah);
#endif
static ar9300_eeprom_t *default9300[] =
{
&ar9300_template_generic,
&ar9300_template_xb112,
&ar9300_template_hb116,
&ar9300_template_hb112,
&ar9300_template_xb113,
&ar9300_template_ap121,
&ar9300_template_wasp_2,
&ar9300_template_wasp_k31,
&ar9300_template_osprey_k31,
&ar9300_template_aphrodite,
};
/*
* Different types of memory where the calibration data might be stored.
* All types are searched in ar9300_eeprom_restore()
* in the order flash, eeprom, otp.
* To disable searching a type, set its parameter to 0.
*/
/*
* This is where we look for the calibration data.
* must be set before ath_attach() is called
*/
static int calibration_data_try = calibration_data_none;
static int calibration_data_try_address = 0;
/*
* Set the type of memory used to store calibration data.
* Used by nart to force reading/writing of a specific type.
* The driver can normally allow autodetection
* by setting source to calibration_data_none=0.
*/
void ar9300_calibration_data_set(struct ath_hal *ah, int32_t source)
{
if (ah != 0) {
AH9300(ah)->calibration_data_source = source;
} else {
calibration_data_try = source;
}
}
int32_t ar9300_calibration_data_get(struct ath_hal *ah)
{
if (ah != 0) {
return AH9300(ah)->calibration_data_source;
} else {
return calibration_data_try;
}
}
/*
* Set the address of first byte used to store calibration data.
* Used by nart to force reading/writing at a specific address.
* The driver can normally allow autodetection by setting size=0.
*/
void ar9300_calibration_data_address_set(struct ath_hal *ah, int32_t size)
{
if (ah != 0) {
AH9300(ah)->calibration_data_source_address = size;
} else {
calibration_data_try_address = size;
}
}
int32_t ar9300_calibration_data_address_get(struct ath_hal *ah)
{
if (ah != 0) {
return AH9300(ah)->calibration_data_source_address;
} else {
return calibration_data_try_address;
}
}
/*
* This is the template that is loaded if ar9300_eeprom_restore()
* can't find valid data in the memory.
*/
static int Ar9300_eeprom_template_preference = ar9300_eeprom_template_generic;
void ar9300_eeprom_template_preference(int32_t value)
{
Ar9300_eeprom_template_preference = value;
}
/*
* Install the specified default template.
* Overwrites any existing calibration and configuration information in memory.
*/
int32_t ar9300_eeprom_template_install(struct ath_hal *ah, int32_t value)
{
struct ath_hal_9300 *ahp = AH9300(ah);
ar9300_eeprom_t *mptr, *dptr;
int mdata_size;
mptr = &ahp->ah_eeprom;
mdata_size = ar9300_eeprom_struct_size();
if (mptr != 0) {
#if 0
calibration_data_source = calibration_data_none;
calibration_data_source_address = 0;
#endif
dptr = ar9300_eeprom_struct_default_find_by_id(value);
if (dptr != 0) {
OS_MEMCPY(mptr, dptr, mdata_size);
return 0;
}
}
return -1;
}
static int
ar9300_eeprom_restore_something(struct ath_hal *ah, ar9300_eeprom_t *mptr,
int mdata_size)
{
int it;
ar9300_eeprom_t *dptr;
int nptr;
nptr = -1;
/*
* if we didn't find any blocks in the memory,
* put the prefered template in place
*/
if (nptr < 0) {
AH9300(ah)->calibration_data_source = calibration_data_none;
AH9300(ah)->calibration_data_source_address = 0;
dptr = ar9300_eeprom_struct_default_find_by_id(
Ar9300_eeprom_template_preference);
if (dptr != 0) {
OS_MEMCPY(mptr, dptr, mdata_size);
nptr = 0;
}
}
/*
* if we didn't find the prefered one,
* put the normal default template in place
*/
if (nptr < 0) {
AH9300(ah)->calibration_data_source = calibration_data_none;
AH9300(ah)->calibration_data_source_address = 0;
dptr = ar9300_eeprom_struct_default_find_by_id(
ar9300_eeprom_template_default);
if (dptr != 0) {
OS_MEMCPY(mptr, dptr, mdata_size);
nptr = 0;
}
}
/*
* if we can't find the best template, put any old template in place
* presume that newer ones are better, so search backwards
*/
if (nptr < 0) {
AH9300(ah)->calibration_data_source = calibration_data_none;
AH9300(ah)->calibration_data_source_address = 0;
for (it = ar9300_eeprom_struct_default_many() - 1; it >= 0; it--) {
dptr = ar9300_eeprom_struct_default(it);
if (dptr != 0) {
OS_MEMCPY(mptr, dptr, mdata_size);
nptr = 0;
break;
}
}
}
return nptr;
}
/*
* Read 16 bits of data from offset into *data
*/
HAL_BOOL
ar9300_eeprom_read_word(struct ath_hal *ah, u_int off, u_int16_t *data)
{
if (AR_SREV_OSPREY(ah) || AR_SREV_POSEIDON(ah))
{
(void) OS_REG_READ(ah, AR9300_EEPROM_OFFSET + (off << AR9300_EEPROM_S));
if (!ath_hal_wait(ah,
AR_HOSTIF_REG(ah, AR_EEPROM_STATUS_DATA),
AR_EEPROM_STATUS_DATA_BUSY | AR_EEPROM_STATUS_DATA_PROT_ACCESS,
0))
{
return AH_FALSE;
}
*data = MS(OS_REG_READ(ah,
AR_HOSTIF_REG(ah, AR_EEPROM_STATUS_DATA)), AR_EEPROM_STATUS_DATA_VAL);
return AH_TRUE;
}
else
{
*data = 0;
return AH_FALSE;
}
}
HAL_BOOL
ar9300_otp_read(struct ath_hal *ah, u_int off, u_int32_t *data, HAL_BOOL is_wifi)
{
int time_out = 1000;
int status = 0;
u_int32_t addr;
if (AR_SREV_HONEYBEE(ah)){ /* no OTP for Honeybee */
return false;
}
addr = (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah))?
OTP_MEM_START_ADDRESS_WASP : OTP_MEM_START_ADDRESS;
if (!is_wifi) {
addr = BTOTP_MEM_START_ADDRESS;
}
addr += off * 4; /* OTP is 32 bit addressable */
(void) OS_REG_READ(ah, addr);
addr = (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) ?
OTP_STATUS0_OTP_SM_BUSY_WASP : OTP_STATUS0_OTP_SM_BUSY;
if (!is_wifi) {
addr = BTOTP_STATUS0_OTP_SM_BUSY;
}
while ((time_out > 0) && (!status)) { /* wait for access complete */
/* Read data valid, access not busy, sm not busy */
status = ((OS_REG_READ(ah, addr) & 0x7) == 0x4) ? 1 : 0;
time_out--;
}
if (time_out == 0) {
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"%s: Timed out during OTP Status0 validation\n", __func__);
return AH_FALSE;
}
addr = (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) ?
OTP_STATUS1_EFUSE_READ_DATA_WASP : OTP_STATUS1_EFUSE_READ_DATA;
if (!is_wifi) {
addr = BTOTP_STATUS1_EFUSE_READ_DATA;
}
*data = OS_REG_READ(ah, addr);
return AH_TRUE;
}
static HAL_STATUS
ar9300_flash_map(struct ath_hal *ah)
{
/* XXX disable flash remapping for now (ie, SoC support) */
ath_hal_printf(ah, "%s: unimplemented for now\n", __func__);
#if 0
struct ath_hal_9300 *ahp = AH9300(ah);
#if defined(AR9100) || defined(__NetBSD__)
ahp->ah_cal_mem = OS_REMAP(ah, AR9300_EEPROM_START_ADDR, AR9300_EEPROM_MAX);
#else
ahp->ah_cal_mem = OS_REMAP((uintptr_t)(AH_PRIVATE(ah)->ah_st),
(AR9300_EEPROM_MAX + AR9300_FLASH_CAL_START_OFFSET));
#endif
if (!ahp->ah_cal_mem) {
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"%s: cannot remap eeprom region \n", __func__);
return HAL_EIO;
}
#endif
return HAL_OK;
}
HAL_BOOL
ar9300_flash_read(struct ath_hal *ah, u_int off, u_int16_t *data)
{
struct ath_hal_9300 *ahp = AH9300(ah);
*data = ((u_int16_t *)ahp->ah_cal_mem)[off];
return AH_TRUE;
}
HAL_BOOL
ar9300_flash_write(struct ath_hal *ah, u_int off, u_int16_t data)
{
struct ath_hal_9300 *ahp = AH9300(ah);
((u_int16_t *)ahp->ah_cal_mem)[off] = data;
return AH_TRUE;
}
HAL_STATUS
ar9300_eeprom_attach(struct ath_hal *ah)
{
struct ath_hal_9300 *ahp = AH9300(ah);
ahp->try_dram = 1;
ahp->try_eeprom = 1;
ahp->try_otp = 1;
#ifdef ATH_CAL_NAND_FLASH
ahp->try_nand = 1;
#else
ahp->try_flash = 1;
#endif
ahp->calibration_data_source = calibration_data_none;
ahp->calibration_data_source_address = 0;
ahp->calibration_data_try = calibration_data_try;
ahp->calibration_data_try_address = 0;
/*
* In case flash will be used for EEPROM. Otherwise ahp->ah_cal_mem
* must be set to NULL or the real EEPROM address.
*/
ar9300_flash_map(ah);
/*
* ###### This function always return NO SPUR.
* This is not true for many board designs.
* Does anyone use this?
*/
AH_PRIVATE(ah)->ah_getSpurChan = ar9300_eeprom_get_spur_chan;
#ifdef OLDCODE
/* XXX Needs to be moved for dynamic selection */
ahp->ah_eeprom = *(default9300[ar9300_eeprom_template_default]);
if (AR_SREV_HORNET(ah)) {
/* Set default values for Hornet. */
ahp->ah_eeprom.base_eep_header.op_cap_flags.op_flags =
AR9300_OPFLAGS_11G;
ahp->ah_eeprom.base_eep_header.txrx_mask = 0x11;
} else if (AR_SREV_POSEIDON(ah)) {
/* Set default values for Poseidon. */
ahp->ah_eeprom.base_eep_header.op_cap_flags.op_flags =
AR9300_OPFLAGS_11G;
ahp->ah_eeprom.base_eep_header.txrx_mask = 0x11;
}
if (AH_PRIVATE(ah)->ah_config.ath_hal_skip_eeprom_read) {
ahp->ah_emu_eeprom = 1;
return HAL_OK;
}
ahp->ah_emu_eeprom = 1;
#ifdef UNUSED
#endif
if (!ar9300_fill_eeprom(ah)) {
return HAL_EIO;
}
return HAL_OK;
/* return ar9300_check_eeprom(ah); */
#else
ahp->ah_emu_eeprom = 1;
#if 0
/*#ifdef MDK_AP*/ /* MDK_AP is defined only in NART AP build */
u_int8_t buffer[10];
int caldata_check = 0;
ar9300_calibration_data_read_flash(
ah, FLASH_BASE_CALDATA_OFFSET, buffer, 4);
printf("flash caldata:: %x\n", buffer[0]);
if (buffer[0] != 0xff) {
caldata_check = 1;
}
if (!caldata_check) {
ar9300_eeprom_t *mptr;
int mdata_size;
if (AR_SREV_HORNET(ah)) {
/* XXX: For initial testing */
mptr = &ahp->ah_eeprom;
mdata_size = ar9300_eeprom_struct_size();
ahp->ah_eeprom = ar9300_template_ap121;
ahp->ah_emu_eeprom = 1;
/* need it to let art save in to flash ????? */
calibration_data_source = calibration_data_flash;
} else if (AR_SREV_WASP(ah)) {
/* XXX: For initial testing */
ath_hal_printf(ah, " wasp eep attach\n");
mptr = &ahp->ah_eeprom;
mdata_size = ar9300_eeprom_struct_size();
ahp->ah_eeprom = ar9300_template_generic;
ahp->ah_eeprom.mac_addr[0] = 0x00;
ahp->ah_eeprom.mac_addr[1] = 0x03;
ahp->ah_eeprom.mac_addr[2] = 0x7F;
ahp->ah_eeprom.mac_addr[3] = 0xBA;
ahp->ah_eeprom.mac_addr[4] = 0xD0;
ahp->ah_eeprom.mac_addr[5] = 0x00;
ahp->ah_emu_eeprom = 1;
ahp->ah_eeprom.base_eep_header.txrx_mask = 0x33;
ahp->ah_eeprom.base_eep_header.txrxgain = 0x10;
/* need it to let art save in to flash ????? */
calibration_data_source = calibration_data_flash;
}
return HAL_OK;
}
#endif
if (AR_SREV_HORNET(ah) || AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)
|| AR_SREV_HONEYBEE(ah)) {
ahp->try_eeprom = 0;
}
if (AR_SREV_HONEYBEE(ah)) {
ahp->try_otp = 0;
}
if (!ar9300_eeprom_restore(ah)) {
return HAL_EIO;
}
return HAL_OK;
#endif
}
u_int32_t
ar9300_eeprom_get(struct ath_hal_9300 *ahp, EEPROM_PARAM param)
{
ar9300_eeprom_t *eep = &ahp->ah_eeprom;
OSPREY_BASE_EEP_HEADER *p_base = &eep->base_eep_header;
OSPREY_BASE_EXTENSION_1 *base_ext1 = &eep->base_ext1;
switch (param) {
#ifdef NOTYET
case EEP_NFTHRESH_5:
return p_modal[0].noise_floor_thresh_ch[0];
case EEP_NFTHRESH_2:
return p_modal[1].noise_floor_thresh_ch[0];
#endif
case EEP_MAC_LSW:
return eep->mac_addr[0] << 8 | eep->mac_addr[1];
case EEP_MAC_MID:
return eep->mac_addr[2] << 8 | eep->mac_addr[3];
case EEP_MAC_MSW:
return eep->mac_addr[4] << 8 | eep->mac_addr[5];
case EEP_REG_0:
return p_base->reg_dmn[0];
case EEP_REG_1:
return p_base->reg_dmn[1];
case EEP_OP_CAP:
return p_base->device_cap;
case EEP_OP_MODE:
return p_base->op_cap_flags.op_flags;
case EEP_RF_SILENT:
return p_base->rf_silent;
#ifdef NOTYET
case EEP_OB_5:
return p_modal[0].ob;
case EEP_DB_5:
return p_modal[0].db;
case EEP_OB_2:
return p_modal[1].ob;
case EEP_DB_2:
return p_modal[1].db;
case EEP_MINOR_REV:
return p_base->eeprom_version & AR9300_EEP_VER_MINOR_MASK;
#endif
case EEP_TX_MASK:
return (p_base->txrx_mask >> 4) & 0xf;
case EEP_RX_MASK:
return p_base->txrx_mask & 0xf;
#ifdef NOTYET
case EEP_FSTCLK_5G:
return p_base->fast_clk5g;
case EEP_RXGAIN_TYPE:
return p_base->rx_gain_type;
#endif
case EEP_DRIVE_STRENGTH:
#define AR9300_EEP_BASE_DRIVE_STRENGTH 0x1
return p_base->misc_configuration & AR9300_EEP_BASE_DRIVE_STRENGTH;
case EEP_INTERNAL_REGULATOR:
/* Bit 4 is internal regulator flag */
return ((p_base->feature_enable & 0x10) >> 4);
case EEP_SWREG:
return (p_base->swreg);
case EEP_PAPRD_ENABLED:
/* Bit 5 is paprd flag */
return ((p_base->feature_enable & 0x20) >> 5);
case EEP_ANTDIV_control:
return (u_int32_t)(base_ext1->ant_div_control);
case EEP_CHAIN_MASK_REDUCE:
return ((p_base->misc_configuration >> 3) & 0x1);
case EEP_OL_PWRCTRL:
return 0;
case EEP_DEV_TYPE:
return p_base->device_type;
default:
HALASSERT(0);
return 0;
}
}
/******************************************************************************/
/*!
** \brief EEPROM fixup code for INI values
**
** This routine provides a place to insert "fixup" code for specific devices
** that need to modify INI values based on EEPROM values, BEFORE the INI values
** are written.
** Certain registers in the INI file can only be written once without
** undesired side effects, and this provides a place for EEPROM overrides
** in these cases.
**
** This is called at attach time once. It should not affect run time
** performance at all
**
** \param ah Pointer to HAL object (this)
** \param p_eep_data Pointer to (filled in) eeprom data structure
** \param reg register being inspected on this call
** \param value value in INI file
**
** \return Updated value for INI file.
*/
u_int32_t
ar9300_ini_fixup(struct ath_hal *ah, ar9300_eeprom_t *p_eep_data,
u_int32_t reg, u_int32_t value)
{
HALDEBUG(AH_NULL, HAL_DEBUG_UNMASKABLE,
"ar9300_eeprom_def_ini_fixup: FIXME\n");
#if 0
BASE_EEPDEF_HEADER *p_base = &(p_eep_data->base_eep_header);
switch (AH_PRIVATE(ah)->ah_devid)
{
case AR9300_DEVID_AR9300_PCI:
/*
** Need to set the external/internal regulator bit to the proper value.
** Can only write this ONCE.
*/
if ( reg == 0x7894 )
{
/*
** Check for an EEPROM data structure of "0x0b" or better
*/
HALDEBUG(ah, HAL_DEBUG_EEPROM, "ini VAL: %x EEPROM: %x\n",
value, (p_base->version & 0xff));
if ( (p_base->version & 0xff) > 0x0a) {
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"PWDCLKIND: %d\n", p_base->pwdclkind);
value &= ~AR_AN_TOP2_PWDCLKIND;
value |=
AR_AN_TOP2_PWDCLKIND &
(p_base->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
} else {
HALDEBUG(ah, HAL_DEBUG_EEPROM, "PWDCLKIND Earlier Rev\n");
}
HALDEBUG(ah, HAL_DEBUG_EEPROM, "final ini VAL: %x\n", value);
}
break;
}
return (value);
#else
return 0;
#endif
}
/*
* Returns the interpolated y value corresponding to the specified x value
* from the np ordered pairs of data (px,py).
* The pairs do not have to be in any order.
* If the specified x value is less than any of the px,
* the returned y value is equal to the py for the lowest px.
* If the specified x value is greater than any of the px,
* the returned y value is equal to the py for the highest px.
*/
static int
interpolate(int32_t x, int32_t *px, int32_t *py, u_int16_t np)
{
int ip = 0;
int lx = 0, ly = 0, lhave = 0;
int hx = 0, hy = 0, hhave = 0;
int dx = 0;
int y = 0;
int bf, factor, plus;
lhave = 0;
hhave = 0;
/*
* identify best lower and higher x calibration measurement
*/
for (ip = 0; ip < np; ip++) {
dx = x - px[ip];
/* this measurement is higher than our desired x */
if (dx <= 0) {
if (!hhave || dx > (x - hx)) {
/* new best higher x measurement */
hx = px[ip];
hy = py[ip];
hhave = 1;
}
}
/* this measurement is lower than our desired x */
if (dx >= 0) {
if (!lhave || dx < (x - lx)) {
/* new best lower x measurement */
lx = px[ip];
ly = py[ip];
lhave = 1;
}
}
}
/* the low x is good */
if (lhave) {
/* so is the high x */
if (hhave) {
/* they're the same, so just pick one */
if (hx == lx) {
y = ly;
} else {
/* interpolate with round off */
bf = (2 * (hy - ly) * (x - lx)) / (hx - lx);
plus = (bf % 2);
factor = bf / 2;
y = ly + factor + plus;
}
} else {
/* only low is good, use it */
y = ly;
}
} else if (hhave) {
/* only high is good, use it */
y = hy;
} else {
/* nothing is good,this should never happen unless np=0, ???? */
y = -(1 << 30);
}
return y;
}
u_int8_t
ar9300_eeprom_get_legacy_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index,
u_int16_t freq, HAL_BOOL is_2ghz)
{
u_int16_t num_piers, i;
int32_t target_power_array[OSPREY_NUM_5G_20_TARGET_POWERS];
int32_t freq_array[OSPREY_NUM_5G_20_TARGET_POWERS];
u_int8_t *p_freq_bin;
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
CAL_TARGET_POWER_LEG *p_eeprom_target_pwr;
if (is_2ghz) {
num_piers = OSPREY_NUM_2G_20_TARGET_POWERS;
p_eeprom_target_pwr = eep->cal_target_power_2g;
p_freq_bin = eep->cal_target_freqbin_2g;
} else {
num_piers = OSPREY_NUM_5G_20_TARGET_POWERS;
p_eeprom_target_pwr = eep->cal_target_power_5g;
p_freq_bin = eep->cal_target_freqbin_5g;
}
/*
* create array of channels and targetpower from
* targetpower piers stored on eeprom
*/
for (i = 0; i < num_piers; i++) {
freq_array[i] = FBIN2FREQ(p_freq_bin[i], is_2ghz);
target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index];
}
/* interpolate to get target power for given frequency */
return
((u_int8_t)interpolate(
(int32_t)freq, freq_array, target_power_array, num_piers));
}
u_int8_t
ar9300_eeprom_get_ht20_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index,
u_int16_t freq, HAL_BOOL is_2ghz)
{
u_int16_t num_piers, i;
int32_t target_power_array[OSPREY_NUM_5G_20_TARGET_POWERS];
int32_t freq_array[OSPREY_NUM_5G_20_TARGET_POWERS];
u_int8_t *p_freq_bin;
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
OSP_CAL_TARGET_POWER_HT *p_eeprom_target_pwr;
if (is_2ghz) {
num_piers = OSPREY_NUM_2G_20_TARGET_POWERS;
p_eeprom_target_pwr = eep->cal_target_power_2g_ht20;
p_freq_bin = eep->cal_target_freqbin_2g_ht20;
} else {
num_piers = OSPREY_NUM_5G_20_TARGET_POWERS;
p_eeprom_target_pwr = eep->cal_target_power_5g_ht20;
p_freq_bin = eep->cal_target_freqbin_5g_ht20;
}
/*
* create array of channels and targetpower from
* targetpower piers stored on eeprom
*/
for (i = 0; i < num_piers; i++) {
freq_array[i] = FBIN2FREQ(p_freq_bin[i], is_2ghz);
target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index];
}
/* interpolate to get target power for given frequency */
return
((u_int8_t)interpolate(
(int32_t)freq, freq_array, target_power_array, num_piers));
}
u_int8_t
ar9300_eeprom_get_ht40_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index,
u_int16_t freq, HAL_BOOL is_2ghz)
{
u_int16_t num_piers, i;
int32_t target_power_array[OSPREY_NUM_5G_40_TARGET_POWERS];
int32_t freq_array[OSPREY_NUM_5G_40_TARGET_POWERS];
u_int8_t *p_freq_bin;
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
OSP_CAL_TARGET_POWER_HT *p_eeprom_target_pwr;
if (is_2ghz) {
num_piers = OSPREY_NUM_2G_40_TARGET_POWERS;
p_eeprom_target_pwr = eep->cal_target_power_2g_ht40;
p_freq_bin = eep->cal_target_freqbin_2g_ht40;
} else {
num_piers = OSPREY_NUM_5G_40_TARGET_POWERS;
p_eeprom_target_pwr = eep->cal_target_power_5g_ht40;
p_freq_bin = eep->cal_target_freqbin_5g_ht40;
}
/*
* create array of channels and targetpower from
* targetpower piers stored on eeprom
*/
for (i = 0; i < num_piers; i++) {
freq_array[i] = FBIN2FREQ(p_freq_bin[i], is_2ghz);
target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index];
}
/* interpolate to get target power for given frequency */
return
((u_int8_t)interpolate(
(int32_t)freq, freq_array, target_power_array, num_piers));
}
u_int8_t
ar9300_eeprom_get_cck_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index,
u_int16_t freq)
{
u_int16_t num_piers = OSPREY_NUM_2G_CCK_TARGET_POWERS, i;
int32_t target_power_array[OSPREY_NUM_2G_CCK_TARGET_POWERS];
int32_t freq_array[OSPREY_NUM_2G_CCK_TARGET_POWERS];
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
u_int8_t *p_freq_bin = eep->cal_target_freqbin_cck;
CAL_TARGET_POWER_LEG *p_eeprom_target_pwr = eep->cal_target_power_cck;
/*
* create array of channels and targetpower from
* targetpower piers stored on eeprom
*/
for (i = 0; i < num_piers; i++) {
freq_array[i] = FBIN2FREQ(p_freq_bin[i], 1);
target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index];
}
/* interpolate to get target power for given frequency */
return
((u_int8_t)interpolate(
(int32_t)freq, freq_array, target_power_array, num_piers));
}
/*
* Set tx power registers to array of values passed in
*/
int
ar9300_transmit_power_reg_write(struct ath_hal *ah, u_int8_t *p_pwr_array)
{
#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
/* make sure forced gain is not set */
#if 0
field_write("force_dac_gain", 0);
OS_REG_WRITE(ah, 0xa3f8, 0);
field_write("force_tx_gain", 0);
#endif
OS_REG_WRITE(ah, 0xa458, 0);
/* Write the OFDM power per rate set */
/* 6 (LSB), 9, 12, 18 (MSB) */
OS_REG_WRITE(ah, 0xa3c0,
POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
| POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16)
| POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 8)
| POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 0)
);
/* 24 (LSB), 36, 48, 54 (MSB) */
OS_REG_WRITE(ah, 0xa3c4,
POW_SM(p_pwr_array[ALL_TARGET_LEGACY_54], 24)
| POW_SM(p_pwr_array[ALL_TARGET_LEGACY_48], 16)
| POW_SM(p_pwr_array[ALL_TARGET_LEGACY_36], 8)
| POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 0)
);
/* Write the CCK power per rate set */
/* 1L (LSB), reserved, 2L, 2S (MSB) */
OS_REG_WRITE(ah, 0xa3c8,
POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24)
| POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 16)
/* | POW_SM(tx_power_times2, 8)*/ /* this is reserved for Osprey */
| POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 0)
);
/* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
OS_REG_WRITE(ah, 0xa3cc,
POW_SM(p_pwr_array[ALL_TARGET_LEGACY_11S], 24)
| POW_SM(p_pwr_array[ALL_TARGET_LEGACY_11L], 16)
| POW_SM(p_pwr_array[ALL_TARGET_LEGACY_5S], 8)
| POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 0)
);
/* write the power for duplicated frames - HT40 */
/* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
OS_REG_WRITE(ah, 0xa3e0,
POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
| POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 16)
| POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 8)
| POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 0)
);
/* Write the HT20 power per rate set */
/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
OS_REG_WRITE(ah, 0xa3d0,
POW_SM(p_pwr_array[ALL_TARGET_HT20_5], 24)
| POW_SM(p_pwr_array[ALL_TARGET_HT20_4], 16)
| POW_SM(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19], 8)
| POW_SM(p_pwr_array[ALL_TARGET_HT20_0_8_16], 0)
);
/* 6 (LSB), 7, 12, 13 (MSB) */
OS_REG_WRITE(ah, 0xa3d4,
POW_SM(p_pwr_array[ALL_TARGET_HT20_13], 24)
| POW_SM(p_pwr_array[ALL_TARGET_HT20_12], 16)
| POW_SM(p_pwr_array[ALL_TARGET_HT20_7], 8)
| POW_SM(p_pwr_array[ALL_TARGET_HT20_6], 0)
);
/* 14 (LSB), 15, 20, 21 */
OS_REG_WRITE(ah, 0xa3e4,
POW_SM(p_pwr_array[ALL_TARGET_HT20_21], 24)
| POW_SM(p_pwr_array[ALL_TARGET_HT20_20], 16)
| POW_SM(p_pwr_array[ALL_TARGET_HT20_15], 8)
| POW_SM(p_pwr_array[ALL_TARGET_HT20_14], 0)
);
/* Mixed HT20 and HT40 rates */
/* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
OS_REG_WRITE(ah, 0xa3e8,
POW_SM(p_pwr_array[ALL_TARGET_HT40_23], 24)
| POW_SM(p_pwr_array[ALL_TARGET_HT40_22], 16)
| POW_SM(p_pwr_array[ALL_TARGET_HT20_23], 8)
| POW_SM(p_pwr_array[ALL_TARGET_HT20_22], 0)
);
/* Write the HT40 power per rate set */
/* correct PAR difference between HT40 and HT20/LEGACY */
/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
OS_REG_WRITE(ah, 0xa3d8,
POW_SM(p_pwr_array[ALL_TARGET_HT40_5], 24)
| POW_SM(p_pwr_array[ALL_TARGET_HT40_4], 16)
| POW_SM(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19], 8)
| POW_SM(p_pwr_array[ALL_TARGET_HT40_0_8_16], 0)
);
/* 6 (LSB), 7, 12, 13 (MSB) */
OS_REG_WRITE(ah, 0xa3dc,
POW_SM(p_pwr_array[ALL_TARGET_HT40_13], 24)
| POW_SM(p_pwr_array[ALL_TARGET_HT40_12], 16)
| POW_SM(p_pwr_array[ALL_TARGET_HT40_7], 8)
| POW_SM(p_pwr_array[ALL_TARGET_HT40_6], 0)
);
/* 14 (LSB), 15, 20, 21 */
OS_REG_WRITE(ah, 0xa3ec,
POW_SM(p_pwr_array[ALL_TARGET_HT40_21], 24)
| POW_SM(p_pwr_array[ALL_TARGET_HT40_20], 16)
| POW_SM(p_pwr_array[ALL_TARGET_HT40_15], 8)
| POW_SM(p_pwr_array[ALL_TARGET_HT40_14], 0)
);
return 0;
#undef POW_SM
}
static void
ar9300_selfgen_tpc_reg_write(struct ath_hal *ah, const struct ieee80211_channel *chan,
u_int8_t *p_pwr_array)
{
u_int32_t tpc_reg_val;
/* Set the target power values for self generated frames (ACK,RTS/CTS) to
* be within limits. This is just a safety measure.With per packet TPC mode
* enabled the target power value used with self generated frames will be
* MIN( TPC reg, BB_powertx_rate register)
*/
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
tpc_reg_val = (SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_ACK) |
SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_CTS) |
SM(0x3f, AR_TPC_CHIRP) |
SM(0x3f, AR_TPC_RPT));
} else {
tpc_reg_val = (SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_ACK) |
SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_CTS) |
SM(0x3f, AR_TPC_CHIRP) |
SM(0x3f, AR_TPC_RPT));
}
OS_REG_WRITE(ah, AR_TPC, tpc_reg_val);
}
void
ar9300_set_target_power_from_eeprom(struct ath_hal *ah, u_int16_t freq,
u_int8_t *target_power_val_t2)
{
/* hard code for now, need to get from eeprom struct */
u_int8_t ht40_power_inc_for_pdadc = 0;
HAL_BOOL is_2ghz = 0;
if (freq < 4000) {
is_2ghz = 1;
}
target_power_val_t2[ALL_TARGET_LEGACY_6_24] =
ar9300_eeprom_get_legacy_trgt_pwr(
ah, LEGACY_TARGET_RATE_6_24, freq, is_2ghz);
target_power_val_t2[ALL_TARGET_LEGACY_36] =
ar9300_eeprom_get_legacy_trgt_pwr(
ah, LEGACY_TARGET_RATE_36, freq, is_2ghz);
target_power_val_t2[ALL_TARGET_LEGACY_48] =
ar9300_eeprom_get_legacy_trgt_pwr(
ah, LEGACY_TARGET_RATE_48, freq, is_2ghz);
target_power_val_t2[ALL_TARGET_LEGACY_54] =
ar9300_eeprom_get_legacy_trgt_pwr(
ah, LEGACY_TARGET_RATE_54, freq, is_2ghz);
target_power_val_t2[ALL_TARGET_LEGACY_1L_5L] =
ar9300_eeprom_get_cck_trgt_pwr(
ah, LEGACY_TARGET_RATE_1L_5L, freq);
target_power_val_t2[ALL_TARGET_LEGACY_5S] =
ar9300_eeprom_get_cck_trgt_pwr(
ah, LEGACY_TARGET_RATE_5S, freq);
target_power_val_t2[ALL_TARGET_LEGACY_11L] =
ar9300_eeprom_get_cck_trgt_pwr(
ah, LEGACY_TARGET_RATE_11L, freq);
target_power_val_t2[ALL_TARGET_LEGACY_11S] =
ar9300_eeprom_get_cck_trgt_pwr(
ah, LEGACY_TARGET_RATE_11S, freq);
target_power_val_t2[ALL_TARGET_HT20_0_8_16] =
ar9300_eeprom_get_ht20_trgt_pwr(
ah, HT_TARGET_RATE_0_8_16, freq, is_2ghz);
target_power_val_t2[ALL_TARGET_HT20_1_3_9_11_17_19] =
ar9300_eeprom_get_ht20_trgt_pwr(
ah, HT_TARGET_RATE_1_3_9_11_17_19, freq, is_2ghz);
target_power_val_t2[ALL_TARGET_HT20_4] =
ar9300_eeprom_get_ht20_trgt_pwr(
ah, HT_TARGET_RATE_4, freq, is_2ghz);
target_power_val_t2[ALL_TARGET_HT20_5] =
ar9300_eeprom_get_ht20_trgt_pwr(
ah, HT_TARGET_RATE_5, freq, is_2ghz);
target_power_val_t2[ALL_TARGET_HT20_6] =
ar9300_eeprom_get_ht20_trgt_pwr(
ah, HT_TARGET_RATE_6, freq, is_2ghz);
target_power_val_t2[ALL_TARGET_HT20_7] =
ar9300_eeprom_get_ht20_trgt_pwr(
ah, HT_TARGET_RATE_7, freq, is_2ghz);
target_power_val_t2[ALL_TARGET_HT20_12] =
ar9300_eeprom_get_ht20_trgt_pwr(
ah, HT_TARGET_RATE_12, freq, is_2ghz);
target_power_val_t2[ALL_TARGET_HT20_13] =
ar9300_eeprom_get_ht20_trgt_pwr(
ah, HT_TARGET_RATE_13, freq, is_2ghz);
target_power_val_t2[ALL_TARGET_HT20_14] =
ar9300_eeprom_get_ht20_trgt_pwr(
ah, HT_TARGET_RATE_14, freq, is_2ghz);
target_power_val_t2[ALL_TARGET_HT20_15] =
ar9300_eeprom_get_ht20_trgt_pwr(
ah, HT_TARGET_RATE_15, freq, is_2ghz);
target_power_val_t2[ALL_TARGET_HT20_20] =
ar9300_eeprom_get_ht20_trgt_pwr(
ah, HT_TARGET_RATE_20, freq, is_2ghz);
target_power_val_t2[ALL_TARGET_HT20_21] =
ar9300_eeprom_get_ht20_trgt_pwr(
ah, HT_TARGET_RATE_21, freq, is_2ghz);
target_power_val_t2[ALL_TARGET_HT20_22] =
ar9300_eeprom_get_ht20_trgt_pwr(
ah, HT_TARGET_RATE_22, freq, is_2ghz);
target_power_val_t2[ALL_TARGET_HT20_23] =
ar9300_eeprom_get_ht20_trgt_pwr(
ah, HT_TARGET_RATE_23, freq, is_2ghz);
target_power_val_t2[ALL_TARGET_HT40_0_8_16] =
ar9300_eeprom_get_ht40_trgt_pwr(
ah, HT_TARGET_RATE_0_8_16, freq, is_2ghz) +
ht40_power_inc_for_pdadc;
target_power_val_t2[ALL_TARGET_HT40_1_3_9_11_17_19] =
ar9300_eeprom_get_ht40_trgt_pwr(
ah, HT_TARGET_RATE_1_3_9_11_17_19, freq, is_2ghz) +
ht40_power_inc_for_pdadc;
target_power_val_t2[ALL_TARGET_HT40_4] =
ar9300_eeprom_get_ht40_trgt_pwr(
ah, HT_TARGET_RATE_4, freq, is_2ghz) + ht40_power_inc_for_pdadc;
target_power_val_t2[ALL_TARGET_HT40_5] =
ar9300_eeprom_get_ht40_trgt_pwr(
ah, HT_TARGET_RATE_5, freq, is_2ghz) + ht40_power_inc_for_pdadc;
target_power_val_t2[ALL_TARGET_HT40_6] =
ar9300_eeprom_get_ht40_trgt_pwr(
ah, HT_TARGET_RATE_6, freq, is_2ghz) + ht40_power_inc_for_pdadc;
target_power_val_t2[ALL_TARGET_HT40_7] =
ar9300_eeprom_get_ht40_trgt_pwr(
ah, HT_TARGET_RATE_7, freq, is_2ghz) + ht40_power_inc_for_pdadc;
target_power_val_t2[ALL_TARGET_HT40_12] =
ar9300_eeprom_get_ht40_trgt_pwr(
ah, HT_TARGET_RATE_12, freq, is_2ghz) + ht40_power_inc_for_pdadc;
target_power_val_t2[ALL_TARGET_HT40_13] =
ar9300_eeprom_get_ht40_trgt_pwr(
ah, HT_TARGET_RATE_13, freq, is_2ghz) + ht40_power_inc_for_pdadc;
target_power_val_t2[ALL_TARGET_HT40_14] =
ar9300_eeprom_get_ht40_trgt_pwr(
ah, HT_TARGET_RATE_14, freq, is_2ghz) + ht40_power_inc_for_pdadc;
target_power_val_t2[ALL_TARGET_HT40_15] =
ar9300_eeprom_get_ht40_trgt_pwr(
ah, HT_TARGET_RATE_15, freq, is_2ghz) + ht40_power_inc_for_pdadc;
target_power_val_t2[ALL_TARGET_HT40_20] =
ar9300_eeprom_get_ht40_trgt_pwr(
ah, HT_TARGET_RATE_20, freq, is_2ghz) + ht40_power_inc_for_pdadc;
target_power_val_t2[ALL_TARGET_HT40_21] =
ar9300_eeprom_get_ht40_trgt_pwr(
ah, HT_TARGET_RATE_21, freq, is_2ghz) + ht40_power_inc_for_pdadc;
target_power_val_t2[ALL_TARGET_HT40_22] =
ar9300_eeprom_get_ht40_trgt_pwr(
ah, HT_TARGET_RATE_22, freq, is_2ghz) + ht40_power_inc_for_pdadc;
target_power_val_t2[ALL_TARGET_HT40_23] =
ar9300_eeprom_get_ht40_trgt_pwr(
ah, HT_TARGET_RATE_23, freq, is_2ghz) + ht40_power_inc_for_pdadc;
#ifdef AH_DEBUG
{
int i = 0;
HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: APPLYING TARGET POWERS\n", __func__);
while (i < ar9300_rate_size) {
HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x ",
__func__, i, target_power_val_t2[i]);
i++;
if (i == ar9300_rate_size) {
break;
}
HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x ",
__func__, i, target_power_val_t2[i]);
i++;
if (i == ar9300_rate_size) {
break;
}
HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x ",
__func__, i, target_power_val_t2[i]);
i++;
if (i == ar9300_rate_size) {
break;
}
HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x \n",
__func__, i, target_power_val_t2[i]);
i++;
}
}
#endif
}
u_int16_t *ar9300_regulatory_domain_get(struct ath_hal *ah)
{
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
return eep->base_eep_header.reg_dmn;
}
int32_t
ar9300_eeprom_write_enable_gpio_get(struct ath_hal *ah)
{
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
return eep->base_eep_header.eeprom_write_enable_gpio;
}
int32_t
ar9300_wlan_disable_gpio_get(struct ath_hal *ah)
{
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
return eep->base_eep_header.wlan_disable_gpio;
}
int32_t
ar9300_wlan_led_gpio_get(struct ath_hal *ah)
{
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
return eep->base_eep_header.wlan_led_gpio;
}
int32_t
ar9300_rx_band_select_gpio_get(struct ath_hal *ah)
{
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
return eep->base_eep_header.rx_band_select_gpio;
}
/*
* since valid noise floor values are negative, returns 1 on error
*/
int32_t
ar9300_noise_floor_cal_or_power_get(struct ath_hal *ah, int32_t frequency,
int32_t ichain, HAL_BOOL use_cal)
{
int nf_use = 1; /* start with an error return value */
int32_t fx[OSPREY_NUM_5G_CAL_PIERS + OSPREY_NUM_2G_CAL_PIERS];
int32_t nf[OSPREY_NUM_5G_CAL_PIERS + OSPREY_NUM_2G_CAL_PIERS];
int nnf;
int is_2ghz;
int ipier, npier;
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
u_int8_t *p_cal_pier;
OSP_CAL_DATA_PER_FREQ_OP_LOOP *p_cal_pier_struct;
/*
* check chain value
*/
if (ichain < 0 || ichain >= OSPREY_MAX_CHAINS) {
return 1;
}
/* figure out which band we're using */
is_2ghz = (frequency < 4000);
if (is_2ghz) {
npier = OSPREY_NUM_2G_CAL_PIERS;
p_cal_pier = eep->cal_freq_pier_2g;
p_cal_pier_struct = eep->cal_pier_data_2g[ichain];
} else {
npier = OSPREY_NUM_5G_CAL_PIERS;
p_cal_pier = eep->cal_freq_pier_5g;
p_cal_pier_struct = eep->cal_pier_data_5g[ichain];
}
/* look for valid noise floor values */
nnf = 0;
for (ipier = 0; ipier < npier; ipier++) {
fx[nnf] = FBIN2FREQ(p_cal_pier[ipier], is_2ghz);
nf[nnf] = use_cal ?
p_cal_pier_struct[ipier].rx_noisefloor_cal :
p_cal_pier_struct[ipier].rx_noisefloor_power;
if (nf[nnf] < 0) {
nnf++;
}
}
/*
* If we have some valid values, interpolate to find the value
* at the desired frequency.
*/
if (nnf > 0) {
nf_use = interpolate(frequency, fx, nf, nnf);
}
return nf_use;
}
/*
* Return the Rx NF offset for specific channel.
* The values saved in EEPROM/OTP/Flash is converted through the following way:
* ((_p) - NOISE_PWR_DATA_OFFSET) << 2
* So we need to convert back to the original values.
*/
int ar9300_get_rx_nf_offset(struct ath_hal *ah, struct ieee80211_channel *chan, int8_t *nf_pwr, int8_t *nf_cal) {
HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
int8_t rx_nf_pwr, rx_nf_cal;
int i;
//HALASSERT(ichan);
/* Fill 0 if valid internal channel is not found */
if (ichan == AH_NULL) {
OS_MEMZERO(nf_pwr, sizeof(nf_pwr[0])*OSPREY_MAX_CHAINS);
OS_MEMZERO(nf_cal, sizeof(nf_cal[0])*OSPREY_MAX_CHAINS);
return -1;
}
for (i = 0; i < OSPREY_MAX_CHAINS; i++) {
if ((rx_nf_pwr = ar9300_noise_floor_cal_or_power_get(ah, ichan->channel, i, 0)) == 1) {
nf_pwr[i] = 0;
} else {
//printk("%s: raw nf_pwr[%d] = %d\n", __func__, i, rx_nf_pwr);
nf_pwr[i] = NOISE_PWR_DBM_2_INT(rx_nf_pwr);
}
if ((rx_nf_cal = ar9300_noise_floor_cal_or_power_get(ah, ichan->channel, i, 1)) == 1) {
nf_cal[i] = 0;
} else {
//printk("%s: raw nf_cal[%d] = %d\n", __func__, i, rx_nf_cal);
nf_cal[i] = NOISE_PWR_DBM_2_INT(rx_nf_cal);
}
}
return 0;
}
int32_t ar9300_rx_gain_index_get(struct ath_hal *ah)
{
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
return (eep->base_eep_header.txrxgain) & 0xf; /* bits 3:0 */
}
int32_t ar9300_tx_gain_index_get(struct ath_hal *ah)
{
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
return (eep->base_eep_header.txrxgain >> 4) & 0xf; /* bits 7:4 */
}
HAL_BOOL ar9300_internal_regulator_apply(struct ath_hal *ah)
{
struct ath_hal_9300 *ahp = AH9300(ah);
int internal_regulator = ar9300_eeprom_get(ahp, EEP_INTERNAL_REGULATOR);
int reg_pmu1, reg_pmu2, reg_pmu1_set, reg_pmu2_set;
u_int32_t reg_PMU1, reg_PMU2;
unsigned long eep_addr;
u_int32_t reg_val, reg_usb = 0, reg_pmu = 0;
int usb_valid = 0, pmu_valid = 0;
unsigned char pmu_refv;
if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
reg_PMU1 = AR_PHY_PMU1_JUPITER;
reg_PMU2 = AR_PHY_PMU2_JUPITER;
}
else {
reg_PMU1 = AR_PHY_PMU1;
reg_PMU2 = AR_PHY_PMU2;
}
if (internal_regulator) {
if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah)) {
if (AR_SREV_HORNET(ah)) {
/* Read OTP first */
for (eep_addr = 0x14; ; eep_addr -= 0x10) {
ar9300_otp_read(ah, eep_addr / 4, &reg_val, 1);
if ((reg_val & 0x80) == 0x80){
usb_valid = 1;
reg_usb = reg_val & 0x000000ff;
}
if ((reg_val & 0x80000000) == 0x80000000){
pmu_valid = 1;
reg_pmu = (reg_val & 0xff000000) >> 24;
}
if (eep_addr == 0x4) {
break;
}
}
if (pmu_valid) {
pmu_refv = reg_pmu & 0xf;
} else {
pmu_refv = 0x8;
}
/*
* If (valid) {
* Usb_phy_ctrl2_tx_cal_en -> 0
* Usb_phy_ctrl2_tx_cal_sel -> 0
* Usb_phy_ctrl2_tx_man_cal -> 0, 1, 3, 7 or 15 from OTP
* }
*/
if (usb_valid) {
OS_REG_RMW_FIELD(ah, 0x16c88, AR_PHY_CTRL2_TX_CAL_EN, 0x0);
OS_REG_RMW_FIELD(ah, 0x16c88, AR_PHY_CTRL2_TX_CAL_SEL, 0x0);
OS_REG_RMW_FIELD(ah, 0x16c88,
AR_PHY_CTRL2_TX_MAN_CAL, (reg_usb & 0xf));
}
} else {
pmu_refv = 0x8;
}
/*#ifndef USE_HIF*/
/* Follow the MDK settings for Hornet PMU.
* my $pwd = 0x0;
* my $Nfdiv = 0x3; # xtal_freq = 25MHz
* my $Nfdiv = 0x4; # xtal_freq = 40MHz
* my $Refv = 0x7; # 0x5:1.22V; 0x8:1.29V
* my $Gm1 = 0x3; #Poseidon $Gm1=1
* my $classb = 0x0;
* my $Cc = 0x1; #Poseidon $Cc=7
* my $Rc = 0x6;
* my $ramp_slope = 0x1;
* my $Segm = 0x3;
* my $use_local_osc = 0x0;
* my $force_xosc_stable = 0x0;
* my $Selfb = 0x0; #Poseidon $Selfb=1
* my $Filterfb = 0x3; #Poseidon $Filterfb=0
* my $Filtervc = 0x0;
* my $disc = 0x0;
* my $discdel = 0x4;
* my $spare = 0x0;
* $reg_PMU1 =
* $pwd | ($Nfdiv<<1) | ($Refv<<4) | ($Gm1<<8) |
* ($classb<<11) | ($Cc<<14) | ($Rc<<17) | ($ramp_slope<<20) |
* ($Segm<<24) | ($use_local_osc<<26) |
* ($force_xosc_stable<<27) | ($Selfb<<28) | ($Filterfb<<29);
* $reg_PMU2 = $handle->reg_rd("ch0_PMU2");
* $reg_PMU2 = ($reg_PMU2 & 0xfe3fffff) | ($Filtervc<<22);
* $reg_PMU2 = ($reg_PMU2 & 0xe3ffffff) | ($discdel<<26);
* $reg_PMU2 = ($reg_PMU2 & 0x1fffffff) | ($spare<<29);
*/
if (ahp->clk_25mhz) {
reg_pmu1_set = 0 |
(3 << 1) | (pmu_refv << 4) | (3 << 8) | (0 << 11) |
(1 << 14) | (6 << 17) | (1 << 20) | (3 << 24) |
(0 << 26) | (0 << 27) | (0 << 28) | (0 << 29);
} else {
if (AR_SREV_POSEIDON(ah)) {
reg_pmu1_set = 0 |
(5 << 1) | (7 << 4) | (2 << 8) | (0 << 11) |
(2 << 14) | (6 << 17) | (1 << 20) | (3 << 24) |
(0 << 26) | (0 << 27) | (1 << 28) | (0 << 29) ;
} else {
reg_pmu1_set = 0 |
(4 << 1) | (7 << 4) | (3 << 8) | (0 << 11) |
(1 << 14) | (6 << 17) | (1 << 20) | (3 << 24) |
(0 << 26) | (0 << 27) | (0 << 28) | (0 << 29) ;
}
}
OS_REG_RMW_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM, 0x0);
OS_REG_WRITE(ah, reg_PMU1, reg_pmu1_set); /* 0x638c8376 */
reg_pmu1 = OS_REG_READ(ah, reg_PMU1);
while (reg_pmu1 != reg_pmu1_set) {
OS_REG_WRITE(ah, reg_PMU1, reg_pmu1_set); /* 0x638c8376 */
OS_DELAY(10);
reg_pmu1 = OS_REG_READ(ah, reg_PMU1);
}
reg_pmu2_set =
(OS_REG_READ(ah, reg_PMU2) & (~0xFFC00000)) | (4 << 26);
OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set);
reg_pmu2 = OS_REG_READ(ah, reg_PMU2);
while (reg_pmu2 != reg_pmu2_set) {
OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set);
OS_DELAY(10);
reg_pmu2 = OS_REG_READ(ah, reg_PMU2);
}
reg_pmu2_set =
(OS_REG_READ(ah, reg_PMU2) & (~0x00200000)) | (1 << 21);
OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set);
reg_pmu2 = OS_REG_READ(ah, reg_PMU2);
while (reg_pmu2 != reg_pmu2_set) {
OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set);
OS_DELAY(10);
reg_pmu2 = OS_REG_READ(ah, reg_PMU2);
}
/*#endif*/
} else if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
/* Internal regulator is ON. Write swreg register. */
int swreg = ar9300_eeprom_get(ahp, EEP_SWREG);
OS_REG_WRITE(ah, reg_PMU1, swreg);
} else {
/* Internal regulator is ON. Write swreg register. */
int swreg = ar9300_eeprom_get(ahp, EEP_SWREG);
OS_REG_WRITE(ah, AR_RTC_REG_CONTROL1,
OS_REG_READ(ah, AR_RTC_REG_CONTROL1) &
(~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
OS_REG_WRITE(ah, AR_RTC_REG_CONTROL0, swreg);
/* Set REG_CONTROL1.SWREG_PROGRAM */
OS_REG_WRITE(ah, AR_RTC_REG_CONTROL1,
OS_REG_READ(ah, AR_RTC_REG_CONTROL1) |
AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
}
} else {
if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah)) {
OS_REG_RMW_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM, 0x0);
reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM);
while (reg_pmu2) {
OS_DELAY(10);
reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM);
}
OS_REG_RMW_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD, 0x1);
reg_pmu1 = OS_REG_READ_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD);
while (!reg_pmu1) {
OS_DELAY(10);
reg_pmu1 = OS_REG_READ_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD);
}
OS_REG_RMW_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM, 0x1);
reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM);
while (!reg_pmu2) {
OS_DELAY(10);
reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM);
}
} else if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
OS_REG_RMW_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD, 0x1);
} else {
OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK,
(OS_REG_READ(ah, AR_RTC_SLEEP_CLK) |
AR_RTC_FORCE_SWREG_PRD | AR_RTC_PCIE_RST_PWDN_EN));
}
}
return 0;
}
HAL_BOOL ar9300_drive_strength_apply(struct ath_hal *ah)
{
struct ath_hal_9300 *ahp = AH9300(ah);
int drive_strength;
unsigned long reg;
drive_strength = ar9300_eeprom_get(ahp, EEP_DRIVE_STRENGTH);
if (drive_strength) {
reg = OS_REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
reg &= ~0x00ffffc0;
reg |= 0x5 << 21;
reg |= 0x5 << 18;
reg |= 0x5 << 15;
reg |= 0x5 << 12;
reg |= 0x5 << 9;
reg |= 0x5 << 6;
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
reg = OS_REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
reg &= ~0xffffffe0;
reg |= 0x5 << 29;
reg |= 0x5 << 26;
reg |= 0x5 << 23;
reg |= 0x5 << 20;
reg |= 0x5 << 17;
reg |= 0x5 << 14;
reg |= 0x5 << 11;
reg |= 0x5 << 8;
reg |= 0x5 << 5;
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
reg = OS_REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
reg &= ~0xff800000;
reg |= 0x5 << 29;
reg |= 0x5 << 26;
reg |= 0x5 << 23;
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
}
return 0;
}
int32_t ar9300_xpa_bias_level_get(struct ath_hal *ah, HAL_BOOL is_2ghz)
{
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
if (is_2ghz) {
return eep->modal_header_2g.xpa_bias_lvl;
} else {
return eep->modal_header_5g.xpa_bias_lvl;
}
}
HAL_BOOL ar9300_xpa_bias_level_apply(struct ath_hal *ah, HAL_BOOL is_2ghz)
{
/*
* In ar9330 emu, we can't access radio registers,
* merlin is used for radio part.
*/
int bias;
bias = ar9300_xpa_bias_level_get(ah, is_2ghz);
if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP(ah)) {
OS_REG_RMW_FIELD(ah,
AR_HORNET_CH0_TOP2, AR_HORNET_CH0_TOP2_XPABIASLVL, bias);
} else if (AR_SREV_SCORPION(ah)) {
OS_REG_RMW_FIELD(ah,
AR_SCORPION_CH0_TOP, AR_SCORPION_CH0_TOP_XPABIASLVL, bias);
} else if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
OS_REG_RMW_FIELD(ah,
AR_PHY_65NM_CH0_TOP_JUPITER, AR_PHY_65NM_CH0_TOP_XPABIASLVL, bias);
} else {
OS_REG_RMW_FIELD(ah,
AR_PHY_65NM_CH0_TOP, AR_PHY_65NM_CH0_TOP_XPABIASLVL, bias);
OS_REG_RMW_FIELD(ah,
AR_PHY_65NM_CH0_THERM, AR_PHY_65NM_CH0_THERM_XPABIASLVL_MSB,
bias >> 2);
OS_REG_RMW_FIELD(ah,
AR_PHY_65NM_CH0_THERM, AR_PHY_65NM_CH0_THERM_XPASHORT2GND, 1);
}
return 0;
}
u_int32_t ar9300_ant_ctrl_common_get(struct ath_hal *ah, HAL_BOOL is_2ghz)
{
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
if (is_2ghz) {
return eep->modal_header_2g.ant_ctrl_common;
} else {
return eep->modal_header_5g.ant_ctrl_common;
}
}
static u_int16_t
ar9300_switch_com_spdt_get(struct ath_hal *ah, HAL_BOOL is_2ghz)
{
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
if (is_2ghz) {
return eep->modal_header_2g.switchcomspdt;
} else {
return eep->modal_header_5g.switchcomspdt;
}
}
u_int32_t ar9300_ant_ctrl_common2_get(struct ath_hal *ah, HAL_BOOL is_2ghz)
{
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
if (is_2ghz) {
return eep->modal_header_2g.ant_ctrl_common2;
} else {
return eep->modal_header_5g.ant_ctrl_common2;
}
}
u_int16_t ar9300_ant_ctrl_chain_get(struct ath_hal *ah, int chain,
HAL_BOOL is_2ghz)
{
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
if (chain >= 0 && chain < OSPREY_MAX_CHAINS) {
if (is_2ghz) {
return eep->modal_header_2g.ant_ctrl_chain[chain];
} else {
return eep->modal_header_5g.ant_ctrl_chain[chain];
}
}
return 0;
}
/*
* Select the usage of antenna via the RF switch.
* Default values are loaded from eeprom.
*/
HAL_BOOL ar9300_ant_swcom_sel(struct ath_hal *ah, u_int8_t ops,
u_int32_t *common_tbl1, u_int32_t *common_tbl2)
{
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
struct ath_hal_private *ap = AH_PRIVATE(ah);
const struct ieee80211_channel *curchan = ap->ah_curchan;
enum {
ANT_SELECT_OPS_GET,
ANT_SELECT_OPS_SET,
};
if (AR_SREV_JUPITER(ah) || AR_SREV_SCORPION(ah))
return AH_FALSE;
if (!curchan)
return AH_FALSE;
#define AR_SWITCH_TABLE_COM_ALL (0xffff)
#define AR_SWITCH_TABLE_COM_ALL_S (0)
#define AR_SWITCH_TABLE_COM2_ALL (0xffffff)
#define AR_SWITCH_TABLE_COM2_ALL_S (0)
switch (ops) {
case ANT_SELECT_OPS_GET:
*common_tbl1 = OS_REG_READ_FIELD(ah, AR_PHY_SWITCH_COM,
AR_SWITCH_TABLE_COM_ALL);
*common_tbl2 = OS_REG_READ_FIELD(ah, AR_PHY_SWITCH_COM_2,
AR_SWITCH_TABLE_COM2_ALL);
break;
case ANT_SELECT_OPS_SET:
OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
AR_SWITCH_TABLE_COM_ALL, *common_tbl1);
OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2,
AR_SWITCH_TABLE_COM2_ALL, *common_tbl2);
/* write back to eeprom */
if (IEEE80211_IS_CHAN_2GHZ(curchan)) {
eep->modal_header_2g.ant_ctrl_common = *common_tbl1;
eep->modal_header_2g.ant_ctrl_common2 = *common_tbl2;
} else {
eep->modal_header_5g.ant_ctrl_common = *common_tbl1;
eep->modal_header_5g.ant_ctrl_common2 = *common_tbl2;
}
break;
default:
break;
}
return AH_TRUE;
}
HAL_BOOL ar9300_ant_ctrl_apply(struct ath_hal *ah, HAL_BOOL is_2ghz)
{
u_int32_t value;
struct ath_hal_9300 *ahp = AH9300(ah);
u_int32_t regval;
struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
#if ATH_ANT_DIV_COMB
HAL_CAPABILITIES *pcap = &ahpriv->ah_caps;
#endif /* ATH_ANT_DIV_COMB */
u_int32_t xlan_gpio_cfg;
u_int8_t i;
HALDEBUG(ah, HAL_DEBUG_BT_COEX, "%s: use_bt_ant_enable=%d\n",
__func__, ahp->ah_lna_div_use_bt_ant_enable);
/* XXX TODO: only if rx_gain_idx == 0 */
if (AR_SREV_POSEIDON(ah)) {
xlan_gpio_cfg = ah->ah_config.ath_hal_ext_lna_ctl_gpio;
if (xlan_gpio_cfg) {
for (i = 0; i < 32; i++) {
if (xlan_gpio_cfg & (1 << i)) {
ath_hal_gpioCfgOutput(ah, i,
HAL_GPIO_OUTPUT_MUX_PCIE_ATTENTION_LED);
}
}
}
}
#define AR_SWITCH_TABLE_COM_ALL (0xffff)
#define AR_SWITCH_TABLE_COM_ALL_S (0)
#define AR_SWITCH_TABLE_COM_JUPITER_ALL (0xffffff)
#define AR_SWITCH_TABLE_COM_JUPITER_ALL_S (0)
#define AR_SWITCH_TABLE_COM_SCORPION_ALL (0xffffff)
#define AR_SWITCH_TABLE_COM_SCORPION_ALL_S (0)
#define AR_SWITCH_TABLE_COM_HONEYBEE_ALL (0xffffff)
#define AR_SWITCH_TABLE_COM_HONEYBEE_ALL_S (0)
#define AR_SWITCH_TABLE_COM_SPDT (0x00f00000)
value = ar9300_ant_ctrl_common_get(ah, is_2ghz);
if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
if (AR_SREV_JUPITER_10(ah)) {
/* Force SPDT setting for Jupiter 1.0 chips. */
value &= ~AR_SWITCH_TABLE_COM_SPDT;
value |= 0x00100000;
}
OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
AR_SWITCH_TABLE_COM_JUPITER_ALL, value);
}
else if (AR_SREV_SCORPION(ah)) {
OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
AR_SWITCH_TABLE_COM_SCORPION_ALL, value);
}
else if (AR_SREV_HONEYBEE(ah)) {
OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
AR_SWITCH_TABLE_COM_HONEYBEE_ALL, value);
}
else {
OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
AR_SWITCH_TABLE_COM_ALL, value);
}
/*
* Jupiter2.0 defines new switch table for BT/WLAN,
* here's new field name in WB222.ref for both 2G and 5G.
* Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
* 15:12 R/W SWITCH_TABLE_COM_SPDT_WLAN_RX SWITCH_TABLE_COM_SPDT_WLAN_RX
* 11:8 R/W SWITCH_TABLE_COM_SPDT_WLAN_TX SWITCH_TABLE_COM_SPDT_WLAN_TX
* 7:4 R/W SWITCH_TABLE_COM_SPDT_WLAN_IDLE SWITCH_TABLE_COM_SPDT_WLAN_IDLE
*/
#define AR_SWITCH_TABLE_COM_SPDT_ALL (0x0000fff0)
#define AR_SWITCH_TABLE_COM_SPDT_ALL_S (4)
if (AR_SREV_JUPITER_20_OR_LATER(ah) || AR_SREV_APHRODITE(ah)) {
value = ar9300_switch_com_spdt_get(ah, is_2ghz);
OS_REG_RMW_FIELD(ah, AR_GLB_CONTROL,
AR_SWITCH_TABLE_COM_SPDT_ALL, value);
OS_REG_SET_BIT(ah, AR_GLB_CONTROL,
AR_BTCOEX_CTRL_SPDT_ENABLE);
//OS_REG_SET_BIT(ah, AR_GLB_CONTROL,
// AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL);
}
#define AR_SWITCH_TABLE_COM2_ALL (0xffffff)
#define AR_SWITCH_TABLE_COM2_ALL_S (0)
value = ar9300_ant_ctrl_common2_get(ah, is_2ghz);
#if ATH_ANT_DIV_COMB
if ( AR_SREV_POSEIDON(ah) && (ahp->ah_lna_div_use_bt_ant_enable == TRUE) ) {
value &= ~AR_SWITCH_TABLE_COM2_ALL;
value |= ah->ah_config.ath_hal_ant_ctrl_comm2g_switch_enable;
HALDEBUG(ah, HAL_DEBUG_RESET, "%s: com2=0x%08x\n", __func__, value)
}
#endif /* ATH_ANT_DIV_COMB */
OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
#define AR_SWITCH_TABLE_ALL (0xfff)
#define AR_SWITCH_TABLE_ALL_S (0)
value = ar9300_ant_ctrl_chain_get(ah, 0, is_2ghz);
OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_0, AR_SWITCH_TABLE_ALL, value);
if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah) && !AR_SREV_APHRODITE(ah)) {
value = ar9300_ant_ctrl_chain_get(ah, 1, is_2ghz);
OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_1, AR_SWITCH_TABLE_ALL, value);
if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah)) {
value = ar9300_ant_ctrl_chain_get(ah, 2, is_2ghz);
OS_REG_RMW_FIELD(ah,
AR_PHY_SWITCH_CHAIN_2, AR_SWITCH_TABLE_ALL, value);
}
}
if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah)) {
value = ar9300_eeprom_get(ahp, EEP_ANTDIV_control);
/* main_lnaconf, alt_lnaconf, main_tb, alt_tb */
regval = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
regval &= (~ANT_DIV_CONTROL_ALL); /* clear bit 25~30 */
regval |= (value & 0x3f) << ANT_DIV_CONTROL_ALL_S;
/* enable_lnadiv */
regval &= (~MULTICHAIN_GAIN_CTRL__ENABLE_ANT_DIV_LNADIV__MASK);
regval |= ((value >> 6) & 0x1) <<
MULTICHAIN_GAIN_CTRL__ENABLE_ANT_DIV_LNADIV__SHIFT;
#if ATH_ANT_DIV_COMB
if ( AR_SREV_POSEIDON(ah) && (ahp->ah_lna_div_use_bt_ant_enable == TRUE) ) {
regval |= ANT_DIV_ENABLE;
}
if (AR_SREV_APHRODITE(ah)) {
if (ahp->ah_lna_div_use_bt_ant_enable) {
regval |= (1 << MULTICHAIN_GAIN_CTRL__ENABLE_ANT_SW_RX_PROT__SHIFT);
OS_REG_SET_BIT(ah, AR_PHY_RESTART,
RESTART__ENABLE_ANT_FAST_DIV_M2FLAG__MASK);
/* Force WLAN LNA diversity ON */
OS_REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV,
AR_BTCOEX_WL_LNADIV_FORCE_ON);
} else {
regval &= ~(1 << MULTICHAIN_GAIN_CTRL__ENABLE_ANT_DIV_LNADIV__SHIFT);
regval &= ~(1 << MULTICHAIN_GAIN_CTRL__ENABLE_ANT_SW_RX_PROT__SHIFT);
OS_REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL,
(1 << MULTICHAIN_GAIN_CTRL__ENABLE_ANT_SW_RX_PROT__SHIFT));
/* Force WLAN LNA diversity OFF */
OS_REG_CLR_BIT(ah, AR_BTCOEX_WL_LNADIV,
AR_BTCOEX_WL_LNADIV_FORCE_ON);
}
}
#endif /* ATH_ANT_DIV_COMB */
OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
/* enable fast_div */
regval = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
regval &= (~BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__MASK);
regval |= ((value >> 7) & 0x1) <<
BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__SHIFT;
#if ATH_ANT_DIV_COMB
if ((AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah))
&& (ahp->ah_lna_div_use_bt_ant_enable == TRUE) ) {
regval |= FAST_DIV_ENABLE;
}
#endif /* ATH_ANT_DIV_COMB */
OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
}
#if ATH_ANT_DIV_COMB
if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON_11_OR_LATER(ah)) {
if (pcap->halAntDivCombSupport) {
/* If support DivComb, set MAIN to LNA1, ALT to LNA2 at beginning */
regval = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
/* clear bit 25~30 main_lnaconf, alt_lnaconf, main_tb, alt_tb */
regval &= (~(MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__MASK |
MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__MASK |
MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_GAINTB__MASK |
MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_GAINTB__MASK));
regval |= (HAL_ANT_DIV_COMB_LNA1 <<
MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT);
regval |= (HAL_ANT_DIV_COMB_LNA2 <<
MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT);
OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
}
}
#endif /* ATH_ANT_DIV_COMB */
if (AR_SREV_POSEIDON(ah) && ( ahp->ah_diversity_control == HAL_ANT_FIXED_A
|| ahp->ah_diversity_control == HAL_ANT_FIXED_B))
{
u_int32_t reg_val = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
reg_val &= ~(MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__MASK |
MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__MASK |
MULTICHAIN_GAIN_CTRL__ANT_FAST_DIV_BIAS__MASK |
MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_GAINTB__MASK |
MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_GAINTB__MASK );
switch (ahp->ah_diversity_control) {
case HAL_ANT_FIXED_A:
/* Enable first antenna only */
reg_val |= (HAL_ANT_DIV_COMB_LNA1 <<
MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT);
reg_val |= (HAL_ANT_DIV_COMB_LNA2 <<
MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT);
/* main/alt gain table and Fast Div Bias all set to 0 */
OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, reg_val);
regval = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
regval &= (~BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__MASK);
OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
break;
case HAL_ANT_FIXED_B:
/* Enable second antenna only, after checking capability */
reg_val |= (HAL_ANT_DIV_COMB_LNA2 <<
MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT);
reg_val |= (HAL_ANT_DIV_COMB_LNA1 <<
MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT);
/* main/alt gain table and Fast Div all set to 0 */
OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, reg_val);
regval = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
regval &= (~BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__MASK);
OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
/* For WB225, need to swith ANT2 from BT to Wifi
* This will not affect HB125 LNA diversity feature.
*/
HALDEBUG(ah, HAL_DEBUG_RESET, "%s: com2=0x%08x\n", __func__,
ah->ah_config.ath_hal_ant_ctrl_comm2g_switch_enable)
OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL,
ah->ah_config.ath_hal_ant_ctrl_comm2g_switch_enable);
break;
default:
break;
}
}
return 0;
}
static u_int16_t
ar9300_attenuation_chain_get(struct ath_hal *ah, int chain, u_int16_t channel)
{
int32_t f[3], t[3];
u_int16_t value;
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
if (chain >= 0 && chain < OSPREY_MAX_CHAINS) {
if (channel < 4000) {
return eep->modal_header_2g.xatten1_db[chain];
} else {
if (eep->base_ext2.xatten1_db_low[chain] != 0) {
t[0] = eep->base_ext2.xatten1_db_low[chain];
f[0] = 5180;
t[1] = eep->modal_header_5g.xatten1_db[chain];
f[1] = 5500;
t[2] = eep->base_ext2.xatten1_db_high[chain];
f[2] = 5785;
value = interpolate(channel, f, t, 3);
return value;
} else {
return eep->modal_header_5g.xatten1_db[chain];
}
}
}
return 0;
}
static u_int16_t
ar9300_attenuation_margin_chain_get(struct ath_hal *ah, int chain,
u_int16_t channel)
{
int32_t f[3], t[3];
u_int16_t value;
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
if (chain >= 0 && chain < OSPREY_MAX_CHAINS) {
if (channel < 4000) {
return eep->modal_header_2g.xatten1_margin[chain];
} else {
if (eep->base_ext2.xatten1_margin_low[chain] != 0) {
t[0] = eep->base_ext2.xatten1_margin_low[chain];
f[0] = 5180;
t[1] = eep->modal_header_5g.xatten1_margin[chain];
f[1] = 5500;
t[2] = eep->base_ext2.xatten1_margin_high[chain];
f[2] = 5785;
value = interpolate(channel, f, t, 3);
return value;
} else {
return eep->modal_header_5g.xatten1_margin[chain];
}
}
}
return 0;
}
#if 0
HAL_BOOL ar9300_attenuation_apply(struct ath_hal *ah, u_int16_t channel)
{
u_int32_t value;
// struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
/* Test value. if 0 then attenuation is unused. Don't load anything. */
value = ar9300_attenuation_chain_get(ah, 0, channel);
OS_REG_RMW_FIELD(ah,
AR_PHY_EXT_ATTEN_CTL_0, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
value = ar9300_attenuation_margin_chain_get(ah, 0, channel);
if (ar9300_rx_gain_index_get(ah) == 0
&& ah->ah_config.ath_hal_ext_atten_margin_cfg)
{
value = 5;
}
OS_REG_RMW_FIELD(ah,
AR_PHY_EXT_ATTEN_CTL_0, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, value);
if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
value = ar9300_attenuation_chain_get(ah, 1, channel);
OS_REG_RMW_FIELD(ah,
AR_PHY_EXT_ATTEN_CTL_1, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
value = ar9300_attenuation_margin_chain_get(ah, 1, channel);
OS_REG_RMW_FIELD(ah,
AR_PHY_EXT_ATTEN_CTL_1, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
value);
if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)&& !AR_SREV_HONEYBEE(ah) ) {
value = ar9300_attenuation_chain_get(ah, 2, channel);
OS_REG_RMW_FIELD(ah,
AR_PHY_EXT_ATTEN_CTL_2, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
value = ar9300_attenuation_margin_chain_get(ah, 2, channel);
OS_REG_RMW_FIELD(ah,
AR_PHY_EXT_ATTEN_CTL_2, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
value);
}
}
return 0;
}
#endif
HAL_BOOL
ar9300_attenuation_apply(struct ath_hal *ah, u_int16_t channel)
{
int i;
uint32_t value;
uint32_t ext_atten_reg[3] = {
AR_PHY_EXT_ATTEN_CTL_0,
AR_PHY_EXT_ATTEN_CTL_1,
AR_PHY_EXT_ATTEN_CTL_2
};
/*
* If it's an AR9462 and we're receiving on the second
* chain only, set the chain 0 details from chain 1
* calibration.
*
* This is from ath9k.
*/
if (AR_SREV_JUPITER(ah) && (AH9300(ah)->ah_rx_chainmask == 0x2)) {
value = ar9300_attenuation_chain_get(ah, 1, channel);
OS_REG_RMW_FIELD(ah, ext_atten_reg[0],
AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
value = ar9300_attenuation_margin_chain_get(ah, 1, channel);
OS_REG_RMW_FIELD(ah, ext_atten_reg[0],
AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, value);
}
/*
* Now, loop over the configured transmit chains and
* load in the attenuation/margin settings as appropriate.
*/
for (i = 0; i < 3; i++) {
if ((AH9300(ah)->ah_tx_chainmask & (1 << i)) == 0)
continue;
value = ar9300_attenuation_chain_get(ah, i, channel);
OS_REG_RMW_FIELD(ah, ext_atten_reg[i],
AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB,
value);
if (AR_SREV_POSEIDON(ah) &&
(ar9300_rx_gain_index_get(ah) == 0) &&
ah->ah_config.ath_hal_ext_atten_margin_cfg) {
value = 5;
} else {
value = ar9300_attenuation_margin_chain_get(ah, 0,
channel);
}
/*
* I'm not sure why it's loading in this setting into
* the chain 0 margin regardless of the current chain.
*/
if (ah->ah_config.ath_hal_min_gainidx)
OS_REG_RMW_FIELD(ah,
AR_PHY_EXT_ATTEN_CTL_0,
AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
value);
OS_REG_RMW_FIELD(ah,
ext_atten_reg[i],
AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
value);
}
return (0);
}
static u_int16_t ar9300_quick_drop_get(struct ath_hal *ah,
int chain, u_int16_t channel)
{
int32_t f[3], t[3];
u_int16_t value;
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
if (channel < 4000) {
return eep->modal_header_2g.quick_drop;
} else {
t[0] = eep->base_ext1.quick_drop_low;
f[0] = 5180;
t[1] = eep->modal_header_5g.quick_drop;
f[1] = 5500;
t[2] = eep->base_ext1.quick_drop_high;
f[2] = 5785;
value = interpolate(channel, f, t, 3);
return value;
}
}
static HAL_BOOL ar9300_quick_drop_apply(struct ath_hal *ah, u_int16_t channel)
{
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
u_int32_t value;
//
// Test value. if 0 then quickDrop is unused. Don't load anything.
//
if (eep->base_eep_header.misc_configuration & 0x10)
{
if (AR_SREV_OSPREY(ah) || AR_SREV_AR9580(ah) || AR_SREV_WASP(ah))
{
value = ar9300_quick_drop_get(ah, 0, channel);
OS_REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, value);
}
}
return 0;
}
static u_int16_t ar9300_tx_end_to_xpa_off_get(struct ath_hal *ah, u_int16_t channel)
{
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
if (channel < 4000) {
return eep->modal_header_2g.tx_end_to_xpa_off;
} else {
return eep->modal_header_5g.tx_end_to_xpa_off;
}
}
static HAL_BOOL ar9300_tx_end_to_xpab_off_apply(struct ath_hal *ah, u_int16_t channel)
{
u_int32_t value;
value = ar9300_tx_end_to_xpa_off_get(ah, channel);
/* Apply to both xpaa and xpab */
if (AR_SREV_OSPREY(ah) || AR_SREV_AR9580(ah) || AR_SREV_WASP(ah))
{
OS_REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value);
OS_REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value);
}
return 0;
}
static int
ar9300_eeprom_cal_pier_get(struct ath_hal *ah, int mode, int ipier, int ichain,
int *pfrequency, int *pcorrection, int *ptemperature, int *pvoltage)
{
u_int8_t *p_cal_pier;
OSP_CAL_DATA_PER_FREQ_OP_LOOP *p_cal_pier_struct;
int is_2ghz;
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
if (ichain >= OSPREY_MAX_CHAINS) {
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"%s: Invalid chain index, must be less than %d\n",
__func__, OSPREY_MAX_CHAINS);
return -1;
}
if (mode) {/* 5GHz */
if (ipier >= OSPREY_NUM_5G_CAL_PIERS){
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"%s: Invalid 5GHz cal pier index, must be less than %d\n",
__func__, OSPREY_NUM_5G_CAL_PIERS);
return -1;
}
p_cal_pier = &(eep->cal_freq_pier_5g[ipier]);
p_cal_pier_struct = &(eep->cal_pier_data_5g[ichain][ipier]);
is_2ghz = 0;
} else {
if (ipier >= OSPREY_NUM_2G_CAL_PIERS){
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"%s: Invalid 2GHz cal pier index, must be less than %d\n",
__func__, OSPREY_NUM_2G_CAL_PIERS);
return -1;
}
p_cal_pier = &(eep->cal_freq_pier_2g[ipier]);
p_cal_pier_struct = &(eep->cal_pier_data_2g[ichain][ipier]);
is_2ghz = 1;
}
*pfrequency = FBIN2FREQ(*p_cal_pier, is_2ghz);
*pcorrection = p_cal_pier_struct->ref_power;
*ptemperature = p_cal_pier_struct->temp_meas;
*pvoltage = p_cal_pier_struct->volt_meas;
return 0;
}
/*
* Apply the recorded correction values.
*/
static int
ar9300_calibration_apply(struct ath_hal *ah, int frequency)
{
struct ath_hal_9300 *ahp = AH9300(ah);
int ichain, ipier, npier;
int mode;
int fdiff;
int pfrequency, pcorrection, ptemperature, pvoltage;
int bf, factor, plus;
int lfrequency[AR9300_MAX_CHAINS];
int hfrequency[AR9300_MAX_CHAINS];
int lcorrection[AR9300_MAX_CHAINS];
int hcorrection[AR9300_MAX_CHAINS];
int correction[AR9300_MAX_CHAINS];
int ltemperature[AR9300_MAX_CHAINS];
int htemperature[AR9300_MAX_CHAINS];
int temperature[AR9300_MAX_CHAINS];
int lvoltage[AR9300_MAX_CHAINS];
int hvoltage[AR9300_MAX_CHAINS];
int voltage[AR9300_MAX_CHAINS];
mode = (frequency >= 4000);
npier = (mode) ? OSPREY_NUM_5G_CAL_PIERS : OSPREY_NUM_2G_CAL_PIERS;
for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
lfrequency[ichain] = 0;
hfrequency[ichain] = 100000;
}
/*
* identify best lower and higher frequency calibration measurement
*/
for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
for (ipier = 0; ipier < npier; ipier++) {
if (ar9300_eeprom_cal_pier_get(
ah, mode, ipier, ichain,
&pfrequency, &pcorrection, &ptemperature, &pvoltage) == 0)
{
fdiff = frequency - pfrequency;
/*
* this measurement is higher than our desired frequency
*/
if (fdiff <= 0) {
if (hfrequency[ichain] <= 0 ||
hfrequency[ichain] >= 100000 ||
fdiff > (frequency - hfrequency[ichain]))
{
/*
* new best higher frequency measurement
*/
hfrequency[ichain] = pfrequency;
hcorrection[ichain] = pcorrection;
htemperature[ichain] = ptemperature;
hvoltage[ichain] = pvoltage;
}
}
if (fdiff >= 0) {
if (lfrequency[ichain] <= 0 ||
fdiff < (frequency - lfrequency[ichain]))
{
/*
* new best lower frequency measurement
*/
lfrequency[ichain] = pfrequency;
lcorrection[ichain] = pcorrection;
ltemperature[ichain] = ptemperature;
lvoltage[ichain] = pvoltage;
}
}
}
}
}
/* interpolate */
for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"%s: ch=%d f=%d low=%d %d h=%d %d\n",
__func__, ichain, frequency,
lfrequency[ichain], lcorrection[ichain],
hfrequency[ichain], hcorrection[ichain]);
/*
* they're the same, so just pick one
*/
if (hfrequency[ichain] == lfrequency[ichain]) {
correction[ichain] = lcorrection[ichain];
voltage[ichain] = lvoltage[ichain];
temperature[ichain] = ltemperature[ichain];
} else if (frequency - lfrequency[ichain] < 1000) {
/* the low frequency is good */
if (hfrequency[ichain] - frequency < 1000) {
/*
* The high frequency is good too -
* interpolate with round off.
*/
int mult, div, diff;
mult = frequency - lfrequency[ichain];
div = hfrequency[ichain] - lfrequency[ichain];
diff = hcorrection[ichain] - lcorrection[ichain];
bf = 2 * diff * mult / div;
plus = (bf % 2);
factor = bf / 2;
correction[ichain] = lcorrection[ichain] + factor + plus;
diff = htemperature[ichain] - ltemperature[ichain];
bf = 2 * diff * mult / div;
plus = (bf % 2);
factor = bf / 2;
temperature[ichain] = ltemperature[ichain] + factor + plus;
diff = hvoltage[ichain] - lvoltage[ichain];
bf = 2 * diff * mult / div;
plus = (bf % 2);
factor = bf / 2;
voltage[ichain] = lvoltage[ichain] + factor + plus;
} else {
/* only low is good, use it */
correction[ichain] = lcorrection[ichain];
temperature[ichain] = ltemperature[ichain];
voltage[ichain] = lvoltage[ichain];
}
} else if (hfrequency[ichain] - frequency < 1000) {
/* only high is good, use it */
correction[ichain] = hcorrection[ichain];
temperature[ichain] = htemperature[ichain];
voltage[ichain] = hvoltage[ichain];
} else {
/* nothing is good, presume 0???? */
correction[ichain] = 0;
temperature[ichain] = 0;
voltage[ichain] = 0;
}
}
/* GreenTx isn't currently supported */
/* GreenTx */
if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable) {
if (AR_SREV_POSEIDON(ah)) {
/* Get calibrated OLPC gain delta value for GreenTx */
ahp->ah_db2[POSEIDON_STORED_REG_G2_OLPC_OFFSET] =
(u_int32_t) correction[0];
}
}
ar9300_power_control_override(
ah, frequency, correction, voltage, temperature);
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"%s: for frequency=%d, calibration correction = %d %d %d\n",
__func__, frequency, correction[0], correction[1], correction[2]);
return 0;
}
int
ar9300_power_control_override(struct ath_hal *ah, int frequency,
int *correction, int *voltage, int *temperature)
{
int temp_slope = 0;
int temp_slope_1 = 0;
int temp_slope_2 = 0;
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
int32_t f[8], t[8],t1[3], t2[3];
int i;
OS_REG_RMW(ah, AR_PHY_TPC_11_B0,
(correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
AR_PHY_TPC_OLPC_GAIN_DELTA);
if (!AR_SREV_POSEIDON(ah)) {
OS_REG_RMW(ah, AR_PHY_TPC_11_B1,
(correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
AR_PHY_TPC_OLPC_GAIN_DELTA);
if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) {
OS_REG_RMW(ah, AR_PHY_TPC_11_B2,
(correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
AR_PHY_TPC_OLPC_GAIN_DELTA);
}
}
/*
* enable open loop power control on chip
*/
OS_REG_RMW(ah, AR_PHY_TPC_6_B0,
(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S), AR_PHY_TPC_6_ERROR_EST_MODE);
if (!AR_SREV_POSEIDON(ah)) {
OS_REG_RMW(ah, AR_PHY_TPC_6_B1,
(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S), AR_PHY_TPC_6_ERROR_EST_MODE);
if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) {
OS_REG_RMW(ah, AR_PHY_TPC_6_B2,
(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
AR_PHY_TPC_6_ERROR_EST_MODE);
}
}
/*
* Enable temperature compensation
* Need to use register names
*/
if (frequency < 4000) {
temp_slope = eep->modal_header_2g.temp_slope;
} else {
if ((eep->base_eep_header.misc_configuration & 0x20) != 0)
{
for(i=0;i<8;i++)
{
t[i]=eep->base_ext1.tempslopextension[i];
f[i]=FBIN2FREQ(eep->cal_freq_pier_5g[i], 0);
}
temp_slope=interpolate(frequency,f,t,8);
}
else
{
if(!AR_SREV_SCORPION(ah)) {
if (eep->base_ext2.temp_slope_low != 0) {
t[0] = eep->base_ext2.temp_slope_low;
f[0] = 5180;
t[1] = eep->modal_header_5g.temp_slope;
f[1] = 5500;
t[2] = eep->base_ext2.temp_slope_high;
f[2] = 5785;
temp_slope = interpolate(frequency, f, t, 3);
} else {
temp_slope = eep->modal_header_5g.temp_slope;
}
} else {
/*
* Scorpion has individual chain tempslope values
*/
t[0] = eep->base_ext1.tempslopextension[2];
t1[0]= eep->base_ext1.tempslopextension[3];
t2[0]= eep->base_ext1.tempslopextension[4];
f[0] = 5180;
t[1] = eep->modal_header_5g.temp_slope;
t1[1]= eep->base_ext1.tempslopextension[0];
t2[1]= eep->base_ext1.tempslopextension[1];
f[1] = 5500;
t[2] = eep->base_ext1.tempslopextension[5];
t1[2]= eep->base_ext1.tempslopextension[6];
t2[2]= eep->base_ext1.tempslopextension[7];
f[2] = 5785;
temp_slope = interpolate(frequency, f, t, 3);
temp_slope_1=interpolate(frequency, f, t1,3);
temp_slope_2=interpolate(frequency, f, t2,3);
}
}
}
if (!AR_SREV_SCORPION(ah) && !AR_SREV_HONEYBEE(ah)) {
OS_REG_RMW_FIELD(ah,
AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, temp_slope);
} else {
/*Scorpion and Honeybee has tempSlope register for each chain*/
/*Check whether temp_compensation feature is enabled or not*/
if (eep->base_eep_header.feature_enable & 0x1){
if(frequency < 4000) {
if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x1) {
OS_REG_RMW_FIELD(ah,
AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM,
eep->base_ext2.temp_slope_low);
}
if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x2) {
OS_REG_RMW_FIELD(ah,
AR_SCORPION_PHY_TPC_19_B1, AR_PHY_TPC_19_ALPHA_THERM,
temp_slope);
}
if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x4) {
OS_REG_RMW_FIELD(ah,
AR_SCORPION_PHY_TPC_19_B2, AR_PHY_TPC_19_ALPHA_THERM,
eep->base_ext2.temp_slope_high);
}
} else {
if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x1) {
OS_REG_RMW_FIELD(ah,
AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM,
temp_slope);
}
if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x2) {
OS_REG_RMW_FIELD(ah,
AR_SCORPION_PHY_TPC_19_B1, AR_PHY_TPC_19_ALPHA_THERM,
temp_slope_1);
}
if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x4) {
OS_REG_RMW_FIELD(ah,
AR_SCORPION_PHY_TPC_19_B2, AR_PHY_TPC_19_ALPHA_THERM,
temp_slope_2);
}
}
}else {
/* If temp compensation is not enabled, set all registers to 0*/
if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x1) {
OS_REG_RMW_FIELD(ah,
AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, 0);
}
if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x2) {
OS_REG_RMW_FIELD(ah,
AR_SCORPION_PHY_TPC_19_B1, AR_PHY_TPC_19_ALPHA_THERM, 0);
}
if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x4) {
OS_REG_RMW_FIELD(ah,
AR_SCORPION_PHY_TPC_19_B2, AR_PHY_TPC_19_ALPHA_THERM, 0);
}
}
}
OS_REG_RMW_FIELD(ah,
AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE, temperature[0]);
return 0;
}
/**************************************************************
* ar9300_eep_def_get_max_edge_power
*
* Find the maximum conformance test limit for the given channel and CTL info
*/
static inline u_int16_t
ar9300_eep_def_get_max_edge_power(ar9300_eeprom_t *p_eep_data, u_int16_t freq,
int idx, HAL_BOOL is_2ghz)
{
u_int16_t twice_max_edge_power = AR9300_MAX_RATE_POWER;
u_int8_t *ctl_freqbin = is_2ghz ?
&p_eep_data->ctl_freqbin_2G[idx][0] :
&p_eep_data->ctl_freqbin_5G[idx][0];
u_int16_t num_edges = is_2ghz ?
OSPREY_NUM_BAND_EDGES_2G : OSPREY_NUM_BAND_EDGES_5G;
int i;
/* Get the edge power */
for (i = 0; (i < num_edges) && (ctl_freqbin[i] != AR9300_BCHAN_UNUSED); i++)
{
/*
* If there's an exact channel match or an inband flag set
* on the lower channel use the given rd_edge_power
*/
if (freq == fbin2freq(ctl_freqbin[i], is_2ghz)) {
if (is_2ghz) {
twice_max_edge_power =
p_eep_data->ctl_power_data_2g[idx].ctl_edges[i].t_power;
} else {
twice_max_edge_power =
p_eep_data->ctl_power_data_5g[idx].ctl_edges[i].t_power;
}
break;
} else if ((i > 0) && (freq < fbin2freq(ctl_freqbin[i], is_2ghz))) {
if (is_2ghz) {
if (fbin2freq(ctl_freqbin[i - 1], 1) < freq &&
p_eep_data->ctl_power_data_2g[idx].ctl_edges[i - 1].flag)
{
twice_max_edge_power =
p_eep_data->ctl_power_data_2g[idx].
ctl_edges[i - 1].t_power;
}
} else {
if (fbin2freq(ctl_freqbin[i - 1], 0) < freq &&
p_eep_data->ctl_power_data_5g[idx].ctl_edges[i - 1].flag)
{
twice_max_edge_power =
p_eep_data->ctl_power_data_5g[idx].
ctl_edges[i - 1].t_power;
}
}
/*
* Leave loop - no more affecting edges possible
* in this monotonic increasing list
*/
break;
}
}
/*
* EV89475: EEPROM might contain 0 txpower in CTL table for certain
* 2.4GHz channels. We workaround it by overwriting 60 (30 dBm) here.
*/
if (is_2ghz && (twice_max_edge_power == 0)) {
twice_max_edge_power = 60;
}
HALASSERT(twice_max_edge_power > 0);
return twice_max_edge_power;
}
HAL_BOOL
ar9300_eeprom_set_power_per_rate_table(
struct ath_hal *ah,
ar9300_eeprom_t *p_eep_data,
const struct ieee80211_channel *chan,
u_int8_t *p_pwr_array,
u_int16_t cfg_ctl,
u_int16_t antenna_reduction,
u_int16_t twice_max_regulatory_power,
u_int16_t power_limit,
u_int8_t chainmask)
{
/* Local defines to distinguish between extension and control CTL's */
#define EXT_ADDITIVE (0x8000)
#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
#define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
#define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10 /* 10*log10(3)*2 */
#define PWRINCR_3_TO_1_CHAIN 9 /* 10*log(3)*2 */
#define PWRINCR_3_TO_2_CHAIN 3 /* floor(10*log(3/2)*2) */
#define PWRINCR_2_TO_1_CHAIN 6 /* 10*log(2)*2 */
static const u_int16_t tp_scale_reduction_table[5] =
{ 0, 3, 6, 9, AR9300_MAX_RATE_POWER };
int i;
int16_t twice_largest_antenna;
u_int16_t twice_antenna_reduction = 2*antenna_reduction ;
int16_t scaled_power = 0, min_ctl_power, max_reg_allowed_power;
#define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
u_int16_t ctl_modes_for11a[] =
{CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40};
u_int16_t ctl_modes_for11g[] =
{CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40};
u_int16_t num_ctl_modes, *p_ctl_mode, ctl_mode, freq;
CHAN_CENTERS centers;
int tx_chainmask;
struct ath_hal_9300 *ahp = AH9300(ah);
u_int8_t *ctl_index;
u_int8_t ctl_num;
u_int16_t twice_min_edge_power;
u_int16_t twice_max_edge_power = AR9300_MAX_RATE_POWER;
#ifdef AH_DEBUG
HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
#endif
if (chainmask)
tx_chainmask = chainmask;
else
tx_chainmask = ahp->ah_tx_chainmaskopt ?
ahp->ah_tx_chainmaskopt :ahp->ah_tx_chainmask;
ar9300_get_channel_centers(ah, chan, &centers);
#if 1
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
ahp->twice_antenna_gain = p_eep_data->modal_header_2g.antenna_gain;
} else {
ahp->twice_antenna_gain = p_eep_data->modal_header_5g.antenna_gain;
}
#else
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
ahp->twice_antenna_gain = AH_MAX(p_eep_data->modal_header_2g.antenna_gain,
AH_PRIVATE(ah)->ah_antenna_gain_2g);
} else {
ahp->twice_antenna_gain = AH_MAX(p_eep_data->modal_header_5g.antenna_gain,
AH_PRIVATE(ah)->ah_antenna_gain_5g);
}
#endif
/* Save max allowed antenna gain to ease future lookups */
ahp->twice_antenna_reduction = twice_antenna_reduction;
/* Deduct antenna gain from EIRP to get the upper limit */
twice_largest_antenna = (int16_t)AH_MIN((twice_antenna_reduction -
ahp->twice_antenna_gain), 0);
max_reg_allowed_power = twice_max_regulatory_power + twice_largest_antenna;
/* Use ah_tp_scale - see bug 30070. */
if (AH_PRIVATE(ah)->ah_tpScale != HAL_TP_SCALE_MAX) {
max_reg_allowed_power -=
(tp_scale_reduction_table[(AH_PRIVATE(ah)->ah_tpScale)] * 2);
}
scaled_power = AH_MIN(power_limit, max_reg_allowed_power);
/*
* Reduce scaled Power by number of chains active to get to
* per chain tx power level
*/
/* TODO: better value than these? */
switch (ar9300_get_ntxchains(tx_chainmask)) {
case 1:
ahp->upper_limit[0] = AH_MAX(0, scaled_power);
break;
case 2:
scaled_power -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
ahp->upper_limit[1] = AH_MAX(0, scaled_power);
break;
case 3:
scaled_power -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
ahp->upper_limit[2] = AH_MAX(0, scaled_power);
break;
default:
HALASSERT(0); /* Unsupported number of chains */
}
scaled_power = AH_MAX(0, scaled_power);
/* Get target powers from EEPROM - our baseline for TX Power */
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
/* Setup for CTL modes */
/* CTL_11B, CTL_11G, CTL_2GHT20 */
num_ctl_modes =
ARRAY_LENGTH(ctl_modes_for11g) - SUB_NUM_CTL_MODES_AT_2G_40;
p_ctl_mode = ctl_modes_for11g;
if (IEEE80211_IS_CHAN_HT40(chan)) {
num_ctl_modes = ARRAY_LENGTH(ctl_modes_for11g); /* All 2G CTL's */
}
} else {
/* Setup for CTL modes */
/* CTL_11A, CTL_5GHT20 */
num_ctl_modes =
ARRAY_LENGTH(ctl_modes_for11a) - SUB_NUM_CTL_MODES_AT_5G_40;
p_ctl_mode = ctl_modes_for11a;
if (IEEE80211_IS_CHAN_HT40(chan)) {
num_ctl_modes = ARRAY_LENGTH(ctl_modes_for11a); /* All 5G CTL's */
}
}
/*
* For MIMO, need to apply regulatory caps individually across dynamically
* running modes: CCK, OFDM, HT20, HT40
*
* The outer loop walks through each possible applicable runtime mode.
* The inner loop walks through each ctl_index entry in EEPROM.
* The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
*
*/
for (ctl_mode = 0; ctl_mode < num_ctl_modes; ctl_mode++) {
HAL_BOOL is_ht40_ctl_mode =
(p_ctl_mode[ctl_mode] == CTL_5GHT40) ||
(p_ctl_mode[ctl_mode] == CTL_2GHT40);
if (is_ht40_ctl_mode) {
freq = centers.synth_center;
} else if (p_ctl_mode[ctl_mode] & EXT_ADDITIVE) {
freq = centers.ext_center;
} else {
freq = centers.ctl_center;
}
HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
"LOOP-Mode ctl_mode %d < %d, "
"is_ht40_ctl_mode %d, EXT_ADDITIVE %d\n",
ctl_mode, num_ctl_modes, is_ht40_ctl_mode,
(p_ctl_mode[ctl_mode] & EXT_ADDITIVE));
/* walk through each CTL index stored in EEPROM */
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
ctl_index = p_eep_data->ctl_index_2g;
ctl_num = OSPREY_NUM_CTLS_2G;
} else {
ctl_index = p_eep_data->ctl_index_5g;
ctl_num = OSPREY_NUM_CTLS_5G;
}
for (i = 0; (i < ctl_num) && ctl_index[i]; i++) {
HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
" LOOP-Ctlidx %d: cfg_ctl 0x%2.2x p_ctl_mode 0x%2.2x "
"ctl_index 0x%2.2x chan %d chanctl 0x%x\n",
i, cfg_ctl, p_ctl_mode[ctl_mode], ctl_index[i],
ichan->channel, ath_hal_getctl(ah, chan));
/*
* compare test group from regulatory channel list
* with test mode from p_ctl_mode list
*/
if ((((cfg_ctl & ~CTL_MODE_M) |
(p_ctl_mode[ctl_mode] & CTL_MODE_M)) == ctl_index[i]) ||
(((cfg_ctl & ~CTL_MODE_M) |
(p_ctl_mode[ctl_mode] & CTL_MODE_M)) ==
((ctl_index[i] & CTL_MODE_M) | SD_NO_CTL)))
{
twice_min_edge_power =
ar9300_eep_def_get_max_edge_power(
p_eep_data, freq, i, IEEE80211_IS_CHAN_2GHZ(chan));
HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
" MATCH-EE_IDX %d: ch %d is2 %d "
"2xMinEdge %d chainmask %d chains %d\n",
i, freq, IEEE80211_IS_CHAN_2GHZ(chan),
twice_min_edge_power, tx_chainmask,
ar9300_get_ntxchains(tx_chainmask));
if ((cfg_ctl & ~CTL_MODE_M) == SD_NO_CTL) {
/*
* Find the minimum of all CTL edge powers
* that apply to this channel
*/
twice_max_edge_power =
AH_MIN(twice_max_edge_power, twice_min_edge_power);
} else {
/* specific */
twice_max_edge_power = twice_min_edge_power;
break;
}
}
}
min_ctl_power = (u_int8_t)AH_MIN(twice_max_edge_power, scaled_power);
HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
" SEL-Min ctl_mode %d p_ctl_mode %d "
"2xMaxEdge %d sP %d min_ctl_pwr %d\n",
ctl_mode, p_ctl_mode[ctl_mode],
twice_max_edge_power, scaled_power, min_ctl_power);
/* Apply ctl mode to correct target power set */
switch (p_ctl_mode[ctl_mode]) {
case CTL_11B:
for (i = ALL_TARGET_LEGACY_1L_5L; i <= ALL_TARGET_LEGACY_11S; i++) {
p_pwr_array[i] =
(u_int8_t)AH_MIN(p_pwr_array[i], min_ctl_power);
}
break;
case CTL_11A:
case CTL_11G:
for (i = ALL_TARGET_LEGACY_6_24; i <= ALL_TARGET_LEGACY_54; i++) {
p_pwr_array[i] =
(u_int8_t)AH_MIN(p_pwr_array[i], min_ctl_power);
#ifdef ATH_BT_COEX
if ((ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) ||
(ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI))
{
if ((ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOWER_TX_PWR)
&& (ahp->ah_bt_wlan_isolation
< HAL_BT_COEX_ISOLATION_FOR_NO_COEX))
{
u_int8_t reduce_pow;
reduce_pow = (HAL_BT_COEX_ISOLATION_FOR_NO_COEX
- ahp->ah_bt_wlan_isolation) << 1;
if (reduce_pow <= p_pwr_array[i]) {
p_pwr_array[i] -= reduce_pow;
}
}
if ((ahp->ah_bt_coex_flag &
HAL_BT_COEX_FLAG_LOW_ACK_PWR) &&
(i != ALL_TARGET_LEGACY_36) &&
(i != ALL_TARGET_LEGACY_48) &&
(i != ALL_TARGET_LEGACY_54) &&
(p_ctl_mode[ctl_mode] == CTL_11G))
{
p_pwr_array[i] = 0;
}
}
#endif
}
break;
case CTL_5GHT20:
case CTL_2GHT20:
for (i = ALL_TARGET_HT20_0_8_16; i <= ALL_TARGET_HT20_23; i++) {
p_pwr_array[i] =
(u_int8_t)AH_MIN(p_pwr_array[i], min_ctl_power);
#ifdef ATH_BT_COEX
if (((ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) ||
(ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI)) &&
(ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOWER_TX_PWR) &&
(ahp->ah_bt_wlan_isolation
< HAL_BT_COEX_ISOLATION_FOR_NO_COEX)) {
u_int8_t reduce_pow = (HAL_BT_COEX_ISOLATION_FOR_NO_COEX
- ahp->ah_bt_wlan_isolation) << 1;
if (reduce_pow <= p_pwr_array[i]) {
p_pwr_array[i] -= reduce_pow;
}
}
#if ATH_SUPPORT_MCI
else if ((ahp->ah_bt_coex_flag &
HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR) &&
(p_ctl_mode[ctl_mode] == CTL_2GHT20) &&
(ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI))
{
u_int8_t max_pwr;
max_pwr = MS(mci_concur_tx_max_pwr[2][1],
ATH_MCI_CONCUR_TX_LOWEST_PWR_MASK);
if (p_pwr_array[i] > max_pwr) {
p_pwr_array[i] = max_pwr;
}
}
#endif
#endif
}
break;
case CTL_11B_EXT:
#ifdef NOT_YET
target_power_cck_ext.t_pow2x[0] = (u_int8_t)
AH_MIN(target_power_cck_ext.t_pow2x[0], min_ctl_power);
#endif /* NOT_YET */
break;
case CTL_11A_EXT:
case CTL_11G_EXT:
#ifdef NOT_YET
target_power_ofdm_ext.t_pow2x[0] = (u_int8_t)
AH_MIN(target_power_ofdm_ext.t_pow2x[0], min_ctl_power);
#endif /* NOT_YET */
break;
case CTL_5GHT40:
case CTL_2GHT40:
for (i = ALL_TARGET_HT40_0_8_16; i <= ALL_TARGET_HT40_23; i++) {
p_pwr_array[i] = (u_int8_t)
AH_MIN(p_pwr_array[i], min_ctl_power);
#ifdef ATH_BT_COEX
if (((ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) ||
(ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI)) &&
(ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOWER_TX_PWR) &&
(ahp->ah_bt_wlan_isolation
< HAL_BT_COEX_ISOLATION_FOR_NO_COEX)) {
u_int8_t reduce_pow = (HAL_BT_COEX_ISOLATION_FOR_NO_COEX
- ahp->ah_bt_wlan_isolation) << 1;
if (reduce_pow <= p_pwr_array[i]) {
p_pwr_array[i] -= reduce_pow;
}
}
#if ATH_SUPPORT_MCI
else if ((ahp->ah_bt_coex_flag &
HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR) &&
(p_ctl_mode[ctl_mode] == CTL_2GHT40) &&
(ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI))
{
u_int8_t max_pwr;
max_pwr = MS(mci_concur_tx_max_pwr[3][1],
ATH_MCI_CONCUR_TX_LOWEST_PWR_MASK);
if (p_pwr_array[i] > max_pwr) {
p_pwr_array[i] = max_pwr;
}
}
#endif
#endif
}
break;
default:
HALASSERT(0);
break;
}
} /* end ctl mode checking */
return AH_TRUE;
#undef EXT_ADDITIVE
#undef CTL_11A_EXT
#undef CTL_11G_EXT
#undef CTL_11B_EXT
#undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
#undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
}
/**************************************************************
* ar9300_eeprom_set_transmit_power
*
* Set the transmit power in the baseband for the given
* operating channel and mode.
*/
HAL_STATUS
ar9300_eeprom_set_transmit_power(struct ath_hal *ah,
ar9300_eeprom_t *p_eep_data, const struct ieee80211_channel *chan, u_int16_t cfg_ctl,
u_int16_t antenna_reduction, u_int16_t twice_max_regulatory_power,
u_int16_t power_limit)
{
#define ABS(_x, _y) ((int)_x > (int)_y ? (int)_x - (int)_y : (int)_y - (int)_x)
#define INCREASE_MAXPOW_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
#define INCREASE_MAXPOW_BY_THREE_CHAIN 10 /* 10*log10(3)*2 */
u_int8_t target_power_val_t2[ar9300_rate_size];
u_int8_t target_power_val_t2_eep[ar9300_rate_size];
int16_t twice_array_gain = 0, max_power_level = 0;
struct ath_hal_9300 *ahp = AH9300(ah);
int i = 0;
u_int32_t tmp_paprd_rate_mask = 0, *tmp_ptr = NULL;
int paprd_scale_factor = 5;
HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
u_int8_t *ptr_mcs_rate2power_table_index;
u_int8_t mcs_rate2power_table_index_ht20[24] =
{
ALL_TARGET_HT20_0_8_16,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_4,
ALL_TARGET_HT20_5,
ALL_TARGET_HT20_6,
ALL_TARGET_HT20_7,
ALL_TARGET_HT20_0_8_16,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_12,
ALL_TARGET_HT20_13,
ALL_TARGET_HT20_14,
ALL_TARGET_HT20_15,
ALL_TARGET_HT20_0_8_16,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_1_3_9_11_17_19,
ALL_TARGET_HT20_20,
ALL_TARGET_HT20_21,
ALL_TARGET_HT20_22,
ALL_TARGET_HT20_23
};
u_int8_t mcs_rate2power_table_index_ht40[24] =
{
ALL_TARGET_HT40_0_8_16,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_4,
ALL_TARGET_HT40_5,
ALL_TARGET_HT40_6,
ALL_TARGET_HT40_7,
ALL_TARGET_HT40_0_8_16,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_12,
ALL_TARGET_HT40_13,
ALL_TARGET_HT40_14,
ALL_TARGET_HT40_15,
ALL_TARGET_HT40_0_8_16,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_1_3_9_11_17_19,
ALL_TARGET_HT40_20,
ALL_TARGET_HT40_21,
ALL_TARGET_HT40_22,
ALL_TARGET_HT40_23,
};
HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
"%s[%d] +++chan %d,cfgctl 0x%04x "
"antenna_reduction 0x%04x, twice_max_regulatory_power 0x%04x "
"power_limit 0x%04x\n",
__func__, __LINE__, ichan->channel, cfg_ctl,
antenna_reduction, twice_max_regulatory_power, power_limit);
ar9300_set_target_power_from_eeprom(ah, ichan->channel, target_power_val_t2);
if (ar9300_eeprom_get(ahp, EEP_PAPRD_ENABLED)) {
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
if (IEEE80211_IS_CHAN_HT40(chan)) {
tmp_paprd_rate_mask =
p_eep_data->modal_header_2g.paprd_rate_mask_ht40;
tmp_ptr = &AH9300(ah)->ah_2g_paprd_rate_mask_ht40;
} else {
tmp_paprd_rate_mask =
p_eep_data->modal_header_2g.paprd_rate_mask_ht20;
tmp_ptr = &AH9300(ah)->ah_2g_paprd_rate_mask_ht20;
}
} else {
if (IEEE80211_IS_CHAN_HT40(chan)) {
tmp_paprd_rate_mask =
p_eep_data->modal_header_5g.paprd_rate_mask_ht40;
tmp_ptr = &AH9300(ah)->ah_5g_paprd_rate_mask_ht40;
} else {
tmp_paprd_rate_mask =
p_eep_data->modal_header_5g.paprd_rate_mask_ht20;
tmp_ptr = &AH9300(ah)->ah_5g_paprd_rate_mask_ht20;
}
}
AH_PAPRD_GET_SCALE_FACTOR(
paprd_scale_factor, p_eep_data, IEEE80211_IS_CHAN_2GHZ(chan), ichan->channel);
HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s[%d] paprd_scale_factor %d\n",
__func__, __LINE__, paprd_scale_factor);
/* PAPRD is not done yet, Scale down the EEP power */
if (IEEE80211_IS_CHAN_HT40(chan)) {
ptr_mcs_rate2power_table_index =
&mcs_rate2power_table_index_ht40[0];
} else {
ptr_mcs_rate2power_table_index =
&mcs_rate2power_table_index_ht20[0];
}
if (! ichan->paprd_table_write_done) {
for (i = 0; i < 24; i++) {
/* PAPRD is done yet, so Scale down Power for PAPRD Rates*/
if (tmp_paprd_rate_mask & (1 << i)) {
target_power_val_t2[ptr_mcs_rate2power_table_index[i]] -=
paprd_scale_factor;
HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
"%s[%d]: Chan %d "
"Scale down target_power_val_t2[%d] = 0x%04x\n",
__func__, __LINE__,
ichan->channel, i, target_power_val_t2[i]);
}
}
} else {
HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
"%s[%d]: PAPRD Done No TGT PWR Scaling\n", __func__, __LINE__);
}
}
/* Save the Target power for future use */
OS_MEMCPY(target_power_val_t2_eep, target_power_val_t2,
sizeof(target_power_val_t2));
ar9300_eeprom_set_power_per_rate_table(ah, p_eep_data, chan,
target_power_val_t2, cfg_ctl,
antenna_reduction,
twice_max_regulatory_power,
power_limit, 0);
/* Save this for quick lookup */
ahp->reg_dmn = ath_hal_getctl(ah, chan);
/*
* After reading FCC/OET 13TR1003 (Directional Gain of IEEE 802.11
* MIMO devices employing cyclic delay diversity) and looking at what
* ath9k does, let's disable the CDD check until it's clearer exactly
* how the maximum cap should be applied here.
*
* Right now the CDD check is simply unconditionally reducing the
* gain of legacy and 1/2 stream rates depending upon the chainmask.
* (CDD is used when transmitting rates that don't already use up the
* full set of streams - eg OFDM or MCS0-7 on a 2 or 3 chain TX path.)
*
* It's dropping the 2-chain TX by 3dB and 3-chain by 5dB to "meet"
* power spectral density requirements but it's not currently taking
* into account how close to the regulatory limit the hardware/antenna
* system is already at. It doesn't help that the conductive testing
* limits have the array gain at 0dB for all AR9300/derivative
* configurations.
*
* It also doesn't let us do single chain transmit at the full allowed
* power for the regulatory/CTL limits as it subtracts it from what's
* programmed into the hardware.
*
* ath9k doesn't factor any of the CDD stuff into account, so I'm going
* to disable it here and in the TPC path until I get a better idea
* of what to really do here.
*/
#if 0
/*
* Always use CDD/direct per rate power table for register based approach.
* For FCC, CDD calculations should factor in the array gain, hence
* this adjust call. ETSI and MKK does not have this requirement.
*/
if (is_reg_dmn_fcc(ahp->reg_dmn)) {
HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
"%s: FCC regdomain, calling reg_txpower_cdd\n",
__func__);
ar9300_adjust_reg_txpower_cdd(ah, target_power_val_t2);
}
#endif
if (ar9300_eeprom_get(ahp, EEP_PAPRD_ENABLED)) {
for (i = 0; i < ar9300_rate_size; i++) {
/*
* EEPROM TGT PWR is not same as current TGT PWR,
* so Disable PAPRD for this rate.
* Some of APs might ask to reduce Target Power,
* if target power drops significantly,
* disable PAPRD for that rate.
*/
if (tmp_paprd_rate_mask & (1 << i)) {
if (ABS(target_power_val_t2_eep[i], target_power_val_t2[i]) >
paprd_scale_factor)
{
tmp_paprd_rate_mask &= ~(1 << i);
HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
"%s: EEP TPC[%02d] 0x%08x "
"Curr TPC[%02d] 0x%08x mask = 0x%08x\n",
__func__, i, target_power_val_t2_eep[i], i,
target_power_val_t2[i], tmp_paprd_rate_mask);
}
}
}
HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
"%s: Chan %d After tmp_paprd_rate_mask = 0x%08x\n",
__func__, ichan->channel, tmp_paprd_rate_mask);
if (tmp_ptr) {
*tmp_ptr = tmp_paprd_rate_mask;
}
}
/* Write target power array to registers */
ar9300_transmit_power_reg_write(ah, target_power_val_t2);
/* Write target power for self generated frames to the TPC register */
ar9300_selfgen_tpc_reg_write(ah, chan, target_power_val_t2);
/* GreenTx or Paprd */
if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable ||
AH_PRIVATE(ah)->ah_caps.halPaprdEnabled)
{
if (AR_SREV_POSEIDON(ah)) {
/*For HAL_RSSI_TX_POWER_NONE array*/
OS_MEMCPY(ahp->ah_default_tx_power,
target_power_val_t2,
sizeof(target_power_val_t2));
/* Get defautl tx related register setting for GreenTx */
/* Record OB/DB */
ahp->ah_ob_db1[POSEIDON_STORED_REG_OBDB] =
OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2);
/* Record TPC settting */
ahp->ah_ob_db1[POSEIDON_STORED_REG_TPC] =
OS_REG_READ(ah, AR_TPC);
/* Record BB_powertx_rate9 setting */
ahp->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9] =
OS_REG_READ(ah, AR_PHY_BB_POWERTX_RATE9);
}
}
/*
* Return tx power used to iwconfig.
* Since power is rate dependent, use one of the indices from the
* AR9300_Rates enum to select an entry from target_power_val_t2[]
* to report.
* Currently returns the power for HT40 MCS 0, HT20 MCS 0, or OFDM 6 Mbps
* as CCK power is less interesting (?).
*/
i = ALL_TARGET_LEGACY_6_24; /* legacy */
if (IEEE80211_IS_CHAN_HT40(chan)) {
i = ALL_TARGET_HT40_0_8_16; /* ht40 */
} else if (IEEE80211_IS_CHAN_HT20(chan)) {
i = ALL_TARGET_HT20_0_8_16; /* ht20 */
}
max_power_level = target_power_val_t2[i];
/* Adjusting the ah_max_power_level based on chains and antennaGain*/
switch (ar9300_get_ntxchains(((ahp->ah_tx_chainmaskopt > 0) ?
ahp->ah_tx_chainmaskopt : ahp->ah_tx_chainmask)))
{
case 1:
break;
case 2:
twice_array_gain = (ahp->twice_antenna_gain >= ahp->twice_antenna_reduction)? 0:
((int16_t)AH_MIN((ahp->twice_antenna_reduction -
(ahp->twice_antenna_gain + INCREASE_MAXPOW_BY_TWO_CHAIN)), 0));
/* Adjusting maxpower with antennaGain */
max_power_level -= twice_array_gain;
/* Adjusting maxpower based on chain */
max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
break;
case 3:
twice_array_gain = (ahp->twice_antenna_gain >= ahp->twice_antenna_reduction)? 0:
((int16_t)AH_MIN((ahp->twice_antenna_reduction -
(ahp->twice_antenna_gain + INCREASE_MAXPOW_BY_THREE_CHAIN)), 0));
/* Adjusting maxpower with antennaGain */
max_power_level -= twice_array_gain;
/* Adjusting maxpower based on chain */
max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
break;
default:
HALASSERT(0); /* Unsupported number of chains */
}
AH_PRIVATE(ah)->ah_maxPowerLevel = (int8_t)max_power_level;
ar9300_calibration_apply(ah, ichan->channel);
#undef ABS
/* Handle per packet TPC initializations */
if (ah->ah_config.ath_hal_desc_tpc) {
/* Transmit Power per-rate per-chain are computed here. A separate
* power table is maintained for different MIMO modes (i.e. TXBF ON,
* STBC) to enable easy lookup during packet transmit.
* The reason for maintaing each of these tables per chain is that
* the transmit power used for different number of chains is different
* depending on whether the power has been limited by the target power,
* the regulatory domain or the CTL limits.
*/
u_int mode = ath_hal_get_curmode(ah, chan);
u_int32_t val = 0;
u_int8_t chainmasks[AR9300_MAX_CHAINS] =
{OSPREY_1_CHAINMASK, OSPREY_2LOHI_CHAINMASK, OSPREY_3_CHAINMASK};
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
OS_MEMCPY(target_power_val_t2, target_power_val_t2_eep,
sizeof(target_power_val_t2_eep));
ar9300_eeprom_set_power_per_rate_table(ah, p_eep_data, chan,
target_power_val_t2, cfg_ctl,
antenna_reduction,
twice_max_regulatory_power,
power_limit, chainmasks[i]);
HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
" Channel = %d Chainmask = %d, Upper Limit = [%2d.%1d dBm]\n",
ichan->channel, i, ahp->upper_limit[i]/2,
ahp->upper_limit[i]%2 * 5);
ar9300_init_rate_txpower(ah, mode, chan, target_power_val_t2,
chainmasks[i]);
}
/* Enable TPC */
OS_REG_WRITE(ah, AR_PHY_PWRTX_MAX, AR_PHY_PWRTX_MAX_TPC_ENABLE);
/*
* Disable per chain power reduction since we are already
* accounting for this in our calculations
*/
val = OS_REG_READ(ah, AR_PHY_POWER_TX_SUB);
if (AR_SREV_WASP(ah)) {
OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
val & AR_PHY_POWER_TX_SUB_2_DISABLE);
} else {
OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
val & AR_PHY_POWER_TX_SUB_3_DISABLE);
}
}
return HAL_OK;
}
/**************************************************************
* ar9300_eeprom_set_addac
*
* Set the ADDAC from eeprom.
*/
void
ar9300_eeprom_set_addac(struct ath_hal *ah, struct ieee80211_channel *chan)
{
HALDEBUG(AH_NULL, HAL_DEBUG_UNMASKABLE,
"FIXME: ar9300_eeprom_def_set_addac called\n");
#if 0
MODAL_EEPDEF_HEADER *p_modal;
struct ath_hal_9300 *ahp = AH9300(ah);
ar9300_eeprom_t *eep = &ahp->ah_eeprom.def;
u_int8_t biaslevel;
if (AH_PRIVATE(ah)->ah_macVersion != AR_SREV_VERSION_SOWL) {
return;
}
HALASSERT(owl_get_eepdef_ver(ahp) == AR9300_EEP_VER);
/* Xpa bias levels in eeprom are valid from rev 14.7 */
if (owl_get_eepdef_rev(ahp) < AR9300_EEP_MINOR_VER_7) {
return;
}
if (ahp->ah_emu_eeprom) {
return;
}
p_modal = &(eep->modal_header[IEEE80211_IS_CHAN_2GHZ(chan)]);
if (p_modal->xpa_bias_lvl != 0xff) {
biaslevel = p_modal->xpa_bias_lvl;
} else {
/* Use freqeuncy specific xpa bias level */
u_int16_t reset_freq_bin, freq_bin, freq_count = 0;
CHAN_CENTERS centers;
ar9300_get_channel_centers(ah, chan, &centers);
reset_freq_bin = FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan));
freq_bin = p_modal->xpa_bias_lvl_freq[0] & 0xff;
biaslevel = (u_int8_t)(p_modal->xpa_bias_lvl_freq[0] >> 14);
freq_count++;
while (freq_count < 3) {
if (p_modal->xpa_bias_lvl_freq[freq_count] == 0x0) {
break;
}
freq_bin = p_modal->xpa_bias_lvl_freq[freq_count] & 0xff;
if (reset_freq_bin >= freq_bin) {
biaslevel =
(u_int8_t)(p_modal->xpa_bias_lvl_freq[freq_count] >> 14);
} else {
break;
}
freq_count++;
}
}
/* Apply bias level to the ADDAC values in the INI array */
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
INI_RA(&ahp->ah_ini_addac, 7, 1) =
(INI_RA(&ahp->ah_ini_addac, 7, 1) & (~0x18)) | biaslevel << 3;
} else {
INI_RA(&ahp->ah_ini_addac, 6, 1) =
(INI_RA(&ahp->ah_ini_addac, 6, 1) & (~0xc0)) | biaslevel << 6;
}
#endif
}
u_int
ar9300_eeprom_dump_support(struct ath_hal *ah, void **pp_e)
{
*pp_e = &(AH9300(ah)->ah_eeprom);
return sizeof(ar9300_eeprom_t);
}
u_int8_t
ar9300_eeprom_get_num_ant_config(struct ath_hal_9300 *ahp,
HAL_FREQ_BAND freq_band)
{
#if 0
ar9300_eeprom_t *eep = &ahp->ah_eeprom.def;
MODAL_EEPDEF_HEADER *p_modal =
&(eep->modal_header[HAL_FREQ_BAND_2GHZ == freq_band]);
BASE_EEPDEF_HEADER *p_base = &eep->base_eep_header;
u_int8_t num_ant_config;
num_ant_config = 1; /* default antenna configuration */
if (p_base->version >= 0x0E0D) {
if (p_modal->use_ant1) {
num_ant_config += 1;
}
}
return num_ant_config;
#else
return 1;
#endif
}
HAL_STATUS
ar9300_eeprom_get_ant_cfg(struct ath_hal_9300 *ahp,
const struct ieee80211_channel *chan,
u_int8_t index, u_int16_t *config)
{
#if 0
ar9300_eeprom_t *eep = &ahp->ah_eeprom.def;
MODAL_EEPDEF_HEADER *p_modal = &(eep->modal_header[IEEE80211_IS_CHAN_2GHZ(chan)]);
BASE_EEPDEF_HEADER *p_base = &eep->base_eep_header;
switch (index) {
case 0:
*config = p_modal->ant_ctrl_common & 0xFFFF;
return HAL_OK;
case 1:
if (p_base->version >= 0x0E0D) {
if (p_modal->use_ant1) {
*config = ((p_modal->ant_ctrl_common & 0xFFFF0000) >> 16);
return HAL_OK;
}
}
break;
default:
break;
}
#endif
return HAL_EINVAL;
}
u_int8_t*
ar9300_eeprom_get_cust_data(struct ath_hal_9300 *ahp)
{
return (u_int8_t *)ahp;
}
#ifdef UNUSED
static inline HAL_STATUS
ar9300_check_eeprom(struct ath_hal *ah)
{
#if 0
u_int32_t sum = 0, el;
u_int16_t *eepdata;
int i;
struct ath_hal_9300 *ahp = AH9300(ah);
HAL_BOOL need_swap = AH_FALSE;
ar9300_eeprom_t *eep = (ar9300_eeprom_t *)&ahp->ah_eeprom.def;
u_int16_t magic, magic2;
int addr;
u_int16_t temp;
/*
** We need to check the EEPROM data regardless of if it's in flash or
** in EEPROM.
*/
if (!ahp->ah_priv.priv.ah_eeprom_read(
ah, AR9300_EEPROM_MAGIC_OFFSET, &magic))
{
HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Reading Magic # failed\n", __func__);
return AH_FALSE;
}
HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Read Magic = 0x%04X\n", __func__, magic);
if (!ar9300_eep_data_in_flash(ah)) {
if (magic != AR9300_EEPROM_MAGIC) {
magic2 = SWAP16(magic);
if (magic2 == AR9300_EEPROM_MAGIC) {
need_swap = AH_TRUE;
eepdata = (u_int16_t *)(&ahp->ah_eeprom);
for (addr = 0;
addr < sizeof(ar9300_eeprom_t) / sizeof(u_int16_t);
addr++)
{
temp = SWAP16(*eepdata);
*eepdata = temp;
eepdata++;
HALDEBUG(ah, HAL_DEBUG_EEPROM_DUMP, "0x%04X ", *eepdata);
if (((addr + 1) % 6) == 0) {
HALDEBUG(ah, HAL_DEBUG_EEPROM_DUMP, "\n");
}
}
} else {
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"Invalid EEPROM Magic. endianness missmatch.\n");
return HAL_EEBADSUM;
}
}
} else {
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"EEPROM being read from flash @0x%p\n", AH_PRIVATE(ah)->ah_st);
}
HALDEBUG(ah, HAL_DEBUG_EEPROM, "need_swap = %s.\n", need_swap?"True":"False");
if (need_swap) {
el = SWAP16(ahp->ah_eeprom.def.base_eep_header.length);
} else {
el = ahp->ah_eeprom.def.base_eep_header.length;
}
eepdata = (u_int16_t *)(&ahp->ah_eeprom.def);
for (i = 0;
i < AH_MIN(el, sizeof(ar9300_eeprom_t)) / sizeof(u_int16_t);
i++) {
sum ^= *eepdata++;
}
if (need_swap) {
/*
* preddy: EEPROM endianness does not match. So change it
* 8bit values in eeprom data structure does not need to be swapped
* Only >8bits (16 & 32) values need to be swapped
* If a new 16 or 32 bit field is added to the EEPROM contents,
* please make sure to swap the field here
*/
u_int32_t integer, j;
u_int16_t word;
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"EEPROM Endianness is not native.. Changing \n");
/* convert Base Eep header */
word = SWAP16(eep->base_eep_header.length);
eep->base_eep_header.length = word;
word = SWAP16(eep->base_eep_header.checksum);
eep->base_eep_header.checksum = word;
word = SWAP16(eep->base_eep_header.version);
eep->base_eep_header.version = word;
word = SWAP16(eep->base_eep_header.reg_dmn[0]);
eep->base_eep_header.reg_dmn[0] = word;
word = SWAP16(eep->base_eep_header.reg_dmn[1]);
eep->base_eep_header.reg_dmn[1] = word;
word = SWAP16(eep->base_eep_header.rf_silent);
eep->base_eep_header.rf_silent = word;
word = SWAP16(eep->base_eep_header.blue_tooth_options);
eep->base_eep_header.blue_tooth_options = word;
word = SWAP16(eep->base_eep_header.device_cap);
eep->base_eep_header.device_cap = word;
/* convert Modal Eep header */
for (j = 0; j < ARRAY_LENGTH(eep->modal_header); j++) {
MODAL_EEPDEF_HEADER *p_modal = &eep->modal_header[j];
integer = SWAP32(p_modal->ant_ctrl_common);
p_modal->ant_ctrl_common = integer;
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
integer = SWAP32(p_modal->ant_ctrl_chain[i]);
p_modal->ant_ctrl_chain[i] = integer;
}
for (i = 0; i < AR9300_EEPROM_MODAL_SPURS; i++) {
word = SWAP16(p_modal->spur_chans[i].spur_chan);
p_modal->spur_chans[i].spur_chan = word;
}
}
}
/* Check CRC - Attach should fail on a bad checksum */
if (sum != 0xffff || owl_get_eepdef_ver(ahp) != AR9300_EEP_VER ||
owl_get_eepdef_rev(ahp) < AR9300_EEP_NO_BACK_VER) {
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"Bad EEPROM checksum 0x%x or revision 0x%04x\n",
sum, owl_get_eepdef_ver(ahp));
return HAL_EEBADSUM;
}
#ifdef EEPROM_DUMP
ar9300_eeprom_def_dump(ah, eep);
#endif
#if 0
#ifdef AH_AR9300_OVRD_TGT_PWR
/*
* 14.4 EEPROM contains low target powers.
* Hardcode until EEPROM > 14.4
*/
if (owl_get_eepdef_ver(ahp) == 14 && owl_get_eepdef_rev(ahp) <= 4) {
MODAL_EEPDEF_HEADER *p_modal;
#ifdef EEPROM_DUMP
HALDEBUG(ah, HAL_DEBUG_POWER_OVERRIDE, "Original Target Powers\n");
ar9300_eep_def_dump_tgt_power(ah, eep);
#endif
HALDEBUG(ah, HAL_DEBUG_POWER_OVERRIDE,
"Override Target Powers. EEPROM Version is %d.%d, "
"Device Type %d\n",
owl_get_eepdef_ver(ahp),
owl_get_eepdef_rev(ahp),
eep->base_eep_header.device_type);
ar9300_eep_def_override_tgt_power(ah, eep);
if (eep->base_eep_header.device_type == 5) {
/* for xb72 only: improve transmit EVM for interop */
p_modal = &eep->modal_header[1];
p_modal->tx_frame_to_data_start = 0x23;
p_modal->tx_frame_to_xpa_on = 0x23;
p_modal->tx_frame_to_pa_on = 0x23;
}
#ifdef EEPROM_DUMP
HALDEBUG(ah, HAL_DEBUG_POWER_OVERRIDE, "Modified Target Powers\n");
ar9300_eep_def_dump_tgt_power(ah, eep);
#endif
}
#endif /* AH_AR9300_OVRD_TGT_PWR */
#endif
#endif
return HAL_OK;
}
#endif
static u_int16_t
ar9300_eeprom_get_spur_chan(struct ath_hal *ah, int i, HAL_BOOL is_2ghz)
{
u_int16_t spur_val = AR_NO_SPUR;
#if 0
struct ath_hal_9300 *ahp = AH9300(ah);
ar9300_eeprom_t *eep = (ar9300_eeprom_t *)&ahp->ah_eeprom;
HALASSERT(i < AR_EEPROM_MODAL_SPURS );
HALDEBUG(ah, HAL_DEBUG_ANI,
"Getting spur idx %d is2Ghz. %d val %x\n",
i, is_2ghz,
AH_PRIVATE(ah)->ah_config.ath_hal_spur_chans[i][is_2ghz]);
switch (AH_PRIVATE(ah)->ah_config.ath_hal_spur_mode) {
case SPUR_DISABLE:
/* returns AR_NO_SPUR */
break;
case SPUR_ENABLE_IOCTL:
spur_val = AH_PRIVATE(ah)->ah_config.ath_hal_spur_chans[i][is_2ghz];
HALDEBUG(ah, HAL_DEBUG_ANI,
"Getting spur val from new loc. %d\n", spur_val);
break;
case SPUR_ENABLE_EEPROM:
spur_val = eep->modal_header[is_2ghz].spur_chans[i].spur_chan;
break;
}
#endif
return spur_val;
}
#ifdef UNUSED
static inline HAL_BOOL
ar9300_fill_eeprom(struct ath_hal *ah)
{
return ar9300_eeprom_restore(ah);
}
#endif
u_int16_t
ar9300_eeprom_struct_size(void)
{
return sizeof(ar9300_eeprom_t);
}
int ar9300_eeprom_struct_default_many(void)
{
return ARRAY_LENGTH(default9300);
}
ar9300_eeprom_t *
ar9300_eeprom_struct_default(int default_index)
{
if (default_index >= 0 &&
default_index < ARRAY_LENGTH(default9300))
{
return default9300[default_index];
} else {
return 0;
}
}
ar9300_eeprom_t *
ar9300_eeprom_struct_default_find_by_id(int id)
{
int it;
for (it = 0; it < ARRAY_LENGTH(default9300); it++) {
if (default9300[it] != 0 && default9300[it]->template_version == id) {
return default9300[it];
}
}
return 0;
}
HAL_BOOL
ar9300_calibration_data_read_flash(struct ath_hal *ah, long address,
u_int8_t *buffer, int many)
{
if (((address) < 0) || ((address + many) > AR9300_EEPROM_SIZE - 1)) {
return AH_FALSE;
}
return AH_FALSE;
}
HAL_BOOL
ar9300_calibration_data_read_eeprom(struct ath_hal *ah, long address,
u_int8_t *buffer, int many)
{
int i;
u_int8_t value[2];
unsigned long eep_addr;
unsigned long byte_addr;
u_int16_t *svalue;
if (((address) < 0) || ((address + many) > AR9300_EEPROM_SIZE)) {
return AH_FALSE;
}
for (i = 0; i < many; i++) {
eep_addr = (u_int16_t) (address + i) / 2;
byte_addr = (u_int16_t) (address + i) % 2;
svalue = (u_int16_t *) value;
if (! ath_hal_eepromRead(ah, eep_addr, svalue)) {
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"%s: Unable to read eeprom region \n", __func__);
return AH_FALSE;
}
buffer[i] = (*svalue >> (8 * byte_addr)) & 0xff;
}
return AH_TRUE;
}
HAL_BOOL
ar9300_calibration_data_read_otp(struct ath_hal *ah, long address,
u_int8_t *buffer, int many, HAL_BOOL is_wifi)
{
int i;
unsigned long eep_addr;
unsigned long byte_addr;
u_int32_t svalue;
if (((address) < 0) || ((address + many) > 0x400)) {
return AH_FALSE;
}
for (i = 0; i < many; i++) {
eep_addr = (u_int16_t) (address + i) / 4; /* otp is 4 bytes long???? */
byte_addr = (u_int16_t) (address + i) % 4;
if (!ar9300_otp_read(ah, eep_addr, &svalue, is_wifi)) {
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"%s: Unable to read otp region \n", __func__);
return AH_FALSE;
}
buffer[i] = (svalue >> (8 * byte_addr)) & 0xff;
}
return AH_TRUE;
}
#ifdef ATH_CAL_NAND_FLASH
HAL_BOOL
ar9300_calibration_data_read_nand(struct ath_hal *ah, long address,
u_int8_t *buffer, int many)
{
int ret_len;
int ret_val = 1;
/* Calling OS based API to read NAND */
ret_val = OS_NAND_FLASH_READ(ATH_CAL_NAND_PARTITION, address, many, &ret_len, buffer);
return (ret_val ? AH_FALSE: AH_TRUE);
}
#endif
HAL_BOOL
ar9300_calibration_data_read(struct ath_hal *ah, long address,
u_int8_t *buffer, int many)
{
switch (AH9300(ah)->calibration_data_source) {
case calibration_data_flash:
return ar9300_calibration_data_read_flash(ah, address, buffer, many);
case calibration_data_eeprom:
return ar9300_calibration_data_read_eeprom(ah, address, buffer, many);
case calibration_data_otp:
return ar9300_calibration_data_read_otp(ah, address, buffer, many, 1);
#ifdef ATH_CAL_NAND_FLASH
case calibration_data_nand:
return ar9300_calibration_data_read_nand(ah,address,buffer,many);
#endif
}
return AH_FALSE;
}
HAL_BOOL
ar9300_calibration_data_read_array(struct ath_hal *ah, int address,
u_int8_t *buffer, int many)
{
int it;
for (it = 0; it < many; it++) {
(void)ar9300_calibration_data_read(ah, address - it, buffer + it, 1);
}
return AH_TRUE;
}
/*
* the address where the first configuration block is written
*/
static const int base_address = 0x3ff; /* 1KB */
static const int base_address_512 = 0x1ff; /* 512Bytes */
/*
* the address where the NAND first configuration block is written
*/
#ifdef ATH_CAL_NAND_FLASH
static const int base_address_nand = AR9300_FLASH_CAL_START_OFFSET;
#endif
/*
* the lower limit on configuration data
*/
static const int low_limit = 0x040;
/*
* returns size of the physical eeprom in bytes.
* 1024 and 2048 are normal sizes.
* 0 means there is no eeprom.
*/
int32_t
ar9300_eeprom_size(struct ath_hal *ah)
{
u_int16_t data;
/*
* first we'll try for 4096 bytes eeprom
*/
if (ar9300_eeprom_read_word(ah, 2047, &data)) {
if (data != 0) {
return 4096;
}
}
/*
* then we'll try for 2048 bytes eeprom
*/
if (ar9300_eeprom_read_word(ah, 1023, &data)) {
if (data != 0) {
return 2048;
}
}
/*
* then we'll try for 1024 bytes eeprom
*/
if (ar9300_eeprom_read_word(ah, 511, &data)) {
if (data != 0) {
return 1024;
}
}
return 0;
}
/*
* returns size of the physical otp in bytes.
* 1024 and 2048 are normal sizes.
* 0 means there is no eeprom.
*/
int32_t
ar9300_otp_size(struct ath_hal *ah)
{
if (AR_SREV_POSEIDON(ah) || AR_SREV_HORNET(ah)) {
return base_address_512+1;
} else {
return base_address+1;
}
}
/*
* find top of memory
*/
int
ar9300_eeprom_base_address(struct ath_hal *ah)
{
int size;
if (AH9300(ah)->calibration_data_source == calibration_data_otp) {
return ar9300_otp_size(ah)-1;
}
else
{
size = ar9300_eeprom_size(ah);
if (size > 0) {
return size - 1;
} else {
return ar9300_otp_size(ah)-1;
}
}
}
int
ar9300_eeprom_volatile(struct ath_hal *ah)
{
if (AH9300(ah)->calibration_data_source == calibration_data_otp) {
return 0; /* no eeprom, use otp */
} else {
return 1; /* board has eeprom or flash */
}
}
/*
* need to change this to look for the pcie data in the low parts of memory
* cal data needs to stop a few locations above
*/
int
ar9300_eeprom_low_limit(struct ath_hal *ah)
{
return low_limit;
}
u_int16_t
ar9300_compression_checksum(u_int8_t *data, int dsize)
{
int it;
int checksum = 0;
for (it = 0; it < dsize; it++) {
checksum += data[it];
checksum &= 0xffff;
}
return checksum;
}
int
ar9300_compression_header_unpack(u_int8_t *best, int *code, int *reference,
int *length, int *major, int *minor)
{
unsigned long value[4];
value[0] = best[0];
value[1] = best[1];
value[2] = best[2];
value[3] = best[3];
*code = ((value[0] >> 5) & 0x0007);
*reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
*length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
*major = (value[2] & 0x000f);
*minor = (value[3] & 0x00ff);
return 4;
}
static HAL_BOOL
ar9300_uncompress_block(struct ath_hal *ah, u_int8_t *mptr, int mdata_size,
u_int8_t *block, int size)
{
int it;
int spot;
int offset;
int length;
spot = 0;
for (it = 0; it < size; it += (length + 2)) {
offset = block[it];
offset &= 0xff;
spot += offset;
length = block[it + 1];
length &= 0xff;
if (length > 0 && spot >= 0 && spot + length <= mdata_size) {
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"%s: Restore at %d: spot=%d offset=%d length=%d\n",
__func__, it, spot, offset, length);
OS_MEMCPY(&mptr[spot], &block[it + 2], length);
spot += length;
} else if (length > 0) {
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"%s: Bad restore at %d: spot=%d offset=%d length=%d\n",
__func__, it, spot, offset, length);
return AH_FALSE;
}
}
return AH_TRUE;
}
static int
ar9300_eeprom_restore_internal_address(struct ath_hal *ah,
ar9300_eeprom_t *mptr, int mdata_size, int cptr, u_int8_t blank)
{
u_int8_t word[MOUTPUT];
ar9300_eeprom_t *dptr; /* was uint8 */
int code;
int reference, length, major, minor;
int osize;
int it;
int restored;
u_int16_t checksum, mchecksum;
restored = 0;
for (it = 0; it < MSTATE; it++) {
(void) ar9300_calibration_data_read_array(
ah, cptr, word, compression_header_length);
if (word[0] == blank && word[1] == blank && word[2] == blank && word[3] == blank)
{
break;
}
ar9300_compression_header_unpack(
word, &code, &reference, &length, &major, &minor);
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"%s: Found block at %x: "
"code=%d ref=%d length=%d major=%d minor=%d\n",
__func__, cptr, code, reference, length, major, minor);
#ifdef DONTUSE
if (length >= 1024) {
HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Skipping bad header\n", __func__);
cptr -= compression_header_length;
continue;
}
#endif
osize = length;
(void) ar9300_calibration_data_read_array(
ah, cptr, word,
compression_header_length + osize + compression_checksum_length);
checksum = ar9300_compression_checksum(
&word[compression_header_length], length);
mchecksum =
word[compression_header_length + osize] |
(word[compression_header_length + osize + 1] << 8);
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"%s: checksum %x %x\n", __func__, checksum, mchecksum);
if (checksum == mchecksum) {
switch (code) {
case _compress_none:
if (length != mdata_size) {
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"%s: EEPROM structure size mismatch "
"memory=%d eeprom=%d\n", __func__, mdata_size, length);
return -1;
}
OS_MEMCPY((u_int8_t *)mptr,
(u_int8_t *)(word + compression_header_length), length);
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"%s: restored eeprom %d: uncompressed, length %d\n",
__func__, it, length);
restored = 1;
break;
#ifdef UNUSED
case _compress_lzma:
if (reference == reference_current) {
dptr = mptr;
} else {
dptr = (u_int8_t *)ar9300_eeprom_struct_default_find_by_id(
reference);
if (dptr == 0) {
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"%s: Can't find reference eeprom struct %d\n",
__func__, reference);
goto done;
}
}
usize = -1;
if (usize != mdata_size) {
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"%s: uncompressed data is wrong size %d %d\n",
__func__, usize, mdata_size);
goto done;
}
for (ib = 0; ib < mdata_size; ib++) {
mptr[ib] = dptr[ib] ^ word[ib + overhead];
}
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"%s: restored eeprom %d: compressed, "
"reference %d, length %d\n",
__func__, it, reference, length);
break;
case _compress_pairs:
if (reference == reference_current) {
dptr = mptr;
} else {
dptr = (u_int8_t *)ar9300_eeprom_struct_default_find_by_id(
reference);
if (dptr == 0) {
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"%s: Can't find the reference "
"eeprom structure %d\n",
__func__, reference);
goto done;
}
}
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"%s: restored eeprom %d: "
"pairs, reference %d, length %d,\n",
__func__, it, reference, length);
break;
#endif
case _compress_block:
if (reference == reference_current) {
dptr = mptr;
} else {
dptr = ar9300_eeprom_struct_default_find_by_id(reference);
if (dptr == 0) {
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"%s: cant find reference eeprom struct %d\n",
__func__, reference);
break;
}
OS_MEMCPY(mptr, dptr, mdata_size);
}
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"%s: restore eeprom %d: block, reference %d, length %d\n",
__func__, it, reference, length);
(void) ar9300_uncompress_block(ah,
(u_int8_t *) mptr, mdata_size,
(u_int8_t *) (word + compression_header_length), length);
restored = 1;
break;
default:
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"%s: unknown compression code %d\n", __func__, code);
break;
}
} else {
HALDEBUG(ah, HAL_DEBUG_EEPROM,
"%s: skipping block with bad checksum\n", __func__);
}
cptr -= compression_header_length + osize + compression_checksum_length;
}
if (!restored) {
cptr = -1;
}
return cptr;
}
static int
ar9300_eeprom_restore_from_dram(struct ath_hal *ah, ar9300_eeprom_t *mptr,
int mdata_size)
{
struct ath_hal_9300 *ahp = AH9300(ah);
#if !defined(USE_PLATFORM_FRAMEWORK)
char *cal_ptr;
#endif
HALASSERT(mdata_size > 0);
/* if cal_in_flash is AH_TRUE, the address sent by LMAC to HAL
(i.e. ah->ah_st) is corresponding to Flash. so return from
here if ar9300_eep_data_in_flash(ah) returns AH_TRUE */
if(ar9300_eep_data_in_flash(ah))
return -1;
#if 0
/* check if LMAC sent DRAM address is valid */
if (!(uintptr_t)(AH_PRIVATE(ah)->ah_st)) {
return -1;
}
#endif
/* When calibration data is from host, Host will copy the
compressed data to the predefined DRAM location saved at ah->ah_st */
#if 0
ath_hal_printf(ah, "Restoring Cal data from DRAM\n");
ahp->ah_cal_mem = OS_REMAP((uintptr_t)(AH_PRIVATE(ah)->ah_st),
HOST_CALDATA_SIZE);
#endif
if (!ahp->ah_cal_mem)
{
HALDEBUG(ah, HAL_DEBUG_EEPROM,"%s: can't remap dram region\n", __func__);
return -1;
}
#if !defined(USE_PLATFORM_FRAMEWORK)
cal_ptr = &((char *)(ahp->ah_cal_mem))[AR9300_FLASH_CAL_START_OFFSET];
OS_MEMCPY(mptr, cal_ptr, mdata_size);
#else
OS_MEMCPY(mptr, ahp->ah_cal_mem, mdata_size);
#endif
if (mptr->eeprom_version == 0xff ||
mptr->template_version == 0xff ||
mptr->eeprom_version == 0 ||
mptr->template_version == 0)
{
/* The board is uncalibrated */
return -1;
}
if (mptr->eeprom_version != 0x2)
{
return -1;
}
return mdata_size;
}
static int
ar9300_eeprom_restore_from_flash(struct ath_hal *ah, ar9300_eeprom_t *mptr,
int mdata_size)
{
struct ath_hal_9300 *ahp = AH9300(ah);
char *cal_ptr;
HALASSERT(mdata_size > 0);
if (!ahp->ah_cal_mem) {
return -1;
}
ath_hal_printf(ah, "Restoring Cal data from Flash\n");
/*
* When calibration data is saved in flash, read
* uncompressed eeprom structure from flash and return
*/
cal_ptr = &((char *)(ahp->ah_cal_mem))[AR9300_FLASH_CAL_START_OFFSET];
OS_MEMCPY(mptr, cal_ptr, mdata_size);
#if 0
ar9300_swap_eeprom((ar9300_eeprom_t *)mptr); DONE IN ar9300_restore()
#endif
if (mptr->eeprom_version == 0xff ||
mptr->template_version == 0xff ||
mptr->eeprom_version == 0 ||
mptr->template_version == 0)
{
/* The board is uncalibrated */
return -1;
}
if (mptr->eeprom_version != 0x2)
{
return -1;
}
return mdata_size;
}
/*
* Read the configuration data from the storage. We try the order with:
* EEPROM, Flash, OTP. If all of above failed, use the default template.
* The data can be put in any specified memory buffer.
*
* Returns -1 on error.
* Returns address of next memory location on success.
*/
int
ar9300_eeprom_restore_internal(struct ath_hal *ah, ar9300_eeprom_t *mptr,
int mdata_size)
{
int nptr;
nptr = -1;
if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
AH9300(ah)->calibration_data_try == calibration_data_dram) &&
AH9300(ah)->try_dram && nptr < 0)
{
ath_hal_printf(ah, "Restoring Cal data from DRAM\n");
AH9300(ah)->calibration_data_source = calibration_data_dram;
AH9300(ah)->calibration_data_source_address = 0;
nptr = ar9300_eeprom_restore_from_dram(ah, mptr, mdata_size);
if (nptr < 0) {
AH9300(ah)->calibration_data_source = calibration_data_none;
AH9300(ah)->calibration_data_source_address = 0;
}
}
if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
AH9300(ah)->calibration_data_try == calibration_data_eeprom) &&
AH9300(ah)->try_eeprom && nptr < 0)
{
/*
* need to look at highest eeprom address as well as at
* base_address=0x3ff where we used to write the data
*/
ath_hal_printf(ah, "Restoring Cal data from EEPROM\n");
AH9300(ah)->calibration_data_source = calibration_data_eeprom;
if (AH9300(ah)->calibration_data_try_address != 0) {
AH9300(ah)->calibration_data_source_address =
AH9300(ah)->calibration_data_try_address;
nptr = ar9300_eeprom_restore_internal_address(
ah, mptr, mdata_size,
AH9300(ah)->calibration_data_source_address, 0xff);
} else {
AH9300(ah)->calibration_data_source_address =
ar9300_eeprom_base_address(ah);
nptr = ar9300_eeprom_restore_internal_address(
ah, mptr, mdata_size,
AH9300(ah)->calibration_data_source_address, 0xff);
if (nptr < 0 &&
AH9300(ah)->calibration_data_source_address != base_address)
{
AH9300(ah)->calibration_data_source_address = base_address;
nptr = ar9300_eeprom_restore_internal_address(
ah, mptr, mdata_size,
AH9300(ah)->calibration_data_source_address, 0xff);
}
}
if (nptr < 0) {
AH9300(ah)->calibration_data_source = calibration_data_none;
AH9300(ah)->calibration_data_source_address = 0;
}
}
/*
* ##### should be an ifdef test for any AP usage,
* either in driver or in nart
*/
if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
AH9300(ah)->calibration_data_try == calibration_data_flash) &&
AH9300(ah)->try_flash && nptr < 0)
{
ath_hal_printf(ah, "Restoring Cal data from Flash\n");
AH9300(ah)->calibration_data_source = calibration_data_flash;
/* how are we supposed to set this for flash? */
AH9300(ah)->calibration_data_source_address = 0;
nptr = ar9300_eeprom_restore_from_flash(ah, mptr, mdata_size);
if (nptr < 0) {
AH9300(ah)->calibration_data_source = calibration_data_none;
AH9300(ah)->calibration_data_source_address = 0;
}
}
if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
AH9300(ah)->calibration_data_try == calibration_data_otp) &&
AH9300(ah)->try_otp && nptr < 0)
{
ath_hal_printf(ah, "Restoring Cal data from OTP\n");
AH9300(ah)->calibration_data_source = calibration_data_otp;
if (AH9300(ah)->calibration_data_try_address != 0) {
AH9300(ah)->calibration_data_source_address =
AH9300(ah)->calibration_data_try_address;
} else {
AH9300(ah)->calibration_data_source_address =
ar9300_eeprom_base_address(ah);
}
nptr = ar9300_eeprom_restore_internal_address(
ah, mptr, mdata_size, AH9300(ah)->calibration_data_source_address, 0);
if (nptr < 0) {
AH9300(ah)->calibration_data_source = calibration_data_none;
AH9300(ah)->calibration_data_source_address = 0;
}
}
#ifdef ATH_CAL_NAND_FLASH
if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
AH9300(ah)->calibration_data_try == calibration_data_nand) &&
AH9300(ah)->try_nand && nptr < 0)
{
AH9300(ah)->calibration_data_source = calibration_data_nand;
AH9300(ah)->calibration_data_source_address = ((unsigned int)(AH_PRIVATE(ah)->ah_st)) + base_address_nand;
if(ar9300_calibration_data_read(
ah, AH9300(ah)->calibration_data_source_address,
(u_int8_t *)mptr, mdata_size) == AH_TRUE)
{
nptr = mdata_size;
}
/*nptr=ar9300EepromRestoreInternalAddress(ah, mptr, mdataSize, CalibrationDataSourceAddress);*/
if(nptr < 0)
{
AH9300(ah)->calibration_data_source = calibration_data_none;
AH9300(ah)->calibration_data_source_address = 0;
}
}
#endif
if (nptr < 0) {
ath_hal_printf(ah, "%s[%d] No vaid CAL, calling default template\n",
__func__, __LINE__);
nptr = ar9300_eeprom_restore_something(ah, mptr, mdata_size);
}
return nptr;
}
/******************************************************************************/
/*!
** \brief Eeprom Swapping Function
**
** This function will swap the contents of the "longer" EEPROM data items
** to ensure they are consistent with the endian requirements for the platform
** they are being compiled for
**
** \param eh Pointer to the EEPROM data structure
** \return N/A
*/
#if AH_BYTE_ORDER == AH_BIG_ENDIAN
void
ar9300_swap_eeprom(ar9300_eeprom_t *eep)
{
u_int32_t dword;
u_int16_t word;
int i;
word = __bswap16(eep->base_eep_header.reg_dmn[0]);
eep->base_eep_header.reg_dmn[0] = word;
word = __bswap16(eep->base_eep_header.reg_dmn[1]);
eep->base_eep_header.reg_dmn[1] = word;
dword = __bswap32(eep->base_eep_header.swreg);
eep->base_eep_header.swreg = dword;
dword = __bswap32(eep->modal_header_2g.ant_ctrl_common);
eep->modal_header_2g.ant_ctrl_common = dword;
dword = __bswap32(eep->modal_header_2g.ant_ctrl_common2);
eep->modal_header_2g.ant_ctrl_common2 = dword;
dword = __bswap32(eep->modal_header_2g.paprd_rate_mask_ht20);
eep->modal_header_2g.paprd_rate_mask_ht20 = dword;
dword = __bswap32(eep->modal_header_2g.paprd_rate_mask_ht40);
eep->modal_header_2g.paprd_rate_mask_ht40 = dword;
dword = __bswap32(eep->modal_header_5g.ant_ctrl_common);
eep->modal_header_5g.ant_ctrl_common = dword;
dword = __bswap32(eep->modal_header_5g.ant_ctrl_common2);
eep->modal_header_5g.ant_ctrl_common2 = dword;
dword = __bswap32(eep->modal_header_5g.paprd_rate_mask_ht20);
eep->modal_header_5g.paprd_rate_mask_ht20 = dword;
dword = __bswap32(eep->modal_header_5g.paprd_rate_mask_ht40);
eep->modal_header_5g.paprd_rate_mask_ht40 = dword;
for (i = 0; i < OSPREY_MAX_CHAINS; i++) {
word = __bswap16(eep->modal_header_2g.ant_ctrl_chain[i]);
eep->modal_header_2g.ant_ctrl_chain[i] = word;
word = __bswap16(eep->modal_header_5g.ant_ctrl_chain[i]);
eep->modal_header_5g.ant_ctrl_chain[i] = word;
}
}
void ar9300_eeprom_template_swap(void)
{
int it;
ar9300_eeprom_t *dptr;
for (it = 0; it < ARRAY_LENGTH(default9300); it++) {
dptr = ar9300_eeprom_struct_default(it);
if (dptr != 0) {
ar9300_swap_eeprom(dptr);
}
}
}
#endif
/*
* Restore the configuration structure by reading the eeprom.
* This function destroys any existing in-memory structure content.
*/
HAL_BOOL
ar9300_eeprom_restore(struct ath_hal *ah)
{
struct ath_hal_9300 *ahp = AH9300(ah);
ar9300_eeprom_t *mptr;
int mdata_size;
HAL_BOOL status = AH_FALSE;
mptr = &ahp->ah_eeprom;
mdata_size = ar9300_eeprom_struct_size();
if (mptr != 0 && mdata_size > 0) {
#if AH_BYTE_ORDER == AH_BIG_ENDIAN
ar9300_eeprom_template_swap();
ar9300_swap_eeprom(mptr);
#endif
/*
* At this point, mptr points to the eeprom data structure
* in its "default" state. If this is big endian, swap the
* data structures back to "little endian" form.
*/
if (ar9300_eeprom_restore_internal(ah, mptr, mdata_size) >= 0) {
status = AH_TRUE;
}
#if AH_BYTE_ORDER == AH_BIG_ENDIAN
/* Second Swap, back to Big Endian */
ar9300_eeprom_template_swap();
ar9300_swap_eeprom(mptr);
#endif
}
ahp->ah_2g_paprd_rate_mask_ht40 =
mptr->modal_header_2g.paprd_rate_mask_ht40;
ahp->ah_2g_paprd_rate_mask_ht20 =
mptr->modal_header_2g.paprd_rate_mask_ht20;
ahp->ah_5g_paprd_rate_mask_ht40 =
mptr->modal_header_5g.paprd_rate_mask_ht40;
ahp->ah_5g_paprd_rate_mask_ht20 =
mptr->modal_header_5g.paprd_rate_mask_ht20;
return status;
}
int32_t ar9300_thermometer_get(struct ath_hal *ah)
{
struct ath_hal_9300 *ahp = AH9300(ah);
int thermometer;
thermometer =
(ahp->ah_eeprom.base_eep_header.misc_configuration >> 1) & 0x3;
thermometer--;
return thermometer;
}
HAL_BOOL ar9300_thermometer_apply(struct ath_hal *ah)
{
int thermometer = ar9300_thermometer_get(ah);
/* ch0_RXTX4 */
/*#define AR_PHY_65NM_CH0_RXTX4 AR_PHY_65NM(ch0_RXTX4)*/
#define AR_PHY_65NM_CH1_RXTX4 AR_PHY_65NM(ch1_RXTX4)
#define AR_PHY_65NM_CH2_RXTX4 AR_PHY_65NM(ch2_RXTX4)
/*#define AR_PHY_65NM_CH0_RXTX4_THERM_ON 0x10000000*/
/*#define AR_PHY_65NM_CH0_RXTX4_THERM_ON_S 28*/
#define AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR_S 29
#define AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR \
(0x1<<AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR_S)
if (thermometer < 0) {
OS_REG_RMW_FIELD(ah,
AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 0);
if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
OS_REG_RMW_FIELD(ah,
AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 0);
if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) {
OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 0);
}
}
OS_REG_RMW_FIELD(ah,
AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
OS_REG_RMW_FIELD(ah,
AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) {
OS_REG_RMW_FIELD(ah,
AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
}
}
} else {
OS_REG_RMW_FIELD(ah,
AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 1);
if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
OS_REG_RMW_FIELD(ah,
AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 1);
if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) {
OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 1);
}
}
if (thermometer == 0) {
OS_REG_RMW_FIELD(ah,
AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 1);
if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
OS_REG_RMW_FIELD(ah,
AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) {
OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
}
}
} else if (thermometer == 1) {
OS_REG_RMW_FIELD(ah,
AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
OS_REG_RMW_FIELD(ah,
AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 1);
if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) {
OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
}
}
} else if (thermometer == 2) {
OS_REG_RMW_FIELD(ah,
AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
OS_REG_RMW_FIELD(ah,
AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) {
OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
AR_PHY_65NM_CH0_RXTX4_THERM_ON, 1);
}
}
}
}
return AH_TRUE;
}
static int32_t ar9300_tuning_caps_params_get(struct ath_hal *ah)
{
int tuning_caps_params;
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
tuning_caps_params = eep->base_eep_header.params_for_tuning_caps[0];
return tuning_caps_params;
}
/*
* Read the tuning caps params from eeprom and set to correct register.
* To regulation the frequency accuracy.
*/
HAL_BOOL ar9300_tuning_caps_apply(struct ath_hal *ah)
{
int tuning_caps_params;
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
tuning_caps_params = ar9300_tuning_caps_params_get(ah);
if ((eep->base_eep_header.feature_enable & 0x40) >> 6) {
tuning_caps_params &= 0x7f;
if (AR_SREV_POSEIDON(ah) || AR_SREV_WASP(ah) || AR_SREV_HONEYBEE(ah)) {
return true;
} else if (AR_SREV_HORNET(ah)) {
OS_REG_RMW_FIELD(ah,
AR_HORNET_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPINDAC,
tuning_caps_params);
OS_REG_RMW_FIELD(ah,
AR_HORNET_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPOUTDAC,
tuning_caps_params);
} else if (AR_SREV_SCORPION(ah)) {
OS_REG_RMW_FIELD(ah,
AR_SCORPION_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPINDAC,
tuning_caps_params);
OS_REG_RMW_FIELD(ah,
AR_SCORPION_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPOUTDAC,
tuning_caps_params);
} else {
OS_REG_RMW_FIELD(ah,
AR_OSPREY_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPINDAC,
tuning_caps_params);
OS_REG_RMW_FIELD(ah,
AR_OSPREY_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPOUTDAC,
tuning_caps_params);
}
}
return AH_TRUE;
}
/*
* Read the tx_frame_to_xpa_on param from eeprom and apply the value to
* correct register.
*/
HAL_BOOL ar9300_xpa_timing_control_apply(struct ath_hal *ah, HAL_BOOL is_2ghz)
{
u_int8_t xpa_timing_control;
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
if ((eep->base_eep_header.feature_enable & 0x80) >> 7) {
if (AR_SREV_OSPREY(ah) || AR_SREV_AR9580(ah) || AR_SREV_WASP(ah) || AR_SREV_HONEYBEE(ah)) {
if (is_2ghz) {
xpa_timing_control = eep->modal_header_2g.tx_frame_to_xpa_on;
OS_REG_RMW_FIELD(ah,
AR_PHY_XPA_TIMING_CTL, AR_PHY_XPA_TIMING_CTL_FRAME_XPAB_ON,
xpa_timing_control);
} else {
xpa_timing_control = eep->modal_header_5g.tx_frame_to_xpa_on;
OS_REG_RMW_FIELD(ah,
AR_PHY_XPA_TIMING_CTL, AR_PHY_XPA_TIMING_CTL_FRAME_XPAA_ON,
xpa_timing_control);
}
}
}
return AH_TRUE;
}
/*
* Read the xLNA_bias_strength param from eeprom and apply the value to
* correct register.
*/
HAL_BOOL ar9300_x_lNA_bias_strength_apply(struct ath_hal *ah, HAL_BOOL is_2ghz)
{
u_int8_t x_lNABias;
u_int32_t value = 0;
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
if ((eep->base_eep_header.misc_configuration & 0x40) >> 6) {
if (AR_SREV_OSPREY(ah)) {
if (is_2ghz) {
x_lNABias = eep->modal_header_2g.xLNA_bias_strength;
} else {
x_lNABias = eep->modal_header_5g.xLNA_bias_strength;
}
value = x_lNABias & ( 0x03 ); // bit0,1 for chain0
OS_REG_RMW_FIELD(ah,
AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS, value);
value = (x_lNABias >> 2) & ( 0x03 ); // bit2,3 for chain1
OS_REG_RMW_FIELD(ah,
AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS, value);
value = (x_lNABias >> 4) & ( 0x03 ); // bit4,5 for chain2
OS_REG_RMW_FIELD(ah,
AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS, value);
}
}
return AH_TRUE;
}
/*
* Read EEPROM header info and program the device for correct operation
* given the channel value.
*/
HAL_BOOL
ar9300_eeprom_set_board_values(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
ar9300_xpa_bias_level_apply(ah, IEEE80211_IS_CHAN_2GHZ(chan));
ar9300_xpa_timing_control_apply(ah, IEEE80211_IS_CHAN_2GHZ(chan));
ar9300_ant_ctrl_apply(ah, IEEE80211_IS_CHAN_2GHZ(chan));
ar9300_drive_strength_apply(ah);
ar9300_x_lNA_bias_strength_apply(ah, IEEE80211_IS_CHAN_2GHZ(chan));
/* wait for Poseidon internal regular turnning */
/* for Hornet we move it before initPLL to avoid an access issue */
/* Function not used when EMULATION. */
if (!AR_SREV_HORNET(ah) && !AR_SREV_WASP(ah) && !AR_SREV_HONEYBEE(ah)) {
ar9300_internal_regulator_apply(ah);
}
ar9300_attenuation_apply(ah, ichan->channel);
ar9300_quick_drop_apply(ah, ichan->channel);
ar9300_thermometer_apply(ah);
if(!AR_SREV_WASP(ah))
{
ar9300_tuning_caps_apply(ah);
}
ar9300_tx_end_to_xpab_off_apply(ah, ichan->channel);
return AH_TRUE;
}
u_int8_t *
ar9300_eeprom_get_spur_chans_ptr(struct ath_hal *ah, HAL_BOOL is_2ghz)
{
ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
if (is_2ghz) {
return &(eep->modal_header_2g.spur_chans[0]);
} else {
return &(eep->modal_header_5g.spur_chans[0]);
}
}
static u_int8_t ar9300_eeprom_get_tx_gain_table_number_max(struct ath_hal *ah)
{
unsigned long tx_gain_table_max;
tx_gain_table_max = OS_REG_READ_FIELD(ah,
AR_PHY_TPC_7, AR_PHY_TPC_7_TX_GAIN_TABLE_MAX);
return tx_gain_table_max;
}
u_int8_t ar9300_eeprom_tx_gain_table_index_max_apply(struct ath_hal *ah, u_int16_t channel)
{
unsigned int index;
ar9300_eeprom_t *ahp_Eeprom;
struct ath_hal_9300 *ahp = AH9300(ah);
ahp_Eeprom = &ahp->ah_eeprom;
if (ahp_Eeprom->base_ext1.misc_enable == 0)
return AH_FALSE;
if (channel < 4000)
{
index = ahp_Eeprom->modal_header_2g.tx_gain_cap;
}
else
{
index = ahp_Eeprom->modal_header_5g.tx_gain_cap;
}
OS_REG_RMW_FIELD(ah,
AR_PHY_TPC_7, AR_PHY_TPC_7_TX_GAIN_TABLE_MAX, index);
return AH_TRUE;
}
static u_int8_t ar9300_eeprom_get_pcdac_tx_gain_table_i(struct ath_hal *ah,
int i, u_int8_t *pcdac)
{
unsigned long tx_gain;
u_int8_t tx_gain_table_max;
tx_gain_table_max = ar9300_eeprom_get_tx_gain_table_number_max(ah);
if (i <= 0 || i > tx_gain_table_max) {
*pcdac = 0;
return AH_FALSE;
}
tx_gain = OS_REG_READ(ah, AR_PHY_TXGAIN_TAB(1) + i * 4);
*pcdac = ((tx_gain >> 24) & 0xff);
return AH_TRUE;
}
u_int8_t ar9300_eeprom_set_tx_gain_cap(struct ath_hal *ah,
int *tx_gain_max)
// pcdac read back from reg, read back value depends on reset 2GHz/5GHz ini
// tx_gain_table, this function will be called twice after each
// band's calibration.
// after 2GHz cal, tx_gain_max[0] has 2GHz, calibration max txgain,
// tx_gain_max[1]=-100
// after 5GHz cal, tx_gain_max[0],tx_gain_max[1] have calibration
// value for both band
// reset is on 5GHz, reg reading from tx_gain_table is for 5GHz,
// so program can't recalculate 2g.tx_gain_cap at this point.
{
int i = 0, ig, im = 0;
u_int8_t pcdac = 0;
u_int8_t tx_gain_table_max;
ar9300_eeprom_t *ahp_Eeprom;
struct ath_hal_9300 *ahp = AH9300(ah);
ahp_Eeprom = &ahp->ah_eeprom;
if (ahp_Eeprom->base_ext1.misc_enable == 0)
return AH_FALSE;
tx_gain_table_max = ar9300_eeprom_get_tx_gain_table_number_max(ah);
for (i = 0; i < 2; i++) {
if (tx_gain_max[i]>-100) { // -100 didn't cal that band.
if ( i== 0) {
if (tx_gain_max[1]>-100) {
continue;
// both band are calibrated, skip 2GHz 2g.tx_gain_cap reset
}
}
for (ig = 1; ig <= tx_gain_table_max; ig++) {
if (ah != 0 && ah->ah_reset != 0)
{
ar9300_eeprom_get_pcdac_tx_gain_table_i(ah, ig, &pcdac);
if (pcdac >= tx_gain_max[i])
break;
}
}
if (ig+1 <= tx_gain_table_max) {
if (pcdac == tx_gain_max[i])
im = ig;
else
im = ig + 1;
if (i == 0) {
ahp_Eeprom->modal_header_2g.tx_gain_cap = im;
} else {
ahp_Eeprom->modal_header_5g.tx_gain_cap = im;
}
} else {
if (i == 0) {
ahp_Eeprom->modal_header_2g.tx_gain_cap = ig;
} else {
ahp_Eeprom->modal_header_5g.tx_gain_cap = ig;
}
}
}
}
return AH_TRUE;
}