f-stack/dpdk/app/test/test_ring.c

1246 lines
32 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
* Copyright(c) 2020 Arm Limited
*/
#include <string.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <errno.h>
#include <sys/queue.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_launch.h>
#include <rte_cycles.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_malloc.h>
#include <rte_ring.h>
#include <rte_ring_elem.h>
#include <rte_random.h>
#include <rte_errno.h>
#include <rte_hexdump.h>
#include "test.h"
#include "test_ring.h"
/*
* Ring
* ====
*
* #. Functional tests. Tests single/bulk/burst, default/SPSC/MPMC,
* legacy/custom element size (4B, 8B, 16B, 20B) APIs.
* Some tests incorporate unaligned addresses for objects.
* The enqueued/dequeued data is validated for correctness.
*
* #. Performance tests are in test_ring_perf.c
*/
#define RING_SIZE 4096
#define MAX_BULK 32
/*
* Validate the return value of test cases and print details of the
* ring if validation fails
*
* @param exp
* Expression to validate return value.
* @param r
* A pointer to the ring structure.
*/
#define TEST_RING_VERIFY(exp, r, errst) do { \
if (!(exp)) { \
printf("error at %s:%d\tcondition " #exp " failed\n", \
__func__, __LINE__); \
rte_ring_dump(stdout, (r)); \
errst; \
} \
} while (0)
#define TEST_RING_FULL_EMPTY_ITER 8
static const int esize[] = {-1, 4, 8, 16, 20};
/* Wrappers around the zero-copy APIs. The wrappers match
* the normal enqueue/dequeue API declarations.
*/
static unsigned int
test_ring_enqueue_zc_bulk(struct rte_ring *r, void * const *obj_table,
unsigned int n, unsigned int *free_space)
{
uint32_t ret;
struct rte_ring_zc_data zcd;
ret = rte_ring_enqueue_zc_bulk_start(r, n, &zcd, free_space);
if (ret != 0) {
/* Copy the data to the ring */
test_ring_copy_to(&zcd, obj_table, sizeof(void *), ret);
rte_ring_enqueue_zc_finish(r, ret);
}
return ret;
}
static unsigned int
test_ring_enqueue_zc_bulk_elem(struct rte_ring *r, const void *obj_table,
unsigned int esize, unsigned int n, unsigned int *free_space)
{
unsigned int ret;
struct rte_ring_zc_data zcd;
ret = rte_ring_enqueue_zc_bulk_elem_start(r, esize, n,
&zcd, free_space);
if (ret != 0) {
/* Copy the data to the ring */
test_ring_copy_to(&zcd, obj_table, esize, ret);
rte_ring_enqueue_zc_finish(r, ret);
}
return ret;
}
static unsigned int
test_ring_enqueue_zc_burst(struct rte_ring *r, void * const *obj_table,
unsigned int n, unsigned int *free_space)
{
unsigned int ret;
struct rte_ring_zc_data zcd;
ret = rte_ring_enqueue_zc_burst_start(r, n, &zcd, free_space);
if (ret != 0) {
/* Copy the data to the ring */
test_ring_copy_to(&zcd, obj_table, sizeof(void *), ret);
rte_ring_enqueue_zc_finish(r, ret);
}
return ret;
}
static unsigned int
test_ring_enqueue_zc_burst_elem(struct rte_ring *r, const void *obj_table,
unsigned int esize, unsigned int n, unsigned int *free_space)
{
unsigned int ret;
struct rte_ring_zc_data zcd;
ret = rte_ring_enqueue_zc_burst_elem_start(r, esize, n,
&zcd, free_space);
if (ret != 0) {
/* Copy the data to the ring */
test_ring_copy_to(&zcd, obj_table, esize, ret);
rte_ring_enqueue_zc_finish(r, ret);
}
return ret;
}
static unsigned int
test_ring_dequeue_zc_bulk(struct rte_ring *r, void **obj_table,
unsigned int n, unsigned int *available)
{
unsigned int ret;
struct rte_ring_zc_data zcd;
ret = rte_ring_dequeue_zc_bulk_start(r, n, &zcd, available);
if (ret != 0) {
/* Copy the data from the ring */
test_ring_copy_from(&zcd, obj_table, sizeof(void *), ret);
rte_ring_dequeue_zc_finish(r, ret);
}
return ret;
}
static unsigned int
test_ring_dequeue_zc_bulk_elem(struct rte_ring *r, void *obj_table,
unsigned int esize, unsigned int n, unsigned int *available)
{
unsigned int ret;
struct rte_ring_zc_data zcd;
ret = rte_ring_dequeue_zc_bulk_elem_start(r, esize, n,
&zcd, available);
if (ret != 0) {
/* Copy the data from the ring */
test_ring_copy_from(&zcd, obj_table, esize, ret);
rte_ring_dequeue_zc_finish(r, ret);
}
return ret;
}
static unsigned int
test_ring_dequeue_zc_burst(struct rte_ring *r, void **obj_table,
unsigned int n, unsigned int *available)
{
unsigned int ret;
struct rte_ring_zc_data zcd;
ret = rte_ring_dequeue_zc_burst_start(r, n, &zcd, available);
if (ret != 0) {
/* Copy the data from the ring */
test_ring_copy_from(&zcd, obj_table, sizeof(void *), ret);
rte_ring_dequeue_zc_finish(r, ret);
}
return ret;
}
static unsigned int
test_ring_dequeue_zc_burst_elem(struct rte_ring *r, void *obj_table,
unsigned int esize, unsigned int n, unsigned int *available)
{
unsigned int ret;
struct rte_ring_zc_data zcd;
ret = rte_ring_dequeue_zc_burst_elem_start(r, esize, n,
&zcd, available);
if (ret != 0) {
/* Copy the data from the ring */
test_ring_copy_from(&zcd, obj_table, esize, ret);
rte_ring_dequeue_zc_finish(r, ret);
}
return ret;
}
static const struct {
const char *desc;
uint32_t api_type;
uint32_t create_flags;
struct {
unsigned int (*flegacy)(struct rte_ring *r,
void * const *obj_table, unsigned int n,
unsigned int *free_space);
unsigned int (*felem)(struct rte_ring *r, const void *obj_table,
unsigned int esize, unsigned int n,
unsigned int *free_space);
} enq;
struct {
unsigned int (*flegacy)(struct rte_ring *r,
void **obj_table, unsigned int n,
unsigned int *available);
unsigned int (*felem)(struct rte_ring *r, void *obj_table,
unsigned int esize, unsigned int n,
unsigned int *available);
} deq;
} test_enqdeq_impl[] = {
{
.desc = "MP/MC sync mode",
.api_type = TEST_RING_ELEM_BULK | TEST_RING_THREAD_DEF,
.create_flags = 0,
.enq = {
.flegacy = rte_ring_enqueue_bulk,
.felem = rte_ring_enqueue_bulk_elem,
},
.deq = {
.flegacy = rte_ring_dequeue_bulk,
.felem = rte_ring_dequeue_bulk_elem,
},
},
{
.desc = "SP/SC sync mode",
.api_type = TEST_RING_ELEM_BULK | TEST_RING_THREAD_SPSC,
.create_flags = RING_F_SP_ENQ | RING_F_SC_DEQ,
.enq = {
.flegacy = rte_ring_sp_enqueue_bulk,
.felem = rte_ring_sp_enqueue_bulk_elem,
},
.deq = {
.flegacy = rte_ring_sc_dequeue_bulk,
.felem = rte_ring_sc_dequeue_bulk_elem,
},
},
{
.desc = "MP/MC sync mode",
.api_type = TEST_RING_ELEM_BULK | TEST_RING_THREAD_MPMC,
.create_flags = 0,
.enq = {
.flegacy = rte_ring_mp_enqueue_bulk,
.felem = rte_ring_mp_enqueue_bulk_elem,
},
.deq = {
.flegacy = rte_ring_mc_dequeue_bulk,
.felem = rte_ring_mc_dequeue_bulk_elem,
},
},
{
.desc = "MP_RTS/MC_RTS sync mode",
.api_type = TEST_RING_ELEM_BULK | TEST_RING_THREAD_DEF,
.create_flags = RING_F_MP_RTS_ENQ | RING_F_MC_RTS_DEQ,
.enq = {
.flegacy = rte_ring_enqueue_bulk,
.felem = rte_ring_enqueue_bulk_elem,
},
.deq = {
.flegacy = rte_ring_dequeue_bulk,
.felem = rte_ring_dequeue_bulk_elem,
},
},
{
.desc = "MP_HTS/MC_HTS sync mode",
.api_type = TEST_RING_ELEM_BULK | TEST_RING_THREAD_DEF,
.create_flags = RING_F_MP_HTS_ENQ | RING_F_MC_HTS_DEQ,
.enq = {
.flegacy = rte_ring_enqueue_bulk,
.felem = rte_ring_enqueue_bulk_elem,
},
.deq = {
.flegacy = rte_ring_dequeue_bulk,
.felem = rte_ring_dequeue_bulk_elem,
},
},
{
.desc = "MP/MC sync mode",
.api_type = TEST_RING_ELEM_BURST | TEST_RING_THREAD_DEF,
.create_flags = 0,
.enq = {
.flegacy = rte_ring_enqueue_burst,
.felem = rte_ring_enqueue_burst_elem,
},
.deq = {
.flegacy = rte_ring_dequeue_burst,
.felem = rte_ring_dequeue_burst_elem,
},
},
{
.desc = "SP/SC sync mode",
.api_type = TEST_RING_ELEM_BURST | TEST_RING_THREAD_SPSC,
.create_flags = RING_F_SP_ENQ | RING_F_SC_DEQ,
.enq = {
.flegacy = rte_ring_sp_enqueue_burst,
.felem = rte_ring_sp_enqueue_burst_elem,
},
.deq = {
.flegacy = rte_ring_sc_dequeue_burst,
.felem = rte_ring_sc_dequeue_burst_elem,
},
},
{
.desc = "MP/MC sync mode",
.api_type = TEST_RING_ELEM_BURST | TEST_RING_THREAD_MPMC,
.create_flags = 0,
.enq = {
.flegacy = rte_ring_mp_enqueue_burst,
.felem = rte_ring_mp_enqueue_burst_elem,
},
.deq = {
.flegacy = rte_ring_mc_dequeue_burst,
.felem = rte_ring_mc_dequeue_burst_elem,
},
},
{
.desc = "MP_RTS/MC_RTS sync mode",
.api_type = TEST_RING_ELEM_BURST | TEST_RING_THREAD_DEF,
.create_flags = RING_F_MP_RTS_ENQ | RING_F_MC_RTS_DEQ,
.enq = {
.flegacy = rte_ring_enqueue_burst,
.felem = rte_ring_enqueue_burst_elem,
},
.deq = {
.flegacy = rte_ring_dequeue_burst,
.felem = rte_ring_dequeue_burst_elem,
},
},
{
.desc = "MP_HTS/MC_HTS sync mode",
.api_type = TEST_RING_ELEM_BURST | TEST_RING_THREAD_DEF,
.create_flags = RING_F_MP_HTS_ENQ | RING_F_MC_HTS_DEQ,
.enq = {
.flegacy = rte_ring_enqueue_burst,
.felem = rte_ring_enqueue_burst_elem,
},
.deq = {
.flegacy = rte_ring_dequeue_burst,
.felem = rte_ring_dequeue_burst_elem,
},
},
{
.desc = "SP/SC sync mode (ZC)",
.api_type = TEST_RING_ELEM_BULK | TEST_RING_THREAD_SPSC,
.create_flags = RING_F_SP_ENQ | RING_F_SC_DEQ,
.enq = {
.flegacy = test_ring_enqueue_zc_bulk,
.felem = test_ring_enqueue_zc_bulk_elem,
},
.deq = {
.flegacy = test_ring_dequeue_zc_bulk,
.felem = test_ring_dequeue_zc_bulk_elem,
},
},
{
.desc = "MP_HTS/MC_HTS sync mode (ZC)",
.api_type = TEST_RING_ELEM_BULK | TEST_RING_THREAD_DEF,
.create_flags = RING_F_MP_HTS_ENQ | RING_F_MC_HTS_DEQ,
.enq = {
.flegacy = test_ring_enqueue_zc_bulk,
.felem = test_ring_enqueue_zc_bulk_elem,
},
.deq = {
.flegacy = test_ring_dequeue_zc_bulk,
.felem = test_ring_dequeue_zc_bulk_elem,
},
},
{
.desc = "SP/SC sync mode (ZC)",
.api_type = TEST_RING_ELEM_BURST | TEST_RING_THREAD_SPSC,
.create_flags = RING_F_SP_ENQ | RING_F_SC_DEQ,
.enq = {
.flegacy = test_ring_enqueue_zc_burst,
.felem = test_ring_enqueue_zc_burst_elem,
},
.deq = {
.flegacy = test_ring_dequeue_zc_burst,
.felem = test_ring_dequeue_zc_burst_elem,
},
},
{
.desc = "MP_HTS/MC_HTS sync mode (ZC)",
.api_type = TEST_RING_ELEM_BURST | TEST_RING_THREAD_DEF,
.create_flags = RING_F_MP_HTS_ENQ | RING_F_MC_HTS_DEQ,
.enq = {
.flegacy = test_ring_enqueue_zc_burst,
.felem = test_ring_enqueue_zc_burst_elem,
},
.deq = {
.flegacy = test_ring_dequeue_zc_burst,
.felem = test_ring_dequeue_zc_burst_elem,
},
}
};
static unsigned int
test_ring_enq_impl(struct rte_ring *r, void **obj, int esize, unsigned int n,
unsigned int test_idx)
{
if (esize == -1)
return test_enqdeq_impl[test_idx].enq.flegacy(r, obj, n, NULL);
else
return test_enqdeq_impl[test_idx].enq.felem(r, obj, esize, n,
NULL);
}
static unsigned int
test_ring_deq_impl(struct rte_ring *r, void **obj, int esize, unsigned int n,
unsigned int test_idx)
{
if (esize == -1)
return test_enqdeq_impl[test_idx].deq.flegacy(r, obj, n, NULL);
else
return test_enqdeq_impl[test_idx].deq.felem(r, obj, esize, n,
NULL);
}
static void
test_ring_mem_init(void *obj, unsigned int count, int esize)
{
unsigned int i;
/* Legacy queue APIs? */
if (esize == -1)
for (i = 0; i < count; i++)
((void **)obj)[i] = (void *)(uintptr_t)i;
else
for (i = 0; i < (count * esize / sizeof(uint32_t)); i++)
((uint32_t *)obj)[i] = i;
}
static int
test_ring_mem_cmp(void *src, void *dst, unsigned int size)
{
int ret;
ret = memcmp(src, dst, size);
if (ret) {
rte_hexdump(stdout, "src", src, size);
rte_hexdump(stdout, "dst", dst, size);
printf("data after dequeue is not the same\n");
}
return ret;
}
static void
test_ring_print_test_string(const char *istr, unsigned int api_type, int esize)
{
printf("\n%s: ", istr);
if (esize == -1)
printf("legacy APIs: ");
else
printf("elem APIs: element size %dB ", esize);
if (api_type == TEST_RING_IGNORE_API_TYPE)
return;
if (api_type & TEST_RING_THREAD_DEF)
printf(": default enqueue/dequeue: ");
else if (api_type & TEST_RING_THREAD_SPSC)
printf(": SP/SC: ");
else if (api_type & TEST_RING_THREAD_MPMC)
printf(": MP/MC: ");
if (api_type & TEST_RING_ELEM_SINGLE)
printf("single\n");
else if (api_type & TEST_RING_ELEM_BULK)
printf("bulk\n");
else if (api_type & TEST_RING_ELEM_BURST)
printf("burst\n");
}
/*
* Various negative test cases.
*/
static int
test_ring_negative_tests(void)
{
struct rte_ring *rp = NULL;
struct rte_ring *rt = NULL;
unsigned int i;
/* Test with esize not a multiple of 4 */
rp = test_ring_create("test_bad_element_size", 23,
RING_SIZE + 1, SOCKET_ID_ANY, 0);
if (rp != NULL) {
printf("Test failed to detect invalid element size\n");
goto test_fail;
}
for (i = 0; i < RTE_DIM(esize); i++) {
/* Test if ring size is not power of 2 */
rp = test_ring_create("test_bad_ring_size", esize[i],
RING_SIZE + 1, SOCKET_ID_ANY, 0);
if (rp != NULL) {
printf("Test failed to detect odd count\n");
goto test_fail;
}
/* Test if ring size is exceeding the limit */
rp = test_ring_create("test_bad_ring_size", esize[i],
RTE_RING_SZ_MASK + 1, SOCKET_ID_ANY, 0);
if (rp != NULL) {
printf("Test failed to detect limits\n");
goto test_fail;
}
/* Tests if lookup returns NULL on non-existing ring */
rp = rte_ring_lookup("ring_not_found");
if (rp != NULL && rte_errno != ENOENT) {
printf("Test failed to detect NULL ring lookup\n");
goto test_fail;
}
/* Test to if a non-power of 2 count causes the create
* function to fail correctly
*/
rp = test_ring_create("test_ring_count", esize[i], 4097,
SOCKET_ID_ANY, 0);
if (rp != NULL)
goto test_fail;
rp = test_ring_create("test_ring_negative", esize[i], RING_SIZE,
SOCKET_ID_ANY,
RING_F_SP_ENQ | RING_F_SC_DEQ);
if (rp == NULL) {
printf("test_ring_negative fail to create ring\n");
goto test_fail;
}
TEST_RING_VERIFY(rte_ring_lookup("test_ring_negative") == rp,
rp, goto test_fail);
TEST_RING_VERIFY(rte_ring_empty(rp) == 1, rp, goto test_fail);
/* Tests if it would always fail to create ring with an used
* ring name.
*/
rt = test_ring_create("test_ring_negative", esize[i], RING_SIZE,
SOCKET_ID_ANY, 0);
if (rt != NULL)
goto test_fail;
rte_ring_free(rp);
rp = NULL;
}
return 0;
test_fail:
rte_ring_free(rp);
return -1;
}
/*
* Burst and bulk operations with sp/sc, mp/mc and default (during creation)
* Random number of elements are enqueued and dequeued.
*/
static int
test_ring_burst_bulk_tests1(unsigned int test_idx)
{
struct rte_ring *r;
void **src = NULL, **cur_src = NULL, **dst = NULL, **cur_dst = NULL;
int ret;
unsigned int i, j, temp_sz;
int rand;
const unsigned int rsz = RING_SIZE - 1;
for (i = 0; i < RTE_DIM(esize); i++) {
test_ring_print_test_string(test_enqdeq_impl[test_idx].desc,
test_enqdeq_impl[test_idx].api_type, esize[i]);
/* Create the ring */
r = test_ring_create("test_ring_burst_bulk_tests", esize[i],
RING_SIZE, SOCKET_ID_ANY,
test_enqdeq_impl[test_idx].create_flags);
/* alloc dummy object pointers */
src = test_ring_calloc(RING_SIZE * 2, esize[i]);
if (src == NULL)
goto fail;
test_ring_mem_init(src, RING_SIZE * 2, esize[i]);
cur_src = src;
/* alloc some room for copied objects */
dst = test_ring_calloc(RING_SIZE * 2, esize[i]);
if (dst == NULL)
goto fail;
cur_dst = dst;
printf("Random full/empty test\n");
for (j = 0; j != TEST_RING_FULL_EMPTY_ITER; j++) {
/* random shift in the ring */
rand = RTE_MAX(rte_rand() % RING_SIZE, 1UL);
printf("%s: iteration %u, random shift: %u;\n",
__func__, i, rand);
ret = test_ring_enq_impl(r, cur_src, esize[i], rand,
test_idx);
TEST_RING_VERIFY(ret != 0, r, goto fail);
ret = test_ring_deq_impl(r, cur_dst, esize[i], rand,
test_idx);
TEST_RING_VERIFY(ret == rand, r, goto fail);
/* fill the ring */
ret = test_ring_enq_impl(r, cur_src, esize[i], rsz,
test_idx);
TEST_RING_VERIFY(ret != 0, r, goto fail);
TEST_RING_VERIFY(rte_ring_free_count(r) == 0, r, goto fail);
TEST_RING_VERIFY(rsz == rte_ring_count(r), r, goto fail);
TEST_RING_VERIFY(rte_ring_full(r), r, goto fail);
TEST_RING_VERIFY(rte_ring_empty(r) == 0, r, goto fail);
/* empty the ring */
ret = test_ring_deq_impl(r, cur_dst, esize[i], rsz,
test_idx);
TEST_RING_VERIFY(ret == (int)rsz, r, goto fail);
TEST_RING_VERIFY(rsz == rte_ring_free_count(r), r, goto fail);
TEST_RING_VERIFY(rte_ring_count(r) == 0, r, goto fail);
TEST_RING_VERIFY(rte_ring_full(r) == 0, r, goto fail);
TEST_RING_VERIFY(rte_ring_empty(r), r, goto fail);
/* check data */
temp_sz = rsz * sizeof(void *);
if (esize[i] != -1)
temp_sz = rsz * esize[i];
TEST_RING_VERIFY(test_ring_mem_cmp(src, dst,
temp_sz) == 0, r, goto fail);
}
/* Free memory before test completed */
rte_ring_free(r);
rte_free(src);
rte_free(dst);
r = NULL;
src = NULL;
dst = NULL;
}
return 0;
fail:
rte_ring_free(r);
rte_free(src);
rte_free(dst);
return -1;
}
/*
* Burst and bulk operations with sp/sc, mp/mc and default (during creation)
* Sequence of simple enqueues/dequeues and validate the enqueued and
* dequeued data.
*/
static int
test_ring_burst_bulk_tests2(unsigned int test_idx)
{
struct rte_ring *r;
void **src = NULL, **cur_src = NULL, **dst = NULL, **cur_dst = NULL;
int ret;
unsigned int i;
for (i = 0; i < RTE_DIM(esize); i++) {
test_ring_print_test_string(test_enqdeq_impl[test_idx].desc,
test_enqdeq_impl[test_idx].api_type, esize[i]);
/* Create the ring */
r = test_ring_create("test_ring_burst_bulk_tests", esize[i],
RING_SIZE, SOCKET_ID_ANY,
test_enqdeq_impl[test_idx].create_flags);
/* alloc dummy object pointers */
src = test_ring_calloc(RING_SIZE * 2, esize[i]);
if (src == NULL)
goto fail;
test_ring_mem_init(src, RING_SIZE * 2, esize[i]);
cur_src = src;
/* alloc some room for copied objects */
dst = test_ring_calloc(RING_SIZE * 2, esize[i]);
if (dst == NULL)
goto fail;
cur_dst = dst;
printf("enqueue 1 obj\n");
ret = test_ring_enq_impl(r, cur_src, esize[i], 1, test_idx);
TEST_RING_VERIFY(ret == 1, r, goto fail);
cur_src = test_ring_inc_ptr(cur_src, esize[i], 1);
printf("enqueue 2 objs\n");
ret = test_ring_enq_impl(r, cur_src, esize[i], 2, test_idx);
TEST_RING_VERIFY(ret == 2, r, goto fail);
cur_src = test_ring_inc_ptr(cur_src, esize[i], 2);
printf("enqueue MAX_BULK objs\n");
ret = test_ring_enq_impl(r, cur_src, esize[i], MAX_BULK,
test_idx);
TEST_RING_VERIFY(ret == MAX_BULK, r, goto fail);
printf("dequeue 1 obj\n");
ret = test_ring_deq_impl(r, cur_dst, esize[i], 1, test_idx);
TEST_RING_VERIFY(ret == 1, r, goto fail);
cur_dst = test_ring_inc_ptr(cur_dst, esize[i], 1);
printf("dequeue 2 objs\n");
ret = test_ring_deq_impl(r, cur_dst, esize[i], 2, test_idx);
TEST_RING_VERIFY(ret == 2, r, goto fail);
cur_dst = test_ring_inc_ptr(cur_dst, esize[i], 2);
printf("dequeue MAX_BULK objs\n");
ret = test_ring_deq_impl(r, cur_dst, esize[i], MAX_BULK,
test_idx);
TEST_RING_VERIFY(ret == MAX_BULK, r, goto fail);
cur_dst = test_ring_inc_ptr(cur_dst, esize[i], MAX_BULK);
/* check data */
TEST_RING_VERIFY(test_ring_mem_cmp(src, dst,
RTE_PTR_DIFF(cur_dst, dst)) == 0,
r, goto fail);
/* Free memory before test completed */
rte_ring_free(r);
rte_free(src);
rte_free(dst);
r = NULL;
src = NULL;
dst = NULL;
}
return 0;
fail:
rte_ring_free(r);
rte_free(src);
rte_free(dst);
return -1;
}
/*
* Burst and bulk operations with sp/sc, mp/mc and default (during creation)
* Enqueue and dequeue to cover the entire ring length.
*/
static int
test_ring_burst_bulk_tests3(unsigned int test_idx)
{
struct rte_ring *r;
void **src = NULL, **cur_src = NULL, **dst = NULL, **cur_dst = NULL;
int ret;
unsigned int i, j;
for (i = 0; i < RTE_DIM(esize); i++) {
test_ring_print_test_string(test_enqdeq_impl[test_idx].desc,
test_enqdeq_impl[test_idx].api_type, esize[i]);
/* Create the ring */
r = test_ring_create("test_ring_burst_bulk_tests", esize[i],
RING_SIZE, SOCKET_ID_ANY,
test_enqdeq_impl[test_idx].create_flags);
/* alloc dummy object pointers */
src = test_ring_calloc(RING_SIZE * 2, esize[i]);
if (src == NULL)
goto fail;
test_ring_mem_init(src, RING_SIZE * 2, esize[i]);
cur_src = src;
/* alloc some room for copied objects */
dst = test_ring_calloc(RING_SIZE * 2, esize[i]);
if (dst == NULL)
goto fail;
cur_dst = dst;
printf("fill and empty the ring\n");
for (j = 0; j < RING_SIZE / MAX_BULK; j++) {
ret = test_ring_enq_impl(r, cur_src, esize[i], MAX_BULK,
test_idx);
TEST_RING_VERIFY(ret == MAX_BULK, r, goto fail);
cur_src = test_ring_inc_ptr(cur_src, esize[i],
MAX_BULK);
ret = test_ring_deq_impl(r, cur_dst, esize[i], MAX_BULK,
test_idx);
TEST_RING_VERIFY(ret == MAX_BULK, r, goto fail);
cur_dst = test_ring_inc_ptr(cur_dst, esize[i],
MAX_BULK);
}
/* check data */
TEST_RING_VERIFY(test_ring_mem_cmp(src, dst,
RTE_PTR_DIFF(cur_dst, dst)) == 0,
r, goto fail);
/* Free memory before test completed */
rte_ring_free(r);
rte_free(src);
rte_free(dst);
r = NULL;
src = NULL;
dst = NULL;
}
return 0;
fail:
rte_ring_free(r);
rte_free(src);
rte_free(dst);
return -1;
}
/*
* Burst and bulk operations with sp/sc, mp/mc and default (during creation)
* Enqueue till the ring is full and dequeue till the ring becomes empty.
*/
static int
test_ring_burst_bulk_tests4(unsigned int test_idx)
{
struct rte_ring *r;
void **src = NULL, **cur_src = NULL, **dst = NULL, **cur_dst = NULL;
int ret;
unsigned int i, j;
unsigned int api_type, num_elems;
api_type = test_enqdeq_impl[test_idx].api_type;
for (i = 0; i < RTE_DIM(esize); i++) {
test_ring_print_test_string(test_enqdeq_impl[test_idx].desc,
test_enqdeq_impl[test_idx].api_type, esize[i]);
/* Create the ring */
r = test_ring_create("test_ring_burst_bulk_tests", esize[i],
RING_SIZE, SOCKET_ID_ANY,
test_enqdeq_impl[test_idx].create_flags);
/* alloc dummy object pointers */
src = test_ring_calloc(RING_SIZE * 2, esize[i]);
if (src == NULL)
goto fail;
test_ring_mem_init(src, RING_SIZE * 2, esize[i]);
cur_src = src;
/* alloc some room for copied objects */
dst = test_ring_calloc(RING_SIZE * 2, esize[i]);
if (dst == NULL)
goto fail;
cur_dst = dst;
printf("Test enqueue without enough memory space\n");
for (j = 0; j < (RING_SIZE/MAX_BULK - 1); j++) {
ret = test_ring_enq_impl(r, cur_src, esize[i], MAX_BULK,
test_idx);
TEST_RING_VERIFY(ret == MAX_BULK, r, goto fail);
cur_src = test_ring_inc_ptr(cur_src, esize[i],
MAX_BULK);
}
printf("Enqueue 2 objects, free entries = MAX_BULK - 2\n");
ret = test_ring_enq_impl(r, cur_src, esize[i], 2, test_idx);
TEST_RING_VERIFY(ret == 2, r, goto fail);
cur_src = test_ring_inc_ptr(cur_src, esize[i], 2);
printf("Enqueue the remaining entries = MAX_BULK - 3\n");
/* Bulk APIs enqueue exact number of elements */
if ((api_type & TEST_RING_ELEM_BULK) == TEST_RING_ELEM_BULK)
num_elems = MAX_BULK - 3;
else
num_elems = MAX_BULK;
/* Always one free entry left */
ret = test_ring_enq_impl(r, cur_src, esize[i], num_elems,
test_idx);
TEST_RING_VERIFY(ret == MAX_BULK - 3, r, goto fail);
cur_src = test_ring_inc_ptr(cur_src, esize[i], MAX_BULK - 3);
printf("Test if ring is full\n");
TEST_RING_VERIFY(rte_ring_full(r) == 1, r, goto fail);
printf("Test enqueue for a full entry\n");
ret = test_ring_enq_impl(r, cur_src, esize[i], MAX_BULK,
test_idx);
TEST_RING_VERIFY(ret == 0, r, goto fail);
printf("Test dequeue without enough objects\n");
for (j = 0; j < RING_SIZE / MAX_BULK - 1; j++) {
ret = test_ring_deq_impl(r, cur_dst, esize[i], MAX_BULK,
test_idx);
TEST_RING_VERIFY(ret == MAX_BULK, r, goto fail);
cur_dst = test_ring_inc_ptr(cur_dst, esize[i],
MAX_BULK);
}
/* Available memory space for the exact MAX_BULK entries */
ret = test_ring_deq_impl(r, cur_dst, esize[i], 2, test_idx);
TEST_RING_VERIFY(ret == 2, r, goto fail);
cur_dst = test_ring_inc_ptr(cur_dst, esize[i], 2);
/* Bulk APIs enqueue exact number of elements */
if ((api_type & TEST_RING_ELEM_BULK) == TEST_RING_ELEM_BULK)
num_elems = MAX_BULK - 3;
else
num_elems = MAX_BULK;
ret = test_ring_deq_impl(r, cur_dst, esize[i], num_elems,
test_idx);
TEST_RING_VERIFY(ret == MAX_BULK - 3, r, goto fail);
cur_dst = test_ring_inc_ptr(cur_dst, esize[i], MAX_BULK - 3);
printf("Test if ring is empty\n");
/* Check if ring is empty */
TEST_RING_VERIFY(rte_ring_empty(r) == 1, r, goto fail);
/* check data */
TEST_RING_VERIFY(test_ring_mem_cmp(src, dst,
RTE_PTR_DIFF(cur_dst, dst)) == 0,
r, goto fail);
/* Free memory before test completed */
rte_ring_free(r);
rte_free(src);
rte_free(dst);
r = NULL;
src = NULL;
dst = NULL;
}
return 0;
fail:
rte_ring_free(r);
rte_free(src);
rte_free(dst);
return -1;
}
/*
* Test default, single element, bulk and burst APIs
*/
static int
test_ring_basic_ex(void)
{
int ret = -1;
unsigned int i, j;
struct rte_ring *rp = NULL;
void **src = NULL, **cur_src = NULL, **dst = NULL, **cur_dst = NULL;
for (i = 0; i < RTE_DIM(esize); i++) {
rp = test_ring_create("test_ring_basic_ex", esize[i], RING_SIZE,
SOCKET_ID_ANY,
RING_F_SP_ENQ | RING_F_SC_DEQ);
if (rp == NULL) {
printf("%s: failed to create ring\n", __func__);
goto fail_test;
}
/* alloc dummy object pointers */
src = test_ring_calloc(RING_SIZE, esize[i]);
if (src == NULL) {
printf("%s: failed to alloc src memory\n", __func__);
goto fail_test;
}
test_ring_mem_init(src, RING_SIZE, esize[i]);
cur_src = src;
/* alloc some room for copied objects */
dst = test_ring_calloc(RING_SIZE, esize[i]);
if (dst == NULL) {
printf("%s: failed to alloc dst memory\n", __func__);
goto fail_test;
}
cur_dst = dst;
TEST_RING_VERIFY(rte_ring_lookup("test_ring_basic_ex") == rp,
rp, goto fail_test);
TEST_RING_VERIFY(rte_ring_empty(rp) == 1, rp, goto fail_test);
printf("%u ring entries are now free\n",
rte_ring_free_count(rp));
for (j = 0; j < RING_SIZE - 1; j++) {
ret = test_ring_enqueue(rp, cur_src, esize[i], 1,
TEST_RING_THREAD_DEF | TEST_RING_ELEM_SINGLE);
TEST_RING_VERIFY(ret == 0, rp, goto fail_test);
cur_src = test_ring_inc_ptr(cur_src, esize[i], 1);
}
TEST_RING_VERIFY(rte_ring_full(rp) == 1, rp, goto fail_test);
for (j = 0; j < RING_SIZE - 1; j++) {
ret = test_ring_dequeue(rp, cur_dst, esize[i], 1,
TEST_RING_THREAD_DEF | TEST_RING_ELEM_SINGLE);
TEST_RING_VERIFY(ret == 0, rp, goto fail_test);
cur_dst = test_ring_inc_ptr(cur_dst, esize[i], 1);
}
TEST_RING_VERIFY(rte_ring_empty(rp) == 1, rp, goto fail_test);
/* check data */
TEST_RING_VERIFY(test_ring_mem_cmp(src, dst,
RTE_PTR_DIFF(cur_dst, dst)) == 0,
rp, goto fail_test);
/* Following tests use the configured flags to decide
* SP/SC or MP/MC.
*/
/* reset memory of dst */
memset(dst, 0, RTE_PTR_DIFF(cur_dst, dst));
/* reset cur_src and cur_dst */
cur_src = src;
cur_dst = dst;
/* Covering the ring burst operation */
ret = test_ring_enqueue(rp, cur_src, esize[i], 2,
TEST_RING_THREAD_DEF | TEST_RING_ELEM_BURST);
TEST_RING_VERIFY(ret == 2, rp, goto fail_test);
cur_src = test_ring_inc_ptr(cur_src, esize[i], 2);
ret = test_ring_dequeue(rp, cur_dst, esize[i], 2,
TEST_RING_THREAD_DEF | TEST_RING_ELEM_BURST);
TEST_RING_VERIFY(ret == 2, rp, goto fail_test);
cur_dst = test_ring_inc_ptr(cur_dst, esize[i], 2);
/* Covering the ring bulk operation */
ret = test_ring_enqueue(rp, cur_src, esize[i], 2,
TEST_RING_THREAD_DEF | TEST_RING_ELEM_BULK);
TEST_RING_VERIFY(ret == 2, rp, goto fail_test);
ret = test_ring_dequeue(rp, cur_dst, esize[i], 2,
TEST_RING_THREAD_DEF | TEST_RING_ELEM_BULK);
TEST_RING_VERIFY(ret == 2, rp, goto fail_test);
cur_dst = test_ring_inc_ptr(cur_dst, esize[i], 2);
/* check data */
TEST_RING_VERIFY(test_ring_mem_cmp(src, dst,
RTE_PTR_DIFF(cur_dst, dst)) == 0,
rp, goto fail_test);
rte_ring_free(rp);
rte_free(src);
rte_free(dst);
rp = NULL;
src = NULL;
dst = NULL;
}
return 0;
fail_test:
rte_ring_free(rp);
rte_free(src);
rte_free(dst);
return -1;
}
/*
* Basic test cases with exact size ring.
*/
static int
test_ring_with_exact_size(void)
{
struct rte_ring *std_r = NULL, *exact_sz_r = NULL;
void **src_orig = NULL, **dst_orig = NULL;
void **src = NULL, **cur_src = NULL, **dst = NULL, **cur_dst = NULL;
const unsigned int ring_sz = 16;
unsigned int i, j;
int ret = -1;
for (i = 0; i < RTE_DIM(esize); i++) {
test_ring_print_test_string("Test exact size ring",
TEST_RING_IGNORE_API_TYPE,
esize[i]);
std_r = test_ring_create("std", esize[i], ring_sz,
rte_socket_id(),
RING_F_SP_ENQ | RING_F_SC_DEQ);
if (std_r == NULL) {
printf("%s: error, can't create std ring\n", __func__);
goto test_fail;
}
exact_sz_r = test_ring_create("exact sz", esize[i], ring_sz,
rte_socket_id(),
RING_F_SP_ENQ | RING_F_SC_DEQ |
RING_F_EXACT_SZ);
if (exact_sz_r == NULL) {
printf("%s: error, can't create exact size ring\n",
__func__);
goto test_fail;
}
/* alloc object pointers. Allocate one extra object
* and create an unaligned address.
*/
src_orig = test_ring_calloc(17, esize[i]);
if (src_orig == NULL)
goto test_fail;
test_ring_mem_init(src_orig, 17, esize[i]);
src = (void **)((uintptr_t)src_orig + 1);
cur_src = src;
dst_orig = test_ring_calloc(17, esize[i]);
if (dst_orig == NULL)
goto test_fail;
dst = (void **)((uintptr_t)dst_orig + 1);
cur_dst = dst;
/*
* Check that the exact size ring is bigger than the
* standard ring
*/
TEST_RING_VERIFY(rte_ring_get_size(std_r) <=
rte_ring_get_size(exact_sz_r),
std_r, goto test_fail);
/*
* check that the exact_sz_ring can hold one more element
* than the standard ring. (16 vs 15 elements)
*/
for (j = 0; j < ring_sz - 1; j++) {
ret = test_ring_enqueue(std_r, cur_src, esize[i], 1,
TEST_RING_THREAD_DEF | TEST_RING_ELEM_SINGLE);
TEST_RING_VERIFY(ret == 0, std_r, goto test_fail);
ret = test_ring_enqueue(exact_sz_r, cur_src, esize[i], 1,
TEST_RING_THREAD_DEF | TEST_RING_ELEM_SINGLE);
TEST_RING_VERIFY(ret == 0, exact_sz_r, goto test_fail);
cur_src = test_ring_inc_ptr(cur_src, esize[i], 1);
}
ret = test_ring_enqueue(std_r, cur_src, esize[i], 1,
TEST_RING_THREAD_DEF | TEST_RING_ELEM_SINGLE);
TEST_RING_VERIFY(ret == -ENOBUFS, std_r, goto test_fail);
ret = test_ring_enqueue(exact_sz_r, cur_src, esize[i], 1,
TEST_RING_THREAD_DEF | TEST_RING_ELEM_SINGLE);
TEST_RING_VERIFY(ret != -ENOBUFS, exact_sz_r, goto test_fail);
/* check that dequeue returns the expected number of elements */
ret = test_ring_dequeue(exact_sz_r, cur_dst, esize[i], ring_sz,
TEST_RING_THREAD_DEF | TEST_RING_ELEM_BURST);
TEST_RING_VERIFY(ret == (int)ring_sz, exact_sz_r, goto test_fail);
cur_dst = test_ring_inc_ptr(cur_dst, esize[i], ring_sz);
/* check that the capacity function returns expected value */
TEST_RING_VERIFY(rte_ring_get_capacity(exact_sz_r) == ring_sz,
exact_sz_r, goto test_fail);
/* check data */
TEST_RING_VERIFY(test_ring_mem_cmp(src, dst,
RTE_PTR_DIFF(cur_dst, dst)) == 0,
exact_sz_r, goto test_fail);
rte_free(src_orig);
rte_free(dst_orig);
rte_ring_free(std_r);
rte_ring_free(exact_sz_r);
src_orig = NULL;
dst_orig = NULL;
std_r = NULL;
exact_sz_r = NULL;
}
return 0;
test_fail:
rte_free(src_orig);
rte_free(dst_orig);
rte_ring_free(std_r);
rte_ring_free(exact_sz_r);
return -1;
}
static int
test_ring(void)
{
int32_t rc;
unsigned int i;
/* Negative test cases */
if (test_ring_negative_tests() < 0)
goto test_fail;
/* Some basic operations */
if (test_ring_basic_ex() < 0)
goto test_fail;
if (test_ring_with_exact_size() < 0)
goto test_fail;
/* Burst and bulk operations with sp/sc, mp/mc and default.
* The test cases are split into smaller test cases to
* help clang compile faster.
*/
for (i = 0; i != RTE_DIM(test_enqdeq_impl); i++) {
rc = test_ring_burst_bulk_tests1(i);
if (rc < 0)
goto test_fail;
rc = test_ring_burst_bulk_tests2(i);
if (rc < 0)
goto test_fail;
rc = test_ring_burst_bulk_tests3(i);
if (rc < 0)
goto test_fail;
rc = test_ring_burst_bulk_tests4(i);
if (rc < 0)
goto test_fail;
}
/* dump the ring status */
rte_ring_list_dump(stdout);
return 0;
test_fail:
return -1;
}
REGISTER_TEST_COMMAND(ring_autotest, test_ring);