f-stack/freebsd/i386/i386/mp_machdep.c

689 lines
18 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 1996, by Steve Passe
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. The name of the developer may NOT be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_acpi.h"
#include "opt_apic.h"
#include "opt_cpu.h"
#include "opt_kstack_pages.h"
#include "opt_pmap.h"
#include "opt_sched.h"
#include "opt_smp.h"
#if !defined(lint)
#if !defined(SMP)
#error How did you get here?
#endif
#ifndef DEV_APIC
#error The apic device is required for SMP, add "device apic" to your config file.
#endif
#endif /* not lint */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/cons.h> /* cngetc() */
#include <sys/cpuset.h>
#ifdef GPROF
#include <sys/gmon.h>
#endif
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/memrange.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_kern.h>
#include <vm/vm_extern.h>
#include <x86/apicreg.h>
#include <machine/clock.h>
#include <machine/cpu.h>
#include <machine/cputypes.h>
#include <x86/mca.h>
#include <machine/md_var.h>
#include <machine/pcb.h>
#include <machine/psl.h>
#include <machine/smp.h>
#include <machine/specialreg.h>
#include <x86/ucode.h>
#ifdef DEV_ACPI
#include <contrib/dev/acpica/include/acpi.h>
#include <dev/acpica/acpivar.h>
#endif
#define WARMBOOT_TARGET 0
#define WARMBOOT_OFF (PMAP_MAP_LOW + 0x0467)
#define WARMBOOT_SEG (PMAP_MAP_LOW + 0x0469)
#define CMOS_REG (0x70)
#define CMOS_DATA (0x71)
#define BIOS_RESET (0x0f)
#define BIOS_WARM (0x0a)
/*
* this code MUST be enabled here and in mpboot.s.
* it follows the very early stages of AP boot by placing values in CMOS ram.
* it NORMALLY will never be needed and thus the primitive method for enabling.
*
#define CHECK_POINTS
*/
#if defined(CHECK_POINTS)
#define CHECK_READ(A) (outb(CMOS_REG, (A)), inb(CMOS_DATA))
#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
#define CHECK_INIT(D); \
CHECK_WRITE(0x34, (D)); \
CHECK_WRITE(0x35, (D)); \
CHECK_WRITE(0x36, (D)); \
CHECK_WRITE(0x37, (D)); \
CHECK_WRITE(0x38, (D)); \
CHECK_WRITE(0x39, (D));
#define CHECK_PRINT(S); \
printf("%s: %d, %d, %d, %d, %d, %d\n", \
(S), \
CHECK_READ(0x34), \
CHECK_READ(0x35), \
CHECK_READ(0x36), \
CHECK_READ(0x37), \
CHECK_READ(0x38), \
CHECK_READ(0x39));
#else /* CHECK_POINTS */
#define CHECK_INIT(D)
#define CHECK_PRINT(S)
#define CHECK_WRITE(A, D)
#endif /* CHECK_POINTS */
/*
* Local data and functions.
*/
static void install_ap_tramp(void);
static int start_all_aps(void);
static int start_ap(int apic_id);
static char *ap_copyout_buf;
static char *ap_tramp_stack_base;
/*
* Initialize the IPI handlers and start up the AP's.
*/
void
cpu_mp_start(void)
{
int i;
/* Initialize the logical ID to APIC ID table. */
for (i = 0; i < MAXCPU; i++) {
cpu_apic_ids[i] = -1;
}
/* Install an inter-CPU IPI for TLB invalidation */
setidt(IPI_INVLTLB, IDTVEC(invltlb),
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(IPI_INVLPG, IDTVEC(invlpg),
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(IPI_INVLRNG, IDTVEC(invlrng),
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* Install an inter-CPU IPI for cache invalidation. */
setidt(IPI_INVLCACHE, IDTVEC(invlcache),
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* Install an inter-CPU IPI for all-CPU rendezvous */
setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous),
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* Install generic inter-CPU IPI handler */
setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* Install an inter-CPU IPI for CPU stop/restart */
setidt(IPI_STOP, IDTVEC(cpustop),
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* Install an inter-CPU IPI for CPU suspend/resume */
setidt(IPI_SUSPEND, IDTVEC(cpususpend),
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* Install an IPI for calling delayed SWI */
setidt(IPI_SWI, IDTVEC(ipi_swi),
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* Set boot_cpu_id if needed. */
if (boot_cpu_id == -1) {
boot_cpu_id = PCPU_GET(apic_id);
cpu_info[boot_cpu_id].cpu_bsp = 1;
} else
KASSERT(boot_cpu_id == PCPU_GET(apic_id),
("BSP's APIC ID doesn't match boot_cpu_id"));
/* Probe logical/physical core configuration. */
topo_probe();
assign_cpu_ids();
/* Start each Application Processor */
start_all_aps();
set_interrupt_apic_ids();
#if defined(DEV_ACPI) && MAXMEMDOM > 1
acpi_pxm_set_cpu_locality();
#endif
}
/*
* AP CPU's call this to initialize themselves.
*/
void
init_secondary(void)
{
struct pcpu *pc;
struct i386tss *common_tssp;
struct region_descriptor r_gdt, r_idt;
int gsel_tss, myid, x;
u_int cr0;
/* bootAP is set in start_ap() to our ID. */
myid = bootAP;
/* Update microcode before doing anything else. */
ucode_load_ap(myid);
/* Get per-cpu data */
pc = &__pcpu[myid];
/* prime data page for it to use */
pcpu_init(pc, myid, sizeof(struct pcpu));
dpcpu_init(dpcpu, myid);
pc->pc_apic_id = cpu_apic_ids[myid];
pc->pc_prvspace = pc;
pc->pc_curthread = 0;
pc->pc_common_tssp = common_tssp = &(__pcpu[0].pc_common_tssp)[myid];
fix_cpuid();
gdt_segs[GPRIV_SEL].ssd_base = (int)pc;
gdt_segs[GPROC0_SEL].ssd_base = (int)common_tssp;
gdt_segs[GLDT_SEL].ssd_base = (int)ldt;
for (x = 0; x < NGDT; x++) {
ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
}
r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
r_gdt.rd_base = (int) &gdt[myid * NGDT];
lgdt(&r_gdt); /* does magic intra-segment return */
r_idt.rd_limit = sizeof(struct gate_descriptor) * NIDT - 1;
r_idt.rd_base = (int)idt;
lidt(&r_idt);
lldt(_default_ldt);
PCPU_SET(currentldt, _default_ldt);
PCPU_SET(trampstk, (uintptr_t)ap_tramp_stack_base + TRAMP_STACK_SZ -
VM86_STACK_SPACE);
gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
common_tssp->tss_esp0 = PCPU_GET(trampstk);
common_tssp->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
common_tssp->tss_ioopt = sizeof(struct i386tss) << 16;
PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
ltr(gsel_tss);
PCPU_SET(fsgs_gdt, &gdt[myid * NGDT + GUFS_SEL].sd);
PCPU_SET(copyout_buf, ap_copyout_buf);
/*
* Set to a known state:
* Set by mpboot.s: CR0_PG, CR0_PE
* Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
*/
cr0 = rcr0();
cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
load_cr0(cr0);
CHECK_WRITE(0x38, 5);
/* signal our startup to the BSP. */
mp_naps++;
CHECK_WRITE(0x39, 6);
/* Spin until the BSP releases the AP's. */
while (atomic_load_acq_int(&aps_ready) == 0)
ia32_pause();
/* BSP may have changed PTD while we were waiting */
invltlb();
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
lidt(&r_idt);
#endif
init_secondary_tail();
}
/*
* start each AP in our list
*/
#define TMPMAP_START 1
static int
start_all_aps(void)
{
u_char mpbiosreason;
u_int32_t mpbioswarmvec;
int apic_id, cpu;
mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
pmap_remap_lower(true);
/* install the AP 1st level boot code */
install_ap_tramp();
/* save the current value of the warm-start vector */
mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
outb(CMOS_REG, BIOS_RESET);
mpbiosreason = inb(CMOS_DATA);
/* take advantage of the P==V mapping for PTD[0] for AP boot */
/* start each AP */
for (cpu = 1; cpu < mp_ncpus; cpu++) {
apic_id = cpu_apic_ids[cpu];
/* allocate and set up a boot stack data page */
bootstacks[cpu] = (char *)kmem_malloc(kstack_pages * PAGE_SIZE,
M_WAITOK | M_ZERO);
dpcpu = (void *)kmem_malloc(DPCPU_SIZE, M_WAITOK | M_ZERO);
/* setup a vector to our boot code */
*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
outb(CMOS_REG, BIOS_RESET);
outb(CMOS_DATA, BIOS_WARM); /* 'warm-start' */
bootSTK = (char *)bootstacks[cpu] + kstack_pages *
PAGE_SIZE - 4;
bootAP = cpu;
ap_tramp_stack_base = pmap_trm_alloc(TRAMP_STACK_SZ, M_NOWAIT);
ap_copyout_buf = pmap_trm_alloc(TRAMP_COPYOUT_SZ, M_NOWAIT);
/* attempt to start the Application Processor */
CHECK_INIT(99); /* setup checkpoints */
if (!start_ap(apic_id)) {
printf("AP #%d (PHY# %d) failed!\n", cpu, apic_id);
CHECK_PRINT("trace"); /* show checkpoints */
/* better panic as the AP may be running loose */
printf("panic y/n? [y] ");
if (cngetc() != 'n')
panic("bye-bye");
}
CHECK_PRINT("trace"); /* show checkpoints */
CPU_SET(cpu, &all_cpus); /* record AP in CPU map */
}
pmap_remap_lower(false);
/* restore the warmstart vector */
*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
outb(CMOS_REG, BIOS_RESET);
outb(CMOS_DATA, mpbiosreason);
/* number of APs actually started */
return mp_naps;
}
/*
* load the 1st level AP boot code into base memory.
*/
/* targets for relocation */
extern void bigJump(void);
extern void bootCodeSeg(void);
extern void bootDataSeg(void);
extern void MPentry(void);
extern u_int MP_GDT;
extern u_int mp_gdtbase;
static void
install_ap_tramp(void)
{
int x;
int size = *(int *) ((u_long) & bootMP_size);
vm_offset_t va = boot_address;
u_char *src = (u_char *) ((u_long) bootMP);
u_char *dst = (u_char *) va;
u_int boot_base = (u_int) bootMP;
u_int8_t *dst8;
u_int16_t *dst16;
u_int32_t *dst32;
KASSERT (size <= PAGE_SIZE,
("'size' do not fit into PAGE_SIZE, as expected."));
pmap_kenter(va, boot_address);
pmap_invalidate_page (kernel_pmap, va);
for (x = 0; x < size; ++x)
*dst++ = *src++;
/*
* modify addresses in code we just moved to basemem. unfortunately we
* need fairly detailed info about mpboot.s for this to work. changes
* to mpboot.s might require changes here.
*/
/* boot code is located in KERNEL space */
dst = (u_char *) va;
/* modify the lgdt arg */
dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
*dst32 = boot_address + ((u_int) & MP_GDT - boot_base);
/* modify the ljmp target for MPentry() */
dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
*dst32 = (u_int)MPentry;
/* modify the target for boot code segment */
dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
dst8 = (u_int8_t *) (dst16 + 1);
*dst16 = (u_int) boot_address & 0xffff;
*dst8 = ((u_int) boot_address >> 16) & 0xff;
/* modify the target for boot data segment */
dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
dst8 = (u_int8_t *) (dst16 + 1);
*dst16 = (u_int) boot_address & 0xffff;
*dst8 = ((u_int) boot_address >> 16) & 0xff;
}
/*
* This function starts the AP (application processor) identified
* by the APIC ID 'physicalCpu'. It does quite a "song and dance"
* to accomplish this. This is necessary because of the nuances
* of the different hardware we might encounter. It isn't pretty,
* but it seems to work.
*/
static int
start_ap(int apic_id)
{
int vector, ms;
int cpus;
/* calculate the vector */
vector = (boot_address >> 12) & 0xff;
/* used as a watchpoint to signal AP startup */
cpus = mp_naps;
ipi_startup(apic_id, vector);
/* Wait up to 5 seconds for it to start. */
for (ms = 0; ms < 5000; ms++) {
if (mp_naps > cpus)
return 1; /* return SUCCESS */
DELAY(1000);
}
return 0; /* return FAILURE */
}
/*
* Flush the TLB on other CPU's
*/
/* Variables needed for SMP tlb shootdown. */
vm_offset_t smp_tlb_addr1, smp_tlb_addr2;
pmap_t smp_tlb_pmap;
volatile uint32_t smp_tlb_generation;
/*
* Used by pmap to request cache or TLB invalidation on local and
* remote processors. Mask provides the set of remote CPUs which are
* to be signalled with the invalidation IPI. Vector specifies which
* invalidation IPI is used. As an optimization, the curcpu_cb
* callback is invoked on the calling CPU while waiting for remote
* CPUs to complete the operation.
*
* The callback function is called unconditionally on the caller's
* underlying processor, even when this processor is not set in the
* mask. So, the callback function must be prepared to handle such
* spurious invocations.
*/
static void
smp_targeted_tlb_shootdown(cpuset_t mask, u_int vector, pmap_t pmap,
vm_offset_t addr1, vm_offset_t addr2, smp_invl_cb_t curcpu_cb)
{
cpuset_t other_cpus;
volatile uint32_t *p_cpudone;
uint32_t generation;
int cpu;
/*
* It is not necessary to signal other CPUs while booting or
* when in the debugger.
*/
if (kdb_active || KERNEL_PANICKED() || !smp_started) {
curcpu_cb(pmap, addr1, addr2);
return;
}
sched_pin();
/*
* Check for other cpus. Return if none.
*/
if (CPU_ISFULLSET(&mask)) {
if (mp_ncpus <= 1)
goto nospinexit;
} else {
CPU_CLR(PCPU_GET(cpuid), &mask);
if (CPU_EMPTY(&mask))
goto nospinexit;
}
KASSERT((read_eflags() & PSL_I) != 0,
("smp_targeted_tlb_shootdown: interrupts disabled"));
mtx_lock_spin(&smp_ipi_mtx);
smp_tlb_addr1 = addr1;
smp_tlb_addr2 = addr2;
smp_tlb_pmap = pmap;
generation = ++smp_tlb_generation;
if (CPU_ISFULLSET(&mask)) {
ipi_all_but_self(vector);
other_cpus = all_cpus;
CPU_CLR(PCPU_GET(cpuid), &other_cpus);
} else {
other_cpus = mask;
ipi_selected(mask, vector);
}
curcpu_cb(pmap, addr1, addr2);
while ((cpu = CPU_FFS(&other_cpus)) != 0) {
cpu--;
CPU_CLR(cpu, &other_cpus);
p_cpudone = &cpuid_to_pcpu[cpu]->pc_smp_tlb_done;
while (*p_cpudone != generation)
ia32_pause();
}
mtx_unlock_spin(&smp_ipi_mtx);
sched_unpin();
return;
nospinexit:
curcpu_cb(pmap, addr1, addr2);
sched_unpin();
}
void
smp_masked_invltlb(cpuset_t mask, pmap_t pmap, smp_invl_cb_t curcpu_cb)
{
smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, pmap, 0, 0, curcpu_cb);
#ifdef COUNT_XINVLTLB_HITS
ipi_global++;
#endif
}
void
smp_masked_invlpg(cpuset_t mask, vm_offset_t addr, pmap_t pmap,
smp_invl_cb_t curcpu_cb)
{
smp_targeted_tlb_shootdown(mask, IPI_INVLPG, pmap, addr, 0, curcpu_cb);
#ifdef COUNT_XINVLTLB_HITS
ipi_page++;
#endif
}
void
smp_masked_invlpg_range(cpuset_t mask, vm_offset_t addr1, vm_offset_t addr2,
pmap_t pmap, smp_invl_cb_t curcpu_cb)
{
smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, pmap, addr1, addr2,
curcpu_cb);
#ifdef COUNT_XINVLTLB_HITS
ipi_range++;
ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
#endif
}
void
smp_cache_flush(smp_invl_cb_t curcpu_cb)
{
smp_targeted_tlb_shootdown(all_cpus, IPI_INVLCACHE, NULL, 0, 0,
curcpu_cb);
}
/*
* Handlers for TLB related IPIs
*/
void
invltlb_handler(void)
{
uint32_t generation;
#ifdef COUNT_XINVLTLB_HITS
xhits_gbl[PCPU_GET(cpuid)]++;
#endif /* COUNT_XINVLTLB_HITS */
#ifdef COUNT_IPIS
(*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
#endif /* COUNT_IPIS */
/*
* Reading the generation here allows greater parallelism
* since invalidating the TLB is a serializing operation.
*/
generation = smp_tlb_generation;
if (smp_tlb_pmap == kernel_pmap)
invltlb_glob();
PCPU_SET(smp_tlb_done, generation);
}
void
invlpg_handler(void)
{
uint32_t generation;
#ifdef COUNT_XINVLTLB_HITS
xhits_pg[PCPU_GET(cpuid)]++;
#endif /* COUNT_XINVLTLB_HITS */
#ifdef COUNT_IPIS
(*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
#endif /* COUNT_IPIS */
generation = smp_tlb_generation; /* Overlap with serialization */
if (smp_tlb_pmap == kernel_pmap)
invlpg(smp_tlb_addr1);
PCPU_SET(smp_tlb_done, generation);
}
void
invlrng_handler(void)
{
vm_offset_t addr, addr2;
uint32_t generation;
#ifdef COUNT_XINVLTLB_HITS
xhits_rng[PCPU_GET(cpuid)]++;
#endif /* COUNT_XINVLTLB_HITS */
#ifdef COUNT_IPIS
(*ipi_invlrng_counts[PCPU_GET(cpuid)])++;
#endif /* COUNT_IPIS */
addr = smp_tlb_addr1;
addr2 = smp_tlb_addr2;
generation = smp_tlb_generation; /* Overlap with serialization */
if (smp_tlb_pmap == kernel_pmap) {
do {
invlpg(addr);
addr += PAGE_SIZE;
} while (addr < addr2);
}
PCPU_SET(smp_tlb_done, generation);
}
void
invlcache_handler(void)
{
uint32_t generation;
#ifdef COUNT_IPIS
(*ipi_invlcache_counts[PCPU_GET(cpuid)])++;
#endif /* COUNT_IPIS */
/*
* Reading the generation here allows greater parallelism
* since wbinvd is a serializing instruction. Without the
* temporary, we'd wait for wbinvd to complete, then the read
* would execute, then the dependent write, which must then
* complete before return from interrupt.
*/
generation = smp_tlb_generation;
wbinvd();
PCPU_SET(smp_tlb_done, generation);
}