f-stack/dpdk/drivers/net/sfc/sfc_mae.c

2352 lines
63 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright(c) 2019-2020 Xilinx, Inc.
* Copyright(c) 2019 Solarflare Communications Inc.
*
* This software was jointly developed between OKTET Labs (under contract
* for Solarflare) and Solarflare Communications, Inc.
*/
#include <stdbool.h>
#include <rte_common.h>
#include "efx.h"
#include "sfc.h"
#include "sfc_log.h"
#include "sfc_switch.h"
static int
sfc_mae_assign_entity_mport(struct sfc_adapter *sa,
efx_mport_sel_t *mportp)
{
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
return efx_mae_mport_by_pcie_function(encp->enc_pf, encp->enc_vf,
mportp);
}
int
sfc_mae_attach(struct sfc_adapter *sa)
{
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
struct sfc_mae_switch_port_request switch_port_request = {0};
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
efx_mport_sel_t entity_mport;
struct sfc_mae *mae = &sa->mae;
efx_mae_limits_t limits;
int rc;
sfc_log_init(sa, "entry");
if (!encp->enc_mae_supported) {
mae->status = SFC_MAE_STATUS_UNSUPPORTED;
return 0;
}
sfc_log_init(sa, "init MAE");
rc = efx_mae_init(sa->nic);
if (rc != 0)
goto fail_mae_init;
sfc_log_init(sa, "get MAE limits");
rc = efx_mae_get_limits(sa->nic, &limits);
if (rc != 0)
goto fail_mae_get_limits;
sfc_log_init(sa, "assign entity MPORT");
rc = sfc_mae_assign_entity_mport(sa, &entity_mport);
if (rc != 0)
goto fail_mae_assign_entity_mport;
sfc_log_init(sa, "assign RTE switch domain");
rc = sfc_mae_assign_switch_domain(sa, &mae->switch_domain_id);
if (rc != 0)
goto fail_mae_assign_switch_domain;
sfc_log_init(sa, "assign RTE switch port");
switch_port_request.type = SFC_MAE_SWITCH_PORT_INDEPENDENT;
switch_port_request.entity_mportp = &entity_mport;
/* RTE ethdev MPORT matches that of the entity for independent ports. */
switch_port_request.ethdev_mportp = &entity_mport;
switch_port_request.ethdev_port_id = sas->port_id;
rc = sfc_mae_assign_switch_port(mae->switch_domain_id,
&switch_port_request,
&mae->switch_port_id);
if (rc != 0)
goto fail_mae_assign_switch_port;
mae->status = SFC_MAE_STATUS_SUPPORTED;
mae->nb_outer_rule_prios_max = limits.eml_max_n_outer_prios;
mae->nb_action_rule_prios_max = limits.eml_max_n_action_prios;
mae->encap_types_supported = limits.eml_encap_types_supported;
TAILQ_INIT(&mae->outer_rules);
TAILQ_INIT(&mae->action_sets);
sfc_log_init(sa, "done");
return 0;
fail_mae_assign_switch_port:
fail_mae_assign_switch_domain:
fail_mae_assign_entity_mport:
fail_mae_get_limits:
efx_mae_fini(sa->nic);
fail_mae_init:
sfc_log_init(sa, "failed %d", rc);
return rc;
}
void
sfc_mae_detach(struct sfc_adapter *sa)
{
struct sfc_mae *mae = &sa->mae;
enum sfc_mae_status status_prev = mae->status;
sfc_log_init(sa, "entry");
mae->nb_action_rule_prios_max = 0;
mae->status = SFC_MAE_STATUS_UNKNOWN;
if (status_prev != SFC_MAE_STATUS_SUPPORTED)
return;
efx_mae_fini(sa->nic);
sfc_log_init(sa, "done");
}
static struct sfc_mae_outer_rule *
sfc_mae_outer_rule_attach(struct sfc_adapter *sa,
const efx_mae_match_spec_t *match_spec,
efx_tunnel_protocol_t encap_type)
{
struct sfc_mae_outer_rule *rule;
struct sfc_mae *mae = &sa->mae;
SFC_ASSERT(sfc_adapter_is_locked(sa));
TAILQ_FOREACH(rule, &mae->outer_rules, entries) {
if (efx_mae_match_specs_equal(rule->match_spec, match_spec) &&
rule->encap_type == encap_type) {
++(rule->refcnt);
return rule;
}
}
return NULL;
}
static int
sfc_mae_outer_rule_add(struct sfc_adapter *sa,
efx_mae_match_spec_t *match_spec,
efx_tunnel_protocol_t encap_type,
struct sfc_mae_outer_rule **rulep)
{
struct sfc_mae_outer_rule *rule;
struct sfc_mae *mae = &sa->mae;
SFC_ASSERT(sfc_adapter_is_locked(sa));
rule = rte_zmalloc("sfc_mae_outer_rule", sizeof(*rule), 0);
if (rule == NULL)
return ENOMEM;
rule->refcnt = 1;
rule->match_spec = match_spec;
rule->encap_type = encap_type;
rule->fw_rsrc.rule_id.id = EFX_MAE_RSRC_ID_INVALID;
TAILQ_INSERT_TAIL(&mae->outer_rules, rule, entries);
*rulep = rule;
return 0;
}
static void
sfc_mae_outer_rule_del(struct sfc_adapter *sa,
struct sfc_mae_outer_rule *rule)
{
struct sfc_mae *mae = &sa->mae;
SFC_ASSERT(sfc_adapter_is_locked(sa));
SFC_ASSERT(rule->refcnt != 0);
--(rule->refcnt);
if (rule->refcnt != 0)
return;
SFC_ASSERT(rule->fw_rsrc.rule_id.id == EFX_MAE_RSRC_ID_INVALID);
SFC_ASSERT(rule->fw_rsrc.refcnt == 0);
efx_mae_match_spec_fini(sa->nic, rule->match_spec);
TAILQ_REMOVE(&mae->outer_rules, rule, entries);
rte_free(rule);
}
static int
sfc_mae_outer_rule_enable(struct sfc_adapter *sa,
struct sfc_mae_outer_rule *rule,
efx_mae_match_spec_t *match_spec_action)
{
struct sfc_mae_fw_rsrc *fw_rsrc = &rule->fw_rsrc;
int rc;
SFC_ASSERT(sfc_adapter_is_locked(sa));
if (fw_rsrc->refcnt == 0) {
SFC_ASSERT(fw_rsrc->rule_id.id == EFX_MAE_RSRC_ID_INVALID);
SFC_ASSERT(rule->match_spec != NULL);
rc = efx_mae_outer_rule_insert(sa->nic, rule->match_spec,
rule->encap_type,
&fw_rsrc->rule_id);
if (rc != 0)
return rc;
}
rc = efx_mae_match_spec_outer_rule_id_set(match_spec_action,
&fw_rsrc->rule_id);
if (rc != 0) {
if (fw_rsrc->refcnt == 0) {
(void)efx_mae_outer_rule_remove(sa->nic,
&fw_rsrc->rule_id);
fw_rsrc->rule_id.id = EFX_MAE_RSRC_ID_INVALID;
}
return rc;
}
++(fw_rsrc->refcnt);
return 0;
}
static int
sfc_mae_outer_rule_disable(struct sfc_adapter *sa,
struct sfc_mae_outer_rule *rule)
{
struct sfc_mae_fw_rsrc *fw_rsrc = &rule->fw_rsrc;
int rc;
SFC_ASSERT(sfc_adapter_is_locked(sa));
SFC_ASSERT(fw_rsrc->rule_id.id != EFX_MAE_RSRC_ID_INVALID);
SFC_ASSERT(fw_rsrc->refcnt != 0);
if (fw_rsrc->refcnt == 1) {
rc = efx_mae_outer_rule_remove(sa->nic, &fw_rsrc->rule_id);
if (rc != 0)
return rc;
fw_rsrc->rule_id.id = EFX_MAE_RSRC_ID_INVALID;
}
--(fw_rsrc->refcnt);
return 0;
}
static struct sfc_mae_action_set *
sfc_mae_action_set_attach(struct sfc_adapter *sa,
const efx_mae_actions_t *spec)
{
struct sfc_mae_action_set *action_set;
struct sfc_mae *mae = &sa->mae;
SFC_ASSERT(sfc_adapter_is_locked(sa));
TAILQ_FOREACH(action_set, &mae->action_sets, entries) {
if (efx_mae_action_set_specs_equal(action_set->spec, spec)) {
++(action_set->refcnt);
return action_set;
}
}
return NULL;
}
static int
sfc_mae_action_set_add(struct sfc_adapter *sa,
efx_mae_actions_t *spec,
struct sfc_mae_action_set **action_setp)
{
struct sfc_mae_action_set *action_set;
struct sfc_mae *mae = &sa->mae;
SFC_ASSERT(sfc_adapter_is_locked(sa));
action_set = rte_zmalloc("sfc_mae_action_set", sizeof(*action_set), 0);
if (action_set == NULL)
return ENOMEM;
action_set->refcnt = 1;
action_set->spec = spec;
action_set->fw_rsrc.aset_id.id = EFX_MAE_RSRC_ID_INVALID;
TAILQ_INSERT_TAIL(&mae->action_sets, action_set, entries);
*action_setp = action_set;
return 0;
}
static void
sfc_mae_action_set_del(struct sfc_adapter *sa,
struct sfc_mae_action_set *action_set)
{
struct sfc_mae *mae = &sa->mae;
SFC_ASSERT(sfc_adapter_is_locked(sa));
SFC_ASSERT(action_set->refcnt != 0);
--(action_set->refcnt);
if (action_set->refcnt != 0)
return;
SFC_ASSERT(action_set->fw_rsrc.aset_id.id == EFX_MAE_RSRC_ID_INVALID);
SFC_ASSERT(action_set->fw_rsrc.refcnt == 0);
efx_mae_action_set_spec_fini(sa->nic, action_set->spec);
TAILQ_REMOVE(&mae->action_sets, action_set, entries);
rte_free(action_set);
}
static int
sfc_mae_action_set_enable(struct sfc_adapter *sa,
struct sfc_mae_action_set *action_set)
{
struct sfc_mae_fw_rsrc *fw_rsrc = &action_set->fw_rsrc;
int rc;
SFC_ASSERT(sfc_adapter_is_locked(sa));
if (fw_rsrc->refcnt == 0) {
SFC_ASSERT(fw_rsrc->aset_id.id == EFX_MAE_RSRC_ID_INVALID);
SFC_ASSERT(action_set->spec != NULL);
rc = efx_mae_action_set_alloc(sa->nic, action_set->spec,
&fw_rsrc->aset_id);
if (rc != 0)
return rc;
}
++(fw_rsrc->refcnt);
return 0;
}
static int
sfc_mae_action_set_disable(struct sfc_adapter *sa,
struct sfc_mae_action_set *action_set)
{
struct sfc_mae_fw_rsrc *fw_rsrc = &action_set->fw_rsrc;
int rc;
SFC_ASSERT(sfc_adapter_is_locked(sa));
SFC_ASSERT(fw_rsrc->aset_id.id != EFX_MAE_RSRC_ID_INVALID);
SFC_ASSERT(fw_rsrc->refcnt != 0);
if (fw_rsrc->refcnt == 1) {
rc = efx_mae_action_set_free(sa->nic, &fw_rsrc->aset_id);
if (rc != 0)
return rc;
fw_rsrc->aset_id.id = EFX_MAE_RSRC_ID_INVALID;
}
--(fw_rsrc->refcnt);
return 0;
}
void
sfc_mae_flow_cleanup(struct sfc_adapter *sa,
struct rte_flow *flow)
{
struct sfc_flow_spec *spec;
struct sfc_flow_spec_mae *spec_mae;
if (flow == NULL)
return;
spec = &flow->spec;
if (spec == NULL)
return;
spec_mae = &spec->mae;
SFC_ASSERT(spec_mae->rule_id.id == EFX_MAE_RSRC_ID_INVALID);
if (spec_mae->outer_rule != NULL)
sfc_mae_outer_rule_del(sa, spec_mae->outer_rule);
if (spec_mae->action_set != NULL)
sfc_mae_action_set_del(sa, spec_mae->action_set);
if (spec_mae->match_spec != NULL)
efx_mae_match_spec_fini(sa->nic, spec_mae->match_spec);
}
static int
sfc_mae_set_ethertypes(struct sfc_mae_parse_ctx *ctx)
{
struct sfc_mae_pattern_data *pdata = &ctx->pattern_data;
const efx_mae_field_id_t *fremap = ctx->field_ids_remap;
const efx_mae_field_id_t field_ids[] = {
EFX_MAE_FIELD_VLAN0_PROTO_BE,
EFX_MAE_FIELD_VLAN1_PROTO_BE,
};
const struct sfc_mae_ethertype *et;
unsigned int i;
int rc;
/*
* In accordance with RTE flow API convention, the innermost L2
* item's "type" ("inner_type") is a L3 EtherType. If there is
* no L3 item, it's 0x0000/0x0000.
*/
et = &pdata->ethertypes[pdata->nb_vlan_tags];
rc = efx_mae_match_spec_field_set(ctx->match_spec,
fremap[EFX_MAE_FIELD_ETHER_TYPE_BE],
sizeof(et->value),
(const uint8_t *)&et->value,
sizeof(et->mask),
(const uint8_t *)&et->mask);
if (rc != 0)
return rc;
/*
* sfc_mae_rule_parse_item_vlan() has already made sure
* that pdata->nb_vlan_tags does not exceed this figure.
*/
RTE_BUILD_BUG_ON(SFC_MAE_MATCH_VLAN_MAX_NTAGS != 2);
for (i = 0; i < pdata->nb_vlan_tags; ++i) {
et = &pdata->ethertypes[i];
rc = efx_mae_match_spec_field_set(ctx->match_spec,
fremap[field_ids[i]],
sizeof(et->value),
(const uint8_t *)&et->value,
sizeof(et->mask),
(const uint8_t *)&et->mask);
if (rc != 0)
return rc;
}
return 0;
}
static int
sfc_mae_rule_process_pattern_data(struct sfc_mae_parse_ctx *ctx,
struct rte_flow_error *error)
{
const efx_mae_field_id_t *fremap = ctx->field_ids_remap;
struct sfc_mae_pattern_data *pdata = &ctx->pattern_data;
struct sfc_mae_ethertype *ethertypes = pdata->ethertypes;
const rte_be16_t supported_tpids[] = {
/* VLAN standard TPID (always the first element) */
RTE_BE16(RTE_ETHER_TYPE_VLAN),
/* Double-tagging TPIDs */
RTE_BE16(RTE_ETHER_TYPE_QINQ),
RTE_BE16(RTE_ETHER_TYPE_QINQ1),
RTE_BE16(RTE_ETHER_TYPE_QINQ2),
RTE_BE16(RTE_ETHER_TYPE_QINQ3),
};
unsigned int nb_supported_tpids = RTE_DIM(supported_tpids);
unsigned int ethertype_idx;
const uint8_t *valuep;
const uint8_t *maskp;
int rc;
if (pdata->innermost_ethertype_restriction.mask != 0 &&
pdata->nb_vlan_tags < SFC_MAE_MATCH_VLAN_MAX_NTAGS) {
/*
* If a single item VLAN is followed by a L3 item, value
* of "type" in item ETH can't be a double-tagging TPID.
*/
nb_supported_tpids = 1;
}
/*
* sfc_mae_rule_parse_item_vlan() has already made sure
* that pdata->nb_vlan_tags does not exceed this figure.
*/
RTE_BUILD_BUG_ON(SFC_MAE_MATCH_VLAN_MAX_NTAGS != 2);
for (ethertype_idx = 0;
ethertype_idx < pdata->nb_vlan_tags; ++ethertype_idx) {
unsigned int tpid_idx;
/* Exact match is supported only. */
if (ethertypes[ethertype_idx].mask != RTE_BE16(0xffff)) {
rc = EINVAL;
goto fail;
}
for (tpid_idx = pdata->nb_vlan_tags - ethertype_idx - 1;
tpid_idx < nb_supported_tpids; ++tpid_idx) {
if (ethertypes[ethertype_idx].value ==
supported_tpids[tpid_idx])
break;
}
if (tpid_idx == nb_supported_tpids) {
rc = EINVAL;
goto fail;
}
nb_supported_tpids = 1;
}
if (pdata->innermost_ethertype_restriction.mask == RTE_BE16(0xffff)) {
struct sfc_mae_ethertype *et = &ethertypes[ethertype_idx];
if (et->mask == 0) {
et->mask = RTE_BE16(0xffff);
et->value =
pdata->innermost_ethertype_restriction.value;
} else if (et->mask != RTE_BE16(0xffff) ||
et->value !=
pdata->innermost_ethertype_restriction.value) {
rc = EINVAL;
goto fail;
}
}
/*
* Now, when the number of VLAN tags is known, set fields
* ETHER_TYPE, VLAN0_PROTO and VLAN1_PROTO so that the first
* one is either a valid L3 EtherType (or 0x0000/0x0000),
* and the last two are valid TPIDs (or 0x0000/0x0000).
*/
rc = sfc_mae_set_ethertypes(ctx);
if (rc != 0)
goto fail;
if (pdata->l3_next_proto_restriction_mask == 0xff) {
if (pdata->l3_next_proto_mask == 0) {
pdata->l3_next_proto_mask = 0xff;
pdata->l3_next_proto_value =
pdata->l3_next_proto_restriction_value;
} else if (pdata->l3_next_proto_mask != 0xff ||
pdata->l3_next_proto_value !=
pdata->l3_next_proto_restriction_value) {
rc = EINVAL;
goto fail;
}
}
valuep = (const uint8_t *)&pdata->l3_next_proto_value;
maskp = (const uint8_t *)&pdata->l3_next_proto_mask;
rc = efx_mae_match_spec_field_set(ctx->match_spec,
fremap[EFX_MAE_FIELD_IP_PROTO],
sizeof(pdata->l3_next_proto_value),
valuep,
sizeof(pdata->l3_next_proto_mask),
maskp);
if (rc != 0)
goto fail;
return 0;
fail:
return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM, NULL,
"Failed to process pattern data");
}
static int
sfc_mae_rule_parse_item_port_id(const struct rte_flow_item *item,
struct sfc_flow_parse_ctx *ctx,
struct rte_flow_error *error)
{
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
const struct rte_flow_item_port_id supp_mask = {
.id = 0xffffffff,
};
const void *def_mask = &rte_flow_item_port_id_mask;
const struct rte_flow_item_port_id *spec = NULL;
const struct rte_flow_item_port_id *mask = NULL;
efx_mport_sel_t mport_sel;
int rc;
if (ctx_mae->match_mport_set) {
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Can't handle multiple traffic source items");
}
rc = sfc_flow_parse_init(item,
(const void **)&spec, (const void **)&mask,
(const void *)&supp_mask, def_mask,
sizeof(struct rte_flow_item_port_id), error);
if (rc != 0)
return rc;
if (mask->id != supp_mask.id) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Bad mask in the PORT_ID pattern item");
}
/* If "spec" is not set, could be any port ID */
if (spec == NULL)
return 0;
if (spec->id > UINT16_MAX) {
return rte_flow_error_set(error, EOVERFLOW,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"The port ID is too large");
}
rc = sfc_mae_switch_port_by_ethdev(ctx_mae->sa->mae.switch_domain_id,
spec->id, &mport_sel);
if (rc != 0) {
return rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Can't find RTE ethdev by the port ID");
}
rc = efx_mae_match_spec_mport_set(ctx_mae->match_spec,
&mport_sel, NULL);
if (rc != 0) {
return rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Failed to set MPORT for the port ID");
}
ctx_mae->match_mport_set = B_TRUE;
return 0;
}
static int
sfc_mae_rule_parse_item_phy_port(const struct rte_flow_item *item,
struct sfc_flow_parse_ctx *ctx,
struct rte_flow_error *error)
{
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
const struct rte_flow_item_phy_port supp_mask = {
.index = 0xffffffff,
};
const void *def_mask = &rte_flow_item_phy_port_mask;
const struct rte_flow_item_phy_port *spec = NULL;
const struct rte_flow_item_phy_port *mask = NULL;
efx_mport_sel_t mport_v;
int rc;
if (ctx_mae->match_mport_set) {
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Can't handle multiple traffic source items");
}
rc = sfc_flow_parse_init(item,
(const void **)&spec, (const void **)&mask,
(const void *)&supp_mask, def_mask,
sizeof(struct rte_flow_item_phy_port), error);
if (rc != 0)
return rc;
if (mask->index != supp_mask.index) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Bad mask in the PHY_PORT pattern item");
}
/* If "spec" is not set, could be any physical port */
if (spec == NULL)
return 0;
rc = efx_mae_mport_by_phy_port(spec->index, &mport_v);
if (rc != 0) {
return rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Failed to convert the PHY_PORT index");
}
rc = efx_mae_match_spec_mport_set(ctx_mae->match_spec, &mport_v, NULL);
if (rc != 0) {
return rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Failed to set MPORT for the PHY_PORT");
}
ctx_mae->match_mport_set = B_TRUE;
return 0;
}
static int
sfc_mae_rule_parse_item_pf(const struct rte_flow_item *item,
struct sfc_flow_parse_ctx *ctx,
struct rte_flow_error *error)
{
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
const efx_nic_cfg_t *encp = efx_nic_cfg_get(ctx_mae->sa->nic);
efx_mport_sel_t mport_v;
int rc;
if (ctx_mae->match_mport_set) {
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Can't handle multiple traffic source items");
}
rc = efx_mae_mport_by_pcie_function(encp->enc_pf, EFX_PCI_VF_INVALID,
&mport_v);
if (rc != 0) {
return rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Failed to convert the PF ID");
}
rc = efx_mae_match_spec_mport_set(ctx_mae->match_spec, &mport_v, NULL);
if (rc != 0) {
return rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Failed to set MPORT for the PF");
}
ctx_mae->match_mport_set = B_TRUE;
return 0;
}
static int
sfc_mae_rule_parse_item_vf(const struct rte_flow_item *item,
struct sfc_flow_parse_ctx *ctx,
struct rte_flow_error *error)
{
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
const efx_nic_cfg_t *encp = efx_nic_cfg_get(ctx_mae->sa->nic);
const struct rte_flow_item_vf supp_mask = {
.id = 0xffffffff,
};
const void *def_mask = &rte_flow_item_vf_mask;
const struct rte_flow_item_vf *spec = NULL;
const struct rte_flow_item_vf *mask = NULL;
efx_mport_sel_t mport_v;
int rc;
if (ctx_mae->match_mport_set) {
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Can't handle multiple traffic source items");
}
rc = sfc_flow_parse_init(item,
(const void **)&spec, (const void **)&mask,
(const void *)&supp_mask, def_mask,
sizeof(struct rte_flow_item_vf), error);
if (rc != 0)
return rc;
if (mask->id != supp_mask.id) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Bad mask in the VF pattern item");
}
/*
* If "spec" is not set, the item requests any VF related to the
* PF of the current DPDK port (but not the PF itself).
* Reject this match criterion as unsupported.
*/
if (spec == NULL) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Bad spec in the VF pattern item");
}
rc = efx_mae_mport_by_pcie_function(encp->enc_pf, spec->id, &mport_v);
if (rc != 0) {
return rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Failed to convert the PF + VF IDs");
}
rc = efx_mae_match_spec_mport_set(ctx_mae->match_spec, &mport_v, NULL);
if (rc != 0) {
return rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Failed to set MPORT for the PF + VF");
}
ctx_mae->match_mport_set = B_TRUE;
return 0;
}
/*
* Having this field ID in a field locator means that this
* locator cannot be used to actually set the field at the
* time when the corresponding item gets encountered. Such
* fields get stashed in the parsing context instead. This
* is required to resolve dependencies between the stashed
* fields. See sfc_mae_rule_process_pattern_data().
*/
#define SFC_MAE_FIELD_HANDLING_DEFERRED EFX_MAE_FIELD_NIDS
struct sfc_mae_field_locator {
efx_mae_field_id_t field_id;
size_t size;
/* Field offset in the corresponding rte_flow_item_ struct */
size_t ofst;
};
static void
sfc_mae_item_build_supp_mask(const struct sfc_mae_field_locator *field_locators,
unsigned int nb_field_locators, void *mask_ptr,
size_t mask_size)
{
unsigned int i;
memset(mask_ptr, 0, mask_size);
for (i = 0; i < nb_field_locators; ++i) {
const struct sfc_mae_field_locator *fl = &field_locators[i];
SFC_ASSERT(fl->ofst + fl->size <= mask_size);
memset(RTE_PTR_ADD(mask_ptr, fl->ofst), 0xff, fl->size);
}
}
static int
sfc_mae_parse_item(const struct sfc_mae_field_locator *field_locators,
unsigned int nb_field_locators, const uint8_t *spec,
const uint8_t *mask, struct sfc_mae_parse_ctx *ctx,
struct rte_flow_error *error)
{
const efx_mae_field_id_t *fremap = ctx->field_ids_remap;
unsigned int i;
int rc = 0;
for (i = 0; i < nb_field_locators; ++i) {
const struct sfc_mae_field_locator *fl = &field_locators[i];
if (fl->field_id == SFC_MAE_FIELD_HANDLING_DEFERRED)
continue;
rc = efx_mae_match_spec_field_set(ctx->match_spec,
fremap[fl->field_id],
fl->size, spec + fl->ofst,
fl->size, mask + fl->ofst);
if (rc != 0)
break;
}
if (rc != 0) {
rc = rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "Failed to process item fields");
}
return rc;
}
static const struct sfc_mae_field_locator flocs_eth[] = {
{
/*
* This locator is used only for building supported fields mask.
* The field is handled by sfc_mae_rule_process_pattern_data().
*/
SFC_MAE_FIELD_HANDLING_DEFERRED,
RTE_SIZEOF_FIELD(struct rte_flow_item_eth, type),
offsetof(struct rte_flow_item_eth, type),
},
{
EFX_MAE_FIELD_ETH_DADDR_BE,
RTE_SIZEOF_FIELD(struct rte_flow_item_eth, dst),
offsetof(struct rte_flow_item_eth, dst),
},
{
EFX_MAE_FIELD_ETH_SADDR_BE,
RTE_SIZEOF_FIELD(struct rte_flow_item_eth, src),
offsetof(struct rte_flow_item_eth, src),
},
};
static int
sfc_mae_rule_parse_item_eth(const struct rte_flow_item *item,
struct sfc_flow_parse_ctx *ctx,
struct rte_flow_error *error)
{
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
struct rte_flow_item_eth supp_mask;
const uint8_t *spec = NULL;
const uint8_t *mask = NULL;
int rc;
sfc_mae_item_build_supp_mask(flocs_eth, RTE_DIM(flocs_eth),
&supp_mask, sizeof(supp_mask));
rc = sfc_flow_parse_init(item,
(const void **)&spec, (const void **)&mask,
(const void *)&supp_mask,
&rte_flow_item_eth_mask,
sizeof(struct rte_flow_item_eth), error);
if (rc != 0)
return rc;
if (spec != NULL) {
struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data;
struct sfc_mae_ethertype *ethertypes = pdata->ethertypes;
const struct rte_flow_item_eth *item_spec;
const struct rte_flow_item_eth *item_mask;
item_spec = (const struct rte_flow_item_eth *)spec;
item_mask = (const struct rte_flow_item_eth *)mask;
ethertypes[0].value = item_spec->type;
ethertypes[0].mask = item_mask->type;
} else {
/*
* The specification is empty. This is wrong in the case
* when there are more network patterns in line. Other
* than that, any Ethernet can match. All of that is
* checked at the end of parsing.
*/
return 0;
}
return sfc_mae_parse_item(flocs_eth, RTE_DIM(flocs_eth), spec, mask,
ctx_mae, error);
}
static const struct sfc_mae_field_locator flocs_vlan[] = {
/* Outermost tag */
{
EFX_MAE_FIELD_VLAN0_TCI_BE,
RTE_SIZEOF_FIELD(struct rte_flow_item_vlan, tci),
offsetof(struct rte_flow_item_vlan, tci),
},
{
/*
* This locator is used only for building supported fields mask.
* The field is handled by sfc_mae_rule_process_pattern_data().
*/
SFC_MAE_FIELD_HANDLING_DEFERRED,
RTE_SIZEOF_FIELD(struct rte_flow_item_vlan, inner_type),
offsetof(struct rte_flow_item_vlan, inner_type),
},
/* Innermost tag */
{
EFX_MAE_FIELD_VLAN1_TCI_BE,
RTE_SIZEOF_FIELD(struct rte_flow_item_vlan, tci),
offsetof(struct rte_flow_item_vlan, tci),
},
{
/*
* This locator is used only for building supported fields mask.
* The field is handled by sfc_mae_rule_process_pattern_data().
*/
SFC_MAE_FIELD_HANDLING_DEFERRED,
RTE_SIZEOF_FIELD(struct rte_flow_item_vlan, inner_type),
offsetof(struct rte_flow_item_vlan, inner_type),
},
};
static int
sfc_mae_rule_parse_item_vlan(const struct rte_flow_item *item,
struct sfc_flow_parse_ctx *ctx,
struct rte_flow_error *error)
{
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data;
const struct sfc_mae_field_locator *flocs;
struct rte_flow_item_vlan supp_mask;
const uint8_t *spec = NULL;
const uint8_t *mask = NULL;
unsigned int nb_flocs;
int rc;
RTE_BUILD_BUG_ON(SFC_MAE_MATCH_VLAN_MAX_NTAGS != 2);
if (pdata->nb_vlan_tags == SFC_MAE_MATCH_VLAN_MAX_NTAGS) {
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Can't match that many VLAN tags");
}
nb_flocs = RTE_DIM(flocs_vlan) / SFC_MAE_MATCH_VLAN_MAX_NTAGS;
flocs = flocs_vlan + pdata->nb_vlan_tags * nb_flocs;
/* If parsing fails, this can remain incremented. */
++pdata->nb_vlan_tags;
sfc_mae_item_build_supp_mask(flocs, nb_flocs,
&supp_mask, sizeof(supp_mask));
rc = sfc_flow_parse_init(item,
(const void **)&spec, (const void **)&mask,
(const void *)&supp_mask,
&rte_flow_item_vlan_mask,
sizeof(struct rte_flow_item_vlan), error);
if (rc != 0)
return rc;
if (spec != NULL) {
struct sfc_mae_ethertype *ethertypes = pdata->ethertypes;
const struct rte_flow_item_vlan *item_spec;
const struct rte_flow_item_vlan *item_mask;
item_spec = (const struct rte_flow_item_vlan *)spec;
item_mask = (const struct rte_flow_item_vlan *)mask;
ethertypes[pdata->nb_vlan_tags].value = item_spec->inner_type;
ethertypes[pdata->nb_vlan_tags].mask = item_mask->inner_type;
} else {
/*
* The specification is empty. This is wrong in the case
* when there are more network patterns in line. Other
* than that, any Ethernet can match. All of that is
* checked at the end of parsing.
*/
return 0;
}
return sfc_mae_parse_item(flocs, nb_flocs, spec, mask, ctx_mae, error);
}
static const struct sfc_mae_field_locator flocs_ipv4[] = {
{
EFX_MAE_FIELD_SRC_IP4_BE,
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4, hdr.src_addr),
offsetof(struct rte_flow_item_ipv4, hdr.src_addr),
},
{
EFX_MAE_FIELD_DST_IP4_BE,
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4, hdr.dst_addr),
offsetof(struct rte_flow_item_ipv4, hdr.dst_addr),
},
{
/*
* This locator is used only for building supported fields mask.
* The field is handled by sfc_mae_rule_process_pattern_data().
*/
SFC_MAE_FIELD_HANDLING_DEFERRED,
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4, hdr.next_proto_id),
offsetof(struct rte_flow_item_ipv4, hdr.next_proto_id),
},
{
EFX_MAE_FIELD_IP_TOS,
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4,
hdr.type_of_service),
offsetof(struct rte_flow_item_ipv4, hdr.type_of_service),
},
{
EFX_MAE_FIELD_IP_TTL,
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4, hdr.time_to_live),
offsetof(struct rte_flow_item_ipv4, hdr.time_to_live),
},
};
static int
sfc_mae_rule_parse_item_ipv4(const struct rte_flow_item *item,
struct sfc_flow_parse_ctx *ctx,
struct rte_flow_error *error)
{
rte_be16_t ethertype_ipv4_be = RTE_BE16(RTE_ETHER_TYPE_IPV4);
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data;
struct rte_flow_item_ipv4 supp_mask;
const uint8_t *spec = NULL;
const uint8_t *mask = NULL;
int rc;
sfc_mae_item_build_supp_mask(flocs_ipv4, RTE_DIM(flocs_ipv4),
&supp_mask, sizeof(supp_mask));
rc = sfc_flow_parse_init(item,
(const void **)&spec, (const void **)&mask,
(const void *)&supp_mask,
&rte_flow_item_ipv4_mask,
sizeof(struct rte_flow_item_ipv4), error);
if (rc != 0)
return rc;
pdata->innermost_ethertype_restriction.value = ethertype_ipv4_be;
pdata->innermost_ethertype_restriction.mask = RTE_BE16(0xffff);
if (spec != NULL) {
const struct rte_flow_item_ipv4 *item_spec;
const struct rte_flow_item_ipv4 *item_mask;
item_spec = (const struct rte_flow_item_ipv4 *)spec;
item_mask = (const struct rte_flow_item_ipv4 *)mask;
pdata->l3_next_proto_value = item_spec->hdr.next_proto_id;
pdata->l3_next_proto_mask = item_mask->hdr.next_proto_id;
} else {
return 0;
}
return sfc_mae_parse_item(flocs_ipv4, RTE_DIM(flocs_ipv4), spec, mask,
ctx_mae, error);
}
static const struct sfc_mae_field_locator flocs_ipv6[] = {
{
EFX_MAE_FIELD_SRC_IP6_BE,
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv6, hdr.src_addr),
offsetof(struct rte_flow_item_ipv6, hdr.src_addr),
},
{
EFX_MAE_FIELD_DST_IP6_BE,
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv6, hdr.dst_addr),
offsetof(struct rte_flow_item_ipv6, hdr.dst_addr),
},
{
/*
* This locator is used only for building supported fields mask.
* The field is handled by sfc_mae_rule_process_pattern_data().
*/
SFC_MAE_FIELD_HANDLING_DEFERRED,
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv6, hdr.proto),
offsetof(struct rte_flow_item_ipv6, hdr.proto),
},
{
EFX_MAE_FIELD_IP_TTL,
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv6, hdr.hop_limits),
offsetof(struct rte_flow_item_ipv6, hdr.hop_limits),
},
};
static int
sfc_mae_rule_parse_item_ipv6(const struct rte_flow_item *item,
struct sfc_flow_parse_ctx *ctx,
struct rte_flow_error *error)
{
rte_be16_t ethertype_ipv6_be = RTE_BE16(RTE_ETHER_TYPE_IPV6);
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
const efx_mae_field_id_t *fremap = ctx_mae->field_ids_remap;
struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data;
struct rte_flow_item_ipv6 supp_mask;
const uint8_t *spec = NULL;
const uint8_t *mask = NULL;
rte_be32_t vtc_flow_be;
uint32_t vtc_flow;
uint8_t tc_value;
uint8_t tc_mask;
int rc;
sfc_mae_item_build_supp_mask(flocs_ipv6, RTE_DIM(flocs_ipv6),
&supp_mask, sizeof(supp_mask));
vtc_flow_be = RTE_BE32(RTE_IPV6_HDR_TC_MASK);
memcpy(&supp_mask, &vtc_flow_be, sizeof(vtc_flow_be));
rc = sfc_flow_parse_init(item,
(const void **)&spec, (const void **)&mask,
(const void *)&supp_mask,
&rte_flow_item_ipv6_mask,
sizeof(struct rte_flow_item_ipv6), error);
if (rc != 0)
return rc;
pdata->innermost_ethertype_restriction.value = ethertype_ipv6_be;
pdata->innermost_ethertype_restriction.mask = RTE_BE16(0xffff);
if (spec != NULL) {
const struct rte_flow_item_ipv6 *item_spec;
const struct rte_flow_item_ipv6 *item_mask;
item_spec = (const struct rte_flow_item_ipv6 *)spec;
item_mask = (const struct rte_flow_item_ipv6 *)mask;
pdata->l3_next_proto_value = item_spec->hdr.proto;
pdata->l3_next_proto_mask = item_mask->hdr.proto;
} else {
return 0;
}
rc = sfc_mae_parse_item(flocs_ipv6, RTE_DIM(flocs_ipv6), spec, mask,
ctx_mae, error);
if (rc != 0)
return rc;
memcpy(&vtc_flow_be, spec, sizeof(vtc_flow_be));
vtc_flow = rte_be_to_cpu_32(vtc_flow_be);
tc_value = (vtc_flow & RTE_IPV6_HDR_TC_MASK) >> RTE_IPV6_HDR_TC_SHIFT;
memcpy(&vtc_flow_be, mask, sizeof(vtc_flow_be));
vtc_flow = rte_be_to_cpu_32(vtc_flow_be);
tc_mask = (vtc_flow & RTE_IPV6_HDR_TC_MASK) >> RTE_IPV6_HDR_TC_SHIFT;
rc = efx_mae_match_spec_field_set(ctx_mae->match_spec,
fremap[EFX_MAE_FIELD_IP_TOS],
sizeof(tc_value), &tc_value,
sizeof(tc_mask), &tc_mask);
if (rc != 0) {
return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "Failed to process item fields");
}
return 0;
}
static const struct sfc_mae_field_locator flocs_tcp[] = {
{
EFX_MAE_FIELD_L4_SPORT_BE,
RTE_SIZEOF_FIELD(struct rte_flow_item_tcp, hdr.src_port),
offsetof(struct rte_flow_item_tcp, hdr.src_port),
},
{
EFX_MAE_FIELD_L4_DPORT_BE,
RTE_SIZEOF_FIELD(struct rte_flow_item_tcp, hdr.dst_port),
offsetof(struct rte_flow_item_tcp, hdr.dst_port),
},
{
EFX_MAE_FIELD_TCP_FLAGS_BE,
/*
* The values have been picked intentionally since the
* target MAE field is oversize (16 bit). This mapping
* relies on the fact that the MAE field is big-endian.
*/
RTE_SIZEOF_FIELD(struct rte_flow_item_tcp, hdr.data_off) +
RTE_SIZEOF_FIELD(struct rte_flow_item_tcp, hdr.tcp_flags),
offsetof(struct rte_flow_item_tcp, hdr.data_off),
},
};
static int
sfc_mae_rule_parse_item_tcp(const struct rte_flow_item *item,
struct sfc_flow_parse_ctx *ctx,
struct rte_flow_error *error)
{
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data;
struct rte_flow_item_tcp supp_mask;
const uint8_t *spec = NULL;
const uint8_t *mask = NULL;
int rc;
/*
* When encountered among outermost items, item TCP is invalid.
* Check which match specification is being constructed now.
*/
if (ctx_mae->match_spec != ctx_mae->match_spec_action) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"TCP in outer frame is invalid");
}
sfc_mae_item_build_supp_mask(flocs_tcp, RTE_DIM(flocs_tcp),
&supp_mask, sizeof(supp_mask));
rc = sfc_flow_parse_init(item,
(const void **)&spec, (const void **)&mask,
(const void *)&supp_mask,
&rte_flow_item_tcp_mask,
sizeof(struct rte_flow_item_tcp), error);
if (rc != 0)
return rc;
pdata->l3_next_proto_restriction_value = IPPROTO_TCP;
pdata->l3_next_proto_restriction_mask = 0xff;
if (spec == NULL)
return 0;
return sfc_mae_parse_item(flocs_tcp, RTE_DIM(flocs_tcp), spec, mask,
ctx_mae, error);
}
static const struct sfc_mae_field_locator flocs_udp[] = {
{
EFX_MAE_FIELD_L4_SPORT_BE,
RTE_SIZEOF_FIELD(struct rte_flow_item_udp, hdr.src_port),
offsetof(struct rte_flow_item_udp, hdr.src_port),
},
{
EFX_MAE_FIELD_L4_DPORT_BE,
RTE_SIZEOF_FIELD(struct rte_flow_item_udp, hdr.dst_port),
offsetof(struct rte_flow_item_udp, hdr.dst_port),
},
};
static int
sfc_mae_rule_parse_item_udp(const struct rte_flow_item *item,
struct sfc_flow_parse_ctx *ctx,
struct rte_flow_error *error)
{
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data;
struct rte_flow_item_udp supp_mask;
const uint8_t *spec = NULL;
const uint8_t *mask = NULL;
int rc;
sfc_mae_item_build_supp_mask(flocs_udp, RTE_DIM(flocs_udp),
&supp_mask, sizeof(supp_mask));
rc = sfc_flow_parse_init(item,
(const void **)&spec, (const void **)&mask,
(const void *)&supp_mask,
&rte_flow_item_udp_mask,
sizeof(struct rte_flow_item_udp), error);
if (rc != 0)
return rc;
pdata->l3_next_proto_restriction_value = IPPROTO_UDP;
pdata->l3_next_proto_restriction_mask = 0xff;
if (spec == NULL)
return 0;
return sfc_mae_parse_item(flocs_udp, RTE_DIM(flocs_udp), spec, mask,
ctx_mae, error);
}
static const struct sfc_mae_field_locator flocs_tunnel[] = {
{
/*
* The size and offset values are relevant
* for Geneve and NVGRE, too.
*/
.size = RTE_SIZEOF_FIELD(struct rte_flow_item_vxlan, vni),
.ofst = offsetof(struct rte_flow_item_vxlan, vni),
},
};
/*
* An auxiliary registry which allows using non-encap. field IDs
* directly when building a match specification of type ACTION.
*
* See sfc_mae_rule_parse_pattern() and sfc_mae_rule_parse_item_tunnel().
*/
static const efx_mae_field_id_t field_ids_no_remap[] = {
#define FIELD_ID_NO_REMAP(_field) \
[EFX_MAE_FIELD_##_field] = EFX_MAE_FIELD_##_field
FIELD_ID_NO_REMAP(ETHER_TYPE_BE),
FIELD_ID_NO_REMAP(ETH_SADDR_BE),
FIELD_ID_NO_REMAP(ETH_DADDR_BE),
FIELD_ID_NO_REMAP(VLAN0_TCI_BE),
FIELD_ID_NO_REMAP(VLAN0_PROTO_BE),
FIELD_ID_NO_REMAP(VLAN1_TCI_BE),
FIELD_ID_NO_REMAP(VLAN1_PROTO_BE),
FIELD_ID_NO_REMAP(SRC_IP4_BE),
FIELD_ID_NO_REMAP(DST_IP4_BE),
FIELD_ID_NO_REMAP(IP_PROTO),
FIELD_ID_NO_REMAP(IP_TOS),
FIELD_ID_NO_REMAP(IP_TTL),
FIELD_ID_NO_REMAP(SRC_IP6_BE),
FIELD_ID_NO_REMAP(DST_IP6_BE),
FIELD_ID_NO_REMAP(L4_SPORT_BE),
FIELD_ID_NO_REMAP(L4_DPORT_BE),
FIELD_ID_NO_REMAP(TCP_FLAGS_BE),
#undef FIELD_ID_NO_REMAP
};
/*
* An auxiliary registry which allows using "ENC" field IDs
* when building a match specification of type OUTER.
*
* See sfc_mae_rule_encap_parse_init().
*/
static const efx_mae_field_id_t field_ids_remap_to_encap[] = {
#define FIELD_ID_REMAP_TO_ENCAP(_field) \
[EFX_MAE_FIELD_##_field] = EFX_MAE_FIELD_ENC_##_field
FIELD_ID_REMAP_TO_ENCAP(ETHER_TYPE_BE),
FIELD_ID_REMAP_TO_ENCAP(ETH_SADDR_BE),
FIELD_ID_REMAP_TO_ENCAP(ETH_DADDR_BE),
FIELD_ID_REMAP_TO_ENCAP(VLAN0_TCI_BE),
FIELD_ID_REMAP_TO_ENCAP(VLAN0_PROTO_BE),
FIELD_ID_REMAP_TO_ENCAP(VLAN1_TCI_BE),
FIELD_ID_REMAP_TO_ENCAP(VLAN1_PROTO_BE),
FIELD_ID_REMAP_TO_ENCAP(SRC_IP4_BE),
FIELD_ID_REMAP_TO_ENCAP(DST_IP4_BE),
FIELD_ID_REMAP_TO_ENCAP(IP_PROTO),
FIELD_ID_REMAP_TO_ENCAP(IP_TOS),
FIELD_ID_REMAP_TO_ENCAP(IP_TTL),
FIELD_ID_REMAP_TO_ENCAP(SRC_IP6_BE),
FIELD_ID_REMAP_TO_ENCAP(DST_IP6_BE),
FIELD_ID_REMAP_TO_ENCAP(L4_SPORT_BE),
FIELD_ID_REMAP_TO_ENCAP(L4_DPORT_BE),
#undef FIELD_ID_REMAP_TO_ENCAP
};
static int
sfc_mae_rule_parse_item_tunnel(const struct rte_flow_item *item,
struct sfc_flow_parse_ctx *ctx,
struct rte_flow_error *error)
{
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
uint8_t vnet_id_v[sizeof(uint32_t)] = {0};
uint8_t vnet_id_m[sizeof(uint32_t)] = {0};
const struct rte_flow_item_vxlan *vxp;
uint8_t supp_mask[sizeof(uint64_t)];
const uint8_t *spec = NULL;
const uint8_t *mask = NULL;
int rc;
/*
* We're about to start processing inner frame items.
* Process pattern data that has been deferred so far
* and reset pattern data storage.
*/
rc = sfc_mae_rule_process_pattern_data(ctx_mae, error);
if (rc != 0)
return rc;
memset(&ctx_mae->pattern_data, 0, sizeof(ctx_mae->pattern_data));
sfc_mae_item_build_supp_mask(flocs_tunnel, RTE_DIM(flocs_tunnel),
&supp_mask, sizeof(supp_mask));
/*
* This tunnel item was preliminarily detected by
* sfc_mae_rule_encap_parse_init(). Default mask
* was also picked by that helper. Use it here.
*/
rc = sfc_flow_parse_init(item,
(const void **)&spec, (const void **)&mask,
(const void *)&supp_mask,
ctx_mae->tunnel_def_mask,
ctx_mae->tunnel_def_mask_size, error);
if (rc != 0)
return rc;
/*
* This item and later ones comprise a
* match specification of type ACTION.
*/
ctx_mae->match_spec = ctx_mae->match_spec_action;
/* This item and later ones use non-encap. EFX MAE field IDs. */
ctx_mae->field_ids_remap = field_ids_no_remap;
if (spec == NULL)
return 0;
/*
* Field EFX_MAE_FIELD_ENC_VNET_ID_BE is a 32-bit one.
* Copy 24-bit VNI, which is BE, at offset 1 in it.
* The extra byte is 0 both in the mask and in the value.
*/
vxp = (const struct rte_flow_item_vxlan *)spec;
memcpy(vnet_id_v + 1, &vxp->vni, sizeof(vxp->vni));
vxp = (const struct rte_flow_item_vxlan *)mask;
memcpy(vnet_id_m + 1, &vxp->vni, sizeof(vxp->vni));
rc = efx_mae_match_spec_field_set(ctx_mae->match_spec,
EFX_MAE_FIELD_ENC_VNET_ID_BE,
sizeof(vnet_id_v), vnet_id_v,
sizeof(vnet_id_m), vnet_id_m);
if (rc != 0) {
rc = rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM,
item, "Failed to set VXLAN VNI");
}
return rc;
}
static const struct sfc_flow_item sfc_flow_items[] = {
{
.type = RTE_FLOW_ITEM_TYPE_PORT_ID,
/*
* In terms of RTE flow, this item is a META one,
* and its position in the pattern is don't care.
*/
.prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
.layer = SFC_FLOW_ITEM_ANY_LAYER,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_port_id,
},
{
.type = RTE_FLOW_ITEM_TYPE_PHY_PORT,
/*
* In terms of RTE flow, this item is a META one,
* and its position in the pattern is don't care.
*/
.prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
.layer = SFC_FLOW_ITEM_ANY_LAYER,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_phy_port,
},
{
.type = RTE_FLOW_ITEM_TYPE_PF,
/*
* In terms of RTE flow, this item is a META one,
* and its position in the pattern is don't care.
*/
.prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
.layer = SFC_FLOW_ITEM_ANY_LAYER,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_pf,
},
{
.type = RTE_FLOW_ITEM_TYPE_VF,
/*
* In terms of RTE flow, this item is a META one,
* and its position in the pattern is don't care.
*/
.prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
.layer = SFC_FLOW_ITEM_ANY_LAYER,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_vf,
},
{
.type = RTE_FLOW_ITEM_TYPE_ETH,
.prev_layer = SFC_FLOW_ITEM_START_LAYER,
.layer = SFC_FLOW_ITEM_L2,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_eth,
},
{
.type = RTE_FLOW_ITEM_TYPE_VLAN,
.prev_layer = SFC_FLOW_ITEM_L2,
.layer = SFC_FLOW_ITEM_L2,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_vlan,
},
{
.type = RTE_FLOW_ITEM_TYPE_IPV4,
.prev_layer = SFC_FLOW_ITEM_L2,
.layer = SFC_FLOW_ITEM_L3,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_ipv4,
},
{
.type = RTE_FLOW_ITEM_TYPE_IPV6,
.prev_layer = SFC_FLOW_ITEM_L2,
.layer = SFC_FLOW_ITEM_L3,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_ipv6,
},
{
.type = RTE_FLOW_ITEM_TYPE_TCP,
.prev_layer = SFC_FLOW_ITEM_L3,
.layer = SFC_FLOW_ITEM_L4,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_tcp,
},
{
.type = RTE_FLOW_ITEM_TYPE_UDP,
.prev_layer = SFC_FLOW_ITEM_L3,
.layer = SFC_FLOW_ITEM_L4,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_udp,
},
{
.type = RTE_FLOW_ITEM_TYPE_VXLAN,
.prev_layer = SFC_FLOW_ITEM_L4,
.layer = SFC_FLOW_ITEM_START_LAYER,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_tunnel,
},
{
.type = RTE_FLOW_ITEM_TYPE_GENEVE,
.prev_layer = SFC_FLOW_ITEM_L4,
.layer = SFC_FLOW_ITEM_START_LAYER,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_tunnel,
},
{
.type = RTE_FLOW_ITEM_TYPE_NVGRE,
.prev_layer = SFC_FLOW_ITEM_L3,
.layer = SFC_FLOW_ITEM_START_LAYER,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_tunnel,
},
};
static int
sfc_mae_rule_process_outer(struct sfc_adapter *sa,
struct sfc_mae_parse_ctx *ctx,
struct sfc_mae_outer_rule **rulep,
struct rte_flow_error *error)
{
efx_mae_rule_id_t invalid_rule_id = { .id = EFX_MAE_RSRC_ID_INVALID };
int rc;
if (ctx->encap_type == EFX_TUNNEL_PROTOCOL_NONE) {
*rulep = NULL;
goto no_or_id;
}
SFC_ASSERT(ctx->match_spec_outer != NULL);
if (!efx_mae_match_spec_is_valid(sa->nic, ctx->match_spec_outer)) {
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM, NULL,
"Inconsistent pattern (outer)");
}
*rulep = sfc_mae_outer_rule_attach(sa, ctx->match_spec_outer,
ctx->encap_type);
if (*rulep != NULL) {
efx_mae_match_spec_fini(sa->nic, ctx->match_spec_outer);
} else {
rc = sfc_mae_outer_rule_add(sa, ctx->match_spec_outer,
ctx->encap_type, rulep);
if (rc != 0) {
return rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ITEM, NULL,
"Failed to process the pattern");
}
}
/* The spec has now been tracked by the outer rule entry. */
ctx->match_spec_outer = NULL;
no_or_id:
/*
* In MAE, lookup sequence comprises outer parse, outer rule lookup,
* inner parse (when some outer rule is hit) and action rule lookup.
* If the currently processed flow does not come with an outer rule,
* its action rule must be available only for packets which miss in
* outer rule table. Set OR_ID match field to 0xffffffff/0xffffffff
* in the action rule specification; this ensures correct behaviour.
*
* If, on the other hand, this flow does have an outer rule, its ID
* may be unknown at the moment (not yet allocated), but OR_ID mask
* has to be set to 0xffffffff anyway for correct class comparisons.
* When the outer rule has been allocated, this match field will be
* overridden by sfc_mae_outer_rule_enable() to use the right value.
*/
rc = efx_mae_match_spec_outer_rule_id_set(ctx->match_spec_action,
&invalid_rule_id);
if (rc != 0) {
if (*rulep != NULL)
sfc_mae_outer_rule_del(sa, *rulep);
*rulep = NULL;
return rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ITEM, NULL,
"Failed to process the pattern");
}
return 0;
}
static int
sfc_mae_rule_encap_parse_init(struct sfc_adapter *sa,
const struct rte_flow_item pattern[],
struct sfc_mae_parse_ctx *ctx,
struct rte_flow_error *error)
{
struct sfc_mae *mae = &sa->mae;
int rc;
if (pattern == NULL) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL,
"NULL pattern");
return -rte_errno;
}
for (;;) {
switch (pattern->type) {
case RTE_FLOW_ITEM_TYPE_VXLAN:
ctx->encap_type = EFX_TUNNEL_PROTOCOL_VXLAN;
ctx->tunnel_def_mask = &rte_flow_item_vxlan_mask;
ctx->tunnel_def_mask_size =
sizeof(rte_flow_item_vxlan_mask);
break;
case RTE_FLOW_ITEM_TYPE_GENEVE:
ctx->encap_type = EFX_TUNNEL_PROTOCOL_GENEVE;
ctx->tunnel_def_mask = &rte_flow_item_geneve_mask;
ctx->tunnel_def_mask_size =
sizeof(rte_flow_item_geneve_mask);
break;
case RTE_FLOW_ITEM_TYPE_NVGRE:
ctx->encap_type = EFX_TUNNEL_PROTOCOL_NVGRE;
ctx->tunnel_def_mask = &rte_flow_item_nvgre_mask;
ctx->tunnel_def_mask_size =
sizeof(rte_flow_item_nvgre_mask);
break;
case RTE_FLOW_ITEM_TYPE_END:
break;
default:
++pattern;
continue;
};
break;
}
if (pattern->type == RTE_FLOW_ITEM_TYPE_END)
return 0;
if ((mae->encap_types_supported & (1U << ctx->encap_type)) == 0) {
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
pattern, "Unsupported tunnel item");
}
if (ctx->priority >= mae->nb_outer_rule_prios_max) {
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
NULL, "Unsupported priority level");
}
rc = efx_mae_match_spec_init(sa->nic, EFX_MAE_RULE_OUTER, ctx->priority,
&ctx->match_spec_outer);
if (rc != 0) {
return rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ITEM, pattern,
"Failed to initialise outer rule match specification");
}
/* Outermost items comprise a match specification of type OUTER. */
ctx->match_spec = ctx->match_spec_outer;
/* Outermost items use "ENC" EFX MAE field IDs. */
ctx->field_ids_remap = field_ids_remap_to_encap;
return 0;
}
static void
sfc_mae_rule_encap_parse_fini(struct sfc_adapter *sa,
struct sfc_mae_parse_ctx *ctx)
{
if (ctx->encap_type == EFX_TUNNEL_PROTOCOL_NONE)
return;
if (ctx->match_spec_outer != NULL)
efx_mae_match_spec_fini(sa->nic, ctx->match_spec_outer);
}
int
sfc_mae_rule_parse_pattern(struct sfc_adapter *sa,
const struct rte_flow_item pattern[],
struct sfc_flow_spec_mae *spec,
struct rte_flow_error *error)
{
struct sfc_mae_parse_ctx ctx_mae;
struct sfc_flow_parse_ctx ctx;
int rc;
memset(&ctx_mae, 0, sizeof(ctx_mae));
ctx_mae.priority = spec->priority;
ctx_mae.sa = sa;
rc = efx_mae_match_spec_init(sa->nic, EFX_MAE_RULE_ACTION,
spec->priority,
&ctx_mae.match_spec_action);
if (rc != 0) {
rc = rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"Failed to initialise action rule match specification");
goto fail_init_match_spec_action;
}
/*
* As a preliminary setting, assume that there is no encapsulation
* in the pattern. That is, pattern items are about to comprise a
* match specification of type ACTION and use non-encap. field IDs.
*
* sfc_mae_rule_encap_parse_init() below may override this.
*/
ctx_mae.encap_type = EFX_TUNNEL_PROTOCOL_NONE;
ctx_mae.match_spec = ctx_mae.match_spec_action;
ctx_mae.field_ids_remap = field_ids_no_remap;
ctx.type = SFC_FLOW_PARSE_CTX_MAE;
ctx.mae = &ctx_mae;
rc = sfc_mae_rule_encap_parse_init(sa, pattern, &ctx_mae, error);
if (rc != 0)
goto fail_encap_parse_init;
rc = sfc_flow_parse_pattern(sfc_flow_items, RTE_DIM(sfc_flow_items),
pattern, &ctx, error);
if (rc != 0)
goto fail_parse_pattern;
rc = sfc_mae_rule_process_pattern_data(&ctx_mae, error);
if (rc != 0)
goto fail_process_pattern_data;
rc = sfc_mae_rule_process_outer(sa, &ctx_mae, &spec->outer_rule, error);
if (rc != 0)
goto fail_process_outer;
if (!efx_mae_match_spec_is_valid(sa->nic, ctx_mae.match_spec_action)) {
rc = rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM, NULL,
"Inconsistent pattern");
goto fail_validate_match_spec_action;
}
spec->match_spec = ctx_mae.match_spec_action;
return 0;
fail_validate_match_spec_action:
fail_process_outer:
fail_process_pattern_data:
fail_parse_pattern:
sfc_mae_rule_encap_parse_fini(sa, &ctx_mae);
fail_encap_parse_init:
efx_mae_match_spec_fini(sa->nic, ctx_mae.match_spec_action);
fail_init_match_spec_action:
return rc;
}
/*
* An action supported by MAE may correspond to a bundle of RTE flow actions,
* in example, VLAN_PUSH = OF_PUSH_VLAN + OF_VLAN_SET_VID + OF_VLAN_SET_PCP.
* That is, related RTE flow actions need to be tracked as parts of a whole
* so that they can be combined into a single action and submitted to MAE
* representation of a given rule's action set.
*
* Each RTE flow action provided by an application gets classified as
* one belonging to some bundle type. If an action is not supposed to
* belong to any bundle, or if this action is END, it is described as
* one belonging to a dummy bundle of type EMPTY.
*
* A currently tracked bundle will be submitted if a repeating
* action or an action of different bundle type follows.
*/
enum sfc_mae_actions_bundle_type {
SFC_MAE_ACTIONS_BUNDLE_EMPTY = 0,
SFC_MAE_ACTIONS_BUNDLE_VLAN_PUSH,
};
struct sfc_mae_actions_bundle {
enum sfc_mae_actions_bundle_type type;
/* Indicates actions already tracked by the current bundle */
uint64_t actions_mask;
/* Parameters used by SFC_MAE_ACTIONS_BUNDLE_VLAN_PUSH */
rte_be16_t vlan_push_tpid;
rte_be16_t vlan_push_tci;
};
/*
* Combine configuration of RTE flow actions tracked by the bundle into a
* single action and submit the result to MAE action set specification.
* Do nothing in the case of dummy action bundle.
*/
static int
sfc_mae_actions_bundle_submit(const struct sfc_mae_actions_bundle *bundle,
efx_mae_actions_t *spec)
{
int rc = 0;
switch (bundle->type) {
case SFC_MAE_ACTIONS_BUNDLE_EMPTY:
break;
case SFC_MAE_ACTIONS_BUNDLE_VLAN_PUSH:
rc = efx_mae_action_set_populate_vlan_push(
spec, bundle->vlan_push_tpid, bundle->vlan_push_tci);
break;
default:
SFC_ASSERT(B_FALSE);
break;
}
return rc;
}
/*
* Given the type of the next RTE flow action in the line, decide
* whether a new bundle is about to start, and, if this is the case,
* submit and reset the current bundle.
*/
static int
sfc_mae_actions_bundle_sync(const struct rte_flow_action *action,
struct sfc_mae_actions_bundle *bundle,
efx_mae_actions_t *spec,
struct rte_flow_error *error)
{
enum sfc_mae_actions_bundle_type bundle_type_new;
int rc;
switch (action->type) {
case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
bundle_type_new = SFC_MAE_ACTIONS_BUNDLE_VLAN_PUSH;
break;
default:
/*
* Self-sufficient actions, including END, are handled in this
* case. No checks for unsupported actions are needed here
* because parsing doesn't occur at this point.
*/
bundle_type_new = SFC_MAE_ACTIONS_BUNDLE_EMPTY;
break;
}
if (bundle_type_new != bundle->type ||
(bundle->actions_mask & (1ULL << action->type)) != 0) {
rc = sfc_mae_actions_bundle_submit(bundle, spec);
if (rc != 0)
goto fail_submit;
memset(bundle, 0, sizeof(*bundle));
}
bundle->type = bundle_type_new;
return 0;
fail_submit:
return rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ACTION, NULL,
"Failed to request the (group of) action(s)");
}
static void
sfc_mae_rule_parse_action_of_push_vlan(
const struct rte_flow_action_of_push_vlan *conf,
struct sfc_mae_actions_bundle *bundle)
{
bundle->vlan_push_tpid = conf->ethertype;
}
static void
sfc_mae_rule_parse_action_of_set_vlan_vid(
const struct rte_flow_action_of_set_vlan_vid *conf,
struct sfc_mae_actions_bundle *bundle)
{
bundle->vlan_push_tci |= (conf->vlan_vid &
rte_cpu_to_be_16(RTE_LEN2MASK(12, uint16_t)));
}
static void
sfc_mae_rule_parse_action_of_set_vlan_pcp(
const struct rte_flow_action_of_set_vlan_pcp *conf,
struct sfc_mae_actions_bundle *bundle)
{
uint16_t vlan_tci_pcp = (uint16_t)(conf->vlan_pcp &
RTE_LEN2MASK(3, uint8_t)) << 13;
bundle->vlan_push_tci |= rte_cpu_to_be_16(vlan_tci_pcp);
}
static int
sfc_mae_rule_parse_action_mark(const struct rte_flow_action_mark *conf,
efx_mae_actions_t *spec)
{
return efx_mae_action_set_populate_mark(spec, conf->id);
}
static int
sfc_mae_rule_parse_action_phy_port(struct sfc_adapter *sa,
const struct rte_flow_action_phy_port *conf,
efx_mae_actions_t *spec)
{
efx_mport_sel_t mport;
uint32_t phy_port;
int rc;
if (conf->original != 0)
phy_port = efx_nic_cfg_get(sa->nic)->enc_assigned_port;
else
phy_port = conf->index;
rc = efx_mae_mport_by_phy_port(phy_port, &mport);
if (rc != 0)
return rc;
return efx_mae_action_set_populate_deliver(spec, &mport);
}
static int
sfc_mae_rule_parse_action_pf_vf(struct sfc_adapter *sa,
const struct rte_flow_action_vf *vf_conf,
efx_mae_actions_t *spec)
{
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
efx_mport_sel_t mport;
uint32_t vf;
int rc;
if (vf_conf == NULL)
vf = EFX_PCI_VF_INVALID;
else if (vf_conf->original != 0)
vf = encp->enc_vf;
else
vf = vf_conf->id;
rc = efx_mae_mport_by_pcie_function(encp->enc_pf, vf, &mport);
if (rc != 0)
return rc;
return efx_mae_action_set_populate_deliver(spec, &mport);
}
static int
sfc_mae_rule_parse_action_port_id(struct sfc_adapter *sa,
const struct rte_flow_action_port_id *conf,
efx_mae_actions_t *spec)
{
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
struct sfc_mae *mae = &sa->mae;
efx_mport_sel_t mport;
uint16_t port_id;
int rc;
if (conf->id > UINT16_MAX)
return EOVERFLOW;
port_id = (conf->original != 0) ? sas->port_id : conf->id;
rc = sfc_mae_switch_port_by_ethdev(mae->switch_domain_id,
port_id, &mport);
if (rc != 0)
return rc;
return efx_mae_action_set_populate_deliver(spec, &mport);
}
static int
sfc_mae_rule_parse_action(struct sfc_adapter *sa,
const struct rte_flow_action *action,
struct sfc_mae_actions_bundle *bundle,
efx_mae_actions_t *spec,
struct rte_flow_error *error)
{
int rc = 0;
switch (action->type) {
case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_OF_POP_VLAN,
bundle->actions_mask);
rc = efx_mae_action_set_populate_vlan_pop(spec);
break;
case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN,
bundle->actions_mask);
sfc_mae_rule_parse_action_of_push_vlan(action->conf, bundle);
break;
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID,
bundle->actions_mask);
sfc_mae_rule_parse_action_of_set_vlan_vid(action->conf, bundle);
break;
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP,
bundle->actions_mask);
sfc_mae_rule_parse_action_of_set_vlan_pcp(action->conf, bundle);
break;
case RTE_FLOW_ACTION_TYPE_FLAG:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_FLAG,
bundle->actions_mask);
rc = efx_mae_action_set_populate_flag(spec);
break;
case RTE_FLOW_ACTION_TYPE_MARK:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_MARK,
bundle->actions_mask);
rc = sfc_mae_rule_parse_action_mark(action->conf, spec);
break;
case RTE_FLOW_ACTION_TYPE_PHY_PORT:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_PHY_PORT,
bundle->actions_mask);
rc = sfc_mae_rule_parse_action_phy_port(sa, action->conf, spec);
break;
case RTE_FLOW_ACTION_TYPE_PF:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_PF,
bundle->actions_mask);
rc = sfc_mae_rule_parse_action_pf_vf(sa, NULL, spec);
break;
case RTE_FLOW_ACTION_TYPE_VF:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VF,
bundle->actions_mask);
rc = sfc_mae_rule_parse_action_pf_vf(sa, action->conf, spec);
break;
case RTE_FLOW_ACTION_TYPE_PORT_ID:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_PORT_ID,
bundle->actions_mask);
rc = sfc_mae_rule_parse_action_port_id(sa, action->conf, spec);
break;
case RTE_FLOW_ACTION_TYPE_DROP:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_DROP,
bundle->actions_mask);
rc = efx_mae_action_set_populate_drop(spec);
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION, NULL,
"Unsupported action");
}
if (rc != 0) {
rc = rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ACTION,
NULL, "Failed to request the action");
} else {
bundle->actions_mask |= (1ULL << action->type);
}
return rc;
}
int
sfc_mae_rule_parse_actions(struct sfc_adapter *sa,
const struct rte_flow_action actions[],
struct sfc_mae_action_set **action_setp,
struct rte_flow_error *error)
{
struct sfc_mae_actions_bundle bundle = {0};
const struct rte_flow_action *action;
efx_mae_actions_t *spec;
int rc;
rte_errno = 0;
if (actions == NULL) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL,
"NULL actions");
}
rc = efx_mae_action_set_spec_init(sa->nic, &spec);
if (rc != 0)
goto fail_action_set_spec_init;
for (action = actions;
action->type != RTE_FLOW_ACTION_TYPE_END; ++action) {
rc = sfc_mae_actions_bundle_sync(action, &bundle, spec, error);
if (rc != 0)
goto fail_rule_parse_action;
rc = sfc_mae_rule_parse_action(sa, action, &bundle, spec,
error);
if (rc != 0)
goto fail_rule_parse_action;
}
rc = sfc_mae_actions_bundle_sync(action, &bundle, spec, error);
if (rc != 0)
goto fail_rule_parse_action;
*action_setp = sfc_mae_action_set_attach(sa, spec);
if (*action_setp != NULL) {
efx_mae_action_set_spec_fini(sa->nic, spec);
return 0;
}
rc = sfc_mae_action_set_add(sa, spec, action_setp);
if (rc != 0)
goto fail_action_set_add;
return 0;
fail_action_set_add:
fail_rule_parse_action:
efx_mae_action_set_spec_fini(sa->nic, spec);
fail_action_set_spec_init:
if (rc > 0 && rte_errno == 0) {
rc = rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, "Failed to process the action");
}
return rc;
}
static bool
sfc_mae_rules_class_cmp(struct sfc_adapter *sa,
const efx_mae_match_spec_t *left,
const efx_mae_match_spec_t *right)
{
bool have_same_class;
int rc;
rc = efx_mae_match_specs_class_cmp(sa->nic, left, right,
&have_same_class);
return (rc == 0) ? have_same_class : false;
}
static int
sfc_mae_outer_rule_class_verify(struct sfc_adapter *sa,
struct sfc_mae_outer_rule *rule)
{
struct sfc_mae_fw_rsrc *fw_rsrc = &rule->fw_rsrc;
struct sfc_mae_outer_rule *entry;
struct sfc_mae *mae = &sa->mae;
if (fw_rsrc->rule_id.id != EFX_MAE_RSRC_ID_INVALID) {
/* An active rule is reused. It's class is wittingly valid. */
return 0;
}
TAILQ_FOREACH_REVERSE(entry, &mae->outer_rules,
sfc_mae_outer_rules, entries) {
const efx_mae_match_spec_t *left = entry->match_spec;
const efx_mae_match_spec_t *right = rule->match_spec;
if (entry == rule)
continue;
if (sfc_mae_rules_class_cmp(sa, left, right))
return 0;
}
sfc_info(sa, "for now, the HW doesn't support rule validation, and HW "
"support for outer frame pattern items is not guaranteed; "
"other than that, the items are valid from SW standpoint");
return 0;
}
static int
sfc_mae_action_rule_class_verify(struct sfc_adapter *sa,
struct sfc_flow_spec_mae *spec)
{
const struct rte_flow *entry;
TAILQ_FOREACH_REVERSE(entry, &sa->flow_list, sfc_flow_list, entries) {
const struct sfc_flow_spec *entry_spec = &entry->spec;
const struct sfc_flow_spec_mae *es_mae = &entry_spec->mae;
const efx_mae_match_spec_t *left = es_mae->match_spec;
const efx_mae_match_spec_t *right = spec->match_spec;
switch (entry_spec->type) {
case SFC_FLOW_SPEC_FILTER:
/* Ignore VNIC-level flows */
break;
case SFC_FLOW_SPEC_MAE:
if (sfc_mae_rules_class_cmp(sa, left, right))
return 0;
break;
default:
SFC_ASSERT(false);
}
}
sfc_info(sa, "for now, the HW doesn't support rule validation, and HW "
"support for inner frame pattern items is not guaranteed; "
"other than that, the items are valid from SW standpoint");
return 0;
}
/**
* Confirm that a given flow can be accepted by the FW.
*
* @param sa
* Software adapter context
* @param flow
* Flow to be verified
* @return
* Zero on success and non-zero in the case of error.
* A special value of EAGAIN indicates that the adapter is
* not in started state. This state is compulsory because
* it only makes sense to compare the rule class of the flow
* being validated with classes of the active rules.
* Such classes are wittingly supported by the FW.
*/
int
sfc_mae_flow_verify(struct sfc_adapter *sa,
struct rte_flow *flow)
{
struct sfc_flow_spec *spec = &flow->spec;
struct sfc_flow_spec_mae *spec_mae = &spec->mae;
struct sfc_mae_outer_rule *outer_rule = spec_mae->outer_rule;
int rc;
SFC_ASSERT(sfc_adapter_is_locked(sa));
if (sa->state != SFC_ADAPTER_STARTED)
return EAGAIN;
if (outer_rule != NULL) {
rc = sfc_mae_outer_rule_class_verify(sa, outer_rule);
if (rc != 0)
return rc;
}
return sfc_mae_action_rule_class_verify(sa, spec_mae);
}
int
sfc_mae_flow_insert(struct sfc_adapter *sa,
struct rte_flow *flow)
{
struct sfc_flow_spec *spec = &flow->spec;
struct sfc_flow_spec_mae *spec_mae = &spec->mae;
struct sfc_mae_outer_rule *outer_rule = spec_mae->outer_rule;
struct sfc_mae_action_set *action_set = spec_mae->action_set;
struct sfc_mae_fw_rsrc *fw_rsrc = &action_set->fw_rsrc;
int rc;
SFC_ASSERT(spec_mae->rule_id.id == EFX_MAE_RSRC_ID_INVALID);
SFC_ASSERT(action_set != NULL);
if (outer_rule != NULL) {
rc = sfc_mae_outer_rule_enable(sa, outer_rule,
spec_mae->match_spec);
if (rc != 0)
goto fail_outer_rule_enable;
}
rc = sfc_mae_action_set_enable(sa, action_set);
if (rc != 0)
goto fail_action_set_enable;
rc = efx_mae_action_rule_insert(sa->nic, spec_mae->match_spec,
NULL, &fw_rsrc->aset_id,
&spec_mae->rule_id);
if (rc != 0)
goto fail_action_rule_insert;
return 0;
fail_action_rule_insert:
(void)sfc_mae_action_set_disable(sa, action_set);
fail_action_set_enable:
if (outer_rule != NULL)
(void)sfc_mae_outer_rule_disable(sa, outer_rule);
fail_outer_rule_enable:
return rc;
}
int
sfc_mae_flow_remove(struct sfc_adapter *sa,
struct rte_flow *flow)
{
struct sfc_flow_spec *spec = &flow->spec;
struct sfc_flow_spec_mae *spec_mae = &spec->mae;
struct sfc_mae_action_set *action_set = spec_mae->action_set;
struct sfc_mae_outer_rule *outer_rule = spec_mae->outer_rule;
int rc;
SFC_ASSERT(spec_mae->rule_id.id != EFX_MAE_RSRC_ID_INVALID);
SFC_ASSERT(action_set != NULL);
rc = efx_mae_action_rule_remove(sa->nic, &spec_mae->rule_id);
if (rc != 0)
return rc;
spec_mae->rule_id.id = EFX_MAE_RSRC_ID_INVALID;
rc = sfc_mae_action_set_disable(sa, action_set);
if (rc != 0) {
sfc_err(sa, "failed to disable the action set (rc = %d)", rc);
/* Despite the error, proceed with outer rule removal. */
}
if (outer_rule != NULL)
return sfc_mae_outer_rule_disable(sa, outer_rule);
return 0;
}