f-stack/dpdk/drivers/net/bnxt/bnxt_rxtx_vec_neon.c

474 lines
14 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause */
/* Copyright(c) 2019-2020 Broadcom All rights reserved. */
#include <inttypes.h>
#include <stdbool.h>
#include <rte_bitmap.h>
#include <rte_byteorder.h>
#include <rte_malloc.h>
#include <rte_memory.h>
#include <rte_vect.h>
#include "bnxt.h"
#include "bnxt_cpr.h"
#include "bnxt_ring.h"
#include "bnxt_txq.h"
#include "bnxt_txr.h"
#include "bnxt_rxtx_vec_common.h"
/*
* RX Ring handling
*/
#define GET_OL_FLAGS(rss_flags, ol_idx, errors, pi, ol_flags) \
{ \
uint32_t tmp, of; \
\
of = vgetq_lane_u32((rss_flags), (pi)) | \
rxr->ol_flags_table[vgetq_lane_u32((ol_idx), (pi))]; \
\
tmp = vgetq_lane_u32((errors), (pi)); \
if (tmp) \
of |= rxr->ol_flags_err_table[tmp]; \
(ol_flags) = of; \
}
#define GET_DESC_FIELDS(rxcmp, rxcmp1, shuf_msk, ptype_idx, pkt_idx, ret) \
{ \
uint32_t ptype; \
uint16_t vlan_tci; \
uint32x4_t r; \
\
/* Set mbuf pkt_len, data_len, and rss_hash fields. */ \
r = vreinterpretq_u32_u8(vqtbl1q_u8(vreinterpretq_u8_u32(rxcmp), \
(shuf_msk))); \
\
/* Set packet type. */ \
ptype = bnxt_ptype_table[vgetq_lane_u32((ptype_idx), (pkt_idx))]; \
r = vsetq_lane_u32(ptype, r, 0); \
\
/* Set vlan_tci. */ \
vlan_tci = vgetq_lane_u32((rxcmp1), 1); \
r = vreinterpretq_u32_u16(vsetq_lane_u16(vlan_tci, \
vreinterpretq_u16_u32(r), 5)); \
(ret) = r; \
}
static void
descs_to_mbufs(uint32x4_t mm_rxcmp[4], uint32x4_t mm_rxcmp1[4],
uint64x2_t mb_init, struct rte_mbuf **mbuf,
struct bnxt_rx_ring_info *rxr)
{
const uint8x16_t shuf_msk = {
0xFF, 0xFF, 0xFF, 0xFF, /* pkt_type (zeroes) */
2, 3, 0xFF, 0xFF, /* pkt_len */
2, 3, /* data_len */
0xFF, 0xFF, /* vlan_tci (zeroes) */
12, 13, 14, 15 /* rss hash */
};
const uint32x4_t flags_type_mask =
vdupq_n_u32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);
const uint32x4_t flags2_mask1 =
vdupq_n_u32(RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN |
RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC);
const uint32x4_t flags2_mask2 =
vdupq_n_u32(RX_PKT_CMPL_FLAGS2_IP_TYPE);
const uint32x4_t rss_mask =
vdupq_n_u32(RX_PKT_CMPL_FLAGS_RSS_VALID);
const uint32x4_t flags2_index_mask = vdupq_n_u32(0x1F);
const uint32x4_t flags2_error_mask = vdupq_n_u32(0x0F);
uint32x4_t flags_type, flags2, index, errors, rss_flags;
uint32x4_t tmp, ptype_idx, is_tunnel;
uint64x2_t t0, t1;
uint32_t ol_flags;
/* Compute packet type table indexes for four packets */
t0 = vreinterpretq_u64_u32(vzip1q_u32(mm_rxcmp[0], mm_rxcmp[1]));
t1 = vreinterpretq_u64_u32(vzip1q_u32(mm_rxcmp[2], mm_rxcmp[3]));
flags_type = vreinterpretq_u32_u64(vcombine_u64(vget_low_u64(t0),
vget_low_u64(t1)));
ptype_idx =
vshrq_n_u32(vandq_u32(flags_type, flags_type_mask), 9);
t0 = vreinterpretq_u64_u32(vzip1q_u32(mm_rxcmp1[0], mm_rxcmp1[1]));
t1 = vreinterpretq_u64_u32(vzip1q_u32(mm_rxcmp1[2], mm_rxcmp1[3]));
flags2 = vreinterpretq_u32_u64(vcombine_u64(vget_low_u64(t0),
vget_low_u64(t1)));
ptype_idx = vorrq_u32(ptype_idx,
vshrq_n_u32(vandq_u32(flags2, flags2_mask1), 2));
ptype_idx = vorrq_u32(ptype_idx,
vshrq_n_u32(vandq_u32(flags2, flags2_mask2), 7));
/* Extract RSS valid flags for four packets. */
rss_flags = vshrq_n_u32(vandq_u32(flags_type, rss_mask), 9);
flags2 = vandq_u32(flags2, flags2_index_mask);
/* Extract errors_v2 fields for four packets. */
t0 = vreinterpretq_u64_u32(vzip2q_u32(mm_rxcmp1[0], mm_rxcmp1[1]));
t1 = vreinterpretq_u64_u32(vzip2q_u32(mm_rxcmp1[2], mm_rxcmp1[3]));
errors = vreinterpretq_u32_u64(vcombine_u64(vget_low_u64(t0),
vget_low_u64(t1)));
/* Compute ol_flags and checksum error indexes for four packets. */
is_tunnel = vandq_u32(flags2, vdupq_n_u32(4));
is_tunnel = vshlq_n_u32(is_tunnel, 3);
errors = vandq_u32(vshrq_n_u32(errors, 4), flags2_error_mask);
errors = vandq_u32(errors, flags2);
index = vbicq_u32(flags2, errors);
errors = vorrq_u32(errors, vshrq_n_u32(is_tunnel, 1));
index = vorrq_u32(index, is_tunnel);
/* Update mbuf rearm_data for four packets. */
GET_OL_FLAGS(rss_flags, index, errors, 0, ol_flags);
vst1q_u32((uint32_t *)&mbuf[0]->rearm_data,
vsetq_lane_u32(ol_flags, vreinterpretq_u32_u64(mb_init), 2));
GET_OL_FLAGS(rss_flags, index, errors, 1, ol_flags);
vst1q_u32((uint32_t *)&mbuf[1]->rearm_data,
vsetq_lane_u32(ol_flags, vreinterpretq_u32_u64(mb_init), 2));
GET_OL_FLAGS(rss_flags, index, errors, 2, ol_flags);
vst1q_u32((uint32_t *)&mbuf[2]->rearm_data,
vsetq_lane_u32(ol_flags, vreinterpretq_u32_u64(mb_init), 2));
GET_OL_FLAGS(rss_flags, index, errors, 3, ol_flags);
vst1q_u32((uint32_t *)&mbuf[3]->rearm_data,
vsetq_lane_u32(ol_flags, vreinterpretq_u32_u64(mb_init), 2));
/* Update mbuf rx_descriptor_fields1 for four packets. */
GET_DESC_FIELDS(mm_rxcmp[0], mm_rxcmp1[0], shuf_msk, ptype_idx, 0, tmp);
vst1q_u32((uint32_t *)&mbuf[0]->rx_descriptor_fields1, tmp);
GET_DESC_FIELDS(mm_rxcmp[1], mm_rxcmp1[1], shuf_msk, ptype_idx, 1, tmp);
vst1q_u32((uint32_t *)&mbuf[1]->rx_descriptor_fields1, tmp);
GET_DESC_FIELDS(mm_rxcmp[2], mm_rxcmp1[2], shuf_msk, ptype_idx, 2, tmp);
vst1q_u32((uint32_t *)&mbuf[2]->rx_descriptor_fields1, tmp);
GET_DESC_FIELDS(mm_rxcmp[3], mm_rxcmp1[3], shuf_msk, ptype_idx, 3, tmp);
vst1q_u32((uint32_t *)&mbuf[3]->rx_descriptor_fields1, tmp);
}
static uint16_t
recv_burst_vec_neon(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct bnxt_rx_queue *rxq = rx_queue;
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
uint16_t cp_ring_size = cpr->cp_ring_struct->ring_size;
uint16_t rx_ring_size = rxr->rx_ring_struct->ring_size;
struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
uint64_t valid, desc_valid_mask = ~0UL;
const uint32x4_t info3_v_mask = vdupq_n_u32(CMPL_BASE_V);
uint32_t raw_cons = cpr->cp_raw_cons;
uint32_t cons, mbcons;
int nb_rx_pkts = 0;
const uint64x2_t mb_init = {rxq->mbuf_initializer, 0};
const uint32x4_t valid_target =
vdupq_n_u32(!!(raw_cons & cp_ring_size));
int i;
/* If Rx Q was stopped return */
if (unlikely(!rxq->rx_started))
return 0;
if (rxq->rxrearm_nb >= rxq->rx_free_thresh)
bnxt_rxq_rearm(rxq, rxr);
cons = raw_cons & (cp_ring_size - 1);
mbcons = (raw_cons / 2) & (rx_ring_size - 1);
/* Prefetch first four descriptor pairs. */
rte_prefetch0(&cp_desc_ring[cons]);
rte_prefetch0(&cp_desc_ring[cons + 4]);
/* Ensure that we do not go past the ends of the rings. */
nb_pkts = RTE_MIN(nb_pkts, RTE_MIN(rx_ring_size - mbcons,
(cp_ring_size - cons) / 2));
/*
* If we are at the end of the ring, ensure that descriptors after the
* last valid entry are not treated as valid. Otherwise, force the
* maximum number of packets to receive to be a multiple of the per-
* loop count.
*/
if (nb_pkts < RTE_BNXT_DESCS_PER_LOOP)
desc_valid_mask >>= 16 * (RTE_BNXT_DESCS_PER_LOOP - nb_pkts);
else
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_BNXT_DESCS_PER_LOOP);
/* Handle RX burst request */
for (i = 0; i < nb_pkts; i += RTE_BNXT_DESCS_PER_LOOP,
cons += RTE_BNXT_DESCS_PER_LOOP * 2,
mbcons += RTE_BNXT_DESCS_PER_LOOP) {
uint32x4_t rxcmp1[RTE_BNXT_DESCS_PER_LOOP];
uint32x4_t rxcmp[RTE_BNXT_DESCS_PER_LOOP];
uint32x4_t info3_v;
uint64x2_t t0, t1;
uint32_t num_valid;
/* Copy four mbuf pointers to output array. */
t0 = vld1q_u64((void *)&rxr->rx_buf_ring[mbcons]);
#ifdef RTE_ARCH_ARM64
t1 = vld1q_u64((void *)&rxr->rx_buf_ring[mbcons + 2]);
#endif
vst1q_u64((void *)&rx_pkts[i], t0);
#ifdef RTE_ARCH_ARM64
vst1q_u64((void *)&rx_pkts[i + 2], t1);
#endif
/* Prefetch four descriptor pairs for next iteration. */
if (i + RTE_BNXT_DESCS_PER_LOOP < nb_pkts) {
rte_prefetch0(&cp_desc_ring[cons + 8]);
rte_prefetch0(&cp_desc_ring[cons + 12]);
}
/*
* Load the four current descriptors into NEON registers.
* IO barriers are used to ensure consistent state.
*/
rxcmp1[3] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 7]);
rte_io_rmb();
/* Reload lower 64b of descriptors to make it ordered after info3_v. */
rxcmp1[3] = vreinterpretq_u32_u64(vld1q_lane_u64
((void *)&cpr->cp_desc_ring[cons + 7],
vreinterpretq_u64_u32(rxcmp1[3]), 0));
rxcmp[3] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 6]);
rxcmp1[2] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 5]);
rte_io_rmb();
rxcmp1[2] = vreinterpretq_u32_u64(vld1q_lane_u64
((void *)&cpr->cp_desc_ring[cons + 5],
vreinterpretq_u64_u32(rxcmp1[2]), 0));
rxcmp[2] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 4]);
t1 = vreinterpretq_u64_u32(vzip2q_u32(rxcmp1[2], rxcmp1[3]));
rxcmp1[1] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 3]);
rte_io_rmb();
rxcmp1[1] = vreinterpretq_u32_u64(vld1q_lane_u64
((void *)&cpr->cp_desc_ring[cons + 3],
vreinterpretq_u64_u32(rxcmp1[1]), 0));
rxcmp[1] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 2]);
rxcmp1[0] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 1]);
rte_io_rmb();
rxcmp1[0] = vreinterpretq_u32_u64(vld1q_lane_u64
((void *)&cpr->cp_desc_ring[cons + 1],
vreinterpretq_u64_u32(rxcmp1[0]), 0));
rxcmp[0] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 0]);
t0 = vreinterpretq_u64_u32(vzip2q_u32(rxcmp1[0], rxcmp1[1]));
/* Isolate descriptor status flags. */
info3_v = vreinterpretq_u32_u64(vcombine_u64(vget_low_u64(t0),
vget_low_u64(t1)));
info3_v = vandq_u32(info3_v, info3_v_mask);
info3_v = veorq_u32(info3_v, valid_target);
/*
* Pack the 128-bit array of valid descriptor flags into 64
* bits and count the number of set bits in order to determine
* the number of valid descriptors.
*/
valid = vget_lane_u64(vreinterpret_u64_u16(vqmovn_u32(info3_v)),
0);
/*
* At this point, 'valid' is a 64-bit value containing four
* 16-bit fields, each of which is either 0x0001 or 0x0000.
* Compute number of valid descriptors from the index of
* the highest non-zero field.
*/
num_valid = (sizeof(uint64_t) / sizeof(uint16_t)) -
(__builtin_clzl(valid & desc_valid_mask) / 16);
switch (num_valid) {
case 4:
rxr->rx_buf_ring[mbcons + 3] = NULL;
/* FALLTHROUGH */
case 3:
rxr->rx_buf_ring[mbcons + 2] = NULL;
/* FALLTHROUGH */
case 2:
rxr->rx_buf_ring[mbcons + 1] = NULL;
/* FALLTHROUGH */
case 1:
rxr->rx_buf_ring[mbcons + 0] = NULL;
break;
case 0:
goto out;
}
descs_to_mbufs(rxcmp, rxcmp1, mb_init, &rx_pkts[nb_rx_pkts],
rxr);
nb_rx_pkts += num_valid;
if (num_valid < RTE_BNXT_DESCS_PER_LOOP)
break;
}
out:
if (nb_rx_pkts) {
rxr->rx_prod =
RING_ADV(rxr->rx_ring_struct, rxr->rx_prod, nb_rx_pkts);
rxq->rxrearm_nb += nb_rx_pkts;
cpr->cp_raw_cons += 2 * nb_rx_pkts;
cpr->valid =
!!(cpr->cp_raw_cons & cpr->cp_ring_struct->ring_size);
bnxt_db_cq(cpr);
}
return nb_rx_pkts;
}
uint16_t
bnxt_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
uint16_t cnt = 0;
while (nb_pkts > RTE_BNXT_MAX_RX_BURST) {
uint16_t burst;
burst = recv_burst_vec_neon(rx_queue, rx_pkts + cnt,
RTE_BNXT_MAX_RX_BURST);
cnt += burst;
nb_pkts -= burst;
if (burst < RTE_BNXT_MAX_RX_BURST)
return cnt;
}
return cnt + recv_burst_vec_neon(rx_queue, rx_pkts + cnt, nb_pkts);
}
static void
bnxt_handle_tx_cp_vec(struct bnxt_tx_queue *txq)
{
struct bnxt_cp_ring_info *cpr = txq->cp_ring;
uint32_t raw_cons = cpr->cp_raw_cons;
uint32_t cons;
uint32_t nb_tx_pkts = 0;
struct tx_cmpl *txcmp;
struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
struct bnxt_ring *cp_ring_struct = cpr->cp_ring_struct;
uint32_t ring_mask = cp_ring_struct->ring_mask;
do {
cons = RING_CMPL(ring_mask, raw_cons);
txcmp = (struct tx_cmpl *)&cp_desc_ring[cons];
if (!bnxt_cpr_cmp_valid(txcmp, raw_cons, ring_mask + 1))
break;
if (likely(CMP_TYPE(txcmp) == TX_CMPL_TYPE_TX_L2))
nb_tx_pkts += txcmp->opaque;
else
RTE_LOG_DP(ERR, PMD,
"Unhandled CMP type %02x\n",
CMP_TYPE(txcmp));
raw_cons = NEXT_RAW_CMP(raw_cons);
} while (nb_tx_pkts < ring_mask);
cpr->valid = !!(raw_cons & cp_ring_struct->ring_size);
if (nb_tx_pkts) {
if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
bnxt_tx_cmp_vec_fast(txq, nb_tx_pkts);
else
bnxt_tx_cmp_vec(txq, nb_tx_pkts);
cpr->cp_raw_cons = raw_cons;
bnxt_db_cq(cpr);
}
}
static uint16_t
bnxt_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct bnxt_tx_queue *txq = tx_queue;
struct bnxt_tx_ring_info *txr = txq->tx_ring;
uint16_t prod = txr->tx_prod;
struct rte_mbuf *tx_mbuf;
struct tx_bd_long *txbd = NULL;
struct bnxt_sw_tx_bd *tx_buf;
uint16_t to_send;
nb_pkts = RTE_MIN(nb_pkts, bnxt_tx_avail(txq));
if (unlikely(nb_pkts == 0))
return 0;
/* Handle TX burst request */
to_send = nb_pkts;
while (to_send) {
tx_mbuf = *tx_pkts++;
rte_prefetch0(tx_mbuf);
tx_buf = &txr->tx_buf_ring[prod];
tx_buf->mbuf = tx_mbuf;
tx_buf->nr_bds = 1;
txbd = &txr->tx_desc_ring[prod];
txbd->address = tx_mbuf->buf_iova + tx_mbuf->data_off;
txbd->len = tx_mbuf->data_len;
txbd->flags_type = bnxt_xmit_flags_len(tx_mbuf->data_len,
TX_BD_FLAGS_NOCMPL);
prod = RING_NEXT(txr->tx_ring_struct, prod);
to_send--;
}
/* Request a completion for last packet in burst */
if (txbd) {
txbd->opaque = nb_pkts;
txbd->flags_type &= ~TX_BD_LONG_FLAGS_NO_CMPL;
}
rte_compiler_barrier();
bnxt_db_write(&txr->tx_db, prod);
txr->tx_prod = prod;
return nb_pkts;
}
uint16_t
bnxt_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
int nb_sent = 0;
struct bnxt_tx_queue *txq = tx_queue;
/* Tx queue was stopped; wait for it to be restarted */
if (unlikely(!txq->tx_started)) {
PMD_DRV_LOG(DEBUG, "Tx q stopped;return\n");
return 0;
}
/* Handle TX completions */
if (bnxt_tx_bds_in_hw(txq) >= txq->tx_free_thresh)
bnxt_handle_tx_cp_vec(txq);
while (nb_pkts) {
uint16_t ret, num;
num = RTE_MIN(nb_pkts, RTE_BNXT_MAX_TX_BURST);
ret = bnxt_xmit_fixed_burst_vec(tx_queue,
&tx_pkts[nb_sent],
num);
nb_sent += ret;
nb_pkts -= ret;
if (ret < num)
break;
}
return nb_sent;
}
int __rte_cold
bnxt_rxq_vec_setup(struct bnxt_rx_queue *rxq)
{
return bnxt_rxq_vec_setup_common(rxq);
}