mirror of https://github.com/F-Stack/f-stack.git
457 lines
11 KiB
ArmAsm
457 lines
11 KiB
ArmAsm
/*-
|
|
* Copyright (c) 1990 The Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* William Jolitz.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)locore.s 7.3 (Berkeley) 5/13/91
|
|
* $FreeBSD$
|
|
*
|
|
* originally from: locore.s, by William F. Jolitz
|
|
*
|
|
* Substantially rewritten by David Greenman, Rod Grimes,
|
|
* Bruce Evans, Wolfgang Solfrank, Poul-Henning Kamp
|
|
* and many others.
|
|
*/
|
|
|
|
#include "opt_bootp.h"
|
|
#include "opt_nfsroot.h"
|
|
#include "opt_pmap.h"
|
|
|
|
#include <sys/reboot.h>
|
|
|
|
#include <machine/asmacros.h>
|
|
#include <machine/cputypes.h>
|
|
#include <machine/psl.h>
|
|
#include <machine/pmap.h>
|
|
#include <machine/specialreg.h>
|
|
|
|
#include "assym.inc"
|
|
|
|
/*
|
|
* Compiled KERNBASE location and the kernel load address, now identical.
|
|
*/
|
|
.globl kernbase
|
|
.set kernbase,KERNBASE
|
|
.globl kernload
|
|
.set kernload,KERNLOAD
|
|
|
|
/*
|
|
* Globals
|
|
*/
|
|
.data
|
|
ALIGN_DATA /* just to be sure */
|
|
|
|
.space 0x2000 /* space for tmpstk - temporary stack */
|
|
tmpstk:
|
|
|
|
.globl bootinfo
|
|
bootinfo: .space BOOTINFO_SIZE /* bootinfo that we can handle */
|
|
|
|
.text
|
|
/**********************************************************************
|
|
*
|
|
* This is where the bootblocks start us, set the ball rolling...
|
|
*
|
|
*/
|
|
NON_GPROF_ENTRY(btext)
|
|
|
|
/* Tell the bios to warmboot next time */
|
|
movw $0x1234,0x472
|
|
|
|
/* Set up a real frame in case the double return in newboot is executed. */
|
|
xorl %ebp,%ebp
|
|
pushl %ebp
|
|
movl %esp, %ebp
|
|
|
|
/* Don't trust what the BIOS gives for eflags. */
|
|
pushl $PSL_KERNEL
|
|
popfl
|
|
|
|
/*
|
|
* Don't trust what the BIOS gives for %fs and %gs. Trust the bootstrap
|
|
* to set %cs, %ds, %es and %ss.
|
|
*/
|
|
mov %ds, %ax
|
|
mov %ax, %fs
|
|
mov %ax, %gs
|
|
|
|
/*
|
|
* Clear the bss. Not all boot programs do it, and it is our job anyway.
|
|
*
|
|
* XXX we don't check that there is memory for our bss and page tables
|
|
* before using it.
|
|
*
|
|
* Note: we must be careful to not overwrite an active gdt or idt. They
|
|
* inactive from now until we switch to new ones, since we don't load any
|
|
* more segment registers or permit interrupts until after the switch.
|
|
*/
|
|
movl $__bss_end,%ecx
|
|
movl $__bss_start,%edi
|
|
subl %edi,%ecx
|
|
xorl %eax,%eax
|
|
cld
|
|
rep
|
|
stosb
|
|
|
|
call recover_bootinfo
|
|
|
|
/* Get onto a stack that we can trust. */
|
|
/*
|
|
* XXX this step is delayed in case recover_bootinfo needs to return via
|
|
* the old stack, but it need not be, since recover_bootinfo actually
|
|
* returns via the old frame.
|
|
*/
|
|
movl $tmpstk,%esp
|
|
|
|
call identify_cpu
|
|
call pmap_cold
|
|
|
|
/* set up bootstrap stack */
|
|
movl proc0kstack,%eax /* location of in-kernel stack */
|
|
|
|
/*
|
|
* Only use bottom page for init386(). init386() calculates the
|
|
* PCB + FPU save area size and returns the true top of stack.
|
|
*/
|
|
leal PAGE_SIZE(%eax),%esp
|
|
|
|
xorl %ebp,%ebp /* mark end of frames */
|
|
|
|
pushl physfree /* value of first for init386(first) */
|
|
call init386 /* wire 386 chip for unix operation */
|
|
|
|
/*
|
|
* Clean up the stack in a way that db_numargs() understands, so
|
|
* that backtraces in ddb don't underrun the stack. Traps for
|
|
* inaccessible memory are more fatal than usual this early.
|
|
*/
|
|
addl $4,%esp
|
|
|
|
/* Switch to true top of stack. */
|
|
movl %eax,%esp
|
|
|
|
call mi_startup /* autoconfiguration, mountroot etc */
|
|
/* NOTREACHED */
|
|
addl $0,%esp /* for db_numargs() again */
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Recover the bootinfo passed to us from the boot program
|
|
*
|
|
*/
|
|
recover_bootinfo:
|
|
/*
|
|
* This code is called in different ways depending on what loaded
|
|
* and started the kernel. This is used to detect how we get the
|
|
* arguments from the other code and what we do with them.
|
|
*
|
|
* Old disk boot blocks:
|
|
* (*btext)(howto, bootdev, cyloffset, esym);
|
|
* [return address == 0, and can NOT be returned to]
|
|
* [cyloffset was not supported by the FreeBSD boot code
|
|
* and always passed in as 0]
|
|
* [esym is also known as total in the boot code, and
|
|
* was never properly supported by the FreeBSD boot code]
|
|
*
|
|
* Old diskless netboot code:
|
|
* (*btext)(0,0,0,0,&nfsdiskless,0,0,0);
|
|
* [return address != 0, and can NOT be returned to]
|
|
* If we are being booted by this code it will NOT work,
|
|
* so we are just going to halt if we find this case.
|
|
*
|
|
* New uniform boot code:
|
|
* (*btext)(howto, bootdev, 0, 0, 0, &bootinfo)
|
|
* [return address != 0, and can be returned to]
|
|
*
|
|
* There may seem to be a lot of wasted arguments in here, but
|
|
* that is so the newer boot code can still load very old kernels
|
|
* and old boot code can load new kernels.
|
|
*/
|
|
|
|
/*
|
|
* The old style disk boot blocks fake a frame on the stack and
|
|
* did an lret to get here. The frame on the stack has a return
|
|
* address of 0.
|
|
*/
|
|
cmpl $0,4(%ebp)
|
|
je olddiskboot
|
|
|
|
/*
|
|
* We have some form of return address, so this is either the
|
|
* old diskless netboot code, or the new uniform code. That can
|
|
* be detected by looking at the 5th argument, if it is 0
|
|
* we are being booted by the new uniform boot code.
|
|
*/
|
|
cmpl $0,24(%ebp)
|
|
je newboot
|
|
|
|
/*
|
|
* Seems we have been loaded by the old diskless boot code, we
|
|
* don't stand a chance of running as the diskless structure
|
|
* changed considerably between the two, so just halt.
|
|
*/
|
|
hlt
|
|
|
|
/*
|
|
* We have been loaded by the new uniform boot code.
|
|
* Let's check the bootinfo version, and if we do not understand
|
|
* it we return to the loader with a status of 1 to indicate this error
|
|
*/
|
|
newboot:
|
|
movl 28(%ebp),%ebx /* &bootinfo.version */
|
|
movl BI_VERSION(%ebx),%eax
|
|
cmpl $1,%eax /* We only understand version 1 */
|
|
je 1f
|
|
movl $1,%eax /* Return status */
|
|
leave
|
|
/*
|
|
* XXX this returns to our caller's caller (as is required) since
|
|
* we didn't set up a frame and our caller did.
|
|
*/
|
|
ret
|
|
|
|
1:
|
|
/*
|
|
* If we have a kernelname copy it in
|
|
*/
|
|
movl BI_KERNELNAME(%ebx),%esi
|
|
cmpl $0,%esi
|
|
je 2f /* No kernelname */
|
|
movl $MAXPATHLEN,%ecx /* Brute force!!! */
|
|
movl $kernelname,%edi
|
|
cmpb $'/',(%esi) /* Make sure it starts with a slash */
|
|
je 1f
|
|
movb $'/',(%edi)
|
|
incl %edi
|
|
decl %ecx
|
|
1:
|
|
cld
|
|
rep
|
|
movsb
|
|
|
|
2:
|
|
/*
|
|
* Determine the size of the boot loader's copy of the bootinfo
|
|
* struct. This is impossible to do properly because old versions
|
|
* of the struct don't contain a size field and there are 2 old
|
|
* versions with the same version number.
|
|
*/
|
|
movl $BI_ENDCOMMON,%ecx /* prepare for sizeless version */
|
|
testl $RB_BOOTINFO,8(%ebp) /* bi_size (and bootinfo) valid? */
|
|
je got_bi_size /* no, sizeless version */
|
|
movl BI_SIZE(%ebx),%ecx
|
|
got_bi_size:
|
|
|
|
/*
|
|
* Copy the common part of the bootinfo struct
|
|
*/
|
|
movl %ebx,%esi
|
|
movl $bootinfo,%edi
|
|
cmpl $BOOTINFO_SIZE,%ecx
|
|
jbe got_common_bi_size
|
|
movl $BOOTINFO_SIZE,%ecx
|
|
got_common_bi_size:
|
|
cld
|
|
rep
|
|
movsb
|
|
|
|
#ifdef NFS_ROOT
|
|
#ifndef BOOTP_NFSV3
|
|
/*
|
|
* If we have a nfs_diskless structure copy it in
|
|
*/
|
|
movl BI_NFS_DISKLESS(%ebx),%esi
|
|
cmpl $0,%esi
|
|
je olddiskboot
|
|
movl $nfs_diskless,%edi
|
|
movl $NFSDISKLESS_SIZE,%ecx
|
|
cld
|
|
rep
|
|
movsb
|
|
movl $nfs_diskless_valid,%edi
|
|
movl $1,(%edi)
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
* The old style disk boot.
|
|
* (*btext)(howto, bootdev, cyloffset, esym);
|
|
* Note that the newer boot code just falls into here to pick
|
|
* up howto and bootdev, cyloffset and esym are no longer used
|
|
*/
|
|
olddiskboot:
|
|
movl 8(%ebp),%eax
|
|
movl %eax,boothowto
|
|
movl 12(%ebp),%eax
|
|
movl %eax,bootdev
|
|
|
|
ret
|
|
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Identify the CPU and initialize anything special about it
|
|
*
|
|
*/
|
|
ENTRY(identify_cpu)
|
|
|
|
pushl %ebx
|
|
|
|
/* Try to toggle alignment check flag; does not exist on 386. */
|
|
pushfl
|
|
popl %eax
|
|
movl %eax,%ecx
|
|
orl $PSL_AC,%eax
|
|
pushl %eax
|
|
popfl
|
|
pushfl
|
|
popl %eax
|
|
xorl %ecx,%eax
|
|
andl $PSL_AC,%eax
|
|
pushl %ecx
|
|
popfl
|
|
|
|
testl %eax,%eax
|
|
jnz try486
|
|
|
|
/* NexGen CPU does not have aligment check flag. */
|
|
pushfl
|
|
movl $0x5555, %eax
|
|
xorl %edx, %edx
|
|
movl $2, %ecx
|
|
clc
|
|
divl %ecx
|
|
jz trynexgen
|
|
popfl
|
|
movl $CPU_386,cpu
|
|
jmp 3f
|
|
|
|
trynexgen:
|
|
popfl
|
|
movl $CPU_NX586,cpu
|
|
movl $0x4778654e,cpu_vendor # store vendor string
|
|
movl $0x72446e65,cpu_vendor+4
|
|
movl $0x6e657669,cpu_vendor+8
|
|
movl $0,cpu_vendor+12
|
|
jmp 3f
|
|
|
|
try486: /* Try to toggle identification flag; does not exist on early 486s. */
|
|
pushfl
|
|
popl %eax
|
|
movl %eax,%ecx
|
|
xorl $PSL_ID,%eax
|
|
pushl %eax
|
|
popfl
|
|
pushfl
|
|
popl %eax
|
|
xorl %ecx,%eax
|
|
andl $PSL_ID,%eax
|
|
pushl %ecx
|
|
popfl
|
|
|
|
testl %eax,%eax
|
|
jnz trycpuid
|
|
movl $CPU_486,cpu
|
|
|
|
/*
|
|
* Check Cyrix CPU
|
|
* Cyrix CPUs do not change the undefined flags following
|
|
* execution of the divide instruction which divides 5 by 2.
|
|
*
|
|
* Note: CPUID is enabled on M2, so it passes another way.
|
|
*/
|
|
pushfl
|
|
movl $0x5555, %eax
|
|
xorl %edx, %edx
|
|
movl $2, %ecx
|
|
clc
|
|
divl %ecx
|
|
jnc trycyrix
|
|
popfl
|
|
jmp 3f /* You may use Intel CPU. */
|
|
|
|
trycyrix:
|
|
popfl
|
|
/*
|
|
* IBM Bluelighting CPU also doesn't change the undefined flags.
|
|
* Because IBM doesn't disclose the information for Bluelighting
|
|
* CPU, we couldn't distinguish it from Cyrix's (including IBM
|
|
* brand of Cyrix CPUs).
|
|
*/
|
|
movl $0x69727943,cpu_vendor # store vendor string
|
|
movl $0x736e4978,cpu_vendor+4
|
|
movl $0x64616574,cpu_vendor+8
|
|
jmp 3f
|
|
|
|
trycpuid: /* Use the `cpuid' instruction. */
|
|
xorl %eax,%eax
|
|
cpuid # cpuid 0
|
|
movl %eax,cpu_high # highest capability
|
|
movl %ebx,cpu_vendor # store vendor string
|
|
movl %edx,cpu_vendor+4
|
|
movl %ecx,cpu_vendor+8
|
|
movb $0,cpu_vendor+12
|
|
|
|
movl $1,%eax
|
|
cpuid # cpuid 1
|
|
movl %eax,cpu_id # store cpu_id
|
|
movl %ebx,cpu_procinfo # store cpu_procinfo
|
|
movl %edx,cpu_feature # store cpu_feature
|
|
movl %ecx,cpu_feature2 # store cpu_feature2
|
|
rorl $8,%eax # extract family type
|
|
andl $15,%eax
|
|
cmpl $5,%eax
|
|
jae 1f
|
|
|
|
/* less than Pentium; must be 486 */
|
|
movl $CPU_486,cpu
|
|
jmp 3f
|
|
1:
|
|
/* a Pentium? */
|
|
cmpl $5,%eax
|
|
jne 2f
|
|
movl $CPU_586,cpu
|
|
jmp 3f
|
|
2:
|
|
/* Greater than Pentium...call it a Pentium Pro */
|
|
movl $CPU_686,cpu
|
|
3:
|
|
popl %ebx
|
|
ret
|
|
END(identify_cpu)
|
|
|
|
#ifdef XENHVM
|
|
/* Xen Hypercall page */
|
|
.text
|
|
.p2align PAGE_SHIFT, 0x90 /* Hypercall_page needs to be PAGE aligned */
|
|
|
|
NON_GPROF_ENTRY(hypercall_page)
|
|
.skip 0x1000, 0x90 /* Fill with "nop"s */
|
|
#endif
|