mirror of https://github.com/F-Stack/f-stack.git
1144 lines
35 KiB
C
1144 lines
35 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2019 Intel Corporation
|
|
*/
|
|
|
|
#include "ice_rxtx_vec_common.h"
|
|
#include "ice_rxtx_common_avx.h"
|
|
|
|
#include <x86intrin.h>
|
|
|
|
#ifndef __INTEL_COMPILER
|
|
#pragma GCC diagnostic ignored "-Wcast-qual"
|
|
#endif
|
|
|
|
#define ICE_DESCS_PER_LOOP_AVX 8
|
|
|
|
static __rte_always_inline void
|
|
ice_rxq_rearm(struct ice_rx_queue *rxq)
|
|
{
|
|
int i;
|
|
uint16_t rx_id;
|
|
volatile union ice_rx_flex_desc *rxdp;
|
|
struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
|
|
struct rte_mempool_cache *cache = rte_mempool_default_cache(rxq->mp,
|
|
rte_lcore_id());
|
|
|
|
rxdp = rxq->rx_ring + rxq->rxrearm_start;
|
|
|
|
if (unlikely(!cache))
|
|
return ice_rxq_rearm_common(rxq, true);
|
|
|
|
/* We need to pull 'n' more MBUFs into the software ring */
|
|
if (cache->len < ICE_RXQ_REARM_THRESH) {
|
|
uint32_t req = ICE_RXQ_REARM_THRESH + (cache->size -
|
|
cache->len);
|
|
|
|
int ret = rte_mempool_ops_dequeue_bulk(rxq->mp,
|
|
&cache->objs[cache->len], req);
|
|
if (ret == 0) {
|
|
cache->len += req;
|
|
} else {
|
|
if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
|
|
rxq->nb_rx_desc) {
|
|
__m128i dma_addr0;
|
|
|
|
dma_addr0 = _mm_setzero_si128();
|
|
for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
|
|
rxep[i].mbuf = &rxq->fake_mbuf;
|
|
_mm_store_si128
|
|
((__m128i *)&rxdp[i].read,
|
|
dma_addr0);
|
|
}
|
|
}
|
|
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
|
|
ICE_RXQ_REARM_THRESH;
|
|
return;
|
|
}
|
|
}
|
|
|
|
const __m512i iova_offsets = _mm512_set1_epi64
|
|
(offsetof(struct rte_mbuf, buf_iova));
|
|
const __m512i headroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
|
|
|
|
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
|
|
/* shuffle the iova into correct slots. Values 4-7 will contain
|
|
* zeros, so use 7 for a zero-value.
|
|
*/
|
|
const __m512i permute_idx = _mm512_set_epi64(7, 7, 3, 1, 7, 7, 2, 0);
|
|
#else
|
|
const __m512i permute_idx = _mm512_set_epi64(7, 3, 6, 2, 5, 1, 4, 0);
|
|
#endif
|
|
|
|
/* fill up the rxd in vector, process 8 mbufs in one loop */
|
|
for (i = 0; i < ICE_RXQ_REARM_THRESH / 8; i++) {
|
|
const __m512i mbuf_ptrs = _mm512_loadu_si512
|
|
(&cache->objs[cache->len - 8]);
|
|
_mm512_store_si512(rxep, mbuf_ptrs);
|
|
|
|
/* gather iova of mbuf0-7 into one zmm reg */
|
|
const __m512i iova_base_addrs = _mm512_i64gather_epi64
|
|
(_mm512_add_epi64(mbuf_ptrs, iova_offsets),
|
|
0, /* base */
|
|
1 /* scale */);
|
|
const __m512i iova_addrs = _mm512_add_epi64(iova_base_addrs,
|
|
headroom);
|
|
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
|
|
const __m512i iovas0 = _mm512_castsi256_si512
|
|
(_mm512_extracti64x4_epi64(iova_addrs, 0));
|
|
const __m512i iovas1 = _mm512_castsi256_si512
|
|
(_mm512_extracti64x4_epi64(iova_addrs, 1));
|
|
|
|
/* permute leaves iova 2-3 in hdr_addr of desc 0-1
|
|
* but these are ignored by driver since header split not
|
|
* enabled. Similarly for desc 4 & 5.
|
|
*/
|
|
const __m512i desc0_1 = _mm512_permutexvar_epi64
|
|
(permute_idx, iovas0);
|
|
const __m512i desc2_3 = _mm512_bsrli_epi128(desc0_1, 8);
|
|
|
|
const __m512i desc4_5 = _mm512_permutexvar_epi64
|
|
(permute_idx, iovas1);
|
|
const __m512i desc6_7 = _mm512_bsrli_epi128(desc4_5, 8);
|
|
|
|
_mm512_store_si512((void *)rxdp, desc0_1);
|
|
_mm512_store_si512((void *)(rxdp + 2), desc2_3);
|
|
_mm512_store_si512((void *)(rxdp + 4), desc4_5);
|
|
_mm512_store_si512((void *)(rxdp + 6), desc6_7);
|
|
#else
|
|
/* permute leaves iova 4-7 in hdr_addr of desc 0-3
|
|
* but these are ignored by driver since header split not
|
|
* enabled.
|
|
*/
|
|
const __m512i desc0_3 = _mm512_permutexvar_epi64
|
|
(permute_idx, iova_addrs);
|
|
const __m512i desc4_7 = _mm512_bsrli_epi128(desc0_3, 8);
|
|
|
|
_mm512_store_si512((void *)rxdp, desc0_3);
|
|
_mm512_store_si512((void *)(rxdp + 4), desc4_7);
|
|
#endif
|
|
rxep += 8, rxdp += 8, cache->len -= 8;
|
|
}
|
|
|
|
rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
|
|
if (rxq->rxrearm_start >= rxq->nb_rx_desc)
|
|
rxq->rxrearm_start = 0;
|
|
|
|
rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
|
|
|
|
rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
|
|
(rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
|
|
|
|
/* Update the tail pointer on the NIC */
|
|
ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
|
|
}
|
|
|
|
static inline __m256i
|
|
ice_flex_rxd_to_fdir_flags_vec_avx512(const __m256i fdir_id0_7)
|
|
{
|
|
#define FDID_MIS_MAGIC 0xFFFFFFFF
|
|
RTE_BUILD_BUG_ON(PKT_RX_FDIR != (1 << 2));
|
|
RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
|
|
const __m256i pkt_fdir_bit = _mm256_set1_epi32(PKT_RX_FDIR |
|
|
PKT_RX_FDIR_ID);
|
|
/* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
|
|
const __m256i fdir_mis_mask = _mm256_set1_epi32(FDID_MIS_MAGIC);
|
|
__m256i fdir_mask = _mm256_cmpeq_epi32(fdir_id0_7,
|
|
fdir_mis_mask);
|
|
/* this XOR op results to bit-reverse the fdir_mask */
|
|
fdir_mask = _mm256_xor_si256(fdir_mask, fdir_mis_mask);
|
|
const __m256i fdir_flags = _mm256_and_si256(fdir_mask, pkt_fdir_bit);
|
|
|
|
return fdir_flags;
|
|
}
|
|
|
|
static inline uint16_t
|
|
_ice_recv_raw_pkts_vec_avx512(struct ice_rx_queue *rxq,
|
|
struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts, uint8_t *split_packet)
|
|
{
|
|
const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
|
|
const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
|
|
0, rxq->mbuf_initializer);
|
|
struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
|
|
volatile union ice_rx_flex_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
|
|
|
|
rte_prefetch0(rxdp);
|
|
|
|
/* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */
|
|
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX);
|
|
|
|
/* See if we need to rearm the RX queue - gives the prefetch a bit
|
|
* of time to act
|
|
*/
|
|
if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
|
|
ice_rxq_rearm(rxq);
|
|
|
|
/* Before we start moving massive data around, check to see if
|
|
* there is actually a packet available
|
|
*/
|
|
if (!(rxdp->wb.status_error0 &
|
|
rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
|
|
return 0;
|
|
|
|
/* constants used in processing loop */
|
|
const __m512i crc_adjust =
|
|
_mm512_set4_epi32
|
|
(0, /* ignore non-length fields */
|
|
-rxq->crc_len, /* sub crc on data_len */
|
|
-rxq->crc_len, /* sub crc on pkt_len */
|
|
0 /* ignore non-length fields */
|
|
);
|
|
|
|
/* 8 packets DD mask, LSB in each 32-bit value */
|
|
const __m256i dd_check = _mm256_set1_epi32(1);
|
|
|
|
/* 8 packets EOP mask, second-LSB in each 32-bit value */
|
|
const __m256i eop_check = _mm256_slli_epi32(dd_check,
|
|
ICE_RX_DESC_STATUS_EOF_S);
|
|
|
|
/* mask to shuffle from desc. to mbuf (4 descriptors)*/
|
|
const __m512i shuf_msk =
|
|
_mm512_set4_epi32
|
|
(/* rss hash parsed separately */
|
|
0xFFFFFFFF,
|
|
/* octet 10~11, 16 bits vlan_macip */
|
|
/* octet 4~5, 16 bits data_len */
|
|
11 << 24 | 10 << 16 | 5 << 8 | 4,
|
|
/* skip hi 16 bits pkt_len, zero out */
|
|
/* octet 4~5, 16 bits pkt_len */
|
|
0xFFFF << 16 | 5 << 8 | 4,
|
|
/* pkt_type set as unknown */
|
|
0xFFFFFFFF
|
|
);
|
|
|
|
/**
|
|
* compile-time check the above crc and shuffle layout is correct.
|
|
* NOTE: the first field (lowest address) is given last in set_epi
|
|
* calls above.
|
|
*/
|
|
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
|
|
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
|
|
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
|
|
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
|
|
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
|
|
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
|
|
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
|
|
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
|
|
|
|
/* Status/Error flag masks */
|
|
/**
|
|
* mask everything except Checksum Reports, RSS indication
|
|
* and VLAN indication.
|
|
* bit6:4 for IP/L4 checksum errors.
|
|
* bit12 is for RSS indication.
|
|
* bit13 is for VLAN indication.
|
|
*/
|
|
const __m256i flags_mask =
|
|
_mm256_set1_epi32((0xF << 4) | (1 << 12) | (1 << 13));
|
|
/**
|
|
* data to be shuffled by the result of the flags mask shifted by 4
|
|
* bits. This gives use the l3_l4 flags.
|
|
*/
|
|
const __m256i l3_l4_flags_shuf =
|
|
_mm256_set_epi8((PKT_RX_OUTER_L4_CKSUM_BAD >> 20 |
|
|
PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
|
|
PKT_RX_IP_CKSUM_BAD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_EIP_CKSUM_BAD |
|
|
PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_EIP_CKSUM_BAD |
|
|
PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_EIP_CKSUM_BAD |
|
|
PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD |
|
|
PKT_RX_IP_CKSUM_BAD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD |
|
|
PKT_RX_IP_CKSUM_GOOD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
|
|
PKT_RX_IP_CKSUM_BAD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
|
|
PKT_RX_IP_CKSUM_GOOD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_EIP_CKSUM_BAD |
|
|
PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_EIP_CKSUM_BAD |
|
|
PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_EIP_CKSUM_BAD |
|
|
PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_EIP_CKSUM_BAD |
|
|
PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
|
|
PKT_RX_IP_CKSUM_BAD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
|
|
PKT_RX_IP_CKSUM_GOOD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
|
|
PKT_RX_IP_CKSUM_BAD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
|
|
PKT_RX_IP_CKSUM_GOOD) >> 1,
|
|
/**
|
|
* second 128-bits
|
|
* shift right 20 bits to use the low two bits to indicate
|
|
* outer checksum status
|
|
* shift right 1 bit to make sure it not exceed 255
|
|
*/
|
|
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_EIP_CKSUM_BAD |
|
|
PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_EIP_CKSUM_BAD |
|
|
PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_EIP_CKSUM_BAD |
|
|
PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_EIP_CKSUM_BAD |
|
|
PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD |
|
|
PKT_RX_IP_CKSUM_BAD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD |
|
|
PKT_RX_IP_CKSUM_GOOD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
|
|
PKT_RX_IP_CKSUM_BAD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
|
|
PKT_RX_IP_CKSUM_GOOD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_EIP_CKSUM_BAD |
|
|
PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_EIP_CKSUM_BAD |
|
|
PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_EIP_CKSUM_BAD |
|
|
PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_EIP_CKSUM_BAD |
|
|
PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
|
|
PKT_RX_IP_CKSUM_BAD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
|
|
PKT_RX_IP_CKSUM_GOOD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
|
|
PKT_RX_IP_CKSUM_BAD) >> 1,
|
|
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
|
|
PKT_RX_IP_CKSUM_GOOD) >> 1);
|
|
const __m256i cksum_mask =
|
|
_mm256_set1_epi32(PKT_RX_IP_CKSUM_MASK |
|
|
PKT_RX_L4_CKSUM_MASK |
|
|
PKT_RX_EIP_CKSUM_BAD |
|
|
PKT_RX_OUTER_L4_CKSUM_MASK);
|
|
/**
|
|
* data to be shuffled by result of flag mask, shifted down 12.
|
|
* If RSS(bit12)/VLAN(bit13) are set,
|
|
* shuffle moves appropriate flags in place.
|
|
*/
|
|
const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
|
|
0, 0, 0, 0,
|
|
0, 0, 0, 0,
|
|
PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
|
|
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
|
|
PKT_RX_RSS_HASH, 0,
|
|
/* 2nd 128-bits */
|
|
0, 0, 0, 0,
|
|
0, 0, 0, 0,
|
|
0, 0, 0, 0,
|
|
PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
|
|
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
|
|
PKT_RX_RSS_HASH, 0);
|
|
|
|
uint16_t i, received;
|
|
|
|
for (i = 0, received = 0; i < nb_pkts;
|
|
i += ICE_DESCS_PER_LOOP_AVX,
|
|
rxdp += ICE_DESCS_PER_LOOP_AVX) {
|
|
/* step 1, copy over 8 mbuf pointers to rx_pkts array */
|
|
_mm256_storeu_si256((void *)&rx_pkts[i],
|
|
_mm256_loadu_si256((void *)&sw_ring[i]));
|
|
#ifdef RTE_ARCH_X86_64
|
|
_mm256_storeu_si256
|
|
((void *)&rx_pkts[i + 4],
|
|
_mm256_loadu_si256((void *)&sw_ring[i + 4]));
|
|
#endif
|
|
|
|
__m512i raw_desc0_3, raw_desc4_7;
|
|
__m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
|
|
|
|
/* load in descriptors, in reverse order */
|
|
const __m128i raw_desc7 =
|
|
_mm_load_si128((void *)(rxdp + 7));
|
|
rte_compiler_barrier();
|
|
const __m128i raw_desc6 =
|
|
_mm_load_si128((void *)(rxdp + 6));
|
|
rte_compiler_barrier();
|
|
const __m128i raw_desc5 =
|
|
_mm_load_si128((void *)(rxdp + 5));
|
|
rte_compiler_barrier();
|
|
const __m128i raw_desc4 =
|
|
_mm_load_si128((void *)(rxdp + 4));
|
|
rte_compiler_barrier();
|
|
const __m128i raw_desc3 =
|
|
_mm_load_si128((void *)(rxdp + 3));
|
|
rte_compiler_barrier();
|
|
const __m128i raw_desc2 =
|
|
_mm_load_si128((void *)(rxdp + 2));
|
|
rte_compiler_barrier();
|
|
const __m128i raw_desc1 =
|
|
_mm_load_si128((void *)(rxdp + 1));
|
|
rte_compiler_barrier();
|
|
const __m128i raw_desc0 =
|
|
_mm_load_si128((void *)(rxdp + 0));
|
|
|
|
raw_desc6_7 =
|
|
_mm256_inserti128_si256
|
|
(_mm256_castsi128_si256(raw_desc6),
|
|
raw_desc7, 1);
|
|
raw_desc4_5 =
|
|
_mm256_inserti128_si256
|
|
(_mm256_castsi128_si256(raw_desc4),
|
|
raw_desc5, 1);
|
|
raw_desc2_3 =
|
|
_mm256_inserti128_si256
|
|
(_mm256_castsi128_si256(raw_desc2),
|
|
raw_desc3, 1);
|
|
raw_desc0_1 =
|
|
_mm256_inserti128_si256
|
|
(_mm256_castsi128_si256(raw_desc0),
|
|
raw_desc1, 1);
|
|
|
|
raw_desc4_7 =
|
|
_mm512_inserti64x4
|
|
(_mm512_castsi256_si512(raw_desc4_5),
|
|
raw_desc6_7, 1);
|
|
raw_desc0_3 =
|
|
_mm512_inserti64x4
|
|
(_mm512_castsi256_si512(raw_desc0_1),
|
|
raw_desc2_3, 1);
|
|
|
|
if (split_packet) {
|
|
int j;
|
|
|
|
for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++)
|
|
rte_mbuf_prefetch_part2(rx_pkts[i + j]);
|
|
}
|
|
|
|
/**
|
|
* convert descriptors 0-7 into mbufs, re-arrange fields.
|
|
* Then write into the mbuf.
|
|
*/
|
|
__m512i mb4_7 = _mm512_shuffle_epi8(raw_desc4_7, shuf_msk);
|
|
__m512i mb0_3 = _mm512_shuffle_epi8(raw_desc0_3, shuf_msk);
|
|
|
|
mb4_7 = _mm512_add_epi32(mb4_7, crc_adjust);
|
|
mb0_3 = _mm512_add_epi32(mb0_3, crc_adjust);
|
|
|
|
/**
|
|
* to get packet types, ptype is located in bit16-25
|
|
* of each 128bits
|
|
*/
|
|
const __m512i ptype_mask =
|
|
_mm512_set1_epi16(ICE_RX_FLEX_DESC_PTYPE_M);
|
|
|
|
/**
|
|
* to get packet types, ptype is located in bit16-25
|
|
* of each 128bits
|
|
*/
|
|
const __m512i ptypes4_7 =
|
|
_mm512_and_si512(raw_desc4_7, ptype_mask);
|
|
const __m512i ptypes0_3 =
|
|
_mm512_and_si512(raw_desc0_3, ptype_mask);
|
|
|
|
const __m256i ptypes6_7 =
|
|
_mm512_extracti64x4_epi64(ptypes4_7, 1);
|
|
const __m256i ptypes4_5 =
|
|
_mm512_extracti64x4_epi64(ptypes4_7, 0);
|
|
const __m256i ptypes2_3 =
|
|
_mm512_extracti64x4_epi64(ptypes0_3, 1);
|
|
const __m256i ptypes0_1 =
|
|
_mm512_extracti64x4_epi64(ptypes0_3, 0);
|
|
const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
|
|
const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
|
|
const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
|
|
const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
|
|
const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
|
|
const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
|
|
const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
|
|
const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
|
|
|
|
const __m512i ptype4_7 = _mm512_set_epi32
|
|
(0, 0, 0, ptype_tbl[ptype7],
|
|
0, 0, 0, ptype_tbl[ptype6],
|
|
0, 0, 0, ptype_tbl[ptype5],
|
|
0, 0, 0, ptype_tbl[ptype4]);
|
|
const __m512i ptype0_3 = _mm512_set_epi32
|
|
(0, 0, 0, ptype_tbl[ptype3],
|
|
0, 0, 0, ptype_tbl[ptype2],
|
|
0, 0, 0, ptype_tbl[ptype1],
|
|
0, 0, 0, ptype_tbl[ptype0]);
|
|
|
|
mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
|
|
mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
|
|
|
|
__m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0);
|
|
__m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1);
|
|
__m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
|
|
__m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
|
|
|
|
/**
|
|
* use permute/extract to get status content
|
|
* After the operations, the packets status flags are in the
|
|
* order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
|
|
*/
|
|
/* merge the status bits into one register */
|
|
const __m512i status_permute_msk = _mm512_set_epi32
|
|
(0, 0, 0, 0,
|
|
0, 0, 0, 0,
|
|
22, 30, 6, 14,
|
|
18, 26, 2, 10);
|
|
const __m512i raw_status0_7 = _mm512_permutex2var_epi32
|
|
(raw_desc4_7, status_permute_msk, raw_desc0_3);
|
|
__m256i status0_7 = _mm512_extracti64x4_epi64
|
|
(raw_status0_7, 0);
|
|
|
|
/* now do flag manipulation */
|
|
|
|
/* get only flag/error bits we want */
|
|
const __m256i flag_bits =
|
|
_mm256_and_si256(status0_7, flags_mask);
|
|
/**
|
|
* l3_l4_error flags, shuffle, then shift to correct adjustment
|
|
* of flags in flags_shuf, and finally mask out extra bits
|
|
*/
|
|
__m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
|
|
_mm256_srli_epi32(flag_bits, 4));
|
|
l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
|
|
__m256i l4_outer_mask = _mm256_set1_epi32(0x6);
|
|
__m256i l4_outer_flags =
|
|
_mm256_and_si256(l3_l4_flags, l4_outer_mask);
|
|
l4_outer_flags = _mm256_slli_epi32(l4_outer_flags, 20);
|
|
|
|
__m256i l3_l4_mask = _mm256_set1_epi32(~0x6);
|
|
l3_l4_flags = _mm256_and_si256(l3_l4_flags, l3_l4_mask);
|
|
l3_l4_flags = _mm256_or_si256(l3_l4_flags, l4_outer_flags);
|
|
l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
|
|
/* set rss and vlan flags */
|
|
const __m256i rss_vlan_flag_bits =
|
|
_mm256_srli_epi32(flag_bits, 12);
|
|
const __m256i rss_vlan_flags =
|
|
_mm256_shuffle_epi8(rss_vlan_flags_shuf,
|
|
rss_vlan_flag_bits);
|
|
|
|
/* merge flags */
|
|
__m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
|
|
rss_vlan_flags);
|
|
|
|
if (rxq->fdir_enabled) {
|
|
const __m256i fdir_id4_7 =
|
|
_mm256_unpackhi_epi32(raw_desc6_7, raw_desc4_5);
|
|
|
|
const __m256i fdir_id0_3 =
|
|
_mm256_unpackhi_epi32(raw_desc2_3, raw_desc0_1);
|
|
|
|
const __m256i fdir_id0_7 =
|
|
_mm256_unpackhi_epi64(fdir_id4_7, fdir_id0_3);
|
|
|
|
const __m256i fdir_flags =
|
|
ice_flex_rxd_to_fdir_flags_vec_avx512
|
|
(fdir_id0_7);
|
|
|
|
/* merge with fdir_flags */
|
|
mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_flags);
|
|
|
|
/* write to mbuf: have to use scalar store here */
|
|
rx_pkts[i + 0]->hash.fdir.hi =
|
|
_mm256_extract_epi32(fdir_id0_7, 3);
|
|
|
|
rx_pkts[i + 1]->hash.fdir.hi =
|
|
_mm256_extract_epi32(fdir_id0_7, 7);
|
|
|
|
rx_pkts[i + 2]->hash.fdir.hi =
|
|
_mm256_extract_epi32(fdir_id0_7, 2);
|
|
|
|
rx_pkts[i + 3]->hash.fdir.hi =
|
|
_mm256_extract_epi32(fdir_id0_7, 6);
|
|
|
|
rx_pkts[i + 4]->hash.fdir.hi =
|
|
_mm256_extract_epi32(fdir_id0_7, 1);
|
|
|
|
rx_pkts[i + 5]->hash.fdir.hi =
|
|
_mm256_extract_epi32(fdir_id0_7, 5);
|
|
|
|
rx_pkts[i + 6]->hash.fdir.hi =
|
|
_mm256_extract_epi32(fdir_id0_7, 0);
|
|
|
|
rx_pkts[i + 7]->hash.fdir.hi =
|
|
_mm256_extract_epi32(fdir_id0_7, 4);
|
|
} /* if() on fdir_enabled */
|
|
|
|
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
|
|
/**
|
|
* needs to load 2nd 16B of each desc for RSS hash parsing,
|
|
* will cause performance drop to get into this context.
|
|
*/
|
|
if (rxq->vsi->adapter->pf.dev_data->dev_conf.rxmode.offloads &
|
|
DEV_RX_OFFLOAD_RSS_HASH) {
|
|
/* load bottom half of every 32B desc */
|
|
const __m128i raw_desc_bh7 =
|
|
_mm_load_si128
|
|
((void *)(&rxdp[7].wb.status_error1));
|
|
rte_compiler_barrier();
|
|
const __m128i raw_desc_bh6 =
|
|
_mm_load_si128
|
|
((void *)(&rxdp[6].wb.status_error1));
|
|
rte_compiler_barrier();
|
|
const __m128i raw_desc_bh5 =
|
|
_mm_load_si128
|
|
((void *)(&rxdp[5].wb.status_error1));
|
|
rte_compiler_barrier();
|
|
const __m128i raw_desc_bh4 =
|
|
_mm_load_si128
|
|
((void *)(&rxdp[4].wb.status_error1));
|
|
rte_compiler_barrier();
|
|
const __m128i raw_desc_bh3 =
|
|
_mm_load_si128
|
|
((void *)(&rxdp[3].wb.status_error1));
|
|
rte_compiler_barrier();
|
|
const __m128i raw_desc_bh2 =
|
|
_mm_load_si128
|
|
((void *)(&rxdp[2].wb.status_error1));
|
|
rte_compiler_barrier();
|
|
const __m128i raw_desc_bh1 =
|
|
_mm_load_si128
|
|
((void *)(&rxdp[1].wb.status_error1));
|
|
rte_compiler_barrier();
|
|
const __m128i raw_desc_bh0 =
|
|
_mm_load_si128
|
|
((void *)(&rxdp[0].wb.status_error1));
|
|
|
|
__m256i raw_desc_bh6_7 =
|
|
_mm256_inserti128_si256
|
|
(_mm256_castsi128_si256(raw_desc_bh6),
|
|
raw_desc_bh7, 1);
|
|
__m256i raw_desc_bh4_5 =
|
|
_mm256_inserti128_si256
|
|
(_mm256_castsi128_si256(raw_desc_bh4),
|
|
raw_desc_bh5, 1);
|
|
__m256i raw_desc_bh2_3 =
|
|
_mm256_inserti128_si256
|
|
(_mm256_castsi128_si256(raw_desc_bh2),
|
|
raw_desc_bh3, 1);
|
|
__m256i raw_desc_bh0_1 =
|
|
_mm256_inserti128_si256
|
|
(_mm256_castsi128_si256(raw_desc_bh0),
|
|
raw_desc_bh1, 1);
|
|
|
|
/**
|
|
* to shift the 32b RSS hash value to the
|
|
* highest 32b of each 128b before mask
|
|
*/
|
|
__m256i rss_hash6_7 =
|
|
_mm256_slli_epi64(raw_desc_bh6_7, 32);
|
|
__m256i rss_hash4_5 =
|
|
_mm256_slli_epi64(raw_desc_bh4_5, 32);
|
|
__m256i rss_hash2_3 =
|
|
_mm256_slli_epi64(raw_desc_bh2_3, 32);
|
|
__m256i rss_hash0_1 =
|
|
_mm256_slli_epi64(raw_desc_bh0_1, 32);
|
|
|
|
__m256i rss_hash_msk =
|
|
_mm256_set_epi32(0xFFFFFFFF, 0, 0, 0,
|
|
0xFFFFFFFF, 0, 0, 0);
|
|
|
|
rss_hash6_7 = _mm256_and_si256
|
|
(rss_hash6_7, rss_hash_msk);
|
|
rss_hash4_5 = _mm256_and_si256
|
|
(rss_hash4_5, rss_hash_msk);
|
|
rss_hash2_3 = _mm256_and_si256
|
|
(rss_hash2_3, rss_hash_msk);
|
|
rss_hash0_1 = _mm256_and_si256
|
|
(rss_hash0_1, rss_hash_msk);
|
|
|
|
mb6_7 = _mm256_or_si256(mb6_7, rss_hash6_7);
|
|
mb4_5 = _mm256_or_si256(mb4_5, rss_hash4_5);
|
|
mb2_3 = _mm256_or_si256(mb2_3, rss_hash2_3);
|
|
mb0_1 = _mm256_or_si256(mb0_1, rss_hash0_1);
|
|
} /* if() on RSS hash parsing */
|
|
#endif
|
|
|
|
/**
|
|
* At this point, we have the 8 sets of flags in the low 16-bits
|
|
* of each 32-bit value in vlan0.
|
|
* We want to extract these, and merge them with the mbuf init
|
|
* data so we can do a single write to the mbuf to set the flags
|
|
* and all the other initialization fields. Extracting the
|
|
* appropriate flags means that we have to do a shift and blend
|
|
* for each mbuf before we do the write. However, we can also
|
|
* add in the previously computed rx_descriptor fields to
|
|
* make a single 256-bit write per mbuf
|
|
*/
|
|
/* check the structure matches expectations */
|
|
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
|
|
offsetof(struct rte_mbuf, rearm_data) + 8);
|
|
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
|
|
RTE_ALIGN(offsetof(struct rte_mbuf,
|
|
rearm_data),
|
|
16));
|
|
/* build up data and do writes */
|
|
__m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
|
|
rearm6, rearm7;
|
|
|
|
rearm6 = _mm256_blend_epi32(mbuf_init,
|
|
_mm256_slli_si256(mbuf_flags, 8),
|
|
0x04);
|
|
rearm4 = _mm256_blend_epi32(mbuf_init,
|
|
_mm256_slli_si256(mbuf_flags, 4),
|
|
0x04);
|
|
rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
|
|
rearm0 = _mm256_blend_epi32(mbuf_init,
|
|
_mm256_srli_si256(mbuf_flags, 4),
|
|
0x04);
|
|
|
|
/* permute to add in the rx_descriptor e.g. rss fields */
|
|
rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
|
|
rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
|
|
rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
|
|
rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
|
|
|
|
/* write to mbuf */
|
|
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
|
|
rearm6);
|
|
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
|
|
rearm4);
|
|
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
|
|
rearm2);
|
|
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
|
|
rearm0);
|
|
|
|
/* repeat for the odd mbufs */
|
|
const __m256i odd_flags =
|
|
_mm256_castsi128_si256
|
|
(_mm256_extracti128_si256(mbuf_flags, 1));
|
|
rearm7 = _mm256_blend_epi32(mbuf_init,
|
|
_mm256_slli_si256(odd_flags, 8),
|
|
0x04);
|
|
rearm5 = _mm256_blend_epi32(mbuf_init,
|
|
_mm256_slli_si256(odd_flags, 4),
|
|
0x04);
|
|
rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
|
|
rearm1 = _mm256_blend_epi32(mbuf_init,
|
|
_mm256_srli_si256(odd_flags, 4),
|
|
0x04);
|
|
|
|
/* since odd mbufs are already in hi 128-bits use blend */
|
|
rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
|
|
rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
|
|
rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
|
|
rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
|
|
/* again write to mbufs */
|
|
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
|
|
rearm7);
|
|
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
|
|
rearm5);
|
|
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
|
|
rearm3);
|
|
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
|
|
rearm1);
|
|
|
|
/* extract and record EOP bit */
|
|
if (split_packet) {
|
|
const __m128i eop_mask =
|
|
_mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S);
|
|
const __m256i eop_bits256 = _mm256_and_si256(status0_7,
|
|
eop_check);
|
|
/* pack status bits into a single 128-bit register */
|
|
const __m128i eop_bits =
|
|
_mm_packus_epi32
|
|
(_mm256_castsi256_si128(eop_bits256),
|
|
_mm256_extractf128_si256(eop_bits256,
|
|
1));
|
|
/**
|
|
* flip bits, and mask out the EOP bit, which is now
|
|
* a split-packet bit i.e. !EOP, rather than EOP one.
|
|
*/
|
|
__m128i split_bits = _mm_andnot_si128(eop_bits,
|
|
eop_mask);
|
|
/**
|
|
* eop bits are out of order, so we need to shuffle them
|
|
* back into order again. In doing so, only use low 8
|
|
* bits, which acts like another pack instruction
|
|
* The original order is (hi->lo): 1,3,5,7,0,2,4,6
|
|
* [Since we use epi8, the 16-bit positions are
|
|
* multiplied by 2 in the eop_shuffle value.]
|
|
*/
|
|
__m128i eop_shuffle =
|
|
_mm_set_epi8(/* zero hi 64b */
|
|
0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF,
|
|
/* move values to lo 64b */
|
|
8, 0, 10, 2,
|
|
12, 4, 14, 6);
|
|
split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
|
|
*(uint64_t *)split_packet =
|
|
_mm_cvtsi128_si64(split_bits);
|
|
split_packet += ICE_DESCS_PER_LOOP_AVX;
|
|
}
|
|
|
|
/* perform dd_check */
|
|
status0_7 = _mm256_and_si256(status0_7, dd_check);
|
|
status0_7 = _mm256_packs_epi32(status0_7,
|
|
_mm256_setzero_si256());
|
|
|
|
uint64_t burst = __builtin_popcountll
|
|
(_mm_cvtsi128_si64
|
|
(_mm256_extracti128_si256
|
|
(status0_7, 1)));
|
|
burst += __builtin_popcountll
|
|
(_mm_cvtsi128_si64
|
|
(_mm256_castsi256_si128(status0_7)));
|
|
received += burst;
|
|
if (burst != ICE_DESCS_PER_LOOP_AVX)
|
|
break;
|
|
}
|
|
|
|
/* update tail pointers */
|
|
rxq->rx_tail += received;
|
|
rxq->rx_tail &= (rxq->nb_rx_desc - 1);
|
|
if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
|
|
rxq->rx_tail--;
|
|
received--;
|
|
}
|
|
rxq->rxrearm_nb += received;
|
|
return received;
|
|
}
|
|
|
|
/**
|
|
* Notice:
|
|
* - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
|
|
*/
|
|
uint16_t
|
|
ice_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
return _ice_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, nb_pkts, NULL);
|
|
}
|
|
|
|
/**
|
|
* vPMD receive routine that reassembles single burst of 32 scattered packets
|
|
* Notice:
|
|
* - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
|
|
*/
|
|
static uint16_t
|
|
ice_recv_scattered_burst_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct ice_rx_queue *rxq = rx_queue;
|
|
uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
|
|
|
|
/* get some new buffers */
|
|
uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx512(rxq, rx_pkts, nb_pkts,
|
|
split_flags);
|
|
if (nb_bufs == 0)
|
|
return 0;
|
|
|
|
/* happy day case, full burst + no packets to be joined */
|
|
const uint64_t *split_fl64 = (uint64_t *)split_flags;
|
|
|
|
if (!rxq->pkt_first_seg &&
|
|
split_fl64[0] == 0 && split_fl64[1] == 0 &&
|
|
split_fl64[2] == 0 && split_fl64[3] == 0)
|
|
return nb_bufs;
|
|
|
|
/* reassemble any packets that need reassembly */
|
|
unsigned int i = 0;
|
|
|
|
if (!rxq->pkt_first_seg) {
|
|
/* find the first split flag, and only reassemble then */
|
|
while (i < nb_bufs && !split_flags[i])
|
|
i++;
|
|
if (i == nb_bufs)
|
|
return nb_bufs;
|
|
rxq->pkt_first_seg = rx_pkts[i];
|
|
}
|
|
return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
|
|
&split_flags[i]);
|
|
}
|
|
|
|
/**
|
|
* vPMD receive routine that reassembles scattered packets.
|
|
* Main receive routine that can handle arbitrary burst sizes
|
|
* Notice:
|
|
* - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
|
|
*/
|
|
uint16_t
|
|
ice_recv_scattered_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
uint16_t retval = 0;
|
|
|
|
while (nb_pkts > ICE_VPMD_RX_BURST) {
|
|
uint16_t burst = ice_recv_scattered_burst_vec_avx512(rx_queue,
|
|
rx_pkts + retval, ICE_VPMD_RX_BURST);
|
|
retval += burst;
|
|
nb_pkts -= burst;
|
|
if (burst < ICE_VPMD_RX_BURST)
|
|
return retval;
|
|
}
|
|
return retval + ice_recv_scattered_burst_vec_avx512(rx_queue,
|
|
rx_pkts + retval, nb_pkts);
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
ice_tx_free_bufs_avx512(struct ice_tx_queue *txq)
|
|
{
|
|
struct ice_vec_tx_entry *txep;
|
|
uint32_t n;
|
|
uint32_t i;
|
|
int nb_free = 0;
|
|
struct rte_mbuf *m, *free[ICE_TX_MAX_FREE_BUF_SZ];
|
|
|
|
/* check DD bits on threshold descriptor */
|
|
if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
|
|
rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
|
|
rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
|
|
return 0;
|
|
|
|
n = txq->tx_rs_thresh;
|
|
|
|
/* first buffer to free from S/W ring is at index
|
|
* tx_next_dd - (tx_rs_thresh - 1)
|
|
*/
|
|
txep = (void *)txq->sw_ring;
|
|
txep += txq->tx_next_dd - (n - 1);
|
|
|
|
if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE && (n & 31) == 0) {
|
|
struct rte_mempool *mp = txep[0].mbuf->pool;
|
|
void **cache_objs;
|
|
struct rte_mempool_cache *cache = rte_mempool_default_cache(mp,
|
|
rte_lcore_id());
|
|
|
|
if (!cache || cache->len == 0)
|
|
goto normal;
|
|
|
|
cache_objs = &cache->objs[cache->len];
|
|
|
|
if (n > RTE_MEMPOOL_CACHE_MAX_SIZE) {
|
|
rte_mempool_ops_enqueue_bulk(mp, (void *)txep, n);
|
|
goto done;
|
|
}
|
|
|
|
/* The cache follows the following algorithm
|
|
* 1. Add the objects to the cache
|
|
* 2. Anything greater than the cache min value (if it
|
|
* crosses the cache flush threshold) is flushed to the ring.
|
|
*/
|
|
/* Add elements back into the cache */
|
|
uint32_t copied = 0;
|
|
/* n is multiple of 32 */
|
|
while (copied < n) {
|
|
const __m512i a = _mm512_loadu_si512(&txep[copied]);
|
|
const __m512i b = _mm512_loadu_si512(&txep[copied + 8]);
|
|
const __m512i c = _mm512_loadu_si512(&txep[copied + 16]);
|
|
const __m512i d = _mm512_loadu_si512(&txep[copied + 24]);
|
|
|
|
_mm512_storeu_si512(&cache_objs[copied], a);
|
|
_mm512_storeu_si512(&cache_objs[copied + 8], b);
|
|
_mm512_storeu_si512(&cache_objs[copied + 16], c);
|
|
_mm512_storeu_si512(&cache_objs[copied + 24], d);
|
|
copied += 32;
|
|
}
|
|
cache->len += n;
|
|
|
|
if (cache->len >= cache->flushthresh) {
|
|
rte_mempool_ops_enqueue_bulk
|
|
(mp, &cache->objs[cache->size],
|
|
cache->len - cache->size);
|
|
cache->len = cache->size;
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
normal:
|
|
m = rte_pktmbuf_prefree_seg(txep[0].mbuf);
|
|
if (likely(m)) {
|
|
free[0] = m;
|
|
nb_free = 1;
|
|
for (i = 1; i < n; i++) {
|
|
m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
|
|
if (likely(m)) {
|
|
if (likely(m->pool == free[0]->pool)) {
|
|
free[nb_free++] = m;
|
|
} else {
|
|
rte_mempool_put_bulk(free[0]->pool,
|
|
(void *)free,
|
|
nb_free);
|
|
free[0] = m;
|
|
nb_free = 1;
|
|
}
|
|
}
|
|
}
|
|
rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
|
|
} else {
|
|
for (i = 1; i < n; i++) {
|
|
m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
|
|
if (m)
|
|
rte_mempool_put(m->pool, m);
|
|
}
|
|
}
|
|
|
|
done:
|
|
/* buffers were freed, update counters */
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
|
|
txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
|
|
if (txq->tx_next_dd >= txq->nb_tx_desc)
|
|
txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
|
|
|
|
return txq->tx_rs_thresh;
|
|
}
|
|
|
|
static inline void
|
|
ice_vtx1(volatile struct ice_tx_desc *txdp,
|
|
struct rte_mbuf *pkt, uint64_t flags)
|
|
{
|
|
uint64_t high_qw =
|
|
(ICE_TX_DESC_DTYPE_DATA |
|
|
((uint64_t)flags << ICE_TXD_QW1_CMD_S) |
|
|
((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
|
|
|
|
__m128i descriptor = _mm_set_epi64x(high_qw,
|
|
pkt->buf_iova + pkt->data_off);
|
|
_mm_store_si128((__m128i *)txdp, descriptor);
|
|
}
|
|
|
|
static inline void
|
|
ice_vtx(volatile struct ice_tx_desc *txdp,
|
|
struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
|
|
{
|
|
const uint64_t hi_qw_tmpl = (ICE_TX_DESC_DTYPE_DATA |
|
|
((uint64_t)flags << ICE_TXD_QW1_CMD_S));
|
|
|
|
for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
|
|
uint64_t hi_qw3 =
|
|
hi_qw_tmpl |
|
|
((uint64_t)pkt[3]->data_len <<
|
|
ICE_TXD_QW1_TX_BUF_SZ_S);
|
|
uint64_t hi_qw2 =
|
|
hi_qw_tmpl |
|
|
((uint64_t)pkt[2]->data_len <<
|
|
ICE_TXD_QW1_TX_BUF_SZ_S);
|
|
uint64_t hi_qw1 =
|
|
hi_qw_tmpl |
|
|
((uint64_t)pkt[1]->data_len <<
|
|
ICE_TXD_QW1_TX_BUF_SZ_S);
|
|
uint64_t hi_qw0 =
|
|
hi_qw_tmpl |
|
|
((uint64_t)pkt[0]->data_len <<
|
|
ICE_TXD_QW1_TX_BUF_SZ_S);
|
|
|
|
__m512i desc0_3 =
|
|
_mm512_set_epi64
|
|
(hi_qw3,
|
|
pkt[3]->buf_iova + pkt[3]->data_off,
|
|
hi_qw2,
|
|
pkt[2]->buf_iova + pkt[2]->data_off,
|
|
hi_qw1,
|
|
pkt[1]->buf_iova + pkt[1]->data_off,
|
|
hi_qw0,
|
|
pkt[0]->buf_iova + pkt[0]->data_off);
|
|
_mm512_storeu_si512((void *)txdp, desc0_3);
|
|
}
|
|
|
|
/* do any last ones */
|
|
while (nb_pkts) {
|
|
ice_vtx1(txdp, *pkt, flags);
|
|
txdp++, pkt++, nb_pkts--;
|
|
}
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
ice_tx_backlog_entry_avx512(struct ice_vec_tx_entry *txep,
|
|
struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < (int)nb_pkts; ++i)
|
|
txep[i].mbuf = tx_pkts[i];
|
|
}
|
|
|
|
static inline uint16_t
|
|
ice_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
|
|
volatile struct ice_tx_desc *txdp;
|
|
struct ice_vec_tx_entry *txep;
|
|
uint16_t n, nb_commit, tx_id;
|
|
uint64_t flags = ICE_TD_CMD;
|
|
uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
|
|
|
|
/* cross rx_thresh boundary is not allowed */
|
|
nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
|
|
|
|
if (txq->nb_tx_free < txq->tx_free_thresh)
|
|
ice_tx_free_bufs_avx512(txq);
|
|
|
|
nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
|
|
if (unlikely(nb_pkts == 0))
|
|
return 0;
|
|
|
|
tx_id = txq->tx_tail;
|
|
txdp = &txq->tx_ring[tx_id];
|
|
txep = (void *)txq->sw_ring;
|
|
txep += tx_id;
|
|
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
|
|
|
|
n = (uint16_t)(txq->nb_tx_desc - tx_id);
|
|
if (nb_commit >= n) {
|
|
ice_tx_backlog_entry_avx512(txep, tx_pkts, n);
|
|
|
|
ice_vtx(txdp, tx_pkts, n - 1, flags);
|
|
tx_pkts += (n - 1);
|
|
txdp += (n - 1);
|
|
|
|
ice_vtx1(txdp, *tx_pkts++, rs);
|
|
|
|
nb_commit = (uint16_t)(nb_commit - n);
|
|
|
|
tx_id = 0;
|
|
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
|
|
|
|
/* avoid reach the end of ring */
|
|
txdp = txq->tx_ring;
|
|
txep = (void *)txq->sw_ring;
|
|
}
|
|
|
|
ice_tx_backlog_entry_avx512(txep, tx_pkts, nb_commit);
|
|
|
|
ice_vtx(txdp, tx_pkts, nb_commit, flags);
|
|
|
|
tx_id = (uint16_t)(tx_id + nb_commit);
|
|
if (tx_id > txq->tx_next_rs) {
|
|
txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
|
|
rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
|
|
ICE_TXD_QW1_CMD_S);
|
|
txq->tx_next_rs =
|
|
(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
|
|
}
|
|
|
|
txq->tx_tail = tx_id;
|
|
|
|
ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
|
|
|
|
return nb_pkts;
|
|
}
|
|
|
|
uint16_t
|
|
ice_xmit_pkts_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
uint16_t nb_tx = 0;
|
|
struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
|
|
|
|
while (nb_pkts) {
|
|
uint16_t ret, num;
|
|
|
|
num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
|
|
ret = ice_xmit_fixed_burst_vec_avx512(tx_queue,
|
|
&tx_pkts[nb_tx], num);
|
|
nb_tx += ret;
|
|
nb_pkts -= ret;
|
|
if (ret < num)
|
|
break;
|
|
}
|
|
|
|
return nb_tx;
|
|
}
|