mirror of https://github.com/F-Stack/f-stack.git
3029 lines
78 KiB
C
3029 lines
78 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
|
|
* Copyright (c) 2016 Rubicon Communications, LLC (Netgate)
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* TI Common Platform Ethernet Switch (CPSW) Driver
|
|
* Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
|
|
*
|
|
* This controller is documented in the AM335x Technical Reference
|
|
* Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
|
|
* and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
|
|
*
|
|
* It is basically a single Ethernet port (port 0) wired internally to
|
|
* a 3-port store-and-forward switch connected to two independent
|
|
* "sliver" controllers (port 1 and port 2). You can operate the
|
|
* controller in a variety of different ways by suitably configuring
|
|
* the slivers and the Address Lookup Engine (ALE) that routes packets
|
|
* between the ports.
|
|
*
|
|
* This code was developed and tested on a BeagleBone with
|
|
* an AM335x SoC.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_cpsw.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/module.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
#include <machine/stdarg.h>
|
|
|
|
#include <net/ethernet.h>
|
|
#include <net/bpf.h>
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
|
|
#include <dev/extres/syscon/syscon.h>
|
|
#include "syscon_if.h"
|
|
#include <arm/ti/am335x/am335x_scm.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/ofw/ofw_bus.h>
|
|
#include <dev/ofw/ofw_bus_subr.h>
|
|
|
|
#include <dev/fdt/fdt_common.h>
|
|
|
|
#ifdef CPSW_ETHERSWITCH
|
|
#include <dev/etherswitch/etherswitch.h>
|
|
#include "etherswitch_if.h"
|
|
#endif
|
|
|
|
#include "if_cpswreg.h"
|
|
#include "if_cpswvar.h"
|
|
|
|
#include "miibus_if.h"
|
|
|
|
/* Device probe/attach/detach. */
|
|
static int cpsw_probe(device_t);
|
|
static int cpsw_attach(device_t);
|
|
static int cpsw_detach(device_t);
|
|
static int cpswp_probe(device_t);
|
|
static int cpswp_attach(device_t);
|
|
static int cpswp_detach(device_t);
|
|
|
|
static phandle_t cpsw_get_node(device_t, device_t);
|
|
|
|
/* Device Init/shutdown. */
|
|
static int cpsw_shutdown(device_t);
|
|
static void cpswp_init(void *);
|
|
static void cpswp_init_locked(void *);
|
|
static void cpswp_stop_locked(struct cpswp_softc *);
|
|
|
|
/* Device Suspend/Resume. */
|
|
static int cpsw_suspend(device_t);
|
|
static int cpsw_resume(device_t);
|
|
|
|
/* Ioctl. */
|
|
static int cpswp_ioctl(struct ifnet *, u_long command, caddr_t data);
|
|
|
|
static int cpswp_miibus_readreg(device_t, int phy, int reg);
|
|
static int cpswp_miibus_writereg(device_t, int phy, int reg, int value);
|
|
static void cpswp_miibus_statchg(device_t);
|
|
|
|
/* Send/Receive packets. */
|
|
static void cpsw_intr_rx(void *arg);
|
|
static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
|
|
static void cpsw_rx_enqueue(struct cpsw_softc *);
|
|
static void cpswp_start(struct ifnet *);
|
|
static void cpsw_intr_tx(void *);
|
|
static void cpswp_tx_enqueue(struct cpswp_softc *);
|
|
static int cpsw_tx_dequeue(struct cpsw_softc *);
|
|
|
|
/* Misc interrupts and watchdog. */
|
|
static void cpsw_intr_rx_thresh(void *);
|
|
static void cpsw_intr_misc(void *);
|
|
static void cpswp_tick(void *);
|
|
static void cpswp_ifmedia_sts(struct ifnet *, struct ifmediareq *);
|
|
static int cpswp_ifmedia_upd(struct ifnet *);
|
|
static void cpsw_tx_watchdog(void *);
|
|
|
|
/* ALE support */
|
|
static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t, uint32_t *);
|
|
static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t, uint32_t *);
|
|
static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t, int, uint8_t *);
|
|
static void cpsw_ale_dump_table(struct cpsw_softc *);
|
|
static int cpsw_ale_update_vlan_table(struct cpsw_softc *, int, int, int, int,
|
|
int);
|
|
static int cpswp_ale_update_addresses(struct cpswp_softc *, int);
|
|
|
|
/* Statistics and sysctls. */
|
|
static void cpsw_add_sysctls(struct cpsw_softc *);
|
|
static void cpsw_stats_collect(struct cpsw_softc *);
|
|
static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
|
|
|
|
#ifdef CPSW_ETHERSWITCH
|
|
static etherswitch_info_t *cpsw_getinfo(device_t);
|
|
static int cpsw_getport(device_t, etherswitch_port_t *);
|
|
static int cpsw_setport(device_t, etherswitch_port_t *);
|
|
static int cpsw_getconf(device_t, etherswitch_conf_t *);
|
|
static int cpsw_getvgroup(device_t, etherswitch_vlangroup_t *);
|
|
static int cpsw_setvgroup(device_t, etherswitch_vlangroup_t *);
|
|
static int cpsw_readreg(device_t, int);
|
|
static int cpsw_writereg(device_t, int, int);
|
|
static int cpsw_readphy(device_t, int, int);
|
|
static int cpsw_writephy(device_t, int, int, int);
|
|
#endif
|
|
|
|
/*
|
|
* Arbitrary limit on number of segments in an mbuf to be transmitted.
|
|
* Packets with more segments than this will be defragmented before
|
|
* they are queued.
|
|
*/
|
|
#define CPSW_TXFRAGS 16
|
|
|
|
/* Shared resources. */
|
|
static device_method_t cpsw_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, cpsw_probe),
|
|
DEVMETHOD(device_attach, cpsw_attach),
|
|
DEVMETHOD(device_detach, cpsw_detach),
|
|
DEVMETHOD(device_shutdown, cpsw_shutdown),
|
|
DEVMETHOD(device_suspend, cpsw_suspend),
|
|
DEVMETHOD(device_resume, cpsw_resume),
|
|
/* Bus interface */
|
|
DEVMETHOD(bus_add_child, device_add_child_ordered),
|
|
/* OFW methods */
|
|
DEVMETHOD(ofw_bus_get_node, cpsw_get_node),
|
|
#ifdef CPSW_ETHERSWITCH
|
|
/* etherswitch interface */
|
|
DEVMETHOD(etherswitch_getinfo, cpsw_getinfo),
|
|
DEVMETHOD(etherswitch_readreg, cpsw_readreg),
|
|
DEVMETHOD(etherswitch_writereg, cpsw_writereg),
|
|
DEVMETHOD(etherswitch_readphyreg, cpsw_readphy),
|
|
DEVMETHOD(etherswitch_writephyreg, cpsw_writephy),
|
|
DEVMETHOD(etherswitch_getport, cpsw_getport),
|
|
DEVMETHOD(etherswitch_setport, cpsw_setport),
|
|
DEVMETHOD(etherswitch_getvgroup, cpsw_getvgroup),
|
|
DEVMETHOD(etherswitch_setvgroup, cpsw_setvgroup),
|
|
DEVMETHOD(etherswitch_getconf, cpsw_getconf),
|
|
#endif
|
|
DEVMETHOD_END
|
|
};
|
|
|
|
static driver_t cpsw_driver = {
|
|
"cpswss",
|
|
cpsw_methods,
|
|
sizeof(struct cpsw_softc),
|
|
};
|
|
|
|
static devclass_t cpsw_devclass;
|
|
|
|
DRIVER_MODULE(cpswss, simplebus, cpsw_driver, cpsw_devclass, 0, 0);
|
|
|
|
/* Port/Slave resources. */
|
|
static device_method_t cpswp_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, cpswp_probe),
|
|
DEVMETHOD(device_attach, cpswp_attach),
|
|
DEVMETHOD(device_detach, cpswp_detach),
|
|
/* MII interface */
|
|
DEVMETHOD(miibus_readreg, cpswp_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, cpswp_miibus_writereg),
|
|
DEVMETHOD(miibus_statchg, cpswp_miibus_statchg),
|
|
DEVMETHOD_END
|
|
};
|
|
|
|
static driver_t cpswp_driver = {
|
|
"cpsw",
|
|
cpswp_methods,
|
|
sizeof(struct cpswp_softc),
|
|
};
|
|
|
|
static devclass_t cpswp_devclass;
|
|
|
|
#ifdef CPSW_ETHERSWITCH
|
|
DRIVER_MODULE(etherswitch, cpswss, etherswitch_driver, etherswitch_devclass, 0, 0);
|
|
MODULE_DEPEND(cpswss, etherswitch, 1, 1, 1);
|
|
#endif
|
|
|
|
DRIVER_MODULE(cpsw, cpswss, cpswp_driver, cpswp_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, cpsw, miibus_driver, miibus_devclass, 0, 0);
|
|
MODULE_DEPEND(cpsw, ether, 1, 1, 1);
|
|
MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
|
|
|
|
#ifdef CPSW_ETHERSWITCH
|
|
static struct cpsw_vlangroups cpsw_vgroups[CPSW_VLANS];
|
|
#endif
|
|
|
|
static uint32_t slave_mdio_addr[] = { 0x4a100200, 0x4a100300 };
|
|
|
|
static struct resource_spec irq_res_spec[] = {
|
|
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
|
|
{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
|
|
{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
|
|
{ SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
|
|
{ -1, 0 }
|
|
};
|
|
|
|
static struct {
|
|
void (*cb)(void *);
|
|
} cpsw_intr_cb[] = {
|
|
{ cpsw_intr_rx_thresh },
|
|
{ cpsw_intr_rx },
|
|
{ cpsw_intr_tx },
|
|
{ cpsw_intr_misc },
|
|
};
|
|
|
|
/* Number of entries here must match size of stats
|
|
* array in struct cpswp_softc. */
|
|
static struct cpsw_stat {
|
|
int reg;
|
|
char *oid;
|
|
} cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
|
|
{0x00, "GoodRxFrames"},
|
|
{0x04, "BroadcastRxFrames"},
|
|
{0x08, "MulticastRxFrames"},
|
|
{0x0C, "PauseRxFrames"},
|
|
{0x10, "RxCrcErrors"},
|
|
{0x14, "RxAlignErrors"},
|
|
{0x18, "OversizeRxFrames"},
|
|
{0x1c, "RxJabbers"},
|
|
{0x20, "ShortRxFrames"},
|
|
{0x24, "RxFragments"},
|
|
{0x30, "RxOctets"},
|
|
{0x34, "GoodTxFrames"},
|
|
{0x38, "BroadcastTxFrames"},
|
|
{0x3c, "MulticastTxFrames"},
|
|
{0x40, "PauseTxFrames"},
|
|
{0x44, "DeferredTxFrames"},
|
|
{0x48, "CollisionsTxFrames"},
|
|
{0x4c, "SingleCollisionTxFrames"},
|
|
{0x50, "MultipleCollisionTxFrames"},
|
|
{0x54, "ExcessiveCollisions"},
|
|
{0x58, "LateCollisions"},
|
|
{0x5c, "TxUnderrun"},
|
|
{0x60, "CarrierSenseErrors"},
|
|
{0x64, "TxOctets"},
|
|
{0x68, "RxTx64OctetFrames"},
|
|
{0x6c, "RxTx65to127OctetFrames"},
|
|
{0x70, "RxTx128to255OctetFrames"},
|
|
{0x74, "RxTx256to511OctetFrames"},
|
|
{0x78, "RxTx512to1024OctetFrames"},
|
|
{0x7c, "RxTx1024upOctetFrames"},
|
|
{0x80, "NetOctets"},
|
|
{0x84, "RxStartOfFrameOverruns"},
|
|
{0x88, "RxMiddleOfFrameOverruns"},
|
|
{0x8c, "RxDmaOverruns"}
|
|
};
|
|
|
|
/*
|
|
* Basic debug support.
|
|
*/
|
|
|
|
static void
|
|
cpsw_debugf_head(const char *funcname)
|
|
{
|
|
int t = (int)(time_second % (24 * 60 * 60));
|
|
|
|
printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
|
|
}
|
|
|
|
static void
|
|
cpsw_debugf(const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
vprintf(fmt, ap);
|
|
va_end(ap);
|
|
printf("\n");
|
|
|
|
}
|
|
|
|
#define CPSW_DEBUGF(_sc, a) do { \
|
|
if ((_sc)->debug) { \
|
|
cpsw_debugf_head(__func__); \
|
|
cpsw_debugf a; \
|
|
} \
|
|
} while (0)
|
|
|
|
/*
|
|
* Locking macros
|
|
*/
|
|
#define CPSW_TX_LOCK(sc) do { \
|
|
mtx_assert(&(sc)->rx.lock, MA_NOTOWNED); \
|
|
mtx_lock(&(sc)->tx.lock); \
|
|
} while (0)
|
|
|
|
#define CPSW_TX_UNLOCK(sc) mtx_unlock(&(sc)->tx.lock)
|
|
#define CPSW_TX_LOCK_ASSERT(sc) mtx_assert(&(sc)->tx.lock, MA_OWNED)
|
|
|
|
#define CPSW_RX_LOCK(sc) do { \
|
|
mtx_assert(&(sc)->tx.lock, MA_NOTOWNED); \
|
|
mtx_lock(&(sc)->rx.lock); \
|
|
} while (0)
|
|
|
|
#define CPSW_RX_UNLOCK(sc) mtx_unlock(&(sc)->rx.lock)
|
|
#define CPSW_RX_LOCK_ASSERT(sc) mtx_assert(&(sc)->rx.lock, MA_OWNED)
|
|
|
|
#define CPSW_PORT_LOCK(_sc) do { \
|
|
mtx_assert(&(_sc)->lock, MA_NOTOWNED); \
|
|
mtx_lock(&(_sc)->lock); \
|
|
} while (0)
|
|
|
|
#define CPSW_PORT_UNLOCK(_sc) mtx_unlock(&(_sc)->lock)
|
|
#define CPSW_PORT_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->lock, MA_OWNED)
|
|
|
|
/*
|
|
* Read/Write macros
|
|
*/
|
|
#define cpsw_read_4(_sc, _reg) bus_read_4((_sc)->mem_res, (_reg))
|
|
#define cpsw_write_4(_sc, _reg, _val) \
|
|
bus_write_4((_sc)->mem_res, (_reg), (_val))
|
|
|
|
#define cpsw_cpdma_bd_offset(i) (CPSW_CPPI_RAM_OFFSET + ((i)*16))
|
|
|
|
#define cpsw_cpdma_bd_paddr(sc, slot) \
|
|
BUS_SPACE_PHYSADDR(sc->mem_res, slot->bd_offset)
|
|
#define cpsw_cpdma_read_bd(sc, slot, val) \
|
|
bus_read_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
|
|
#define cpsw_cpdma_write_bd(sc, slot, val) \
|
|
bus_write_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
|
|
#define cpsw_cpdma_write_bd_next(sc, slot, next_slot) \
|
|
cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
|
|
#define cpsw_cpdma_write_bd_flags(sc, slot, val) \
|
|
bus_write_2(sc->mem_res, slot->bd_offset + 14, val)
|
|
#define cpsw_cpdma_read_bd_flags(sc, slot) \
|
|
bus_read_2(sc->mem_res, slot->bd_offset + 14)
|
|
#define cpsw_write_hdp_slot(sc, queue, slot) \
|
|
cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
|
|
#define CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
|
|
#define cpsw_read_cp(sc, queue) \
|
|
cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET)
|
|
#define cpsw_write_cp(sc, queue, val) \
|
|
cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
|
|
#define cpsw_write_cp_slot(sc, queue, slot) \
|
|
cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
|
|
|
|
#if 0
|
|
/* XXX temporary function versions for debugging. */
|
|
static void
|
|
cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
|
|
{
|
|
uint32_t reg = queue->hdp_offset;
|
|
uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
|
|
CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
|
|
cpsw_write_4(sc, reg, v);
|
|
}
|
|
|
|
static void
|
|
cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
|
|
{
|
|
uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
|
|
CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
|
|
cpsw_write_cp(sc, queue, v);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Expanded dump routines for verbose debugging.
|
|
*/
|
|
static void
|
|
cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
|
|
{
|
|
static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
|
|
"TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
|
|
"PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
|
|
"Port0"};
|
|
struct cpsw_cpdma_bd bd;
|
|
const char *sep;
|
|
int i;
|
|
|
|
cpsw_cpdma_read_bd(sc, slot, &bd);
|
|
printf("BD Addr : 0x%08x Next : 0x%08x\n",
|
|
cpsw_cpdma_bd_paddr(sc, slot), bd.next);
|
|
printf(" BufPtr: 0x%08x BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
|
|
printf(" BufOff: 0x%08x PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
|
|
printf(" Flags: ");
|
|
sep = "";
|
|
for (i = 0; i < 16; ++i) {
|
|
if (bd.flags & (1 << (15 - i))) {
|
|
printf("%s%s", sep, flags[i]);
|
|
sep = ",";
|
|
}
|
|
}
|
|
printf("\n");
|
|
if (slot->mbuf) {
|
|
printf(" Ether: %14D\n",
|
|
(char *)(slot->mbuf->m_data), " ");
|
|
printf(" Packet: %16D\n",
|
|
(char *)(slot->mbuf->m_data) + 14, " ");
|
|
}
|
|
}
|
|
|
|
#define CPSW_DUMP_SLOT(cs, slot) do { \
|
|
IF_DEBUG(sc) { \
|
|
cpsw_dump_slot(sc, slot); \
|
|
} \
|
|
} while (0)
|
|
|
|
static void
|
|
cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
|
|
{
|
|
struct cpsw_slot *slot;
|
|
int i = 0;
|
|
int others = 0;
|
|
|
|
STAILQ_FOREACH(slot, q, next) {
|
|
if (i > CPSW_TXFRAGS)
|
|
++others;
|
|
else
|
|
cpsw_dump_slot(sc, slot);
|
|
++i;
|
|
}
|
|
if (others)
|
|
printf(" ... and %d more.\n", others);
|
|
printf("\n");
|
|
}
|
|
|
|
#define CPSW_DUMP_QUEUE(sc, q) do { \
|
|
IF_DEBUG(sc) { \
|
|
cpsw_dump_queue(sc, q); \
|
|
} \
|
|
} while (0)
|
|
|
|
static void
|
|
cpsw_init_slots(struct cpsw_softc *sc)
|
|
{
|
|
struct cpsw_slot *slot;
|
|
int i;
|
|
|
|
STAILQ_INIT(&sc->avail);
|
|
|
|
/* Put the slot descriptors onto the global avail list. */
|
|
for (i = 0; i < nitems(sc->_slots); i++) {
|
|
slot = &sc->_slots[i];
|
|
slot->bd_offset = cpsw_cpdma_bd_offset(i);
|
|
STAILQ_INSERT_TAIL(&sc->avail, slot, next);
|
|
}
|
|
}
|
|
|
|
static int
|
|
cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
|
|
{
|
|
const int max_slots = nitems(sc->_slots);
|
|
struct cpsw_slot *slot;
|
|
int i;
|
|
|
|
if (requested < 0)
|
|
requested = max_slots;
|
|
|
|
for (i = 0; i < requested; ++i) {
|
|
slot = STAILQ_FIRST(&sc->avail);
|
|
if (slot == NULL)
|
|
return (0);
|
|
if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
|
|
device_printf(sc->dev, "failed to create dmamap\n");
|
|
return (ENOMEM);
|
|
}
|
|
STAILQ_REMOVE_HEAD(&sc->avail, next);
|
|
STAILQ_INSERT_TAIL(&queue->avail, slot, next);
|
|
++queue->avail_queue_len;
|
|
++queue->queue_slots;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
|
|
{
|
|
int error;
|
|
|
|
if (slot->dmamap) {
|
|
if (slot->mbuf)
|
|
bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
|
|
error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
|
|
KASSERT(error == 0, ("Mapping still active"));
|
|
slot->dmamap = NULL;
|
|
}
|
|
if (slot->mbuf) {
|
|
m_freem(slot->mbuf);
|
|
slot->mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
cpsw_reset(struct cpsw_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
callout_stop(&sc->watchdog.callout);
|
|
|
|
/* Reset RMII/RGMII wrapper. */
|
|
cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
|
|
while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
|
|
;
|
|
|
|
/* Disable TX and RX interrupts for all cores. */
|
|
for (i = 0; i < 3; ++i) {
|
|
cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
|
|
cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
|
|
cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
|
|
cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
|
|
}
|
|
|
|
/* Reset CPSW subsystem. */
|
|
cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
|
|
while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
|
|
;
|
|
|
|
/* Reset Sliver port 1 and 2 */
|
|
for (i = 0; i < 2; i++) {
|
|
/* Reset */
|
|
cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
|
|
while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
|
|
;
|
|
}
|
|
|
|
/* Reset DMA controller. */
|
|
cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
|
|
while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
|
|
;
|
|
|
|
/* Disable TX & RX DMA */
|
|
cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
|
|
cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
|
|
|
|
/* Clear all queues. */
|
|
for (i = 0; i < 8; i++) {
|
|
cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
|
|
cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
|
|
cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
|
|
cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
|
|
}
|
|
|
|
/* Clear all interrupt Masks */
|
|
cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
|
|
cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
|
|
}
|
|
|
|
static void
|
|
cpsw_init(struct cpsw_softc *sc)
|
|
{
|
|
struct cpsw_slot *slot;
|
|
uint32_t reg;
|
|
|
|
/* Disable the interrupt pacing. */
|
|
reg = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
|
|
reg &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
|
|
cpsw_write_4(sc, CPSW_WR_INT_CONTROL, reg);
|
|
|
|
/* Clear ALE */
|
|
cpsw_write_4(sc, CPSW_ALE_CONTROL, CPSW_ALE_CTL_CLEAR_TBL);
|
|
|
|
/* Enable ALE */
|
|
reg = CPSW_ALE_CTL_ENABLE;
|
|
if (sc->dualemac)
|
|
reg |= CPSW_ALE_CTL_VLAN_AWARE;
|
|
cpsw_write_4(sc, CPSW_ALE_CONTROL, reg);
|
|
|
|
/* Set Host Port Mapping. */
|
|
cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
|
|
cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
|
|
|
|
/* Initialize ALE: set host port to forwarding(3). */
|
|
cpsw_write_4(sc, CPSW_ALE_PORTCTL(0),
|
|
ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
|
|
|
|
cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
|
|
|
|
/* Enable statistics for ports 0, 1 and 2 */
|
|
cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
|
|
|
|
/* Turn off flow control. */
|
|
cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
|
|
|
|
/* Make IP hdr aligned with 4 */
|
|
cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
|
|
|
|
/* Initialize RX Buffer Descriptors */
|
|
cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), 0);
|
|
cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
|
|
|
|
/* Enable TX & RX DMA */
|
|
cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
|
|
cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
|
|
|
|
/* Enable Interrupts for core 0 */
|
|
cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
|
|
cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
|
|
cpsw_write_4(sc, CPSW_WR_C_TX_EN(0), 0xFF);
|
|
cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x1F);
|
|
|
|
/* Enable host Error Interrupt */
|
|
cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
|
|
|
|
/* Enable interrupts for RX and TX on Channel 0 */
|
|
cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET,
|
|
CPSW_CPDMA_RX_INT(0) | CPSW_CPDMA_RX_INT_THRESH(0));
|
|
cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_SET, 1);
|
|
|
|
/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
|
|
/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
|
|
cpsw_write_4(sc, MDIOCONTROL, MDIOCTL_ENABLE | MDIOCTL_FAULTENB | 0xff);
|
|
|
|
/* Select MII in GMII_SEL, Internal Delay mode */
|
|
//ti_scm_reg_write_4(0x650, 0);
|
|
|
|
/* Initialize active queues. */
|
|
slot = STAILQ_FIRST(&sc->tx.active);
|
|
if (slot != NULL)
|
|
cpsw_write_hdp_slot(sc, &sc->tx, slot);
|
|
slot = STAILQ_FIRST(&sc->rx.active);
|
|
if (slot != NULL)
|
|
cpsw_write_hdp_slot(sc, &sc->rx, slot);
|
|
cpsw_rx_enqueue(sc);
|
|
cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), sc->rx.active_queue_len);
|
|
cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), CPSW_TXFRAGS);
|
|
|
|
/* Activate network interface. */
|
|
sc->rx.running = 1;
|
|
sc->tx.running = 1;
|
|
sc->watchdog.timer = 0;
|
|
callout_init(&sc->watchdog.callout, 0);
|
|
callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Device Probe, Attach, Detach.
|
|
*
|
|
*/
|
|
|
|
static int
|
|
cpsw_probe(device_t dev)
|
|
{
|
|
|
|
if (!ofw_bus_status_okay(dev))
|
|
return (ENXIO);
|
|
|
|
if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
|
|
return (ENXIO);
|
|
|
|
device_set_desc(dev, "3-port Switch Ethernet Subsystem");
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
|
|
static int
|
|
cpsw_intr_attach(struct cpsw_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < CPSW_INTR_COUNT; i++) {
|
|
if (bus_setup_intr(sc->dev, sc->irq_res[i],
|
|
INTR_TYPE_NET | INTR_MPSAFE, NULL,
|
|
cpsw_intr_cb[i].cb, sc, &sc->ih_cookie[i]) != 0) {
|
|
return (-1);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
cpsw_intr_detach(struct cpsw_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < CPSW_INTR_COUNT; i++) {
|
|
if (sc->ih_cookie[i]) {
|
|
bus_teardown_intr(sc->dev, sc->irq_res[i],
|
|
sc->ih_cookie[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
cpsw_get_fdt_data(struct cpsw_softc *sc, int port)
|
|
{
|
|
char *name;
|
|
int len, phy, vlan;
|
|
pcell_t phy_id[3], vlan_id;
|
|
phandle_t child;
|
|
unsigned long mdio_child_addr;
|
|
|
|
/* Find any slave with phy-handle/phy_id */
|
|
phy = -1;
|
|
vlan = -1;
|
|
for (child = OF_child(sc->node); child != 0; child = OF_peer(child)) {
|
|
if (OF_getprop_alloc(child, "name", (void **)&name) < 0)
|
|
continue;
|
|
if (sscanf(name, "slave@%lx", &mdio_child_addr) != 1) {
|
|
OF_prop_free(name);
|
|
continue;
|
|
}
|
|
OF_prop_free(name);
|
|
|
|
if (mdio_child_addr != slave_mdio_addr[port] &&
|
|
mdio_child_addr != (slave_mdio_addr[port] & 0xFFF))
|
|
continue;
|
|
|
|
if (fdt_get_phyaddr(child, NULL, &phy, NULL) != 0){
|
|
/* Users with old DTB will have phy_id instead */
|
|
phy = -1;
|
|
len = OF_getproplen(child, "phy_id");
|
|
if (len / sizeof(pcell_t) == 2) {
|
|
/* Get phy address from fdt */
|
|
if (OF_getencprop(child, "phy_id", phy_id, len) > 0)
|
|
phy = phy_id[1];
|
|
}
|
|
}
|
|
|
|
len = OF_getproplen(child, "dual_emac_res_vlan");
|
|
if (len / sizeof(pcell_t) == 1) {
|
|
/* Get phy address from fdt */
|
|
if (OF_getencprop(child, "dual_emac_res_vlan",
|
|
&vlan_id, len) > 0) {
|
|
vlan = vlan_id;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
if (phy == -1)
|
|
return (ENXIO);
|
|
sc->port[port].phy = phy;
|
|
sc->port[port].vlan = vlan;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
cpsw_attach(device_t dev)
|
|
{
|
|
int error, i;
|
|
struct cpsw_softc *sc;
|
|
uint32_t reg;
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->dev = dev;
|
|
sc->node = ofw_bus_get_node(dev);
|
|
getbinuptime(&sc->attach_uptime);
|
|
|
|
if (OF_getencprop(sc->node, "active_slave", &sc->active_slave,
|
|
sizeof(sc->active_slave)) <= 0) {
|
|
sc->active_slave = 0;
|
|
}
|
|
if (sc->active_slave > 1)
|
|
sc->active_slave = 1;
|
|
|
|
if (OF_hasprop(sc->node, "dual_emac"))
|
|
sc->dualemac = 1;
|
|
|
|
for (i = 0; i < CPSW_PORTS; i++) {
|
|
if (!sc->dualemac && i != sc->active_slave)
|
|
continue;
|
|
if (cpsw_get_fdt_data(sc, i) != 0) {
|
|
device_printf(dev,
|
|
"failed to get PHY address from FDT\n");
|
|
return (ENXIO);
|
|
}
|
|
}
|
|
|
|
/* Initialize mutexes */
|
|
mtx_init(&sc->tx.lock, device_get_nameunit(dev),
|
|
"cpsw TX lock", MTX_DEF);
|
|
mtx_init(&sc->rx.lock, device_get_nameunit(dev),
|
|
"cpsw RX lock", MTX_DEF);
|
|
|
|
/* Allocate IRQ resources */
|
|
error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res);
|
|
if (error) {
|
|
device_printf(dev, "could not allocate IRQ resources\n");
|
|
cpsw_detach(dev);
|
|
return (ENXIO);
|
|
}
|
|
|
|
sc->mem_rid = 0;
|
|
sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
|
|
&sc->mem_rid, RF_ACTIVE);
|
|
if (sc->mem_res == NULL) {
|
|
device_printf(sc->dev, "failed to allocate memory resource\n");
|
|
cpsw_detach(dev);
|
|
return (ENXIO);
|
|
}
|
|
|
|
reg = cpsw_read_4(sc, CPSW_SS_IDVER);
|
|
device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
|
|
reg & 0xFF, (reg >> 11) & 0x1F);
|
|
|
|
cpsw_add_sysctls(sc);
|
|
|
|
/* Allocate a busdma tag and DMA safe memory for mbufs. */
|
|
error = bus_dma_tag_create(
|
|
bus_get_dma_tag(sc->dev), /* parent */
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filtfunc, filtfuncarg */
|
|
MCLBYTES, CPSW_TXFRAGS, /* maxsize, nsegments */
|
|
MCLBYTES, 0, /* maxsegsz, flags */
|
|
NULL, NULL, /* lockfunc, lockfuncarg */
|
|
&sc->mbuf_dtag); /* dmatag */
|
|
if (error) {
|
|
device_printf(dev, "bus_dma_tag_create failed\n");
|
|
cpsw_detach(dev);
|
|
return (error);
|
|
}
|
|
|
|
/* Allocate a NULL buffer for padding. */
|
|
sc->nullpad = malloc(ETHER_MIN_LEN, M_DEVBUF, M_WAITOK | M_ZERO);
|
|
|
|
cpsw_init_slots(sc);
|
|
|
|
/* Allocate slots to TX and RX queues. */
|
|
STAILQ_INIT(&sc->rx.avail);
|
|
STAILQ_INIT(&sc->rx.active);
|
|
STAILQ_INIT(&sc->tx.avail);
|
|
STAILQ_INIT(&sc->tx.active);
|
|
// For now: 128 slots to TX, rest to RX.
|
|
// XXX TODO: start with 32/64 and grow dynamically based on demand.
|
|
if (cpsw_add_slots(sc, &sc->tx, 128) ||
|
|
cpsw_add_slots(sc, &sc->rx, -1)) {
|
|
device_printf(dev, "failed to allocate dmamaps\n");
|
|
cpsw_detach(dev);
|
|
return (ENOMEM);
|
|
}
|
|
device_printf(dev, "Initial queue size TX=%d RX=%d\n",
|
|
sc->tx.queue_slots, sc->rx.queue_slots);
|
|
|
|
sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
|
|
sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
|
|
|
|
if (cpsw_intr_attach(sc) == -1) {
|
|
device_printf(dev, "failed to setup interrupts\n");
|
|
cpsw_detach(dev);
|
|
return (ENXIO);
|
|
}
|
|
|
|
#ifdef CPSW_ETHERSWITCH
|
|
for (i = 0; i < CPSW_VLANS; i++)
|
|
cpsw_vgroups[i].vid = -1;
|
|
#endif
|
|
|
|
/* Reset the controller. */
|
|
cpsw_reset(sc);
|
|
cpsw_init(sc);
|
|
|
|
for (i = 0; i < CPSW_PORTS; i++) {
|
|
if (!sc->dualemac && i != sc->active_slave)
|
|
continue;
|
|
sc->port[i].dev = device_add_child(dev, "cpsw", i);
|
|
if (sc->port[i].dev == NULL) {
|
|
cpsw_detach(dev);
|
|
return (ENXIO);
|
|
}
|
|
}
|
|
bus_generic_probe(dev);
|
|
bus_generic_attach(dev);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
cpsw_detach(device_t dev)
|
|
{
|
|
struct cpsw_softc *sc;
|
|
int error, i;
|
|
|
|
bus_generic_detach(dev);
|
|
sc = device_get_softc(dev);
|
|
|
|
for (i = 0; i < CPSW_PORTS; i++) {
|
|
if (sc->port[i].dev)
|
|
device_delete_child(dev, sc->port[i].dev);
|
|
}
|
|
|
|
if (device_is_attached(dev)) {
|
|
callout_stop(&sc->watchdog.callout);
|
|
callout_drain(&sc->watchdog.callout);
|
|
}
|
|
|
|
/* Stop and release all interrupts */
|
|
cpsw_intr_detach(sc);
|
|
|
|
/* Free dmamaps and mbufs */
|
|
for (i = 0; i < nitems(sc->_slots); ++i)
|
|
cpsw_free_slot(sc, &sc->_slots[i]);
|
|
|
|
/* Free null padding buffer. */
|
|
if (sc->nullpad)
|
|
free(sc->nullpad, M_DEVBUF);
|
|
|
|
/* Free DMA tag */
|
|
if (sc->mbuf_dtag) {
|
|
error = bus_dma_tag_destroy(sc->mbuf_dtag);
|
|
KASSERT(error == 0, ("Unable to destroy DMA tag"));
|
|
}
|
|
|
|
/* Free IO memory handler */
|
|
if (sc->mem_res != NULL)
|
|
bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem_res);
|
|
bus_release_resources(dev, irq_res_spec, sc->irq_res);
|
|
|
|
/* Destroy mutexes */
|
|
mtx_destroy(&sc->rx.lock);
|
|
mtx_destroy(&sc->tx.lock);
|
|
|
|
/* Detach the switch device, if present. */
|
|
error = bus_generic_detach(dev);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
return (device_delete_children(dev));
|
|
}
|
|
|
|
static phandle_t
|
|
cpsw_get_node(device_t bus, device_t dev)
|
|
{
|
|
|
|
/* Share controller node with port device. */
|
|
return (ofw_bus_get_node(bus));
|
|
}
|
|
|
|
static int
|
|
cpswp_probe(device_t dev)
|
|
{
|
|
|
|
if (device_get_unit(dev) > 1) {
|
|
device_printf(dev, "Only two ports are supported.\n");
|
|
return (ENXIO);
|
|
}
|
|
device_set_desc(dev, "Ethernet Switch Port");
|
|
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
|
|
static int
|
|
cpswp_attach(device_t dev)
|
|
{
|
|
int error;
|
|
struct ifnet *ifp;
|
|
struct cpswp_softc *sc;
|
|
uint32_t reg;
|
|
uint8_t mac_addr[ETHER_ADDR_LEN];
|
|
phandle_t opp_table;
|
|
struct syscon *syscon;
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->dev = dev;
|
|
sc->pdev = device_get_parent(dev);
|
|
sc->swsc = device_get_softc(sc->pdev);
|
|
sc->unit = device_get_unit(dev);
|
|
sc->phy = sc->swsc->port[sc->unit].phy;
|
|
sc->vlan = sc->swsc->port[sc->unit].vlan;
|
|
if (sc->swsc->dualemac && sc->vlan == -1)
|
|
sc->vlan = sc->unit + 1;
|
|
|
|
if (sc->unit == 0) {
|
|
sc->physel = MDIOUSERPHYSEL0;
|
|
sc->phyaccess = MDIOUSERACCESS0;
|
|
} else {
|
|
sc->physel = MDIOUSERPHYSEL1;
|
|
sc->phyaccess = MDIOUSERACCESS1;
|
|
}
|
|
|
|
mtx_init(&sc->lock, device_get_nameunit(dev), "cpsw port lock",
|
|
MTX_DEF);
|
|
|
|
/* Allocate network interface */
|
|
ifp = sc->ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
cpswp_detach(dev);
|
|
return (ENXIO);
|
|
}
|
|
|
|
if_initname(ifp, device_get_name(sc->dev), sc->unit);
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
|
|
ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_HWCSUM; //FIXME VLAN?
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
|
|
ifp->if_init = cpswp_init;
|
|
ifp->if_start = cpswp_start;
|
|
ifp->if_ioctl = cpswp_ioctl;
|
|
|
|
ifp->if_snd.ifq_drv_maxlen = sc->swsc->tx.queue_slots;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
/* FIXME: For now; Go and kidnap syscon from opp-table */
|
|
/* ti,cpsw actually have an optional syscon reference but only for am33xx?? */
|
|
opp_table = OF_finddevice("/opp-table");
|
|
if (opp_table == -1) {
|
|
device_printf(dev, "Cant find /opp-table\n");
|
|
cpswp_detach(dev);
|
|
return (ENXIO);
|
|
}
|
|
if (!OF_hasprop(opp_table, "syscon")) {
|
|
device_printf(dev, "/opp-table doesnt have required syscon property\n");
|
|
cpswp_detach(dev);
|
|
return (ENXIO);
|
|
}
|
|
if (syscon_get_by_ofw_property(dev, opp_table, "syscon", &syscon) != 0) {
|
|
device_printf(dev, "Failed to get syscon\n");
|
|
cpswp_detach(dev);
|
|
return (ENXIO);
|
|
}
|
|
|
|
/* Get high part of MAC address from control module (mac_id[0|1]_hi) */
|
|
reg = SYSCON_READ_4(syscon, SCM_MAC_ID0_HI + sc->unit * 8);
|
|
mac_addr[0] = reg & 0xFF;
|
|
mac_addr[1] = (reg >> 8) & 0xFF;
|
|
mac_addr[2] = (reg >> 16) & 0xFF;
|
|
mac_addr[3] = (reg >> 24) & 0xFF;
|
|
|
|
/* Get low part of MAC address from control module (mac_id[0|1]_lo) */
|
|
reg = SYSCON_READ_4(syscon, SCM_MAC_ID0_LO + sc->unit * 8);
|
|
mac_addr[4] = reg & 0xFF;
|
|
mac_addr[5] = (reg >> 8) & 0xFF;
|
|
|
|
error = mii_attach(dev, &sc->miibus, ifp, cpswp_ifmedia_upd,
|
|
cpswp_ifmedia_sts, BMSR_DEFCAPMASK, sc->phy, MII_OFFSET_ANY, 0);
|
|
if (error) {
|
|
device_printf(dev, "attaching PHYs failed\n");
|
|
cpswp_detach(dev);
|
|
return (error);
|
|
}
|
|
sc->mii = device_get_softc(sc->miibus);
|
|
|
|
/* Select PHY and enable interrupts */
|
|
cpsw_write_4(sc->swsc, sc->physel,
|
|
MDIO_PHYSEL_LINKINTENB | (sc->phy & 0x1F));
|
|
|
|
ether_ifattach(sc->ifp, mac_addr);
|
|
callout_init(&sc->mii_callout, 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
cpswp_detach(device_t dev)
|
|
{
|
|
struct cpswp_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
CPSW_DEBUGF(sc->swsc, (""));
|
|
if (device_is_attached(dev)) {
|
|
ether_ifdetach(sc->ifp);
|
|
CPSW_PORT_LOCK(sc);
|
|
cpswp_stop_locked(sc);
|
|
CPSW_PORT_UNLOCK(sc);
|
|
callout_drain(&sc->mii_callout);
|
|
}
|
|
|
|
bus_generic_detach(dev);
|
|
|
|
if_free(sc->ifp);
|
|
mtx_destroy(&sc->lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Init/Shutdown.
|
|
*
|
|
*/
|
|
|
|
static int
|
|
cpsw_ports_down(struct cpsw_softc *sc)
|
|
{
|
|
struct cpswp_softc *psc;
|
|
struct ifnet *ifp1, *ifp2;
|
|
|
|
if (!sc->dualemac)
|
|
return (1);
|
|
psc = device_get_softc(sc->port[0].dev);
|
|
ifp1 = psc->ifp;
|
|
psc = device_get_softc(sc->port[1].dev);
|
|
ifp2 = psc->ifp;
|
|
if ((ifp1->if_flags & IFF_UP) == 0 && (ifp2->if_flags & IFF_UP) == 0)
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
cpswp_init(void *arg)
|
|
{
|
|
struct cpswp_softc *sc = arg;
|
|
|
|
CPSW_DEBUGF(sc->swsc, (""));
|
|
CPSW_PORT_LOCK(sc);
|
|
cpswp_init_locked(arg);
|
|
CPSW_PORT_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
cpswp_init_locked(void *arg)
|
|
{
|
|
#ifdef CPSW_ETHERSWITCH
|
|
int i;
|
|
#endif
|
|
struct cpswp_softc *sc = arg;
|
|
struct ifnet *ifp;
|
|
uint32_t reg;
|
|
|
|
CPSW_DEBUGF(sc->swsc, (""));
|
|
CPSW_PORT_LOCK_ASSERT(sc);
|
|
ifp = sc->ifp;
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
return;
|
|
|
|
getbinuptime(&sc->init_uptime);
|
|
|
|
if (!sc->swsc->rx.running && !sc->swsc->tx.running) {
|
|
/* Reset the controller. */
|
|
cpsw_reset(sc->swsc);
|
|
cpsw_init(sc->swsc);
|
|
}
|
|
|
|
/* Set Slave Mapping. */
|
|
cpsw_write_4(sc->swsc, CPSW_SL_RX_PRI_MAP(sc->unit), 0x76543210);
|
|
cpsw_write_4(sc->swsc, CPSW_PORT_P_TX_PRI_MAP(sc->unit + 1),
|
|
0x33221100);
|
|
cpsw_write_4(sc->swsc, CPSW_SL_RX_MAXLEN(sc->unit), 0x5f2);
|
|
/* Enable MAC RX/TX modules. */
|
|
/* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
|
|
/* Huh? Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
|
|
reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
|
|
reg |= CPSW_SL_MACTL_GMII_ENABLE;
|
|
cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
|
|
|
|
/* Initialize ALE: set port to forwarding, initialize addrs */
|
|
cpsw_write_4(sc->swsc, CPSW_ALE_PORTCTL(sc->unit + 1),
|
|
ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
|
|
cpswp_ale_update_addresses(sc, 1);
|
|
|
|
if (sc->swsc->dualemac) {
|
|
/* Set Port VID. */
|
|
cpsw_write_4(sc->swsc, CPSW_PORT_P_VLAN(sc->unit + 1),
|
|
sc->vlan & 0xfff);
|
|
cpsw_ale_update_vlan_table(sc->swsc, sc->vlan,
|
|
(1 << (sc->unit + 1)) | (1 << 0), /* Member list */
|
|
(1 << (sc->unit + 1)) | (1 << 0), /* Untagged egress */
|
|
(1 << (sc->unit + 1)) | (1 << 0), 0); /* mcast reg flood */
|
|
#ifdef CPSW_ETHERSWITCH
|
|
for (i = 0; i < CPSW_VLANS; i++) {
|
|
if (cpsw_vgroups[i].vid != -1)
|
|
continue;
|
|
cpsw_vgroups[i].vid = sc->vlan;
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
mii_mediachg(sc->mii);
|
|
callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
}
|
|
|
|
static int
|
|
cpsw_shutdown(device_t dev)
|
|
{
|
|
struct cpsw_softc *sc;
|
|
struct cpswp_softc *psc;
|
|
int i;
|
|
|
|
sc = device_get_softc(dev);
|
|
CPSW_DEBUGF(sc, (""));
|
|
for (i = 0; i < CPSW_PORTS; i++) {
|
|
if (!sc->dualemac && i != sc->active_slave)
|
|
continue;
|
|
psc = device_get_softc(sc->port[i].dev);
|
|
CPSW_PORT_LOCK(psc);
|
|
cpswp_stop_locked(psc);
|
|
CPSW_PORT_UNLOCK(psc);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
cpsw_rx_teardown(struct cpsw_softc *sc)
|
|
{
|
|
int i = 0;
|
|
|
|
CPSW_RX_LOCK(sc);
|
|
CPSW_DEBUGF(sc, ("starting RX teardown"));
|
|
sc->rx.teardown = 1;
|
|
cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
|
|
CPSW_RX_UNLOCK(sc);
|
|
while (sc->rx.running) {
|
|
if (++i > 10) {
|
|
device_printf(sc->dev,
|
|
"Unable to cleanly shutdown receiver\n");
|
|
return;
|
|
}
|
|
DELAY(200);
|
|
}
|
|
if (!sc->rx.running)
|
|
CPSW_DEBUGF(sc, ("finished RX teardown (%d retries)", i));
|
|
}
|
|
|
|
static void
|
|
cpsw_tx_teardown(struct cpsw_softc *sc)
|
|
{
|
|
int i = 0;
|
|
|
|
CPSW_TX_LOCK(sc);
|
|
CPSW_DEBUGF(sc, ("starting TX teardown"));
|
|
/* Start the TX queue teardown if queue is not empty. */
|
|
if (STAILQ_FIRST(&sc->tx.active) != NULL)
|
|
cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
|
|
else
|
|
sc->tx.teardown = 1;
|
|
cpsw_tx_dequeue(sc);
|
|
while (sc->tx.running && ++i < 10) {
|
|
DELAY(200);
|
|
cpsw_tx_dequeue(sc);
|
|
}
|
|
if (sc->tx.running) {
|
|
device_printf(sc->dev,
|
|
"Unable to cleanly shutdown transmitter\n");
|
|
}
|
|
CPSW_DEBUGF(sc,
|
|
("finished TX teardown (%d retries, %d idle buffers)", i,
|
|
sc->tx.active_queue_len));
|
|
CPSW_TX_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
cpswp_stop_locked(struct cpswp_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
uint32_t reg;
|
|
|
|
ifp = sc->ifp;
|
|
CPSW_DEBUGF(sc->swsc, (""));
|
|
CPSW_PORT_LOCK_ASSERT(sc);
|
|
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
|
|
return;
|
|
|
|
/* Disable interface */
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
|
|
/* Stop ticker */
|
|
callout_stop(&sc->mii_callout);
|
|
|
|
/* Tear down the RX/TX queues. */
|
|
if (cpsw_ports_down(sc->swsc)) {
|
|
cpsw_rx_teardown(sc->swsc);
|
|
cpsw_tx_teardown(sc->swsc);
|
|
}
|
|
|
|
/* Stop MAC RX/TX modules. */
|
|
reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
|
|
reg &= ~CPSW_SL_MACTL_GMII_ENABLE;
|
|
cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
|
|
|
|
if (cpsw_ports_down(sc->swsc)) {
|
|
/* Capture stats before we reset controller. */
|
|
cpsw_stats_collect(sc->swsc);
|
|
|
|
cpsw_reset(sc->swsc);
|
|
cpsw_init(sc->swsc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Suspend/Resume.
|
|
*/
|
|
|
|
static int
|
|
cpsw_suspend(device_t dev)
|
|
{
|
|
struct cpsw_softc *sc;
|
|
struct cpswp_softc *psc;
|
|
int i;
|
|
|
|
sc = device_get_softc(dev);
|
|
CPSW_DEBUGF(sc, (""));
|
|
for (i = 0; i < CPSW_PORTS; i++) {
|
|
if (!sc->dualemac && i != sc->active_slave)
|
|
continue;
|
|
psc = device_get_softc(sc->port[i].dev);
|
|
CPSW_PORT_LOCK(psc);
|
|
cpswp_stop_locked(psc);
|
|
CPSW_PORT_UNLOCK(psc);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
cpsw_resume(device_t dev)
|
|
{
|
|
struct cpsw_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
CPSW_DEBUGF(sc, ("UNIMPLEMENTED"));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* IOCTL
|
|
*
|
|
*/
|
|
|
|
static void
|
|
cpsw_set_promisc(struct cpswp_softc *sc, int set)
|
|
{
|
|
uint32_t reg;
|
|
|
|
/*
|
|
* Enabling promiscuous mode requires ALE_BYPASS to be enabled.
|
|
* That disables the ALE forwarding logic and causes every
|
|
* packet to be sent only to the host port. In bypass mode,
|
|
* the ALE processes host port transmit packets the same as in
|
|
* normal mode.
|
|
*/
|
|
reg = cpsw_read_4(sc->swsc, CPSW_ALE_CONTROL);
|
|
reg &= ~CPSW_ALE_CTL_BYPASS;
|
|
if (set)
|
|
reg |= CPSW_ALE_CTL_BYPASS;
|
|
cpsw_write_4(sc->swsc, CPSW_ALE_CONTROL, reg);
|
|
}
|
|
|
|
static void
|
|
cpsw_set_allmulti(struct cpswp_softc *sc, int set)
|
|
{
|
|
if (set) {
|
|
printf("All-multicast mode unimplemented\n");
|
|
}
|
|
}
|
|
|
|
static int
|
|
cpswp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
|
|
{
|
|
struct cpswp_softc *sc;
|
|
struct ifreq *ifr;
|
|
int error;
|
|
uint32_t changed;
|
|
|
|
error = 0;
|
|
sc = ifp->if_softc;
|
|
ifr = (struct ifreq *)data;
|
|
|
|
switch (command) {
|
|
case SIOCSIFCAP:
|
|
changed = ifp->if_capenable ^ ifr->ifr_reqcap;
|
|
if (changed & IFCAP_HWCSUM) {
|
|
if ((ifr->ifr_reqcap & changed) & IFCAP_HWCSUM)
|
|
ifp->if_capenable |= IFCAP_HWCSUM;
|
|
else
|
|
ifp->if_capenable &= ~IFCAP_HWCSUM;
|
|
}
|
|
error = 0;
|
|
break;
|
|
case SIOCSIFFLAGS:
|
|
CPSW_PORT_LOCK(sc);
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
changed = ifp->if_flags ^ sc->if_flags;
|
|
CPSW_DEBUGF(sc->swsc,
|
|
("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)",
|
|
changed));
|
|
if (changed & IFF_PROMISC)
|
|
cpsw_set_promisc(sc,
|
|
ifp->if_flags & IFF_PROMISC);
|
|
if (changed & IFF_ALLMULTI)
|
|
cpsw_set_allmulti(sc,
|
|
ifp->if_flags & IFF_ALLMULTI);
|
|
} else {
|
|
CPSW_DEBUGF(sc->swsc,
|
|
("SIOCSIFFLAGS: starting up"));
|
|
cpswp_init_locked(sc);
|
|
}
|
|
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
CPSW_DEBUGF(sc->swsc, ("SIOCSIFFLAGS: shutting down"));
|
|
cpswp_stop_locked(sc);
|
|
}
|
|
|
|
sc->if_flags = ifp->if_flags;
|
|
CPSW_PORT_UNLOCK(sc);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
cpswp_ale_update_addresses(sc, 0);
|
|
break;
|
|
case SIOCDELMULTI:
|
|
/* Ugh. DELMULTI doesn't provide the specific address
|
|
being removed, so the best we can do is remove
|
|
everything and rebuild it all. */
|
|
cpswp_ale_update_addresses(sc, 1);
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, command, data);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* MIIBUS
|
|
*
|
|
*/
|
|
static int
|
|
cpswp_miibus_ready(struct cpsw_softc *sc, uint32_t reg)
|
|
{
|
|
uint32_t r, retries = CPSW_MIIBUS_RETRIES;
|
|
|
|
while (--retries) {
|
|
r = cpsw_read_4(sc, reg);
|
|
if ((r & MDIO_PHYACCESS_GO) == 0)
|
|
return (1);
|
|
DELAY(CPSW_MIIBUS_DELAY);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
cpswp_miibus_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct cpswp_softc *sc;
|
|
uint32_t cmd, r;
|
|
|
|
sc = device_get_softc(dev);
|
|
if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
|
|
device_printf(dev, "MDIO not ready to read\n");
|
|
return (0);
|
|
}
|
|
|
|
/* Set GO, reg, phy */
|
|
cmd = MDIO_PHYACCESS_GO | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
|
|
cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
|
|
|
|
if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
|
|
device_printf(dev, "MDIO timed out during read\n");
|
|
return (0);
|
|
}
|
|
|
|
r = cpsw_read_4(sc->swsc, sc->phyaccess);
|
|
if ((r & MDIO_PHYACCESS_ACK) == 0) {
|
|
device_printf(dev, "Failed to read from PHY.\n");
|
|
r = 0;
|
|
}
|
|
return (r & 0xFFFF);
|
|
}
|
|
|
|
static int
|
|
cpswp_miibus_writereg(device_t dev, int phy, int reg, int value)
|
|
{
|
|
struct cpswp_softc *sc;
|
|
uint32_t cmd;
|
|
|
|
sc = device_get_softc(dev);
|
|
if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
|
|
device_printf(dev, "MDIO not ready to write\n");
|
|
return (0);
|
|
}
|
|
|
|
/* Set GO, WRITE, reg, phy, and value */
|
|
cmd = MDIO_PHYACCESS_GO | MDIO_PHYACCESS_WRITE |
|
|
(reg & 0x1F) << 21 | (phy & 0x1F) << 16 | (value & 0xFFFF);
|
|
cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
|
|
|
|
if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
|
|
device_printf(dev, "MDIO timed out during write\n");
|
|
return (0);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
cpswp_miibus_statchg(device_t dev)
|
|
{
|
|
struct cpswp_softc *sc;
|
|
uint32_t mac_control, reg;
|
|
|
|
sc = device_get_softc(dev);
|
|
CPSW_DEBUGF(sc->swsc, (""));
|
|
|
|
reg = CPSW_SL_MACCONTROL(sc->unit);
|
|
mac_control = cpsw_read_4(sc->swsc, reg);
|
|
mac_control &= ~(CPSW_SL_MACTL_GIG | CPSW_SL_MACTL_IFCTL_A |
|
|
CPSW_SL_MACTL_IFCTL_B | CPSW_SL_MACTL_FULLDUPLEX);
|
|
|
|
switch(IFM_SUBTYPE(sc->mii->mii_media_active)) {
|
|
case IFM_1000_SX:
|
|
case IFM_1000_LX:
|
|
case IFM_1000_CX:
|
|
case IFM_1000_T:
|
|
mac_control |= CPSW_SL_MACTL_GIG;
|
|
break;
|
|
|
|
case IFM_100_TX:
|
|
mac_control |= CPSW_SL_MACTL_IFCTL_A;
|
|
break;
|
|
}
|
|
if (sc->mii->mii_media_active & IFM_FDX)
|
|
mac_control |= CPSW_SL_MACTL_FULLDUPLEX;
|
|
|
|
cpsw_write_4(sc->swsc, reg, mac_control);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Transmit/Receive Packets.
|
|
*
|
|
*/
|
|
static void
|
|
cpsw_intr_rx(void *arg)
|
|
{
|
|
struct cpsw_softc *sc;
|
|
struct ifnet *ifp;
|
|
struct mbuf *received, *next;
|
|
|
|
sc = (struct cpsw_softc *)arg;
|
|
CPSW_RX_LOCK(sc);
|
|
if (sc->rx.teardown) {
|
|
sc->rx.running = 0;
|
|
sc->rx.teardown = 0;
|
|
cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
|
|
}
|
|
received = cpsw_rx_dequeue(sc);
|
|
cpsw_rx_enqueue(sc);
|
|
cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
|
|
CPSW_RX_UNLOCK(sc);
|
|
|
|
while (received != NULL) {
|
|
next = received->m_nextpkt;
|
|
received->m_nextpkt = NULL;
|
|
ifp = received->m_pkthdr.rcvif;
|
|
(*ifp->if_input)(ifp, received);
|
|
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
|
|
received = next;
|
|
}
|
|
}
|
|
|
|
static struct mbuf *
|
|
cpsw_rx_dequeue(struct cpsw_softc *sc)
|
|
{
|
|
int nsegs, port, removed;
|
|
struct cpsw_cpdma_bd bd;
|
|
struct cpsw_slot *last, *slot;
|
|
struct cpswp_softc *psc;
|
|
struct mbuf *m, *m0, *mb_head, *mb_tail;
|
|
uint16_t m0_flags;
|
|
|
|
nsegs = 0;
|
|
m0 = NULL;
|
|
last = NULL;
|
|
mb_head = NULL;
|
|
mb_tail = NULL;
|
|
removed = 0;
|
|
|
|
/* Pull completed packets off hardware RX queue. */
|
|
while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
|
|
cpsw_cpdma_read_bd(sc, slot, &bd);
|
|
|
|
/*
|
|
* Stop on packets still in use by hardware, but do not stop
|
|
* on packets with the teardown complete flag, they will be
|
|
* discarded later.
|
|
*/
|
|
if ((bd.flags & (CPDMA_BD_OWNER | CPDMA_BD_TDOWNCMPLT)) ==
|
|
CPDMA_BD_OWNER)
|
|
break;
|
|
|
|
last = slot;
|
|
++removed;
|
|
STAILQ_REMOVE_HEAD(&sc->rx.active, next);
|
|
STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
|
|
|
|
bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
|
|
|
|
m = slot->mbuf;
|
|
slot->mbuf = NULL;
|
|
|
|
if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
|
|
CPSW_DEBUGF(sc, ("RX teardown is complete"));
|
|
m_freem(m);
|
|
sc->rx.running = 0;
|
|
sc->rx.teardown = 0;
|
|
break;
|
|
}
|
|
|
|
port = (bd.flags & CPDMA_BD_PORT_MASK) - 1;
|
|
KASSERT(port >= 0 && port <= 1,
|
|
("patcket received with invalid port: %d", port));
|
|
psc = device_get_softc(sc->port[port].dev);
|
|
|
|
/* Set up mbuf */
|
|
m->m_data += bd.bufoff;
|
|
m->m_len = bd.buflen;
|
|
if (bd.flags & CPDMA_BD_SOP) {
|
|
m->m_pkthdr.len = bd.pktlen;
|
|
m->m_pkthdr.rcvif = psc->ifp;
|
|
m->m_flags |= M_PKTHDR;
|
|
m0_flags = bd.flags;
|
|
m0 = m;
|
|
}
|
|
nsegs++;
|
|
m->m_next = NULL;
|
|
m->m_nextpkt = NULL;
|
|
if (bd.flags & CPDMA_BD_EOP && m0 != NULL) {
|
|
if (m0_flags & CPDMA_BD_PASS_CRC)
|
|
m_adj(m0, -ETHER_CRC_LEN);
|
|
m0_flags = 0;
|
|
m0 = NULL;
|
|
if (nsegs > sc->rx.longest_chain)
|
|
sc->rx.longest_chain = nsegs;
|
|
nsegs = 0;
|
|
}
|
|
|
|
if ((psc->ifp->if_capenable & IFCAP_RXCSUM) != 0) {
|
|
/* check for valid CRC by looking into pkt_err[5:4] */
|
|
if ((bd.flags &
|
|
(CPDMA_BD_SOP | CPDMA_BD_PKT_ERR_MASK)) ==
|
|
CPDMA_BD_SOP) {
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
|
|
m->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
}
|
|
|
|
if (STAILQ_FIRST(&sc->rx.active) != NULL &&
|
|
(bd.flags & (CPDMA_BD_EOP | CPDMA_BD_EOQ)) ==
|
|
(CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
|
|
cpsw_write_hdp_slot(sc, &sc->rx,
|
|
STAILQ_FIRST(&sc->rx.active));
|
|
sc->rx.queue_restart++;
|
|
}
|
|
|
|
/* Add mbuf to packet list to be returned. */
|
|
if (mb_tail != NULL && (bd.flags & CPDMA_BD_SOP)) {
|
|
mb_tail->m_nextpkt = m;
|
|
} else if (mb_tail != NULL) {
|
|
mb_tail->m_next = m;
|
|
} else if (mb_tail == NULL && (bd.flags & CPDMA_BD_SOP) == 0) {
|
|
if (bootverbose)
|
|
printf(
|
|
"%s: %s: discanding fragment packet w/o header\n",
|
|
__func__, psc->ifp->if_xname);
|
|
m_freem(m);
|
|
continue;
|
|
} else {
|
|
mb_head = m;
|
|
}
|
|
mb_tail = m;
|
|
}
|
|
|
|
if (removed != 0) {
|
|
cpsw_write_cp_slot(sc, &sc->rx, last);
|
|
sc->rx.queue_removes += removed;
|
|
sc->rx.avail_queue_len += removed;
|
|
sc->rx.active_queue_len -= removed;
|
|
if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
|
|
sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
|
|
CPSW_DEBUGF(sc, ("Removed %d received packet(s) from RX queue", removed));
|
|
}
|
|
|
|
return (mb_head);
|
|
}
|
|
|
|
static void
|
|
cpsw_rx_enqueue(struct cpsw_softc *sc)
|
|
{
|
|
bus_dma_segment_t seg[1];
|
|
struct cpsw_cpdma_bd bd;
|
|
struct cpsw_slot *first_new_slot, *last_old_slot, *next, *slot;
|
|
int error, nsegs, added = 0;
|
|
|
|
/* Register new mbufs with hardware. */
|
|
first_new_slot = NULL;
|
|
last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
|
|
while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
|
|
if (first_new_slot == NULL)
|
|
first_new_slot = slot;
|
|
if (slot->mbuf == NULL) {
|
|
slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
|
|
if (slot->mbuf == NULL) {
|
|
device_printf(sc->dev,
|
|
"Unable to fill RX queue\n");
|
|
break;
|
|
}
|
|
slot->mbuf->m_len =
|
|
slot->mbuf->m_pkthdr.len =
|
|
slot->mbuf->m_ext.ext_size;
|
|
}
|
|
|
|
error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
|
|
slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
|
|
|
|
KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
|
|
KASSERT(error == 0, ("DMA error (error=%d)", error));
|
|
if (error != 0 || nsegs != 1) {
|
|
device_printf(sc->dev,
|
|
"%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
|
|
__func__, nsegs, error);
|
|
bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
|
|
m_freem(slot->mbuf);
|
|
slot->mbuf = NULL;
|
|
break;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
|
|
|
|
/* Create and submit new rx descriptor. */
|
|
if ((next = STAILQ_NEXT(slot, next)) != NULL)
|
|
bd.next = cpsw_cpdma_bd_paddr(sc, next);
|
|
else
|
|
bd.next = 0;
|
|
bd.bufptr = seg->ds_addr;
|
|
bd.bufoff = 0;
|
|
bd.buflen = MCLBYTES - 1;
|
|
bd.pktlen = bd.buflen;
|
|
bd.flags = CPDMA_BD_OWNER;
|
|
cpsw_cpdma_write_bd(sc, slot, &bd);
|
|
++added;
|
|
|
|
STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
|
|
STAILQ_INSERT_TAIL(&sc->rx.active, slot, next);
|
|
}
|
|
|
|
if (added == 0 || first_new_slot == NULL)
|
|
return;
|
|
|
|
CPSW_DEBUGF(sc, ("Adding %d buffers to RX queue", added));
|
|
|
|
/* Link new entries to hardware RX queue. */
|
|
if (last_old_slot == NULL) {
|
|
/* Start a fresh queue. */
|
|
cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
|
|
} else {
|
|
/* Add buffers to end of current queue. */
|
|
cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
|
|
}
|
|
sc->rx.queue_adds += added;
|
|
sc->rx.avail_queue_len -= added;
|
|
sc->rx.active_queue_len += added;
|
|
cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), added);
|
|
if (sc->rx.active_queue_len > sc->rx.max_active_queue_len)
|
|
sc->rx.max_active_queue_len = sc->rx.active_queue_len;
|
|
}
|
|
|
|
static void
|
|
cpswp_start(struct ifnet *ifp)
|
|
{
|
|
struct cpswp_softc *sc;
|
|
|
|
sc = ifp->if_softc;
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
|
|
sc->swsc->tx.running == 0) {
|
|
return;
|
|
}
|
|
CPSW_TX_LOCK(sc->swsc);
|
|
cpswp_tx_enqueue(sc);
|
|
cpsw_tx_dequeue(sc->swsc);
|
|
CPSW_TX_UNLOCK(sc->swsc);
|
|
}
|
|
|
|
static void
|
|
cpsw_intr_tx(void *arg)
|
|
{
|
|
struct cpsw_softc *sc;
|
|
|
|
sc = (struct cpsw_softc *)arg;
|
|
CPSW_TX_LOCK(sc);
|
|
if (cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)) == 0xfffffffc)
|
|
cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
|
|
cpsw_tx_dequeue(sc);
|
|
cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 2);
|
|
CPSW_TX_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
cpswp_tx_enqueue(struct cpswp_softc *sc)
|
|
{
|
|
bus_dma_segment_t segs[CPSW_TXFRAGS];
|
|
struct cpsw_cpdma_bd bd;
|
|
struct cpsw_slot *first_new_slot, *last, *last_old_slot, *next, *slot;
|
|
struct mbuf *m0;
|
|
int error, nsegs, seg, added = 0, padlen;
|
|
|
|
/* Pull pending packets from IF queue and prep them for DMA. */
|
|
last = NULL;
|
|
first_new_slot = NULL;
|
|
last_old_slot = STAILQ_LAST(&sc->swsc->tx.active, cpsw_slot, next);
|
|
while ((slot = STAILQ_FIRST(&sc->swsc->tx.avail)) != NULL) {
|
|
IF_DEQUEUE(&sc->ifp->if_snd, m0);
|
|
if (m0 == NULL)
|
|
break;
|
|
|
|
slot->mbuf = m0;
|
|
padlen = ETHER_MIN_LEN - ETHER_CRC_LEN - m0->m_pkthdr.len;
|
|
if (padlen < 0)
|
|
padlen = 0;
|
|
else if (padlen > 0)
|
|
m_append(slot->mbuf, padlen, sc->swsc->nullpad);
|
|
|
|
/* Create mapping in DMA memory */
|
|
error = bus_dmamap_load_mbuf_sg(sc->swsc->mbuf_dtag,
|
|
slot->dmamap, slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
/* If the packet is too fragmented, try to simplify. */
|
|
if (error == EFBIG ||
|
|
(error == 0 && nsegs > sc->swsc->tx.avail_queue_len)) {
|
|
bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
|
|
m0 = m_defrag(slot->mbuf, M_NOWAIT);
|
|
if (m0 == NULL) {
|
|
device_printf(sc->dev,
|
|
"Can't defragment packet; dropping\n");
|
|
m_freem(slot->mbuf);
|
|
} else {
|
|
CPSW_DEBUGF(sc->swsc,
|
|
("Requeueing defragmented packet"));
|
|
IF_PREPEND(&sc->ifp->if_snd, m0);
|
|
}
|
|
slot->mbuf = NULL;
|
|
continue;
|
|
}
|
|
if (error != 0) {
|
|
device_printf(sc->dev,
|
|
"%s: Can't setup DMA (error=%d), dropping packet\n",
|
|
__func__, error);
|
|
bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
|
|
m_freem(slot->mbuf);
|
|
slot->mbuf = NULL;
|
|
break;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->swsc->mbuf_dtag, slot->dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
CPSW_DEBUGF(sc->swsc,
|
|
("Queueing TX packet: %d segments + %d pad bytes",
|
|
nsegs, padlen));
|
|
|
|
if (first_new_slot == NULL)
|
|
first_new_slot = slot;
|
|
|
|
/* Link from the previous descriptor. */
|
|
if (last != NULL)
|
|
cpsw_cpdma_write_bd_next(sc->swsc, last, slot);
|
|
|
|
slot->ifp = sc->ifp;
|
|
|
|
/* If there is only one segment, the for() loop
|
|
* gets skipped and the single buffer gets set up
|
|
* as both SOP and EOP. */
|
|
if (nsegs > 1) {
|
|
next = STAILQ_NEXT(slot, next);
|
|
bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
|
|
} else
|
|
bd.next = 0;
|
|
/* Start by setting up the first buffer. */
|
|
bd.bufptr = segs[0].ds_addr;
|
|
bd.bufoff = 0;
|
|
bd.buflen = segs[0].ds_len;
|
|
bd.pktlen = m_length(slot->mbuf, NULL);
|
|
bd.flags = CPDMA_BD_SOP | CPDMA_BD_OWNER;
|
|
if (sc->swsc->dualemac) {
|
|
bd.flags |= CPDMA_BD_TO_PORT;
|
|
bd.flags |= ((sc->unit + 1) & CPDMA_BD_PORT_MASK);
|
|
}
|
|
for (seg = 1; seg < nsegs; ++seg) {
|
|
/* Save the previous buffer (which isn't EOP) */
|
|
cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
|
|
STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
|
|
STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
|
|
slot = STAILQ_FIRST(&sc->swsc->tx.avail);
|
|
|
|
/* Setup next buffer (which isn't SOP) */
|
|
if (nsegs > seg + 1) {
|
|
next = STAILQ_NEXT(slot, next);
|
|
bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
|
|
} else
|
|
bd.next = 0;
|
|
bd.bufptr = segs[seg].ds_addr;
|
|
bd.bufoff = 0;
|
|
bd.buflen = segs[seg].ds_len;
|
|
bd.pktlen = 0;
|
|
bd.flags = CPDMA_BD_OWNER;
|
|
}
|
|
|
|
/* Save the final buffer. */
|
|
bd.flags |= CPDMA_BD_EOP;
|
|
cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
|
|
STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
|
|
STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
|
|
|
|
last = slot;
|
|
added += nsegs;
|
|
if (nsegs > sc->swsc->tx.longest_chain)
|
|
sc->swsc->tx.longest_chain = nsegs;
|
|
|
|
BPF_MTAP(sc->ifp, m0);
|
|
}
|
|
|
|
if (first_new_slot == NULL)
|
|
return;
|
|
|
|
/* Attach the list of new buffers to the hardware TX queue. */
|
|
if (last_old_slot != NULL &&
|
|
(cpsw_cpdma_read_bd_flags(sc->swsc, last_old_slot) &
|
|
CPDMA_BD_EOQ) == 0) {
|
|
/* Add buffers to end of current queue. */
|
|
cpsw_cpdma_write_bd_next(sc->swsc, last_old_slot,
|
|
first_new_slot);
|
|
} else {
|
|
/* Start a fresh queue. */
|
|
cpsw_write_hdp_slot(sc->swsc, &sc->swsc->tx, first_new_slot);
|
|
}
|
|
sc->swsc->tx.queue_adds += added;
|
|
sc->swsc->tx.avail_queue_len -= added;
|
|
sc->swsc->tx.active_queue_len += added;
|
|
if (sc->swsc->tx.active_queue_len > sc->swsc->tx.max_active_queue_len) {
|
|
sc->swsc->tx.max_active_queue_len = sc->swsc->tx.active_queue_len;
|
|
}
|
|
CPSW_DEBUGF(sc->swsc, ("Queued %d TX packet(s)", added));
|
|
}
|
|
|
|
static int
|
|
cpsw_tx_dequeue(struct cpsw_softc *sc)
|
|
{
|
|
struct cpsw_slot *slot, *last_removed_slot = NULL;
|
|
struct cpsw_cpdma_bd bd;
|
|
uint32_t flags, removed = 0;
|
|
|
|
/* Pull completed buffers off the hardware TX queue. */
|
|
slot = STAILQ_FIRST(&sc->tx.active);
|
|
while (slot != NULL) {
|
|
flags = cpsw_cpdma_read_bd_flags(sc, slot);
|
|
|
|
/* TearDown complete is only marked on the SOP for the packet. */
|
|
if ((flags & (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) ==
|
|
(CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) {
|
|
sc->tx.teardown = 1;
|
|
}
|
|
|
|
if ((flags & (CPDMA_BD_SOP | CPDMA_BD_OWNER)) ==
|
|
(CPDMA_BD_SOP | CPDMA_BD_OWNER) && sc->tx.teardown == 0)
|
|
break; /* Hardware is still using this packet. */
|
|
|
|
bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
|
|
m_freem(slot->mbuf);
|
|
slot->mbuf = NULL;
|
|
|
|
if (slot->ifp) {
|
|
if (sc->tx.teardown == 0)
|
|
if_inc_counter(slot->ifp, IFCOUNTER_OPACKETS, 1);
|
|
else
|
|
if_inc_counter(slot->ifp, IFCOUNTER_OQDROPS, 1);
|
|
}
|
|
|
|
/* Dequeue any additional buffers used by this packet. */
|
|
while (slot != NULL && slot->mbuf == NULL) {
|
|
STAILQ_REMOVE_HEAD(&sc->tx.active, next);
|
|
STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
|
|
++removed;
|
|
last_removed_slot = slot;
|
|
slot = STAILQ_FIRST(&sc->tx.active);
|
|
}
|
|
|
|
cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
|
|
|
|
/* Restart the TX queue if necessary. */
|
|
cpsw_cpdma_read_bd(sc, last_removed_slot, &bd);
|
|
if (slot != NULL && bd.next != 0 && (bd.flags &
|
|
(CPDMA_BD_EOP | CPDMA_BD_OWNER | CPDMA_BD_EOQ)) ==
|
|
(CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
|
|
cpsw_write_hdp_slot(sc, &sc->tx, slot);
|
|
sc->tx.queue_restart++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (removed != 0) {
|
|
sc->tx.queue_removes += removed;
|
|
sc->tx.active_queue_len -= removed;
|
|
sc->tx.avail_queue_len += removed;
|
|
if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
|
|
sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
|
|
CPSW_DEBUGF(sc, ("TX removed %d completed packet(s)", removed));
|
|
}
|
|
|
|
if (sc->tx.teardown && STAILQ_EMPTY(&sc->tx.active)) {
|
|
CPSW_DEBUGF(sc, ("TX teardown is complete"));
|
|
sc->tx.teardown = 0;
|
|
sc->tx.running = 0;
|
|
}
|
|
|
|
return (removed);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Miscellaneous interrupts.
|
|
*
|
|
*/
|
|
|
|
static void
|
|
cpsw_intr_rx_thresh(void *arg)
|
|
{
|
|
struct cpsw_softc *sc;
|
|
struct ifnet *ifp;
|
|
struct mbuf *received, *next;
|
|
|
|
sc = (struct cpsw_softc *)arg;
|
|
CPSW_RX_LOCK(sc);
|
|
received = cpsw_rx_dequeue(sc);
|
|
cpsw_rx_enqueue(sc);
|
|
cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
|
|
CPSW_RX_UNLOCK(sc);
|
|
|
|
while (received != NULL) {
|
|
next = received->m_nextpkt;
|
|
received->m_nextpkt = NULL;
|
|
ifp = received->m_pkthdr.rcvif;
|
|
(*ifp->if_input)(ifp, received);
|
|
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
|
|
received = next;
|
|
}
|
|
}
|
|
|
|
static void
|
|
cpsw_intr_misc_host_error(struct cpsw_softc *sc)
|
|
{
|
|
uint32_t intstat;
|
|
uint32_t dmastat;
|
|
int txerr, rxerr, txchan, rxchan;
|
|
|
|
printf("\n\n");
|
|
device_printf(sc->dev,
|
|
"HOST ERROR: PROGRAMMING ERROR DETECTED BY HARDWARE\n");
|
|
printf("\n\n");
|
|
intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
|
|
device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
|
|
dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
|
|
device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
|
|
|
|
txerr = (dmastat >> 20) & 15;
|
|
txchan = (dmastat >> 16) & 7;
|
|
rxerr = (dmastat >> 12) & 15;
|
|
rxchan = (dmastat >> 8) & 7;
|
|
|
|
switch (txerr) {
|
|
case 0: break;
|
|
case 1: printf("SOP error on TX channel %d\n", txchan);
|
|
break;
|
|
case 2: printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
|
|
break;
|
|
case 3: printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
|
|
break;
|
|
case 4: printf("Zero Buffer Pointer on TX channel %d\n", txchan);
|
|
break;
|
|
case 5: printf("Zero Buffer Length on TX channel %d\n", txchan);
|
|
break;
|
|
case 6: printf("Packet length error on TX channel %d\n", txchan);
|
|
break;
|
|
default: printf("Unknown error on TX channel %d\n", txchan);
|
|
break;
|
|
}
|
|
|
|
if (txerr != 0) {
|
|
printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
|
|
txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
|
|
printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
|
|
txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
|
|
cpsw_dump_queue(sc, &sc->tx.active);
|
|
}
|
|
|
|
switch (rxerr) {
|
|
case 0: break;
|
|
case 2: printf("Ownership bit not set on RX channel %d\n", rxchan);
|
|
break;
|
|
case 4: printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
|
|
break;
|
|
case 5: printf("Zero Buffer Length on RX channel %d\n", rxchan);
|
|
break;
|
|
case 6: printf("Buffer offset too big on RX channel %d\n", rxchan);
|
|
break;
|
|
default: printf("Unknown RX error on RX channel %d\n", rxchan);
|
|
break;
|
|
}
|
|
|
|
if (rxerr != 0) {
|
|
printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
|
|
rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
|
|
printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
|
|
rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
|
|
cpsw_dump_queue(sc, &sc->rx.active);
|
|
}
|
|
|
|
printf("\nALE Table\n");
|
|
cpsw_ale_dump_table(sc);
|
|
|
|
// XXX do something useful here??
|
|
panic("CPSW HOST ERROR INTERRUPT");
|
|
|
|
// Suppress this interrupt in the future.
|
|
cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
|
|
printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
|
|
// The watchdog will probably reset the controller
|
|
// in a little while. It will probably fail again.
|
|
}
|
|
|
|
static void
|
|
cpsw_intr_misc(void *arg)
|
|
{
|
|
struct cpsw_softc *sc = arg;
|
|
uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
|
|
|
|
if (stat & CPSW_WR_C_MISC_EVNT_PEND)
|
|
CPSW_DEBUGF(sc, ("Time sync event interrupt unimplemented"));
|
|
if (stat & CPSW_WR_C_MISC_STAT_PEND)
|
|
cpsw_stats_collect(sc);
|
|
if (stat & CPSW_WR_C_MISC_HOST_PEND)
|
|
cpsw_intr_misc_host_error(sc);
|
|
if (stat & CPSW_WR_C_MISC_MDIOLINK) {
|
|
cpsw_write_4(sc, MDIOLINKINTMASKED,
|
|
cpsw_read_4(sc, MDIOLINKINTMASKED));
|
|
}
|
|
if (stat & CPSW_WR_C_MISC_MDIOUSER) {
|
|
CPSW_DEBUGF(sc,
|
|
("MDIO operation completed interrupt unimplemented"));
|
|
}
|
|
cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Periodic Checks and Watchdog.
|
|
*
|
|
*/
|
|
|
|
static void
|
|
cpswp_tick(void *msc)
|
|
{
|
|
struct cpswp_softc *sc = msc;
|
|
|
|
/* Check for media type change */
|
|
mii_tick(sc->mii);
|
|
if (sc->media_status != sc->mii->mii_media.ifm_media) {
|
|
printf("%s: media type changed (ifm_media=%x)\n", __func__,
|
|
sc->mii->mii_media.ifm_media);
|
|
cpswp_ifmedia_upd(sc->ifp);
|
|
}
|
|
|
|
/* Schedule another timeout one second from now */
|
|
callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
|
|
}
|
|
|
|
static void
|
|
cpswp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct cpswp_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = ifp->if_softc;
|
|
CPSW_DEBUGF(sc->swsc, (""));
|
|
CPSW_PORT_LOCK(sc);
|
|
|
|
mii = sc->mii;
|
|
mii_pollstat(mii);
|
|
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
CPSW_PORT_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
cpswp_ifmedia_upd(struct ifnet *ifp)
|
|
{
|
|
struct cpswp_softc *sc;
|
|
|
|
sc = ifp->if_softc;
|
|
CPSW_DEBUGF(sc->swsc, (""));
|
|
CPSW_PORT_LOCK(sc);
|
|
mii_mediachg(sc->mii);
|
|
sc->media_status = sc->mii->mii_media.ifm_media;
|
|
CPSW_PORT_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
|
|
{
|
|
struct cpswp_softc *psc;
|
|
int i;
|
|
|
|
cpsw_debugf_head("CPSW watchdog");
|
|
device_printf(sc->dev, "watchdog timeout\n");
|
|
printf("CPSW_CPDMA_TX%d_HDP=0x%x\n", 0,
|
|
cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(0)));
|
|
printf("CPSW_CPDMA_TX%d_CP=0x%x\n", 0,
|
|
cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)));
|
|
cpsw_dump_queue(sc, &sc->tx.active);
|
|
for (i = 0; i < CPSW_PORTS; i++) {
|
|
if (!sc->dualemac && i != sc->active_slave)
|
|
continue;
|
|
psc = device_get_softc(sc->port[i].dev);
|
|
CPSW_PORT_LOCK(psc);
|
|
cpswp_stop_locked(psc);
|
|
CPSW_PORT_UNLOCK(psc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
cpsw_tx_watchdog(void *msc)
|
|
{
|
|
struct cpsw_softc *sc;
|
|
|
|
sc = msc;
|
|
CPSW_TX_LOCK(sc);
|
|
if (sc->tx.active_queue_len == 0 || !sc->tx.running) {
|
|
sc->watchdog.timer = 0; /* Nothing to do. */
|
|
} else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
|
|
sc->watchdog.timer = 0; /* Stuff done while we weren't looking. */
|
|
} else if (cpsw_tx_dequeue(sc) > 0) {
|
|
sc->watchdog.timer = 0; /* We just did something. */
|
|
} else {
|
|
/* There was something to do but it didn't get done. */
|
|
++sc->watchdog.timer;
|
|
if (sc->watchdog.timer > 5) {
|
|
sc->watchdog.timer = 0;
|
|
++sc->watchdog.resets;
|
|
cpsw_tx_watchdog_full_reset(sc);
|
|
}
|
|
}
|
|
sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
|
|
CPSW_TX_UNLOCK(sc);
|
|
|
|
/* Schedule another timeout one second from now */
|
|
callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ALE support routines.
|
|
*
|
|
*/
|
|
|
|
static void
|
|
cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
|
|
{
|
|
cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
|
|
ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
|
|
ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
|
|
ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
|
|
}
|
|
|
|
static void
|
|
cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
|
|
{
|
|
cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
|
|
cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
|
|
cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
|
|
cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
|
|
}
|
|
|
|
static void
|
|
cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
|
|
{
|
|
int i;
|
|
uint32_t ale_entry[3];
|
|
|
|
/* First four entries are link address and broadcast. */
|
|
for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
|
|
cpsw_ale_read_entry(sc, i, ale_entry);
|
|
if ((ALE_TYPE(ale_entry) == ALE_TYPE_ADDR ||
|
|
ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR) &&
|
|
ALE_MCAST(ale_entry) == 1) { /* MCast link addr */
|
|
ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
|
|
cpsw_ale_write_entry(sc, i, ale_entry);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, int vlan,
|
|
uint8_t *mac)
|
|
{
|
|
int free_index = -1, matching_index = -1, i;
|
|
uint32_t ale_entry[3], ale_type;
|
|
|
|
/* Find a matching entry or a free entry. */
|
|
for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
|
|
cpsw_ale_read_entry(sc, i, ale_entry);
|
|
|
|
/* Entry Type[61:60] is 0 for free entry */
|
|
if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
|
|
free_index = i;
|
|
|
|
if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
|
|
(((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
|
|
(((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
|
|
(((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
|
|
(((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
|
|
(((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
|
|
matching_index = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (matching_index < 0) {
|
|
if (free_index < 0)
|
|
return (ENOMEM);
|
|
i = free_index;
|
|
}
|
|
|
|
if (vlan != -1)
|
|
ale_type = ALE_TYPE_VLAN_ADDR << 28 | vlan << 16;
|
|
else
|
|
ale_type = ALE_TYPE_ADDR << 28;
|
|
|
|
/* Set MAC address */
|
|
ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
|
|
ale_entry[1] = mac[0] << 8 | mac[1];
|
|
|
|
/* Entry type[61:60] and Mcast fwd state[63:62] is fw(3). */
|
|
ale_entry[1] |= ALE_MCAST_FWD | ale_type;
|
|
|
|
/* Set portmask [68:66] */
|
|
ale_entry[2] = (portmap & 7) << 2;
|
|
|
|
cpsw_ale_write_entry(sc, i, ale_entry);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
cpsw_ale_dump_table(struct cpsw_softc *sc) {
|
|
int i;
|
|
uint32_t ale_entry[3];
|
|
for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
|
|
cpsw_ale_read_entry(sc, i, ale_entry);
|
|
switch (ALE_TYPE(ale_entry)) {
|
|
case ALE_TYPE_VLAN:
|
|
printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
|
|
ale_entry[1], ale_entry[0]);
|
|
printf("type: %u ", ALE_TYPE(ale_entry));
|
|
printf("vlan: %u ", ALE_VLAN(ale_entry));
|
|
printf("untag: %u ", ALE_VLAN_UNTAG(ale_entry));
|
|
printf("reg flood: %u ", ALE_VLAN_REGFLOOD(ale_entry));
|
|
printf("unreg flood: %u ", ALE_VLAN_UNREGFLOOD(ale_entry));
|
|
printf("members: %u ", ALE_VLAN_MEMBERS(ale_entry));
|
|
printf("\n");
|
|
break;
|
|
case ALE_TYPE_ADDR:
|
|
case ALE_TYPE_VLAN_ADDR:
|
|
printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
|
|
ale_entry[1], ale_entry[0]);
|
|
printf("type: %u ", ALE_TYPE(ale_entry));
|
|
printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
|
|
(ale_entry[1] >> 8) & 0xFF,
|
|
(ale_entry[1] >> 0) & 0xFF,
|
|
(ale_entry[0] >>24) & 0xFF,
|
|
(ale_entry[0] >>16) & 0xFF,
|
|
(ale_entry[0] >> 8) & 0xFF,
|
|
(ale_entry[0] >> 0) & 0xFF);
|
|
printf(ALE_MCAST(ale_entry) ? "mcast " : "ucast ");
|
|
if (ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR)
|
|
printf("vlan: %u ", ALE_VLAN(ale_entry));
|
|
printf("port: %u ", ALE_PORTS(ale_entry));
|
|
printf("\n");
|
|
break;
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
static u_int
|
|
cpswp_set_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
|
|
{
|
|
struct cpswp_softc *sc = arg;
|
|
uint32_t portmask;
|
|
|
|
if (sc->swsc->dualemac)
|
|
portmask = 1 << (sc->unit + 1) | 1 << 0;
|
|
else
|
|
portmask = 7;
|
|
|
|
cpsw_ale_mc_entry_set(sc->swsc, portmask, sc->vlan, LLADDR(sdl));
|
|
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
cpswp_ale_update_addresses(struct cpswp_softc *sc, int purge)
|
|
{
|
|
uint8_t *mac;
|
|
uint32_t ale_entry[3], ale_type, portmask;
|
|
|
|
if (sc->swsc->dualemac) {
|
|
ale_type = ALE_TYPE_VLAN_ADDR << 28 | sc->vlan << 16;
|
|
portmask = 1 << (sc->unit + 1) | 1 << 0;
|
|
} else {
|
|
ale_type = ALE_TYPE_ADDR << 28;
|
|
portmask = 7;
|
|
}
|
|
|
|
/*
|
|
* Route incoming packets for our MAC address to Port 0 (host).
|
|
* For simplicity, keep this entry at table index 0 for port 1 and
|
|
* at index 2 for port 2 in the ALE.
|
|
*/
|
|
mac = LLADDR((struct sockaddr_dl *)sc->ifp->if_addr->ifa_addr);
|
|
ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
|
|
ale_entry[1] = ale_type | mac[0] << 8 | mac[1]; /* addr entry + mac */
|
|
ale_entry[2] = 0; /* port = 0 */
|
|
cpsw_ale_write_entry(sc->swsc, 0 + 2 * sc->unit, ale_entry);
|
|
|
|
/* Set outgoing MAC Address for slave port. */
|
|
cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_HI(sc->unit + 1),
|
|
mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
|
|
cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_LO(sc->unit + 1),
|
|
mac[5] << 8 | mac[4]);
|
|
|
|
/* Keep the broadcast address at table entry 1 (or 3). */
|
|
ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
|
|
/* ALE_MCAST_FWD, Addr type, upper 16 bits of Mac */
|
|
ale_entry[1] = ALE_MCAST_FWD | ale_type | 0xffff;
|
|
ale_entry[2] = portmask << 2;
|
|
cpsw_ale_write_entry(sc->swsc, 1 + 2 * sc->unit, ale_entry);
|
|
|
|
/* SIOCDELMULTI doesn't specify the particular address
|
|
being removed, so we have to remove all and rebuild. */
|
|
if (purge)
|
|
cpsw_ale_remove_all_mc_entries(sc->swsc);
|
|
|
|
/* Set other multicast addrs desired. */
|
|
if_foreach_llmaddr(sc->ifp, cpswp_set_maddr, sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
cpsw_ale_update_vlan_table(struct cpsw_softc *sc, int vlan, int ports,
|
|
int untag, int mcregflood, int mcunregflood)
|
|
{
|
|
int free_index, i, matching_index;
|
|
uint32_t ale_entry[3];
|
|
|
|
free_index = matching_index = -1;
|
|
/* Find a matching entry or a free entry. */
|
|
for (i = 5; i < CPSW_MAX_ALE_ENTRIES; i++) {
|
|
cpsw_ale_read_entry(sc, i, ale_entry);
|
|
|
|
/* Entry Type[61:60] is 0 for free entry */
|
|
if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
|
|
free_index = i;
|
|
|
|
if (ALE_VLAN(ale_entry) == vlan) {
|
|
matching_index = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (matching_index < 0) {
|
|
if (free_index < 0)
|
|
return (-1);
|
|
i = free_index;
|
|
}
|
|
|
|
ale_entry[0] = (untag & 7) << 24 | (mcregflood & 7) << 16 |
|
|
(mcunregflood & 7) << 8 | (ports & 7);
|
|
ale_entry[1] = ALE_TYPE_VLAN << 28 | vlan << 16;
|
|
ale_entry[2] = 0;
|
|
cpsw_ale_write_entry(sc, i, ale_entry);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Statistics and Sysctls.
|
|
*
|
|
*/
|
|
|
|
#if 0
|
|
static void
|
|
cpsw_stats_dump(struct cpsw_softc *sc)
|
|
{
|
|
int i;
|
|
uint32_t r;
|
|
|
|
for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
|
|
r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
|
|
cpsw_stat_sysctls[i].reg);
|
|
CPSW_DEBUGF(sc, ("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
|
|
(intmax_t)sc->shadow_stats[i], r,
|
|
(intmax_t)sc->shadow_stats[i] + r));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
cpsw_stats_collect(struct cpsw_softc *sc)
|
|
{
|
|
int i;
|
|
uint32_t r;
|
|
|
|
CPSW_DEBUGF(sc, ("Controller shadow statistics updated."));
|
|
|
|
for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
|
|
r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
|
|
cpsw_stat_sysctls[i].reg);
|
|
sc->shadow_stats[i] += r;
|
|
cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg,
|
|
r);
|
|
}
|
|
}
|
|
|
|
static int
|
|
cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct cpsw_softc *sc;
|
|
struct cpsw_stat *stat;
|
|
uint64_t result;
|
|
|
|
sc = (struct cpsw_softc *)arg1;
|
|
stat = &cpsw_stat_sysctls[oidp->oid_number];
|
|
result = sc->shadow_stats[oidp->oid_number];
|
|
result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
|
|
return (sysctl_handle_64(oidp, &result, 0, req));
|
|
}
|
|
|
|
static int
|
|
cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct cpsw_softc *sc;
|
|
struct bintime t;
|
|
unsigned result;
|
|
|
|
sc = (struct cpsw_softc *)arg1;
|
|
getbinuptime(&t);
|
|
bintime_sub(&t, &sc->attach_uptime);
|
|
result = t.sec;
|
|
return (sysctl_handle_int(oidp, &result, 0, req));
|
|
}
|
|
|
|
static int
|
|
cpsw_intr_coalesce(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
struct cpsw_softc *sc;
|
|
uint32_t ctrl, intr_per_ms;
|
|
|
|
sc = (struct cpsw_softc *)arg1;
|
|
error = sysctl_handle_int(oidp, &sc->coal_us, 0, req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
|
|
ctrl = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
|
|
ctrl &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
|
|
if (sc->coal_us == 0) {
|
|
/* Disable the interrupt pace hardware. */
|
|
cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
|
|
cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), 0);
|
|
cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), 0);
|
|
return (0);
|
|
}
|
|
|
|
if (sc->coal_us > CPSW_WR_C_IMAX_US_MAX)
|
|
sc->coal_us = CPSW_WR_C_IMAX_US_MAX;
|
|
if (sc->coal_us < CPSW_WR_C_IMAX_US_MIN)
|
|
sc->coal_us = CPSW_WR_C_IMAX_US_MIN;
|
|
intr_per_ms = 1000 / sc->coal_us;
|
|
/* Just to make sure... */
|
|
if (intr_per_ms > CPSW_WR_C_IMAX_MAX)
|
|
intr_per_ms = CPSW_WR_C_IMAX_MAX;
|
|
if (intr_per_ms < CPSW_WR_C_IMAX_MIN)
|
|
intr_per_ms = CPSW_WR_C_IMAX_MIN;
|
|
|
|
/* Set the prescale to produce 4us pulses from the 125 Mhz clock. */
|
|
ctrl |= (125 * 4) & CPSW_WR_INT_PRESCALE_MASK;
|
|
|
|
/* Enable the interrupt pace hardware. */
|
|
cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), intr_per_ms);
|
|
cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), intr_per_ms);
|
|
ctrl |= CPSW_WR_INT_C0_RX_PULSE | CPSW_WR_INT_C0_TX_PULSE;
|
|
cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct cpsw_softc *swsc;
|
|
struct cpswp_softc *sc;
|
|
struct bintime t;
|
|
unsigned result;
|
|
|
|
swsc = arg1;
|
|
sc = device_get_softc(swsc->port[arg2].dev);
|
|
if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
getbinuptime(&t);
|
|
bintime_sub(&t, &sc->init_uptime);
|
|
result = t.sec;
|
|
} else
|
|
result = 0;
|
|
return (sysctl_handle_int(oidp, &result, 0, req));
|
|
}
|
|
|
|
static void
|
|
cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
|
|
struct cpsw_queue *queue)
|
|
{
|
|
struct sysctl_oid_list *parent;
|
|
|
|
parent = SYSCTL_CHILDREN(node);
|
|
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
|
|
CTLFLAG_RD, &queue->queue_slots, 0,
|
|
"Total buffers currently assigned to this queue");
|
|
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
|
|
CTLFLAG_RD, &queue->active_queue_len, 0,
|
|
"Buffers currently registered with hardware controller");
|
|
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
|
|
CTLFLAG_RD, &queue->max_active_queue_len, 0,
|
|
"Max value of activeBuffers since last driver reset");
|
|
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
|
|
CTLFLAG_RD, &queue->avail_queue_len, 0,
|
|
"Buffers allocated to this queue but not currently "
|
|
"registered with hardware controller");
|
|
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
|
|
CTLFLAG_RD, &queue->max_avail_queue_len, 0,
|
|
"Max value of availBuffers since last driver reset");
|
|
SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
|
|
CTLFLAG_RD, &queue->queue_adds, 0,
|
|
"Total buffers added to queue");
|
|
SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
|
|
CTLFLAG_RD, &queue->queue_removes, 0,
|
|
"Total buffers removed from queue");
|
|
SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "queueRestart",
|
|
CTLFLAG_RD, &queue->queue_restart, 0,
|
|
"Total times the queue has been restarted");
|
|
SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
|
|
CTLFLAG_RD, &queue->longest_chain, 0,
|
|
"Max buffers used for a single packet");
|
|
}
|
|
|
|
static void
|
|
cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
|
|
struct cpsw_softc *sc)
|
|
{
|
|
struct sysctl_oid_list *parent;
|
|
|
|
parent = SYSCTL_CHILDREN(node);
|
|
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
|
|
CTLFLAG_RD, &sc->watchdog.resets, 0,
|
|
"Total number of watchdog resets");
|
|
}
|
|
|
|
static void
|
|
cpsw_add_sysctls(struct cpsw_softc *sc)
|
|
{
|
|
struct sysctl_ctx_list *ctx;
|
|
struct sysctl_oid *stats_node, *queue_node, *node;
|
|
struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
|
|
struct sysctl_oid_list *ports_parent, *port_parent;
|
|
char port[16];
|
|
int i;
|
|
|
|
ctx = device_get_sysctl_ctx(sc->dev);
|
|
parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
|
|
|
|
SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "debug",
|
|
CTLFLAG_RW, &sc->debug, 0, "Enable switch debug messages");
|
|
|
|
SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
|
|
CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
|
|
sc, 0, cpsw_stat_attached, "IU",
|
|
"Time since driver attach");
|
|
|
|
SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "intr_coalesce_us",
|
|
CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
|
|
sc, 0, cpsw_intr_coalesce, "IU",
|
|
"minimum time between interrupts");
|
|
|
|
node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "ports",
|
|
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Ports Statistics");
|
|
ports_parent = SYSCTL_CHILDREN(node);
|
|
for (i = 0; i < CPSW_PORTS; i++) {
|
|
if (!sc->dualemac && i != sc->active_slave)
|
|
continue;
|
|
port[0] = '0' + i;
|
|
port[1] = '\0';
|
|
node = SYSCTL_ADD_NODE(ctx, ports_parent, OID_AUTO,
|
|
port, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
|
|
"CPSW Port Statistics");
|
|
port_parent = SYSCTL_CHILDREN(node);
|
|
SYSCTL_ADD_PROC(ctx, port_parent, OID_AUTO, "uptime",
|
|
CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, i,
|
|
cpsw_stat_uptime, "IU", "Seconds since driver init");
|
|
}
|
|
|
|
stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
|
|
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Statistics");
|
|
stats_parent = SYSCTL_CHILDREN(stats_node);
|
|
for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
|
|
SYSCTL_ADD_PROC(ctx, stats_parent, i,
|
|
cpsw_stat_sysctls[i].oid,
|
|
CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
|
|
sc, 0, cpsw_stats_sysctl, "IU",
|
|
cpsw_stat_sysctls[i].oid);
|
|
}
|
|
|
|
queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
|
|
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Queue Statistics");
|
|
queue_parent = SYSCTL_CHILDREN(queue_node);
|
|
|
|
node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
|
|
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Statistics");
|
|
cpsw_add_queue_sysctls(ctx, node, &sc->tx);
|
|
|
|
node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
|
|
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Statistics");
|
|
cpsw_add_queue_sysctls(ctx, node, &sc->rx);
|
|
|
|
node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
|
|
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Watchdog Statistics");
|
|
cpsw_add_watchdog_sysctls(ctx, node, sc);
|
|
}
|
|
|
|
#ifdef CPSW_ETHERSWITCH
|
|
static etherswitch_info_t etherswitch_info = {
|
|
.es_nports = CPSW_PORTS + 1,
|
|
.es_nvlangroups = CPSW_VLANS,
|
|
.es_name = "TI Common Platform Ethernet Switch (CPSW)",
|
|
.es_vlan_caps = ETHERSWITCH_VLAN_DOT1Q,
|
|
};
|
|
|
|
static etherswitch_info_t *
|
|
cpsw_getinfo(device_t dev)
|
|
{
|
|
return (ðerswitch_info);
|
|
}
|
|
|
|
static int
|
|
cpsw_getport(device_t dev, etherswitch_port_t *p)
|
|
{
|
|
int err;
|
|
struct cpsw_softc *sc;
|
|
struct cpswp_softc *psc;
|
|
struct ifmediareq *ifmr;
|
|
uint32_t reg;
|
|
|
|
if (p->es_port < 0 || p->es_port > CPSW_PORTS)
|
|
return (ENXIO);
|
|
|
|
err = 0;
|
|
sc = device_get_softc(dev);
|
|
if (p->es_port == CPSW_CPU_PORT) {
|
|
p->es_flags |= ETHERSWITCH_PORT_CPU;
|
|
ifmr = &p->es_ifmr;
|
|
ifmr->ifm_current = ifmr->ifm_active =
|
|
IFM_ETHER | IFM_1000_T | IFM_FDX;
|
|
ifmr->ifm_mask = 0;
|
|
ifmr->ifm_status = IFM_ACTIVE | IFM_AVALID;
|
|
ifmr->ifm_count = 0;
|
|
} else {
|
|
psc = device_get_softc(sc->port[p->es_port - 1].dev);
|
|
err = ifmedia_ioctl(psc->ifp, &p->es_ifr,
|
|
&psc->mii->mii_media, SIOCGIFMEDIA);
|
|
}
|
|
reg = cpsw_read_4(sc, CPSW_PORT_P_VLAN(p->es_port));
|
|
p->es_pvid = reg & ETHERSWITCH_VID_MASK;
|
|
|
|
reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
|
|
if (reg & ALE_PORTCTL_DROP_UNTAGGED)
|
|
p->es_flags |= ETHERSWITCH_PORT_DROPUNTAGGED;
|
|
if (reg & ALE_PORTCTL_INGRESS)
|
|
p->es_flags |= ETHERSWITCH_PORT_INGRESS;
|
|
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
cpsw_setport(device_t dev, etherswitch_port_t *p)
|
|
{
|
|
struct cpsw_softc *sc;
|
|
struct cpswp_softc *psc;
|
|
struct ifmedia *ifm;
|
|
uint32_t reg;
|
|
|
|
if (p->es_port < 0 || p->es_port > CPSW_PORTS)
|
|
return (ENXIO);
|
|
|
|
sc = device_get_softc(dev);
|
|
if (p->es_pvid != 0) {
|
|
cpsw_write_4(sc, CPSW_PORT_P_VLAN(p->es_port),
|
|
p->es_pvid & ETHERSWITCH_VID_MASK);
|
|
}
|
|
|
|
reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
|
|
if (p->es_flags & ETHERSWITCH_PORT_DROPUNTAGGED)
|
|
reg |= ALE_PORTCTL_DROP_UNTAGGED;
|
|
else
|
|
reg &= ~ALE_PORTCTL_DROP_UNTAGGED;
|
|
if (p->es_flags & ETHERSWITCH_PORT_INGRESS)
|
|
reg |= ALE_PORTCTL_INGRESS;
|
|
else
|
|
reg &= ~ALE_PORTCTL_INGRESS;
|
|
cpsw_write_4(sc, CPSW_ALE_PORTCTL(p->es_port), reg);
|
|
|
|
/* CPU port does not allow media settings. */
|
|
if (p->es_port == CPSW_CPU_PORT)
|
|
return (0);
|
|
|
|
psc = device_get_softc(sc->port[p->es_port - 1].dev);
|
|
ifm = &psc->mii->mii_media;
|
|
|
|
return (ifmedia_ioctl(psc->ifp, &p->es_ifr, ifm, SIOCSIFMEDIA));
|
|
}
|
|
|
|
static int
|
|
cpsw_getconf(device_t dev, etherswitch_conf_t *conf)
|
|
{
|
|
|
|
/* Return the VLAN mode. */
|
|
conf->cmd = ETHERSWITCH_CONF_VLAN_MODE;
|
|
conf->vlan_mode = ETHERSWITCH_VLAN_DOT1Q;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
cpsw_getvgroup(device_t dev, etherswitch_vlangroup_t *vg)
|
|
{
|
|
int i, vid;
|
|
uint32_t ale_entry[3];
|
|
struct cpsw_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
if (vg->es_vlangroup >= CPSW_VLANS)
|
|
return (EINVAL);
|
|
|
|
vg->es_vid = 0;
|
|
vid = cpsw_vgroups[vg->es_vlangroup].vid;
|
|
if (vid == -1)
|
|
return (0);
|
|
|
|
for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
|
|
cpsw_ale_read_entry(sc, i, ale_entry);
|
|
if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
|
|
continue;
|
|
if (vid != ALE_VLAN(ale_entry))
|
|
continue;
|
|
|
|
vg->es_fid = 0;
|
|
vg->es_vid = ALE_VLAN(ale_entry) | ETHERSWITCH_VID_VALID;
|
|
vg->es_member_ports = ALE_VLAN_MEMBERS(ale_entry);
|
|
vg->es_untagged_ports = ALE_VLAN_UNTAG(ale_entry);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
cpsw_remove_vlan(struct cpsw_softc *sc, int vlan)
|
|
{
|
|
int i;
|
|
uint32_t ale_entry[3];
|
|
|
|
for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
|
|
cpsw_ale_read_entry(sc, i, ale_entry);
|
|
if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
|
|
continue;
|
|
if (vlan != ALE_VLAN(ale_entry))
|
|
continue;
|
|
ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
|
|
cpsw_ale_write_entry(sc, i, ale_entry);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int
|
|
cpsw_setvgroup(device_t dev, etherswitch_vlangroup_t *vg)
|
|
{
|
|
int i;
|
|
struct cpsw_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
for (i = 0; i < CPSW_VLANS; i++) {
|
|
/* Is this Vlan ID in use by another vlangroup ? */
|
|
if (vg->es_vlangroup != i && cpsw_vgroups[i].vid == vg->es_vid)
|
|
return (EINVAL);
|
|
}
|
|
|
|
if (vg->es_vid == 0) {
|
|
if (cpsw_vgroups[vg->es_vlangroup].vid == -1)
|
|
return (0);
|
|
cpsw_remove_vlan(sc, cpsw_vgroups[vg->es_vlangroup].vid);
|
|
cpsw_vgroups[vg->es_vlangroup].vid = -1;
|
|
vg->es_untagged_ports = 0;
|
|
vg->es_member_ports = 0;
|
|
vg->es_vid = 0;
|
|
return (0);
|
|
}
|
|
|
|
vg->es_vid &= ETHERSWITCH_VID_MASK;
|
|
vg->es_member_ports &= CPSW_PORTS_MASK;
|
|
vg->es_untagged_ports &= CPSW_PORTS_MASK;
|
|
|
|
if (cpsw_vgroups[vg->es_vlangroup].vid != -1 &&
|
|
cpsw_vgroups[vg->es_vlangroup].vid != vg->es_vid)
|
|
return (EINVAL);
|
|
|
|
cpsw_vgroups[vg->es_vlangroup].vid = vg->es_vid;
|
|
cpsw_ale_update_vlan_table(sc, vg->es_vid, vg->es_member_ports,
|
|
vg->es_untagged_ports, vg->es_member_ports, 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
cpsw_readreg(device_t dev, int addr)
|
|
{
|
|
|
|
/* Not supported. */
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
cpsw_writereg(device_t dev, int addr, int value)
|
|
{
|
|
|
|
/* Not supported. */
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
cpsw_readphy(device_t dev, int phy, int reg)
|
|
{
|
|
|
|
/* Not supported. */
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
cpsw_writephy(device_t dev, int phy, int reg, int data)
|
|
{
|
|
|
|
/* Not supported. */
|
|
return (0);
|
|
}
|
|
#endif
|