f-stack/dpdk/drivers/raw/dpaa2_qdma/dpaa2_qdma.c

1846 lines
47 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2018-2020 NXP
*/
#include <string.h>
#include <rte_eal.h>
#include <rte_fslmc.h>
#include <rte_atomic.h>
#include <rte_lcore.h>
#include <rte_rawdev.h>
#include <rte_rawdev_pmd.h>
#include <rte_malloc.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_prefetch.h>
#include <rte_kvargs.h>
#include <mc/fsl_dpdmai.h>
#include <portal/dpaa2_hw_pvt.h>
#include <portal/dpaa2_hw_dpio.h>
#include "rte_pmd_dpaa2_qdma.h"
#include "dpaa2_qdma.h"
#include "dpaa2_qdma_logs.h"
#define DPAA2_QDMA_NO_PREFETCH "no_prefetch"
/* Dynamic log type identifier */
int dpaa2_qdma_logtype;
uint32_t dpaa2_coherent_no_alloc_cache;
uint32_t dpaa2_coherent_alloc_cache;
/* QDMA device */
static struct qdma_device q_dev;
/* QDMA H/W queues list */
TAILQ_HEAD(qdma_hw_queue_list, qdma_hw_queue);
static struct qdma_hw_queue_list qdma_queue_list
= TAILQ_HEAD_INITIALIZER(qdma_queue_list);
/* QDMA per core data */
static struct qdma_per_core_info qdma_core_info[RTE_MAX_LCORE];
static inline int
qdma_populate_fd_pci(phys_addr_t src, phys_addr_t dest,
uint32_t len, struct qbman_fd *fd,
struct rte_qdma_rbp *rbp, int ser)
{
fd->simple_pci.saddr_lo = lower_32_bits((uint64_t) (src));
fd->simple_pci.saddr_hi = upper_32_bits((uint64_t) (src));
fd->simple_pci.len_sl = len;
fd->simple_pci.bmt = 1;
fd->simple_pci.fmt = 3;
fd->simple_pci.sl = 1;
fd->simple_pci.ser = ser;
fd->simple_pci.sportid = rbp->sportid; /*pcie 3 */
fd->simple_pci.srbp = rbp->srbp;
if (rbp->srbp)
fd->simple_pci.rdttype = 0;
else
fd->simple_pci.rdttype = dpaa2_coherent_alloc_cache;
/*dest is pcie memory */
fd->simple_pci.dportid = rbp->dportid; /*pcie 3 */
fd->simple_pci.drbp = rbp->drbp;
if (rbp->drbp)
fd->simple_pci.wrttype = 0;
else
fd->simple_pci.wrttype = dpaa2_coherent_no_alloc_cache;
fd->simple_pci.daddr_lo = lower_32_bits((uint64_t) (dest));
fd->simple_pci.daddr_hi = upper_32_bits((uint64_t) (dest));
return 0;
}
static inline int
qdma_populate_fd_ddr(phys_addr_t src, phys_addr_t dest,
uint32_t len, struct qbman_fd *fd, int ser)
{
fd->simple_ddr.saddr_lo = lower_32_bits((uint64_t) (src));
fd->simple_ddr.saddr_hi = upper_32_bits((uint64_t) (src));
fd->simple_ddr.len = len;
fd->simple_ddr.bmt = 1;
fd->simple_ddr.fmt = 3;
fd->simple_ddr.sl = 1;
fd->simple_ddr.ser = ser;
/**
* src If RBP=0 {NS,RDTTYPE[3:0]}: 0_1011
* Coherent copy of cacheable memory,
* lookup in downstream cache, no allocate
* on miss
*/
fd->simple_ddr.rns = 0;
fd->simple_ddr.rdttype = dpaa2_coherent_alloc_cache;
/**
* dest If RBP=0 {NS,WRTTYPE[3:0]}: 0_0111
* Coherent write of cacheable memory,
* lookup in downstream cache, no allocate on miss
*/
fd->simple_ddr.wns = 0;
fd->simple_ddr.wrttype = dpaa2_coherent_no_alloc_cache;
fd->simple_ddr.daddr_lo = lower_32_bits((uint64_t) (dest));
fd->simple_ddr.daddr_hi = upper_32_bits((uint64_t) (dest));
return 0;
}
static void
dpaa2_qdma_populate_fle(struct qbman_fle *fle,
uint64_t fle_iova,
struct rte_qdma_rbp *rbp,
uint64_t src, uint64_t dest,
size_t len, uint32_t flags, uint32_t fmt)
{
struct qdma_sdd *sdd;
uint64_t sdd_iova;
sdd = (struct qdma_sdd *)
((uintptr_t)(uint64_t)fle - QDMA_FLE_FLE_OFFSET +
QDMA_FLE_SDD_OFFSET);
sdd_iova = fle_iova - QDMA_FLE_FLE_OFFSET + QDMA_FLE_SDD_OFFSET;
/* first frame list to source descriptor */
DPAA2_SET_FLE_ADDR(fle, sdd_iova);
DPAA2_SET_FLE_LEN(fle, (2 * (sizeof(struct qdma_sdd))));
/* source and destination descriptor */
if (rbp && rbp->enable) {
/* source */
sdd->read_cmd.portid = rbp->sportid;
sdd->rbpcmd_simple.pfid = rbp->spfid;
sdd->rbpcmd_simple.vfid = rbp->svfid;
if (rbp->srbp) {
sdd->read_cmd.rbp = rbp->srbp;
sdd->read_cmd.rdtype = DPAA2_RBP_MEM_RW;
} else {
sdd->read_cmd.rdtype = dpaa2_coherent_no_alloc_cache;
}
sdd++;
/* destination */
sdd->write_cmd.portid = rbp->dportid;
sdd->rbpcmd_simple.pfid = rbp->dpfid;
sdd->rbpcmd_simple.vfid = rbp->dvfid;
if (rbp->drbp) {
sdd->write_cmd.rbp = rbp->drbp;
sdd->write_cmd.wrttype = DPAA2_RBP_MEM_RW;
} else {
sdd->write_cmd.wrttype = dpaa2_coherent_alloc_cache;
}
} else {
sdd->read_cmd.rdtype = dpaa2_coherent_no_alloc_cache;
sdd++;
sdd->write_cmd.wrttype = dpaa2_coherent_alloc_cache;
}
fle++;
/* source frame list to source buffer */
if (flags & RTE_QDMA_JOB_SRC_PHY) {
DPAA2_SET_FLE_ADDR(fle, src);
#ifdef RTE_LIBRTE_DPAA2_USE_PHYS_IOVA
DPAA2_SET_FLE_BMT(fle);
#endif
} else {
DPAA2_SET_FLE_ADDR(fle, DPAA2_VADDR_TO_IOVA(src));
}
fle->word4.fmt = fmt;
DPAA2_SET_FLE_LEN(fle, len);
fle++;
/* destination frame list to destination buffer */
if (flags & RTE_QDMA_JOB_DEST_PHY) {
#ifdef RTE_LIBRTE_DPAA2_USE_PHYS_IOVA
DPAA2_SET_FLE_BMT(fle);
#endif
DPAA2_SET_FLE_ADDR(fle, dest);
} else {
DPAA2_SET_FLE_ADDR(fle, DPAA2_VADDR_TO_IOVA(dest));
}
fle->word4.fmt = fmt;
DPAA2_SET_FLE_LEN(fle, len);
/* Final bit: 1, for last frame list */
DPAA2_SET_FLE_FIN(fle);
}
static inline int dpdmai_dev_set_fd_us(
struct qdma_virt_queue *qdma_vq,
struct qbman_fd *fd,
struct rte_qdma_job **job,
uint16_t nb_jobs)
{
struct rte_qdma_rbp *rbp = &qdma_vq->rbp;
struct rte_qdma_job **ppjob;
size_t iova;
int ret = 0, loop;
int ser = (qdma_vq->flags & RTE_QDMA_VQ_NO_RESPONSE) ?
0 : 1;
for (loop = 0; loop < nb_jobs; loop++) {
if (job[loop]->src & QDMA_RBP_UPPER_ADDRESS_MASK)
iova = (size_t)job[loop]->dest;
else
iova = (size_t)job[loop]->src;
/* Set the metadata */
job[loop]->vq_id = qdma_vq->vq_id;
ppjob = (struct rte_qdma_job **)DPAA2_IOVA_TO_VADDR(iova) - 1;
*ppjob = job[loop];
if ((rbp->drbp == 1) || (rbp->srbp == 1))
ret = qdma_populate_fd_pci((phys_addr_t)job[loop]->src,
(phys_addr_t)job[loop]->dest,
job[loop]->len, &fd[loop], rbp, ser);
else
ret = qdma_populate_fd_ddr((phys_addr_t)job[loop]->src,
(phys_addr_t)job[loop]->dest,
job[loop]->len, &fd[loop], ser);
}
return ret;
}
static uint32_t qdma_populate_sg_entry(
struct rte_qdma_job **jobs,
struct qdma_sg_entry *src_sge,
struct qdma_sg_entry *dst_sge,
uint16_t nb_jobs)
{
uint16_t i;
uint32_t total_len = 0;
uint64_t iova;
for (i = 0; i < nb_jobs; i++) {
/* source SG */
if (likely(jobs[i]->flags & RTE_QDMA_JOB_SRC_PHY)) {
src_sge->addr_lo = (uint32_t)jobs[i]->src;
src_sge->addr_hi = (jobs[i]->src >> 32);
} else {
iova = DPAA2_VADDR_TO_IOVA(jobs[i]->src);
src_sge->addr_lo = (uint32_t)iova;
src_sge->addr_hi = iova >> 32;
}
src_sge->data_len.data_len_sl0 = jobs[i]->len;
src_sge->ctrl.sl = QDMA_SG_SL_LONG;
src_sge->ctrl.fmt = QDMA_SG_FMT_SDB;
#ifdef RTE_LIBRTE_DPAA2_USE_PHYS_IOVA
src_sge->ctrl.bmt = QDMA_SG_BMT_ENABLE;
#else
src_sge->ctrl.bmt = QDMA_SG_BMT_DISABLE;
#endif
/* destination SG */
if (likely(jobs[i]->flags & RTE_QDMA_JOB_DEST_PHY)) {
dst_sge->addr_lo = (uint32_t)jobs[i]->dest;
dst_sge->addr_hi = (jobs[i]->dest >> 32);
} else {
iova = DPAA2_VADDR_TO_IOVA(jobs[i]->dest);
dst_sge->addr_lo = (uint32_t)iova;
dst_sge->addr_hi = iova >> 32;
}
dst_sge->data_len.data_len_sl0 = jobs[i]->len;
dst_sge->ctrl.sl = QDMA_SG_SL_LONG;
dst_sge->ctrl.fmt = QDMA_SG_FMT_SDB;
#ifdef RTE_LIBRTE_DPAA2_USE_PHYS_IOVA
dst_sge->ctrl.bmt = QDMA_SG_BMT_ENABLE;
#else
dst_sge->ctrl.bmt = QDMA_SG_BMT_DISABLE;
#endif
total_len += jobs[i]->len;
if (i == (nb_jobs - 1)) {
src_sge->ctrl.f = QDMA_SG_F;
dst_sge->ctrl.f = QDMA_SG_F;
} else {
src_sge->ctrl.f = 0;
dst_sge->ctrl.f = 0;
}
src_sge++;
dst_sge++;
}
return total_len;
}
static inline int dpdmai_dev_set_multi_fd_lf_no_rsp(
struct qdma_virt_queue *qdma_vq,
struct qbman_fd *fd,
struct rte_qdma_job **job,
uint16_t nb_jobs)
{
struct rte_qdma_rbp *rbp = &qdma_vq->rbp;
struct rte_qdma_job **ppjob;
uint16_t i;
void *elem;
struct qbman_fle *fle;
uint64_t elem_iova, fle_iova;
for (i = 0; i < nb_jobs; i++) {
elem = job[i]->usr_elem;
#ifdef RTE_LIBRTE_DPAA2_USE_PHYS_IOVA
elem_iova = rte_mempool_virt2iova(elem);
#else
elem_iova = DPAA2_VADDR_TO_IOVA(elem);
#endif
ppjob = (struct rte_qdma_job **)
((uintptr_t)(uint64_t)elem +
QDMA_FLE_SINGLE_JOB_OFFSET);
*ppjob = job[i];
job[i]->vq_id = qdma_vq->vq_id;
fle = (struct qbman_fle *)
((uintptr_t)(uint64_t)elem + QDMA_FLE_FLE_OFFSET);
fle_iova = elem_iova + QDMA_FLE_FLE_OFFSET;
DPAA2_SET_FD_ADDR(&fd[i], fle_iova);
DPAA2_SET_FD_COMPOUND_FMT(&fd[i]);
memset(fle, 0, DPAA2_QDMA_MAX_FLE * sizeof(struct qbman_fle) +
DPAA2_QDMA_MAX_SDD * sizeof(struct qdma_sdd));
dpaa2_qdma_populate_fle(fle, fle_iova, rbp,
job[i]->src, job[i]->dest, job[i]->len,
job[i]->flags, QBMAN_FLE_WORD4_FMT_SBF);
}
return 0;
}
static inline int dpdmai_dev_set_multi_fd_lf(
struct qdma_virt_queue *qdma_vq,
struct qbman_fd *fd,
struct rte_qdma_job **job,
uint16_t nb_jobs)
{
struct rte_qdma_rbp *rbp = &qdma_vq->rbp;
struct rte_qdma_job **ppjob;
uint16_t i;
int ret;
void *elem[RTE_QDMA_BURST_NB_MAX];
struct qbman_fle *fle;
uint64_t elem_iova, fle_iova;
ret = rte_mempool_get_bulk(qdma_vq->fle_pool, elem, nb_jobs);
if (ret) {
DPAA2_QDMA_DP_DEBUG("Memory alloc failed for FLE");
return ret;
}
for (i = 0; i < nb_jobs; i++) {
#ifdef RTE_LIBRTE_DPAA2_USE_PHYS_IOVA
elem_iova = rte_mempool_virt2iova(elem[i]);
#else
elem_iova = DPAA2_VADDR_TO_IOVA(elem[i]);
#endif
ppjob = (struct rte_qdma_job **)
((uintptr_t)(uint64_t)elem[i] +
QDMA_FLE_SINGLE_JOB_OFFSET);
*ppjob = job[i];
job[i]->vq_id = qdma_vq->vq_id;
fle = (struct qbman_fle *)
((uintptr_t)(uint64_t)elem[i] + QDMA_FLE_FLE_OFFSET);
fle_iova = elem_iova + QDMA_FLE_FLE_OFFSET;
DPAA2_SET_FD_ADDR(&fd[i], fle_iova);
DPAA2_SET_FD_COMPOUND_FMT(&fd[i]);
DPAA2_SET_FD_FRC(&fd[i], QDMA_SER_CTX);
memset(fle, 0, DPAA2_QDMA_MAX_FLE * sizeof(struct qbman_fle) +
DPAA2_QDMA_MAX_SDD * sizeof(struct qdma_sdd));
dpaa2_qdma_populate_fle(fle, fle_iova, rbp,
job[i]->src, job[i]->dest, job[i]->len,
job[i]->flags, QBMAN_FLE_WORD4_FMT_SBF);
}
return 0;
}
static inline int dpdmai_dev_set_sg_fd_lf(
struct qdma_virt_queue *qdma_vq,
struct qbman_fd *fd,
struct rte_qdma_job **job,
uint16_t nb_jobs)
{
struct rte_qdma_rbp *rbp = &qdma_vq->rbp;
struct rte_qdma_job **ppjob;
void *elem;
struct qbman_fle *fle;
uint64_t elem_iova, fle_iova, src, dst;
int ret = 0, i;
struct qdma_sg_entry *src_sge, *dst_sge;
uint32_t len, fmt, flags;
/*
* Get an FLE/SDD from FLE pool.
* Note: IO metadata is before the FLE and SDD memory.
*/
if (qdma_vq->flags & RTE_QDMA_VQ_NO_RESPONSE) {
elem = job[0]->usr_elem;
} else {
ret = rte_mempool_get(qdma_vq->fle_pool, &elem);
if (ret) {
DPAA2_QDMA_DP_DEBUG("Memory alloc failed for FLE");
return ret;
}
}
#ifdef RTE_LIBRTE_DPAA2_USE_PHYS_IOVA
elem_iova = rte_mempool_virt2iova(elem);
#else
elem_iova = DPAA2_VADDR_TO_IOVA(elem);
#endif
/* Set the metadata */
/* Save job context. */
*((uint16_t *)
((uintptr_t)(uint64_t)elem + QDMA_FLE_JOB_NB_OFFSET)) = nb_jobs;
ppjob = (struct rte_qdma_job **)
((uintptr_t)(uint64_t)elem + QDMA_FLE_SG_JOBS_OFFSET);
for (i = 0; i < nb_jobs; i++)
ppjob[i] = job[i];
ppjob[0]->vq_id = qdma_vq->vq_id;
fle = (struct qbman_fle *)
((uintptr_t)(uint64_t)elem + QDMA_FLE_FLE_OFFSET);
fle_iova = elem_iova + QDMA_FLE_FLE_OFFSET;
DPAA2_SET_FD_ADDR(fd, fle_iova);
DPAA2_SET_FD_COMPOUND_FMT(fd);
if (!(qdma_vq->flags & RTE_QDMA_VQ_NO_RESPONSE))
DPAA2_SET_FD_FRC(fd, QDMA_SER_CTX);
/* Populate FLE */
if (likely(nb_jobs > 1)) {
src_sge = (struct qdma_sg_entry *)
((uintptr_t)(uint64_t)elem + QDMA_FLE_SG_ENTRY_OFFSET);
dst_sge = src_sge + DPAA2_QDMA_MAX_SG_NB;
src = elem_iova + QDMA_FLE_SG_ENTRY_OFFSET;
dst = src +
DPAA2_QDMA_MAX_SG_NB * sizeof(struct qdma_sg_entry);
len = qdma_populate_sg_entry(job, src_sge, dst_sge, nb_jobs);
fmt = QBMAN_FLE_WORD4_FMT_SGE;
flags = RTE_QDMA_JOB_SRC_PHY | RTE_QDMA_JOB_DEST_PHY;
} else {
src = job[0]->src;
dst = job[0]->dest;
len = job[0]->len;
fmt = QBMAN_FLE_WORD4_FMT_SBF;
flags = job[0]->flags;
}
memset(fle, 0, DPAA2_QDMA_MAX_FLE * sizeof(struct qbman_fle) +
DPAA2_QDMA_MAX_SDD * sizeof(struct qdma_sdd));
dpaa2_qdma_populate_fle(fle, fle_iova, rbp,
src, dst, len, flags, fmt);
return 0;
}
static inline uint16_t dpdmai_dev_get_job_us(
struct qdma_virt_queue *qdma_vq __rte_unused,
const struct qbman_fd *fd,
struct rte_qdma_job **job, uint16_t *nb_jobs)
{
uint16_t vqid;
size_t iova;
struct rte_qdma_job **ppjob;
if (fd->simple_pci.saddr_hi & (QDMA_RBP_UPPER_ADDRESS_MASK >> 32))
iova = (size_t)(((uint64_t)fd->simple_pci.daddr_hi) << 32
| (uint64_t)fd->simple_pci.daddr_lo);
else
iova = (size_t)(((uint64_t)fd->simple_pci.saddr_hi) << 32
| (uint64_t)fd->simple_pci.saddr_lo);
ppjob = (struct rte_qdma_job **)DPAA2_IOVA_TO_VADDR(iova) - 1;
*job = (struct rte_qdma_job *)*ppjob;
(*job)->status = (fd->simple_pci.acc_err << 8) |
(fd->simple_pci.error);
vqid = (*job)->vq_id;
*nb_jobs = 1;
return vqid;
}
static inline uint16_t dpdmai_dev_get_single_job_lf(
struct qdma_virt_queue *qdma_vq,
const struct qbman_fd *fd,
struct rte_qdma_job **job,
uint16_t *nb_jobs)
{
struct qbman_fle *fle;
struct rte_qdma_job **ppjob = NULL;
uint16_t status;
/*
* Fetch metadata from FLE. job and vq_id were set
* in metadata in the enqueue operation.
*/
fle = (struct qbman_fle *)
DPAA2_IOVA_TO_VADDR(DPAA2_GET_FD_ADDR(fd));
*nb_jobs = 1;
ppjob = (struct rte_qdma_job **)((uintptr_t)(uint64_t)fle -
QDMA_FLE_FLE_OFFSET + QDMA_FLE_SINGLE_JOB_OFFSET);
status = (DPAA2_GET_FD_ERR(fd) << 8) | (DPAA2_GET_FD_FRC(fd) & 0xFF);
*job = *ppjob;
(*job)->status = status;
/* Free FLE to the pool */
rte_mempool_put(qdma_vq->fle_pool,
(void *)
((uintptr_t)(uint64_t)fle - QDMA_FLE_FLE_OFFSET));
return (*job)->vq_id;
}
static inline uint16_t dpdmai_dev_get_sg_job_lf(
struct qdma_virt_queue *qdma_vq,
const struct qbman_fd *fd,
struct rte_qdma_job **job,
uint16_t *nb_jobs)
{
struct qbman_fle *fle;
struct rte_qdma_job **ppjob = NULL;
uint16_t i, status;
/*
* Fetch metadata from FLE. job and vq_id were set
* in metadata in the enqueue operation.
*/
fle = (struct qbman_fle *)
DPAA2_IOVA_TO_VADDR(DPAA2_GET_FD_ADDR(fd));
*nb_jobs = *((uint16_t *)((uintptr_t)(uint64_t)fle -
QDMA_FLE_FLE_OFFSET + QDMA_FLE_JOB_NB_OFFSET));
ppjob = (struct rte_qdma_job **)((uintptr_t)(uint64_t)fle -
QDMA_FLE_FLE_OFFSET + QDMA_FLE_SG_JOBS_OFFSET);
status = (DPAA2_GET_FD_ERR(fd) << 8) | (DPAA2_GET_FD_FRC(fd) & 0xFF);
for (i = 0; i < (*nb_jobs); i++) {
job[i] = ppjob[i];
job[i]->status = status;
}
/* Free FLE to the pool */
rte_mempool_put(qdma_vq->fle_pool,
(void *)
((uintptr_t)(uint64_t)fle - QDMA_FLE_FLE_OFFSET));
return job[0]->vq_id;
}
/* Function to receive a QDMA job for a given device and queue*/
static int
dpdmai_dev_dequeue_multijob_prefetch(
struct qdma_virt_queue *qdma_vq,
uint16_t *vq_id,
struct rte_qdma_job **job,
uint16_t nb_jobs)
{
struct qdma_hw_queue *qdma_pq = qdma_vq->hw_queue;
struct dpaa2_dpdmai_dev *dpdmai_dev = qdma_pq->dpdmai_dev;
uint16_t rxq_id = qdma_pq->queue_id;
struct dpaa2_queue *rxq;
struct qbman_result *dq_storage, *dq_storage1 = NULL;
struct qbman_pull_desc pulldesc;
struct qbman_swp *swp;
struct queue_storage_info_t *q_storage;
uint32_t fqid;
uint8_t status, pending;
uint8_t num_rx = 0;
const struct qbman_fd *fd;
uint16_t vqid, num_rx_ret;
int ret, pull_size;
if (qdma_vq->flags & RTE_QDMA_VQ_FD_SG_FORMAT) {
/** Make sure there are enough space to get jobs.*/
if (unlikely(nb_jobs < DPAA2_QDMA_MAX_SG_NB))
return -EINVAL;
nb_jobs = 1;
}
if (unlikely(!DPAA2_PER_LCORE_DPIO)) {
ret = dpaa2_affine_qbman_swp();
if (ret) {
DPAA2_QDMA_ERR(
"Failed to allocate IO portal, tid: %d\n",
rte_gettid());
return 0;
}
}
swp = DPAA2_PER_LCORE_PORTAL;
pull_size = (nb_jobs > dpaa2_dqrr_size) ? dpaa2_dqrr_size : nb_jobs;
rxq = &(dpdmai_dev->rx_queue[rxq_id]);
fqid = rxq->fqid;
q_storage = rxq->q_storage;
if (unlikely(!q_storage->active_dqs)) {
q_storage->toggle = 0;
dq_storage = q_storage->dq_storage[q_storage->toggle];
q_storage->last_num_pkts = pull_size;
qbman_pull_desc_clear(&pulldesc);
qbman_pull_desc_set_numframes(&pulldesc,
q_storage->last_num_pkts);
qbman_pull_desc_set_fq(&pulldesc, fqid);
qbman_pull_desc_set_storage(&pulldesc, dq_storage,
(size_t)(DPAA2_VADDR_TO_IOVA(dq_storage)), 1);
if (check_swp_active_dqs(DPAA2_PER_LCORE_DPIO->index)) {
while (!qbman_check_command_complete(
get_swp_active_dqs(
DPAA2_PER_LCORE_DPIO->index)))
;
clear_swp_active_dqs(DPAA2_PER_LCORE_DPIO->index);
}
while (1) {
if (qbman_swp_pull(swp, &pulldesc)) {
DPAA2_QDMA_DP_WARN(
"VDQ command not issued.QBMAN busy\n");
/* Portal was busy, try again */
continue;
}
break;
}
q_storage->active_dqs = dq_storage;
q_storage->active_dpio_id = DPAA2_PER_LCORE_DPIO->index;
set_swp_active_dqs(DPAA2_PER_LCORE_DPIO->index,
dq_storage);
}
dq_storage = q_storage->active_dqs;
rte_prefetch0((void *)(size_t)(dq_storage));
rte_prefetch0((void *)(size_t)(dq_storage + 1));
/* Prepare next pull descriptor. This will give space for the
* prefetching done on DQRR entries
*/
q_storage->toggle ^= 1;
dq_storage1 = q_storage->dq_storage[q_storage->toggle];
qbman_pull_desc_clear(&pulldesc);
qbman_pull_desc_set_numframes(&pulldesc, pull_size);
qbman_pull_desc_set_fq(&pulldesc, fqid);
qbman_pull_desc_set_storage(&pulldesc, dq_storage1,
(size_t)(DPAA2_VADDR_TO_IOVA(dq_storage1)), 1);
/* Check if the previous issued command is completed.
* Also seems like the SWP is shared between the Ethernet Driver
* and the SEC driver.
*/
while (!qbman_check_command_complete(dq_storage))
;
if (dq_storage == get_swp_active_dqs(q_storage->active_dpio_id))
clear_swp_active_dqs(q_storage->active_dpio_id);
pending = 1;
do {
/* Loop until the dq_storage is updated with
* new token by QBMAN
*/
while (!qbman_check_new_result(dq_storage))
;
rte_prefetch0((void *)((size_t)(dq_storage + 2)));
/* Check whether Last Pull command is Expired and
* setting Condition for Loop termination
*/
if (qbman_result_DQ_is_pull_complete(dq_storage)) {
pending = 0;
/* Check for valid frame. */
status = qbman_result_DQ_flags(dq_storage);
if (unlikely((status & QBMAN_DQ_STAT_VALIDFRAME) == 0))
continue;
}
fd = qbman_result_DQ_fd(dq_storage);
vqid = qdma_vq->get_job(qdma_vq, fd, &job[num_rx],
&num_rx_ret);
if (vq_id)
vq_id[num_rx] = vqid;
dq_storage++;
num_rx += num_rx_ret;
} while (pending);
if (check_swp_active_dqs(DPAA2_PER_LCORE_DPIO->index)) {
while (!qbman_check_command_complete(
get_swp_active_dqs(DPAA2_PER_LCORE_DPIO->index)))
;
clear_swp_active_dqs(DPAA2_PER_LCORE_DPIO->index);
}
/* issue a volatile dequeue command for next pull */
while (1) {
if (qbman_swp_pull(swp, &pulldesc)) {
DPAA2_QDMA_DP_WARN(
"VDQ command is not issued. QBMAN is busy (2)\n");
continue;
}
break;
}
q_storage->active_dqs = dq_storage1;
q_storage->active_dpio_id = DPAA2_PER_LCORE_DPIO->index;
set_swp_active_dqs(DPAA2_PER_LCORE_DPIO->index, dq_storage1);
return num_rx;
}
static int
dpdmai_dev_dequeue_multijob_no_prefetch(
struct qdma_virt_queue *qdma_vq,
uint16_t *vq_id,
struct rte_qdma_job **job,
uint16_t nb_jobs)
{
struct qdma_hw_queue *qdma_pq = qdma_vq->hw_queue;
struct dpaa2_dpdmai_dev *dpdmai_dev = qdma_pq->dpdmai_dev;
uint16_t rxq_id = qdma_pq->queue_id;
struct dpaa2_queue *rxq;
struct qbman_result *dq_storage;
struct qbman_pull_desc pulldesc;
struct qbman_swp *swp;
uint32_t fqid;
uint8_t status, pending;
uint8_t num_rx = 0;
const struct qbman_fd *fd;
uint16_t vqid, num_rx_ret;
int ret, next_pull, num_pulled = 0;
if (qdma_vq->flags & RTE_QDMA_VQ_FD_SG_FORMAT) {
/** Make sure there are enough space to get jobs.*/
if (unlikely(nb_jobs < DPAA2_QDMA_MAX_SG_NB))
return -EINVAL;
nb_jobs = 1;
}
next_pull = nb_jobs;
if (unlikely(!DPAA2_PER_LCORE_DPIO)) {
ret = dpaa2_affine_qbman_swp();
if (ret) {
DPAA2_QDMA_ERR(
"Failed to allocate IO portal, tid: %d\n",
rte_gettid());
return 0;
}
}
swp = DPAA2_PER_LCORE_PORTAL;
rxq = &(dpdmai_dev->rx_queue[rxq_id]);
fqid = rxq->fqid;
do {
dq_storage = rxq->q_storage->dq_storage[0];
/* Prepare dequeue descriptor */
qbman_pull_desc_clear(&pulldesc);
qbman_pull_desc_set_fq(&pulldesc, fqid);
qbman_pull_desc_set_storage(&pulldesc, dq_storage,
(uint64_t)(DPAA2_VADDR_TO_IOVA(dq_storage)), 1);
if (next_pull > dpaa2_dqrr_size) {
qbman_pull_desc_set_numframes(&pulldesc,
dpaa2_dqrr_size);
next_pull -= dpaa2_dqrr_size;
} else {
qbman_pull_desc_set_numframes(&pulldesc, next_pull);
next_pull = 0;
}
while (1) {
if (qbman_swp_pull(swp, &pulldesc)) {
DPAA2_QDMA_DP_WARN(
"VDQ command not issued. QBMAN busy");
/* Portal was busy, try again */
continue;
}
break;
}
rte_prefetch0((void *)((size_t)(dq_storage + 1)));
/* Check if the previous issued command is completed. */
while (!qbman_check_command_complete(dq_storage))
;
num_pulled = 0;
pending = 1;
do {
/* Loop until dq_storage is updated
* with new token by QBMAN
*/
while (!qbman_check_new_result(dq_storage))
;
rte_prefetch0((void *)((size_t)(dq_storage + 2)));
if (qbman_result_DQ_is_pull_complete(dq_storage)) {
pending = 0;
/* Check for valid frame. */
status = qbman_result_DQ_flags(dq_storage);
if (unlikely((status &
QBMAN_DQ_STAT_VALIDFRAME) == 0))
continue;
}
fd = qbman_result_DQ_fd(dq_storage);
vqid = qdma_vq->get_job(qdma_vq, fd,
&job[num_rx], &num_rx_ret);
if (vq_id)
vq_id[num_rx] = vqid;
dq_storage++;
num_rx += num_rx_ret;
num_pulled++;
} while (pending);
/* Last VDQ provided all packets and more packets are requested */
} while (next_pull && num_pulled == dpaa2_dqrr_size);
return num_rx;
}
static int
dpdmai_dev_enqueue_multi(
struct qdma_virt_queue *qdma_vq,
struct rte_qdma_job **job,
uint16_t nb_jobs)
{
struct qdma_hw_queue *qdma_pq = qdma_vq->hw_queue;
struct dpaa2_dpdmai_dev *dpdmai_dev = qdma_pq->dpdmai_dev;
uint16_t txq_id = qdma_pq->queue_id;
struct qbman_fd fd[RTE_QDMA_BURST_NB_MAX];
struct dpaa2_queue *txq;
struct qbman_eq_desc eqdesc;
struct qbman_swp *swp;
int ret;
uint32_t num_to_send = 0;
uint16_t num_tx = 0;
uint32_t enqueue_loop, retry_count, loop;
if (unlikely(!DPAA2_PER_LCORE_DPIO)) {
ret = dpaa2_affine_qbman_swp();
if (ret) {
DPAA2_QDMA_ERR(
"Failed to allocate IO portal, tid: %d\n",
rte_gettid());
return 0;
}
}
swp = DPAA2_PER_LCORE_PORTAL;
txq = &(dpdmai_dev->tx_queue[txq_id]);
/* Prepare enqueue descriptor */
qbman_eq_desc_clear(&eqdesc);
qbman_eq_desc_set_fq(&eqdesc, txq->fqid);
qbman_eq_desc_set_no_orp(&eqdesc, 0);
qbman_eq_desc_set_response(&eqdesc, 0, 0);
if (qdma_vq->flags & RTE_QDMA_VQ_FD_SG_FORMAT) {
uint16_t fd_nb;
uint16_t sg_entry_nb = nb_jobs > DPAA2_QDMA_MAX_SG_NB ?
DPAA2_QDMA_MAX_SG_NB : nb_jobs;
uint16_t job_idx = 0;
uint16_t fd_sg_nb[8];
uint16_t nb_jobs_ret = 0;
if (nb_jobs % DPAA2_QDMA_MAX_SG_NB)
fd_nb = nb_jobs / DPAA2_QDMA_MAX_SG_NB + 1;
else
fd_nb = nb_jobs / DPAA2_QDMA_MAX_SG_NB;
memset(&fd[0], 0, sizeof(struct qbman_fd) * fd_nb);
for (loop = 0; loop < fd_nb; loop++) {
ret = qdma_vq->set_fd(qdma_vq, &fd[loop], &job[job_idx],
sg_entry_nb);
if (unlikely(ret < 0))
return 0;
fd_sg_nb[loop] = sg_entry_nb;
nb_jobs -= sg_entry_nb;
job_idx += sg_entry_nb;
sg_entry_nb = nb_jobs > DPAA2_QDMA_MAX_SG_NB ?
DPAA2_QDMA_MAX_SG_NB : nb_jobs;
}
/* Enqueue the packet to the QBMAN */
enqueue_loop = 0; retry_count = 0;
while (enqueue_loop < fd_nb) {
ret = qbman_swp_enqueue_multiple(swp,
&eqdesc, &fd[enqueue_loop],
NULL, fd_nb - enqueue_loop);
if (unlikely(ret < 0)) {
retry_count++;
if (retry_count > DPAA2_MAX_TX_RETRY_COUNT)
return nb_jobs_ret;
} else {
for (loop = 0; loop < (uint32_t)ret; loop++)
nb_jobs_ret +=
fd_sg_nb[enqueue_loop + loop];
enqueue_loop += ret;
retry_count = 0;
}
}
return nb_jobs_ret;
}
memset(fd, 0, nb_jobs * sizeof(struct qbman_fd));
while (nb_jobs > 0) {
num_to_send = (nb_jobs > dpaa2_eqcr_size) ?
dpaa2_eqcr_size : nb_jobs;
ret = qdma_vq->set_fd(qdma_vq, &fd[num_tx],
&job[num_tx], num_to_send);
if (unlikely(ret < 0))
break;
/* Enqueue the packet to the QBMAN */
enqueue_loop = 0; retry_count = 0;
loop = num_to_send;
while (enqueue_loop < loop) {
ret = qbman_swp_enqueue_multiple(swp,
&eqdesc,
&fd[num_tx + enqueue_loop],
NULL,
loop - enqueue_loop);
if (unlikely(ret < 0)) {
retry_count++;
if (retry_count > DPAA2_MAX_TX_RETRY_COUNT)
return num_tx;
} else {
enqueue_loop += ret;
retry_count = 0;
}
}
num_tx += num_to_send;
nb_jobs -= loop;
}
return num_tx;
}
static struct qdma_hw_queue *
alloc_hw_queue(uint32_t lcore_id)
{
struct qdma_hw_queue *queue = NULL;
DPAA2_QDMA_FUNC_TRACE();
/* Get a free queue from the list */
TAILQ_FOREACH(queue, &qdma_queue_list, next) {
if (queue->num_users == 0) {
queue->lcore_id = lcore_id;
queue->num_users++;
break;
}
}
return queue;
}
static void
free_hw_queue(struct qdma_hw_queue *queue)
{
DPAA2_QDMA_FUNC_TRACE();
queue->num_users--;
}
static struct qdma_hw_queue *
get_hw_queue(struct qdma_device *qdma_dev, uint32_t lcore_id)
{
struct qdma_per_core_info *core_info;
struct qdma_hw_queue *queue, *temp;
uint32_t least_num_users;
int num_hw_queues, i;
DPAA2_QDMA_FUNC_TRACE();
core_info = &qdma_core_info[lcore_id];
num_hw_queues = core_info->num_hw_queues;
/*
* Allocate a HW queue if there are less queues
* than maximum per core queues configured
*/
if (num_hw_queues < qdma_dev->max_hw_queues_per_core) {
queue = alloc_hw_queue(lcore_id);
if (queue) {
core_info->hw_queues[num_hw_queues] = queue;
core_info->num_hw_queues++;
return queue;
}
}
queue = core_info->hw_queues[0];
/* In case there is no queue associated with the core return NULL */
if (!queue)
return NULL;
/* Fetch the least loaded H/W queue */
least_num_users = core_info->hw_queues[0]->num_users;
for (i = 0; i < num_hw_queues; i++) {
temp = core_info->hw_queues[i];
if (temp->num_users < least_num_users)
queue = temp;
}
if (queue)
queue->num_users++;
return queue;
}
static void
put_hw_queue(struct qdma_hw_queue *queue)
{
struct qdma_per_core_info *core_info;
int lcore_id, num_hw_queues, i;
DPAA2_QDMA_FUNC_TRACE();
/*
* If this is the last user of the queue free it.
* Also remove it from QDMA core info.
*/
if (queue->num_users == 1) {
free_hw_queue(queue);
/* Remove the physical queue from core info */
lcore_id = queue->lcore_id;
core_info = &qdma_core_info[lcore_id];
num_hw_queues = core_info->num_hw_queues;
for (i = 0; i < num_hw_queues; i++) {
if (queue == core_info->hw_queues[i])
break;
}
for (; i < num_hw_queues - 1; i++)
core_info->hw_queues[i] = core_info->hw_queues[i + 1];
core_info->hw_queues[i] = NULL;
} else {
queue->num_users--;
}
}
static int
dpaa2_qdma_attr_get(struct rte_rawdev *rawdev,
__rte_unused const char *attr_name,
uint64_t *attr_value)
{
struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private;
struct qdma_device *qdma_dev = dpdmai_dev->qdma_dev;
struct rte_qdma_attr *qdma_attr = (struct rte_qdma_attr *)attr_value;
DPAA2_QDMA_FUNC_TRACE();
qdma_attr->num_hw_queues = qdma_dev->num_hw_queues;
return 0;
}
static int
dpaa2_qdma_reset(struct rte_rawdev *rawdev)
{
struct qdma_hw_queue *queue;
struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private;
struct qdma_device *qdma_dev = dpdmai_dev->qdma_dev;
int i;
DPAA2_QDMA_FUNC_TRACE();
/* In case QDMA device is not in stopped state, return -EBUSY */
if (qdma_dev->state == 1) {
DPAA2_QDMA_ERR(
"Device is in running state. Stop before reset.");
return -EBUSY;
}
/* In case there are pending jobs on any VQ, return -EBUSY */
for (i = 0; i < qdma_dev->max_vqs; i++) {
if (qdma_dev->vqs[i].in_use && (qdma_dev->vqs[i].num_enqueues !=
qdma_dev->vqs[i].num_dequeues)) {
DPAA2_QDMA_ERR("Jobs are still pending on VQ: %d", i);
return -EBUSY;
}
}
/* Reset HW queues */
TAILQ_FOREACH(queue, &qdma_queue_list, next)
queue->num_users = 0;
/* Reset and free virtual queues */
for (i = 0; i < qdma_dev->max_vqs; i++) {
if (qdma_dev->vqs[i].status_ring)
rte_ring_free(qdma_dev->vqs[i].status_ring);
}
if (qdma_dev->vqs)
rte_free(qdma_dev->vqs);
qdma_dev->vqs = NULL;
/* Reset per core info */
memset(&qdma_core_info, 0,
sizeof(struct qdma_per_core_info) * RTE_MAX_LCORE);
/* Reset QDMA device structure */
qdma_dev->max_hw_queues_per_core = 0;
qdma_dev->fle_queue_pool_cnt = 0;
qdma_dev->max_vqs = 0;
return 0;
}
static int
dpaa2_qdma_configure(const struct rte_rawdev *rawdev,
rte_rawdev_obj_t config,
size_t config_size)
{
char name[32]; /* RTE_MEMZONE_NAMESIZE = 32 */
struct rte_qdma_config *qdma_config = (struct rte_qdma_config *)config;
struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private;
struct qdma_device *qdma_dev = dpdmai_dev->qdma_dev;
DPAA2_QDMA_FUNC_TRACE();
if (config_size != sizeof(*qdma_config))
return -EINVAL;
/* In case QDMA device is not in stopped state, return -EBUSY */
if (qdma_dev->state == 1) {
DPAA2_QDMA_ERR(
"Device is in running state. Stop before config.");
return -1;
}
/* Set max HW queue per core */
if (qdma_config->max_hw_queues_per_core > MAX_HW_QUEUE_PER_CORE) {
DPAA2_QDMA_ERR("H/W queues per core is more than: %d",
MAX_HW_QUEUE_PER_CORE);
return -EINVAL;
}
qdma_dev->max_hw_queues_per_core =
qdma_config->max_hw_queues_per_core;
/* Allocate Virtual Queues */
sprintf(name, "qdma_%d_vq", rawdev->dev_id);
qdma_dev->vqs = rte_malloc(name,
(sizeof(struct qdma_virt_queue) * qdma_config->max_vqs),
RTE_CACHE_LINE_SIZE);
if (!qdma_dev->vqs) {
DPAA2_QDMA_ERR("qdma_virtual_queues allocation failed");
return -ENOMEM;
}
qdma_dev->max_vqs = qdma_config->max_vqs;
qdma_dev->fle_queue_pool_cnt = qdma_config->fle_queue_pool_cnt;
return 0;
}
static int
dpaa2_qdma_start(struct rte_rawdev *rawdev)
{
struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private;
struct qdma_device *qdma_dev = dpdmai_dev->qdma_dev;
DPAA2_QDMA_FUNC_TRACE();
qdma_dev->state = 1;
return 0;
}
static int
check_devargs_handler(__rte_unused const char *key, const char *value,
__rte_unused void *opaque)
{
if (strcmp(value, "1"))
return -1;
return 0;
}
static int
dpaa2_get_devargs(struct rte_devargs *devargs, const char *key)
{
struct rte_kvargs *kvlist;
if (!devargs)
return 0;
kvlist = rte_kvargs_parse(devargs->args, NULL);
if (!kvlist)
return 0;
if (!rte_kvargs_count(kvlist, key)) {
rte_kvargs_free(kvlist);
return 0;
}
if (rte_kvargs_process(kvlist, key,
check_devargs_handler, NULL) < 0) {
rte_kvargs_free(kvlist);
return 0;
}
rte_kvargs_free(kvlist);
return 1;
}
static int
dpaa2_qdma_queue_setup(struct rte_rawdev *rawdev,
__rte_unused uint16_t queue_id,
rte_rawdev_obj_t queue_conf,
size_t conf_size)
{
char ring_name[32];
char pool_name[64];
int i;
struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private;
struct qdma_device *qdma_dev = dpdmai_dev->qdma_dev;
struct rte_qdma_queue_config *q_config =
(struct rte_qdma_queue_config *)queue_conf;
uint32_t pool_size;
DPAA2_QDMA_FUNC_TRACE();
if (conf_size != sizeof(*q_config))
return -EINVAL;
rte_spinlock_lock(&qdma_dev->lock);
/* Get a free Virtual Queue */
for (i = 0; i < qdma_dev->max_vqs; i++) {
if (qdma_dev->vqs[i].in_use == 0)
break;
}
/* Return in case no VQ is free */
if (i == qdma_dev->max_vqs) {
rte_spinlock_unlock(&qdma_dev->lock);
DPAA2_QDMA_ERR("Unable to get lock on QDMA device");
return -ENODEV;
}
if (q_config->flags & RTE_QDMA_VQ_FD_SG_FORMAT) {
if (!(q_config->flags & RTE_QDMA_VQ_EXCLUSIVE_PQ)) {
DPAA2_QDMA_ERR(
"qDMA SG format only supports physical queue!");
rte_spinlock_unlock(&qdma_dev->lock);
return -ENODEV;
}
if (!(q_config->flags & RTE_QDMA_VQ_FD_LONG_FORMAT)) {
DPAA2_QDMA_ERR(
"qDMA SG format only supports long FD format!");
rte_spinlock_unlock(&qdma_dev->lock);
return -ENODEV;
}
pool_size = QDMA_FLE_SG_POOL_SIZE;
} else {
pool_size = QDMA_FLE_SINGLE_POOL_SIZE;
}
if (q_config->flags & RTE_QDMA_VQ_EXCLUSIVE_PQ) {
/* Allocate HW queue for a VQ */
qdma_dev->vqs[i].hw_queue = alloc_hw_queue(q_config->lcore_id);
qdma_dev->vqs[i].exclusive_hw_queue = 1;
} else {
/* Allocate a Ring for Virtual Queue in VQ mode */
snprintf(ring_name, sizeof(ring_name), "status ring %d", i);
qdma_dev->vqs[i].status_ring = rte_ring_create(ring_name,
qdma_dev->fle_queue_pool_cnt, rte_socket_id(), 0);
if (!qdma_dev->vqs[i].status_ring) {
DPAA2_QDMA_ERR("Status ring creation failed for vq");
rte_spinlock_unlock(&qdma_dev->lock);
return rte_errno;
}
/* Get a HW queue (shared) for a VQ */
qdma_dev->vqs[i].hw_queue = get_hw_queue(qdma_dev,
q_config->lcore_id);
qdma_dev->vqs[i].exclusive_hw_queue = 0;
}
if (qdma_dev->vqs[i].hw_queue == NULL) {
DPAA2_QDMA_ERR("No H/W queue available for VQ");
if (qdma_dev->vqs[i].status_ring)
rte_ring_free(qdma_dev->vqs[i].status_ring);
qdma_dev->vqs[i].status_ring = NULL;
rte_spinlock_unlock(&qdma_dev->lock);
return -ENODEV;
}
snprintf(pool_name, sizeof(pool_name),
"qdma_fle_pool%u_queue%d", getpid(), i);
qdma_dev->vqs[i].fle_pool = rte_mempool_create(pool_name,
qdma_dev->fle_queue_pool_cnt, pool_size,
QDMA_FLE_CACHE_SIZE(qdma_dev->fle_queue_pool_cnt), 0,
NULL, NULL, NULL, NULL, SOCKET_ID_ANY, 0);
if (!qdma_dev->vqs[i].fle_pool) {
DPAA2_QDMA_ERR("qdma_fle_pool create failed");
rte_spinlock_unlock(&qdma_dev->lock);
return -ENOMEM;
}
qdma_dev->vqs[i].flags = q_config->flags;
qdma_dev->vqs[i].in_use = 1;
qdma_dev->vqs[i].lcore_id = q_config->lcore_id;
memset(&qdma_dev->vqs[i].rbp, 0, sizeof(struct rte_qdma_rbp));
if (q_config->flags & RTE_QDMA_VQ_FD_LONG_FORMAT) {
if (q_config->flags & RTE_QDMA_VQ_FD_SG_FORMAT) {
qdma_dev->vqs[i].set_fd = dpdmai_dev_set_sg_fd_lf;
qdma_dev->vqs[i].get_job = dpdmai_dev_get_sg_job_lf;
} else {
if (q_config->flags & RTE_QDMA_VQ_NO_RESPONSE)
qdma_dev->vqs[i].set_fd =
dpdmai_dev_set_multi_fd_lf_no_rsp;
else
qdma_dev->vqs[i].set_fd =
dpdmai_dev_set_multi_fd_lf;
qdma_dev->vqs[i].get_job = dpdmai_dev_get_single_job_lf;
}
} else {
qdma_dev->vqs[i].set_fd = dpdmai_dev_set_fd_us;
qdma_dev->vqs[i].get_job = dpdmai_dev_get_job_us;
}
if (dpaa2_get_devargs(rawdev->device->devargs,
DPAA2_QDMA_NO_PREFETCH) ||
(getenv("DPAA2_NO_QDMA_PREFETCH_RX"))) {
/* If no prefetch is configured. */
qdma_dev->vqs[i].dequeue_job =
dpdmai_dev_dequeue_multijob_no_prefetch;
DPAA2_QDMA_INFO("No Prefetch RX Mode enabled");
} else {
qdma_dev->vqs[i].dequeue_job =
dpdmai_dev_dequeue_multijob_prefetch;
}
qdma_dev->vqs[i].enqueue_job = dpdmai_dev_enqueue_multi;
if (q_config->rbp != NULL)
memcpy(&qdma_dev->vqs[i].rbp, q_config->rbp,
sizeof(struct rte_qdma_rbp));
rte_spinlock_unlock(&qdma_dev->lock);
return i;
}
static int
dpaa2_qdma_enqueue(struct rte_rawdev *rawdev,
__rte_unused struct rte_rawdev_buf **buffers,
unsigned int nb_jobs,
rte_rawdev_obj_t context)
{
struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private;
struct rte_qdma_enqdeq *e_context =
(struct rte_qdma_enqdeq *)context;
struct qdma_virt_queue *qdma_vq =
&dpdmai_dev->qdma_dev->vqs[e_context->vq_id];
int ret;
/* Return error in case of wrong lcore_id */
if (rte_lcore_id() != qdma_vq->lcore_id) {
DPAA2_QDMA_ERR("QDMA enqueue for vqid %d on wrong core",
e_context->vq_id);
return -EINVAL;
}
ret = qdma_vq->enqueue_job(qdma_vq, e_context->job, nb_jobs);
if (ret < 0) {
DPAA2_QDMA_ERR("DPDMAI device enqueue failed: %d", ret);
return ret;
}
qdma_vq->num_enqueues += ret;
return ret;
}
static int
dpaa2_qdma_dequeue(struct rte_rawdev *rawdev,
__rte_unused struct rte_rawdev_buf **buffers,
unsigned int nb_jobs,
rte_rawdev_obj_t cntxt)
{
struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private;
struct qdma_device *qdma_dev = dpdmai_dev->qdma_dev;
struct rte_qdma_enqdeq *context =
(struct rte_qdma_enqdeq *)cntxt;
struct qdma_virt_queue *qdma_vq = &qdma_dev->vqs[context->vq_id];
struct qdma_virt_queue *temp_qdma_vq;
int ret = 0, i;
unsigned int ring_count;
if (qdma_vq->flags & RTE_QDMA_VQ_FD_SG_FORMAT) {
/** Make sure there are enough space to get jobs.*/
if (unlikely(nb_jobs < DPAA2_QDMA_MAX_SG_NB))
return -EINVAL;
}
/* Return error in case of wrong lcore_id */
if (rte_lcore_id() != (unsigned int)(qdma_vq->lcore_id)) {
DPAA2_QDMA_WARN("QDMA dequeue for vqid %d on wrong core",
context->vq_id);
return -1;
}
/* Only dequeue when there are pending jobs on VQ */
if (qdma_vq->num_enqueues == qdma_vq->num_dequeues)
return 0;
if (!(qdma_vq->flags & RTE_QDMA_VQ_FD_SG_FORMAT) &&
qdma_vq->num_enqueues < (qdma_vq->num_dequeues + nb_jobs))
nb_jobs = (qdma_vq->num_enqueues - qdma_vq->num_dequeues);
if (qdma_vq->exclusive_hw_queue) {
/* In case of exclusive queue directly fetch from HW queue */
ret = qdma_vq->dequeue_job(qdma_vq, NULL,
context->job, nb_jobs);
if (ret < 0) {
DPAA2_QDMA_ERR(
"Dequeue from DPDMAI device failed: %d", ret);
return ret;
}
qdma_vq->num_dequeues += ret;
} else {
uint16_t temp_vq_id[RTE_QDMA_BURST_NB_MAX];
/*
* Get the QDMA completed jobs from the software ring.
* In case they are not available on the ring poke the HW
* to fetch completed jobs from corresponding HW queues
*/
ring_count = rte_ring_count(qdma_vq->status_ring);
if (ring_count < nb_jobs) {
/* TODO - How to have right budget */
ret = qdma_vq->dequeue_job(qdma_vq,
temp_vq_id, context->job, nb_jobs);
for (i = 0; i < ret; i++) {
temp_qdma_vq = &qdma_dev->vqs[temp_vq_id[i]];
rte_ring_enqueue(temp_qdma_vq->status_ring,
(void *)(context->job[i]));
}
ring_count = rte_ring_count(
qdma_vq->status_ring);
}
if (ring_count) {
/* Dequeue job from the software ring
* to provide to the user
*/
ret = rte_ring_dequeue_bulk(qdma_vq->status_ring,
(void **)context->job,
ring_count, NULL);
if (ret)
qdma_vq->num_dequeues += ret;
}
}
return ret;
}
void
rte_qdma_vq_stats(struct rte_rawdev *rawdev,
uint16_t vq_id,
struct rte_qdma_vq_stats *vq_status)
{
struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private;
struct qdma_device *qdma_dev = dpdmai_dev->qdma_dev;
struct qdma_virt_queue *qdma_vq = &qdma_dev->vqs[vq_id];
if (qdma_vq->in_use) {
vq_status->exclusive_hw_queue = qdma_vq->exclusive_hw_queue;
vq_status->lcore_id = qdma_vq->lcore_id;
vq_status->num_enqueues = qdma_vq->num_enqueues;
vq_status->num_dequeues = qdma_vq->num_dequeues;
vq_status->num_pending_jobs = vq_status->num_enqueues -
vq_status->num_dequeues;
}
}
static int
dpaa2_qdma_queue_release(struct rte_rawdev *rawdev,
uint16_t vq_id)
{
struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private;
struct qdma_device *qdma_dev = dpdmai_dev->qdma_dev;
struct qdma_virt_queue *qdma_vq = &qdma_dev->vqs[vq_id];
DPAA2_QDMA_FUNC_TRACE();
/* In case there are pending jobs on any VQ, return -EBUSY */
if (qdma_vq->num_enqueues != qdma_vq->num_dequeues)
return -EBUSY;
rte_spinlock_lock(&qdma_dev->lock);
if (qdma_vq->exclusive_hw_queue)
free_hw_queue(qdma_vq->hw_queue);
else {
if (qdma_vq->status_ring)
rte_ring_free(qdma_vq->status_ring);
put_hw_queue(qdma_vq->hw_queue);
}
if (qdma_vq->fle_pool)
rte_mempool_free(qdma_vq->fle_pool);
memset(qdma_vq, 0, sizeof(struct qdma_virt_queue));
rte_spinlock_unlock(&qdma_dev->lock);
return 0;
}
static void
dpaa2_qdma_stop(struct rte_rawdev *rawdev)
{
struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private;
struct qdma_device *qdma_dev = dpdmai_dev->qdma_dev;
DPAA2_QDMA_FUNC_TRACE();
qdma_dev->state = 0;
}
static int
dpaa2_qdma_close(struct rte_rawdev *rawdev)
{
DPAA2_QDMA_FUNC_TRACE();
dpaa2_qdma_reset(rawdev);
return 0;
}
static struct rte_rawdev_ops dpaa2_qdma_ops = {
.dev_configure = dpaa2_qdma_configure,
.dev_start = dpaa2_qdma_start,
.dev_stop = dpaa2_qdma_stop,
.dev_reset = dpaa2_qdma_reset,
.dev_close = dpaa2_qdma_close,
.queue_setup = dpaa2_qdma_queue_setup,
.queue_release = dpaa2_qdma_queue_release,
.attr_get = dpaa2_qdma_attr_get,
.enqueue_bufs = dpaa2_qdma_enqueue,
.dequeue_bufs = dpaa2_qdma_dequeue,
};
static int
add_hw_queues_to_list(struct dpaa2_dpdmai_dev *dpdmai_dev)
{
struct qdma_hw_queue *queue;
int i;
DPAA2_QDMA_FUNC_TRACE();
for (i = 0; i < dpdmai_dev->num_queues; i++) {
queue = rte_zmalloc(NULL, sizeof(struct qdma_hw_queue), 0);
if (!queue) {
DPAA2_QDMA_ERR(
"Memory allocation failed for QDMA queue");
return -ENOMEM;
}
queue->dpdmai_dev = dpdmai_dev;
queue->queue_id = i;
TAILQ_INSERT_TAIL(&qdma_queue_list, queue, next);
dpdmai_dev->qdma_dev->num_hw_queues++;
}
return 0;
}
static void
remove_hw_queues_from_list(struct dpaa2_dpdmai_dev *dpdmai_dev)
{
struct qdma_hw_queue *queue = NULL;
struct qdma_hw_queue *tqueue = NULL;
DPAA2_QDMA_FUNC_TRACE();
TAILQ_FOREACH_SAFE(queue, &qdma_queue_list, next, tqueue) {
if (queue->dpdmai_dev == dpdmai_dev) {
TAILQ_REMOVE(&qdma_queue_list, queue, next);
rte_free(queue);
queue = NULL;
}
}
}
static int
dpaa2_dpdmai_dev_uninit(struct rte_rawdev *rawdev)
{
struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private;
int ret, i;
DPAA2_QDMA_FUNC_TRACE();
/* Remove HW queues from global list */
remove_hw_queues_from_list(dpdmai_dev);
ret = dpdmai_disable(&dpdmai_dev->dpdmai, CMD_PRI_LOW,
dpdmai_dev->token);
if (ret)
DPAA2_QDMA_ERR("dmdmai disable failed");
/* Set up the DQRR storage for Rx */
for (i = 0; i < dpdmai_dev->num_queues; i++) {
struct dpaa2_queue *rxq = &(dpdmai_dev->rx_queue[i]);
if (rxq->q_storage) {
dpaa2_free_dq_storage(rxq->q_storage);
rte_free(rxq->q_storage);
}
}
/* Close the device at underlying layer*/
ret = dpdmai_close(&dpdmai_dev->dpdmai, CMD_PRI_LOW, dpdmai_dev->token);
if (ret)
DPAA2_QDMA_ERR("Failure closing dpdmai device");
return 0;
}
static int
dpaa2_dpdmai_dev_init(struct rte_rawdev *rawdev, int dpdmai_id)
{
struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private;
struct dpdmai_rx_queue_cfg rx_queue_cfg;
struct dpdmai_attr attr;
struct dpdmai_rx_queue_attr rx_attr;
struct dpdmai_tx_queue_attr tx_attr;
int ret, i;
DPAA2_QDMA_FUNC_TRACE();
/* Open DPDMAI device */
dpdmai_dev->dpdmai_id = dpdmai_id;
dpdmai_dev->dpdmai.regs = dpaa2_get_mcp_ptr(MC_PORTAL_INDEX);
dpdmai_dev->qdma_dev = &q_dev;
ret = dpdmai_open(&dpdmai_dev->dpdmai, CMD_PRI_LOW,
dpdmai_dev->dpdmai_id, &dpdmai_dev->token);
if (ret) {
DPAA2_QDMA_ERR("dpdmai_open() failed with err: %d", ret);
return ret;
}
/* Get DPDMAI attributes */
ret = dpdmai_get_attributes(&dpdmai_dev->dpdmai, CMD_PRI_LOW,
dpdmai_dev->token, &attr);
if (ret) {
DPAA2_QDMA_ERR("dpdmai get attributes failed with err: %d",
ret);
goto init_err;
}
dpdmai_dev->num_queues = attr.num_of_queues;
/* Set up Rx Queues */
for (i = 0; i < dpdmai_dev->num_queues; i++) {
struct dpaa2_queue *rxq;
memset(&rx_queue_cfg, 0, sizeof(struct dpdmai_rx_queue_cfg));
ret = dpdmai_set_rx_queue(&dpdmai_dev->dpdmai,
CMD_PRI_LOW,
dpdmai_dev->token,
i, 0, &rx_queue_cfg);
if (ret) {
DPAA2_QDMA_ERR("Setting Rx queue failed with err: %d",
ret);
goto init_err;
}
/* Allocate DQ storage for the DPDMAI Rx queues */
rxq = &(dpdmai_dev->rx_queue[i]);
rxq->q_storage = rte_malloc("dq_storage",
sizeof(struct queue_storage_info_t),
RTE_CACHE_LINE_SIZE);
if (!rxq->q_storage) {
DPAA2_QDMA_ERR("q_storage allocation failed");
ret = -ENOMEM;
goto init_err;
}
memset(rxq->q_storage, 0, sizeof(struct queue_storage_info_t));
ret = dpaa2_alloc_dq_storage(rxq->q_storage);
if (ret) {
DPAA2_QDMA_ERR("dpaa2_alloc_dq_storage failed");
goto init_err;
}
}
/* Get Rx and Tx queues FQID's */
for (i = 0; i < dpdmai_dev->num_queues; i++) {
ret = dpdmai_get_rx_queue(&dpdmai_dev->dpdmai, CMD_PRI_LOW,
dpdmai_dev->token, i, 0, &rx_attr);
if (ret) {
DPAA2_QDMA_ERR("Reading device failed with err: %d",
ret);
goto init_err;
}
dpdmai_dev->rx_queue[i].fqid = rx_attr.fqid;
ret = dpdmai_get_tx_queue(&dpdmai_dev->dpdmai, CMD_PRI_LOW,
dpdmai_dev->token, i, 0, &tx_attr);
if (ret) {
DPAA2_QDMA_ERR("Reading device failed with err: %d",
ret);
goto init_err;
}
dpdmai_dev->tx_queue[i].fqid = tx_attr.fqid;
}
/* Enable the device */
ret = dpdmai_enable(&dpdmai_dev->dpdmai, CMD_PRI_LOW,
dpdmai_dev->token);
if (ret) {
DPAA2_QDMA_ERR("Enabling device failed with err: %d", ret);
goto init_err;
}
/* Add the HW queue to the global list */
ret = add_hw_queues_to_list(dpdmai_dev);
if (ret) {
DPAA2_QDMA_ERR("Adding H/W queue to list failed");
goto init_err;
}
if (!dpaa2_coherent_no_alloc_cache) {
if (dpaa2_svr_family == SVR_LX2160A) {
dpaa2_coherent_no_alloc_cache =
DPAA2_LX2_COHERENT_NO_ALLOCATE_CACHE;
dpaa2_coherent_alloc_cache =
DPAA2_LX2_COHERENT_ALLOCATE_CACHE;
} else {
dpaa2_coherent_no_alloc_cache =
DPAA2_COHERENT_NO_ALLOCATE_CACHE;
dpaa2_coherent_alloc_cache =
DPAA2_COHERENT_ALLOCATE_CACHE;
}
}
DPAA2_QDMA_DEBUG("Initialized dpdmai object successfully");
rte_spinlock_init(&dpdmai_dev->qdma_dev->lock);
return 0;
init_err:
dpaa2_dpdmai_dev_uninit(rawdev);
return ret;
}
static int
rte_dpaa2_qdma_probe(struct rte_dpaa2_driver *dpaa2_drv,
struct rte_dpaa2_device *dpaa2_dev)
{
struct rte_rawdev *rawdev;
int ret;
DPAA2_QDMA_FUNC_TRACE();
rawdev = rte_rawdev_pmd_allocate(dpaa2_dev->device.name,
sizeof(struct dpaa2_dpdmai_dev),
rte_socket_id());
if (!rawdev) {
DPAA2_QDMA_ERR("Unable to allocate rawdevice");
return -EINVAL;
}
dpaa2_dev->rawdev = rawdev;
rawdev->dev_ops = &dpaa2_qdma_ops;
rawdev->device = &dpaa2_dev->device;
rawdev->driver_name = dpaa2_drv->driver.name;
/* Invoke PMD device initialization function */
ret = dpaa2_dpdmai_dev_init(rawdev, dpaa2_dev->object_id);
if (ret) {
rte_rawdev_pmd_release(rawdev);
return ret;
}
/* Reset the QDMA device */
ret = dpaa2_qdma_reset(rawdev);
if (ret) {
DPAA2_QDMA_ERR("Resetting QDMA failed");
return ret;
}
return 0;
}
static int
rte_dpaa2_qdma_remove(struct rte_dpaa2_device *dpaa2_dev)
{
struct rte_rawdev *rawdev = dpaa2_dev->rawdev;
int ret;
DPAA2_QDMA_FUNC_TRACE();
dpaa2_dpdmai_dev_uninit(rawdev);
ret = rte_rawdev_pmd_release(rawdev);
if (ret)
DPAA2_QDMA_ERR("Device cleanup failed");
return 0;
}
static struct rte_dpaa2_driver rte_dpaa2_qdma_pmd = {
.drv_flags = RTE_DPAA2_DRV_IOVA_AS_VA,
.drv_type = DPAA2_QDMA,
.probe = rte_dpaa2_qdma_probe,
.remove = rte_dpaa2_qdma_remove,
};
RTE_PMD_REGISTER_DPAA2(dpaa2_qdma, rte_dpaa2_qdma_pmd);
RTE_PMD_REGISTER_PARAM_STRING(dpaa2_qdma,
"no_prefetch=<int> ");
RTE_LOG_REGISTER(dpaa2_qdma_logtype, pmd.raw.dpaa2.qdma, INFO);