f-stack/dpdk/app/test-regex/main.c

449 lines
11 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2020 Mellanox Technologies, Ltd
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdarg.h>
#include <ctype.h>
#include <errno.h>
#include <getopt.h>
#include <signal.h>
#include <rte_eal.h>
#include <rte_common.h>
#include <rte_malloc.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_cycles.h>
#include <rte_regexdev.h>
#define MAX_FILE_NAME 255
#define MBUF_CACHE_SIZE 256
#define MBUF_SIZE (1 << 8)
#define START_BURST_SIZE 32u
enum app_args {
ARG_HELP,
ARG_RULES_FILE_NAME,
ARG_DATA_FILE_NAME,
ARG_NUM_OF_JOBS,
ARG_PERF_MODE,
ARG_NUM_OF_ITERATIONS,
};
struct job_ctx {
struct rte_mbuf *mbuf;
};
static void
usage(const char *prog_name)
{
printf("%s [EAL options] --\n"
" --rules NAME: precompiled rules file\n"
" --data NAME: data file to use\n"
" --nb_jobs: number of jobs to use\n"
" --perf N: only outputs the performance data\n"
" --nb_iter N: number of iteration to run\n",
prog_name);
}
static void
args_parse(int argc, char **argv, char *rules_file, char *data_file,
uint32_t *nb_jobs, bool *perf_mode, uint32_t *nb_iterations)
{
char **argvopt;
int opt;
int opt_idx;
size_t len;
static struct option lgopts[] = {
{ "help", 0, 0, ARG_HELP},
/* Rules database file to load. */
{ "rules", 1, 0, ARG_RULES_FILE_NAME},
/* Data file to load. */
{ "data", 1, 0, ARG_DATA_FILE_NAME},
/* Number of jobs to create. */
{ "nb_jobs", 1, 0, ARG_NUM_OF_JOBS},
/* Perf test only */
{ "perf", 0, 0, ARG_PERF_MODE},
/* Number of iterations to run with perf test */
{ "nb_iter", 1, 0, ARG_NUM_OF_ITERATIONS},
/* End of options */
{ 0, 0, 0, 0 }
};
argvopt = argv;
while ((opt = getopt_long(argc, argvopt, "",
lgopts, &opt_idx)) != EOF) {
switch (opt) {
case ARG_RULES_FILE_NAME:
len = strnlen(optarg, MAX_FILE_NAME - 1);
if (len == MAX_FILE_NAME)
rte_exit(EXIT_FAILURE,
"Rule file name to long max %d\n",
MAX_FILE_NAME - 1);
strncpy(rules_file, optarg, MAX_FILE_NAME - 1);
break;
case ARG_DATA_FILE_NAME:
len = strnlen(optarg, MAX_FILE_NAME - 1);
if (len == MAX_FILE_NAME)
rte_exit(EXIT_FAILURE,
"Data file name to long max %d\n",
MAX_FILE_NAME - 1);
strncpy(data_file, optarg, MAX_FILE_NAME - 1);
break;
case ARG_NUM_OF_JOBS:
*nb_jobs = atoi(optarg);
break;
case ARG_PERF_MODE:
*perf_mode = true;
break;
case ARG_NUM_OF_ITERATIONS:
*nb_iterations = atoi(optarg);
break;
case ARG_HELP:
usage(argv[0]);
break;
default:
usage(argv[0]);
rte_exit(EXIT_FAILURE, "Invalid option: %s\n", argv[optind]);
break;
}
}
if (!perf_mode)
*nb_iterations = 1;
}
static long
read_file(char *file, char **buf)
{
FILE *fp;
long buf_len = 0;
size_t read_len;
int res = 0;
fp = fopen(file, "r");
if (!fp)
return -EIO;
if (fseek(fp, 0L, SEEK_END) == 0) {
buf_len = ftell(fp);
if (buf_len == -1) {
res = EIO;
goto error;
}
*buf = rte_malloc(NULL, sizeof(char) * (buf_len + 1), 4096);
if (!*buf) {
res = ENOMEM;
goto error;
}
if (fseek(fp, 0L, SEEK_SET) != 0) {
res = EIO;
goto error;
}
read_len = fread(*buf, sizeof(char), buf_len, fp);
if (read_len != (unsigned long)buf_len) {
res = EIO;
goto error;
}
}
fclose(fp);
return buf_len;
error:
printf("Error, can't open file %s\n, err = %d", file, res);
if (fp)
fclose(fp);
if (*buf)
rte_free(*buf);
return -res;
}
static int
init_port(struct rte_mempool **mbuf_mp, uint32_t nb_jobs,
uint16_t *nb_max_payload, char *rules_file, uint8_t *nb_max_matches)
{
uint16_t id;
uint16_t num_devs;
char *rules = NULL;
long rules_len;
struct rte_regexdev_info info;
struct rte_regexdev_config dev_conf = {
.nb_queue_pairs = 1,
.nb_groups = 1,
};
struct rte_regexdev_qp_conf qp_conf = {
.nb_desc = 1024,
.qp_conf_flags = 0,
};
int res = 0;
num_devs = rte_regexdev_count();
if (num_devs == 0) {
printf("Error, no devices detected.\n");
return -EINVAL;
}
*mbuf_mp = rte_pktmbuf_pool_create("mbuf_pool", nb_jobs, 0,
0, MBUF_SIZE, rte_socket_id());
if (*mbuf_mp == NULL) {
printf("Error, can't create memory pool\n");
res = -ENOMEM;
goto error;
}
rules_len = read_file(rules_file, &rules);
if (rules_len < 0) {
printf("Error, can't read rules files.\n");
res = -EIO;
goto error;
}
for (id = 0; id < num_devs; id++) {
res = rte_regexdev_info_get(id, &info);
if (res != 0) {
printf("Error, can't get device info.\n");
goto error;
}
printf(":: initializing dev: %d\n", id);
*nb_max_matches = info.max_matches;
*nb_max_payload = info.max_payload_size;
if (info.regexdev_capa & RTE_REGEXDEV_SUPP_MATCH_AS_END_F)
dev_conf.dev_cfg_flags |= RTE_REGEXDEV_CFG_MATCH_AS_END_F;
dev_conf.nb_max_matches = info.max_matches;
dev_conf.nb_rules_per_group = info.max_rules_per_group;
dev_conf.rule_db_len = rules_len;
dev_conf.rule_db = rules;
res = rte_regexdev_configure(id, &dev_conf);
if (res < 0) {
printf("Error, can't configure device %d.\n", id);
goto error;
}
if (info.regexdev_capa & RTE_REGEXDEV_CAPA_QUEUE_PAIR_OOS_F)
qp_conf.qp_conf_flags |= RTE_REGEX_QUEUE_PAIR_CFG_OOS_F;
res = rte_regexdev_queue_pair_setup(id, 0, &qp_conf);
if (res < 0) {
printf("Error, can't setup queue pair for device %d.\n",
id);
goto error;
}
printf(":: initializing device: %d done\n", id);
}
rte_free(rules);
return 0;
error:
if (rules)
rte_free(rules);
if (*mbuf_mp)
rte_mempool_free(*mbuf_mp);
return res;
}
static void
extbuf_free_cb(void *addr __rte_unused, void *fcb_opaque __rte_unused)
{
}
static int
run_regex(struct rte_mempool *mbuf_mp, uint32_t nb_jobs,
uint16_t nb_max_payload, bool perf_mode, uint32_t nb_iterations,
char *data_file, uint8_t nb_max_matches)
{
char *buf = NULL;
long buf_len;
long job_len;
uint32_t actual_jobs = 0;
uint32_t i;
struct rte_regex_ops **ops;
uint16_t dev_id = 0;
uint16_t qp_id = 0;
uint8_t nb_matches;
struct rte_regexdev_match *match;
long pos = 0;
unsigned long d_ind = 0;
struct rte_mbuf_ext_shared_info shinfo;
uint32_t total_enqueue = 0;
uint32_t total_dequeue = 0;
uint32_t total_matches = 0;
int res = 0;
time_t start;
time_t end;
double time;
struct job_ctx *jobs_ctx;
shinfo.free_cb = extbuf_free_cb;
ops = rte_malloc(NULL, sizeof(*ops) * nb_jobs, 0);
if (!ops) {
printf("Error, can't allocate memory for ops.\n");
return -ENOMEM;
}
jobs_ctx = rte_malloc(NULL, sizeof(struct job_ctx)*nb_jobs, 0);
if (!jobs_ctx) {
printf("Error, can't allocate memory for jobs_ctx.\n");
return -ENOMEM;
}
/* Allocate the jobs and assign each job with an mbuf. */
for (i = 0; i < nb_jobs; i++) {
ops[i] = rte_malloc(NULL, sizeof(*ops[0]) + nb_max_matches *
sizeof(struct rte_regexdev_match), 0);
if (!ops[i]) {
printf("Error, can't allocate memory for op.\n");
res = -ENOMEM;
goto end;
}
ops[i]->mbuf = rte_pktmbuf_alloc(mbuf_mp);
if (!ops[i]->mbuf) {
printf("Error, can't attach mbuf.\n");
res = -ENOMEM;
goto end;
}
}
buf_len = read_file(data_file, &buf);
if (buf_len <= 0) {
printf("Error, can't read file, or file is empty.\n");
res = -EXIT_FAILURE;
goto end;
}
job_len = buf_len / nb_jobs;
if (job_len == 0) {
printf("Error, To many jobs, for the given input.\n");
res = -EXIT_FAILURE;
goto end;
}
if (job_len > nb_max_payload) {
printf("Error, not enough jobs to cover input.\n");
res = -EXIT_FAILURE;
goto end;
}
/* Assign each mbuf with the data to handle. */
for (i = 0; (pos < buf_len) && (i < nb_jobs) ; i++) {
long act_job_len = RTE_MIN(job_len, buf_len - pos);
rte_pktmbuf_attach_extbuf(ops[i]->mbuf, &buf[pos], 0,
act_job_len, &shinfo);
jobs_ctx[i].mbuf = ops[i]->mbuf;
ops[i]->mbuf->data_len = job_len;
ops[i]->mbuf->pkt_len = act_job_len;
ops[i]->user_id = i;
ops[i]->group_id0 = 1;
pos += act_job_len;
actual_jobs++;
}
start = clock();
for (i = 0; i < nb_iterations; i++) {
total_enqueue = 0;
total_dequeue = 0;
while (total_dequeue < actual_jobs) {
struct rte_regex_ops **cur_ops_to_enqueue = ops +
total_enqueue;
struct rte_regex_ops **cur_ops_to_dequeue = ops +
total_dequeue;
if (actual_jobs - total_enqueue)
total_enqueue += rte_regexdev_enqueue_burst
(dev_id, qp_id, cur_ops_to_enqueue,
actual_jobs - total_enqueue);
total_dequeue += rte_regexdev_dequeue_burst
(dev_id, qp_id, cur_ops_to_dequeue,
total_enqueue - total_dequeue);
}
}
end = clock();
time = ((double)end - start) / CLOCKS_PER_SEC;
printf("Job len = %ld Bytes\n", job_len);
printf("Time = %lf sec\n", time);
printf("Perf = %lf Gbps\n",
(((double)actual_jobs * job_len * nb_iterations * 8) / time) /
1000000000.0);
if (!perf_mode) {
/* Log results per job. */
for (d_ind = 0; d_ind < total_dequeue; d_ind++) {
nb_matches = ops[d_ind % actual_jobs]->nb_matches;
printf("Job id %"PRIu64" number of matches = %d\n",
ops[d_ind]->user_id, nb_matches);
total_matches += nb_matches;
match = ops[d_ind % actual_jobs]->matches;
for (i = 0; i < nb_matches; i++) {
printf("match %d, rule = %d, start = %d,len = %d\n",
i, match->rule_id, match->start_offset,
match->len);
match++;
}
}
printf("Total matches = %d\n", total_matches);
printf("All Matches:\n");
/* Log absolute results. */
for (d_ind = 0; d_ind < total_dequeue; d_ind++) {
nb_matches = ops[d_ind % actual_jobs]->nb_matches;
total_matches += nb_matches;
match = ops[d_ind % actual_jobs]->matches;
for (i = 0; i < nb_matches; i++) {
printf("start = %ld, len = %d, rule = %d\n",
match->start_offset + d_ind * job_len,
match->len, match->rule_id);
match++;
}
}
}
end:
for (i = 0; i < actual_jobs; i++) {
if (ops[i])
rte_free(ops[i]);
if (jobs_ctx[i].mbuf)
rte_pktmbuf_free(jobs_ctx[i].mbuf);
}
rte_free(ops);
rte_free(jobs_ctx);
if (buf)
rte_free(buf);
return res;
}
int
main(int argc, char **argv)
{
char rules_file[MAX_FILE_NAME];
char data_file[MAX_FILE_NAME];
struct rte_mempool *mbuf_mp = NULL;
uint32_t nb_jobs = 0;
uint16_t nb_max_payload = 0;
bool perf_mode = 0;
uint32_t nb_iterations = 0;
uint8_t nb_max_matches = 0;
int ret;
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "EAL init failed\n");
argc -= ret;
argv += ret;
if (argc > 1)
args_parse(argc, argv, rules_file, data_file, &nb_jobs,
&perf_mode, &nb_iterations);
ret = init_port(&mbuf_mp, nb_jobs, &nb_max_payload, rules_file,
&nb_max_matches);
if (ret < 0)
rte_exit(EXIT_FAILURE, "init port failed\n");
ret = run_regex(mbuf_mp, nb_jobs, nb_max_payload, perf_mode,
nb_iterations, data_file, nb_max_matches);
if (ret < 0) {
rte_mempool_free(mbuf_mp);
rte_exit(EXIT_FAILURE, "RegEx function failed\n");
}
rte_mempool_free(mbuf_mp);
return EXIT_SUCCESS;
}