f-stack/freebsd/x86/x86/intr_machdep.c

850 lines
20 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2003 John Baldwin <jhb@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Machine dependent interrupt code for x86. For x86, we have to
* deal with different PICs. Thus, we use the passed in vector to lookup
* an interrupt source associated with that vector. The interrupt source
* describes which PIC the source belongs to and includes methods to handle
* that source.
*/
#include "opt_atpic.h"
#include "opt_ddb.h"
#include "opt_smp.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/interrupt.h>
#include <sys/ktr.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/sbuf.h>
#include <sys/smp.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/systm.h>
#include <sys/taskqueue.h>
#include <sys/vmmeter.h>
#include <machine/clock.h>
#include <machine/intr_machdep.h>
#include <machine/smp.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#ifndef DEV_ATPIC
#include <machine/segments.h>
#include <machine/frame.h>
#include <dev/ic/i8259.h>
#include <x86/isa/icu.h>
#include <isa/isareg.h>
#endif
#include <vm/vm.h>
#define MAX_STRAY_LOG 5
typedef void (*mask_fn)(void *);
static int intrcnt_index;
static struct intsrc **interrupt_sources;
#ifdef SMP
static struct intsrc **interrupt_sorted;
static int intrbalance;
SYSCTL_INT(_hw, OID_AUTO, intrbalance, CTLFLAG_RWTUN, &intrbalance, 0,
"Interrupt auto-balance interval (seconds). Zero disables.");
static struct timeout_task intrbalance_task;
#endif
static struct sx intrsrc_lock;
static struct mtx intrpic_lock;
static struct mtx intrcnt_lock;
static TAILQ_HEAD(pics_head, pic) pics;
u_int num_io_irqs;
#if defined(SMP) && !defined(EARLY_AP_STARTUP)
static int assign_cpu;
#endif
u_long *intrcnt;
char *intrnames;
size_t sintrcnt = sizeof(intrcnt);
size_t sintrnames = sizeof(intrnames);
int nintrcnt;
static MALLOC_DEFINE(M_INTR, "intr", "Interrupt Sources");
static int intr_assign_cpu(void *arg, int cpu);
static void intr_disable_src(void *arg);
static void intr_init(void *__dummy);
static int intr_pic_registered(struct pic *pic);
static void intrcnt_setname(const char *name, int index);
static void intrcnt_updatename(struct intsrc *is);
static void intrcnt_register(struct intsrc *is);
/*
* SYSINIT levels for SI_SUB_INTR:
*
* SI_ORDER_FIRST: Initialize locks and pics TAILQ, xen_hvm_cpu_init
* SI_ORDER_SECOND: Xen PICs
* SI_ORDER_THIRD: Add I/O APIC PICs, alloc MSI and Xen IRQ ranges
* SI_ORDER_FOURTH: Add 8259A PICs
* SI_ORDER_FOURTH + 1: Finalize interrupt count and add interrupt sources
* SI_ORDER_MIDDLE: SMP interrupt counters
* SI_ORDER_ANY: Enable interrupts on BSP
*/
static int
intr_pic_registered(struct pic *pic)
{
struct pic *p;
TAILQ_FOREACH(p, &pics, pics) {
if (p == pic)
return (1);
}
return (0);
}
/*
* Register a new interrupt controller (PIC). This is to support suspend
* and resume where we suspend/resume controllers rather than individual
* sources. This also allows controllers with no active sources (such as
* 8259As in a system using the APICs) to participate in suspend and resume.
*/
int
intr_register_pic(struct pic *pic)
{
int error;
mtx_lock(&intrpic_lock);
if (intr_pic_registered(pic))
error = EBUSY;
else {
TAILQ_INSERT_TAIL(&pics, pic, pics);
error = 0;
}
mtx_unlock(&intrpic_lock);
return (error);
}
/*
* Allocate interrupt source arrays and register interrupt sources
* once the number of interrupts is known.
*/
static void
intr_init_sources(void *arg)
{
struct pic *pic;
MPASS(num_io_irqs > 0);
interrupt_sources = mallocarray(num_io_irqs, sizeof(*interrupt_sources),
M_INTR, M_WAITOK | M_ZERO);
#ifdef SMP
interrupt_sorted = mallocarray(num_io_irqs, sizeof(*interrupt_sorted),
M_INTR, M_WAITOK | M_ZERO);
#endif
/*
* - 1 ??? dummy counter.
* - 2 counters for each I/O interrupt.
* - 1 counter for each CPU for lapic timer.
* - 1 counter for each CPU for the Hyper-V vmbus driver.
* - 8 counters for each CPU for IPI counters for SMP.
*/
nintrcnt = 1 + num_io_irqs * 2 + mp_ncpus * 2;
#ifdef COUNT_IPIS
if (mp_ncpus > 1)
nintrcnt += 8 * mp_ncpus;
#endif
intrcnt = mallocarray(nintrcnt, sizeof(u_long), M_INTR, M_WAITOK |
M_ZERO);
intrnames = mallocarray(nintrcnt, MAXCOMLEN + 1, M_INTR, M_WAITOK |
M_ZERO);
sintrcnt = nintrcnt * sizeof(u_long);
sintrnames = nintrcnt * (MAXCOMLEN + 1);
intrcnt_setname("???", 0);
intrcnt_index = 1;
/*
* NB: intrpic_lock is not held here to avoid LORs due to
* malloc() in intr_register_source(). However, we are still
* single-threaded at this point in startup so the list of
* PICs shouldn't change.
*/
TAILQ_FOREACH(pic, &pics, pics) {
if (pic->pic_register_sources != NULL)
pic->pic_register_sources(pic);
}
}
SYSINIT(intr_init_sources, SI_SUB_INTR, SI_ORDER_FOURTH + 1, intr_init_sources,
NULL);
/*
* Register a new interrupt source with the global interrupt system.
* The global interrupts need to be disabled when this function is
* called.
*/
int
intr_register_source(struct intsrc *isrc)
{
int error, vector;
KASSERT(intr_pic_registered(isrc->is_pic), ("unregistered PIC"));
vector = isrc->is_pic->pic_vector(isrc);
KASSERT(vector < num_io_irqs, ("IRQ %d too large (%u irqs)", vector,
num_io_irqs));
if (interrupt_sources[vector] != NULL)
return (EEXIST);
error = intr_event_create(&isrc->is_event, isrc, 0, vector,
intr_disable_src, (mask_fn)isrc->is_pic->pic_enable_source,
(mask_fn)isrc->is_pic->pic_eoi_source, intr_assign_cpu, "irq%d:",
vector);
if (error)
return (error);
sx_xlock(&intrsrc_lock);
if (interrupt_sources[vector] != NULL) {
sx_xunlock(&intrsrc_lock);
intr_event_destroy(isrc->is_event);
return (EEXIST);
}
intrcnt_register(isrc);
interrupt_sources[vector] = isrc;
isrc->is_handlers = 0;
sx_xunlock(&intrsrc_lock);
return (0);
}
struct intsrc *
intr_lookup_source(int vector)
{
if (vector < 0 || vector >= num_io_irqs)
return (NULL);
return (interrupt_sources[vector]);
}
int
intr_add_handler(const char *name, int vector, driver_filter_t filter,
driver_intr_t handler, void *arg, enum intr_type flags, void **cookiep,
int domain)
{
struct intsrc *isrc;
int error;
isrc = intr_lookup_source(vector);
if (isrc == NULL)
return (EINVAL);
error = intr_event_add_handler(isrc->is_event, name, filter, handler,
arg, intr_priority(flags), flags, cookiep);
if (error == 0) {
sx_xlock(&intrsrc_lock);
intrcnt_updatename(isrc);
isrc->is_handlers++;
if (isrc->is_handlers == 1) {
isrc->is_domain = domain;
isrc->is_pic->pic_enable_intr(isrc);
isrc->is_pic->pic_enable_source(isrc);
}
sx_xunlock(&intrsrc_lock);
}
return (error);
}
int
intr_remove_handler(void *cookie)
{
struct intsrc *isrc;
int error;
isrc = intr_handler_source(cookie);
error = intr_event_remove_handler(cookie);
if (error == 0) {
sx_xlock(&intrsrc_lock);
isrc->is_handlers--;
if (isrc->is_handlers == 0) {
isrc->is_pic->pic_disable_source(isrc, PIC_NO_EOI);
isrc->is_pic->pic_disable_intr(isrc);
}
intrcnt_updatename(isrc);
sx_xunlock(&intrsrc_lock);
}
return (error);
}
int
intr_config_intr(int vector, enum intr_trigger trig, enum intr_polarity pol)
{
struct intsrc *isrc;
isrc = intr_lookup_source(vector);
if (isrc == NULL)
return (EINVAL);
return (isrc->is_pic->pic_config_intr(isrc, trig, pol));
}
static void
intr_disable_src(void *arg)
{
struct intsrc *isrc;
isrc = arg;
isrc->is_pic->pic_disable_source(isrc, PIC_EOI);
}
void
intr_execute_handlers(struct intsrc *isrc, struct trapframe *frame)
{
struct intr_event *ie;
int vector;
/*
* We count software interrupts when we process them. The
* code here follows previous practice, but there's an
* argument for counting hardware interrupts when they're
* processed too.
*/
(*isrc->is_count)++;
VM_CNT_INC(v_intr);
ie = isrc->is_event;
/*
* XXX: We assume that IRQ 0 is only used for the ISA timer
* device (clk).
*/
vector = isrc->is_pic->pic_vector(isrc);
if (vector == 0)
clkintr_pending = 1;
/*
* For stray interrupts, mask and EOI the source, bump the
* stray count, and log the condition.
*/
if (intr_event_handle(ie, frame) != 0) {
isrc->is_pic->pic_disable_source(isrc, PIC_EOI);
(*isrc->is_straycount)++;
if (*isrc->is_straycount < MAX_STRAY_LOG)
log(LOG_ERR, "stray irq%d\n", vector);
else if (*isrc->is_straycount == MAX_STRAY_LOG)
log(LOG_CRIT,
"too many stray irq %d's: not logging anymore\n",
vector);
}
}
void
intr_resume(bool suspend_cancelled)
{
struct pic *pic;
#ifndef DEV_ATPIC
atpic_reset();
#endif
mtx_lock(&intrpic_lock);
TAILQ_FOREACH(pic, &pics, pics) {
if (pic->pic_resume != NULL)
pic->pic_resume(pic, suspend_cancelled);
}
mtx_unlock(&intrpic_lock);
}
void
intr_suspend(void)
{
struct pic *pic;
mtx_lock(&intrpic_lock);
TAILQ_FOREACH_REVERSE(pic, &pics, pics_head, pics) {
if (pic->pic_suspend != NULL)
pic->pic_suspend(pic);
}
mtx_unlock(&intrpic_lock);
}
static int
intr_assign_cpu(void *arg, int cpu)
{
#ifdef SMP
struct intsrc *isrc;
int error;
#ifdef EARLY_AP_STARTUP
MPASS(mp_ncpus == 1 || smp_started);
/* Nothing to do if there is only a single CPU. */
if (mp_ncpus > 1 && cpu != NOCPU) {
#else
/*
* Don't do anything during early boot. We will pick up the
* assignment once the APs are started.
*/
if (assign_cpu && cpu != NOCPU) {
#endif
isrc = arg;
sx_xlock(&intrsrc_lock);
error = isrc->is_pic->pic_assign_cpu(isrc, cpu_apic_ids[cpu]);
if (error == 0)
isrc->is_cpu = cpu;
sx_xunlock(&intrsrc_lock);
} else
error = 0;
return (error);
#else
return (EOPNOTSUPP);
#endif
}
static void
intrcnt_setname(const char *name, int index)
{
snprintf(intrnames + (MAXCOMLEN + 1) * index, MAXCOMLEN + 1, "%-*s",
MAXCOMLEN, name);
}
static void
intrcnt_updatename(struct intsrc *is)
{
intrcnt_setname(is->is_event->ie_fullname, is->is_index);
}
static void
intrcnt_register(struct intsrc *is)
{
char straystr[MAXCOMLEN + 1];
KASSERT(is->is_event != NULL, ("%s: isrc with no event", __func__));
mtx_lock_spin(&intrcnt_lock);
MPASS(intrcnt_index + 2 <= nintrcnt);
is->is_index = intrcnt_index;
intrcnt_index += 2;
snprintf(straystr, MAXCOMLEN + 1, "stray irq%d",
is->is_pic->pic_vector(is));
intrcnt_updatename(is);
is->is_count = &intrcnt[is->is_index];
intrcnt_setname(straystr, is->is_index + 1);
is->is_straycount = &intrcnt[is->is_index + 1];
mtx_unlock_spin(&intrcnt_lock);
}
void
intrcnt_add(const char *name, u_long **countp)
{
mtx_lock_spin(&intrcnt_lock);
MPASS(intrcnt_index < nintrcnt);
*countp = &intrcnt[intrcnt_index];
intrcnt_setname(name, intrcnt_index);
intrcnt_index++;
mtx_unlock_spin(&intrcnt_lock);
}
static void
intr_init(void *dummy __unused)
{
TAILQ_INIT(&pics);
mtx_init(&intrpic_lock, "intrpic", NULL, MTX_DEF);
sx_init(&intrsrc_lock, "intrsrc");
mtx_init(&intrcnt_lock, "intrcnt", NULL, MTX_SPIN);
}
SYSINIT(intr_init, SI_SUB_INTR, SI_ORDER_FIRST, intr_init, NULL);
static void
intr_init_final(void *dummy __unused)
{
/*
* Enable interrupts on the BSP after all of the interrupt
* controllers are initialized. Device interrupts are still
* disabled in the interrupt controllers until interrupt
* handlers are registered. Interrupts are enabled on each AP
* after their first context switch.
*/
enable_intr();
}
SYSINIT(intr_init_final, SI_SUB_INTR, SI_ORDER_ANY, intr_init_final, NULL);
#ifndef DEV_ATPIC
/* Initialize the two 8259A's to a known-good shutdown state. */
void
atpic_reset(void)
{
outb(IO_ICU1, ICW1_RESET | ICW1_IC4);
outb(IO_ICU1 + ICU_IMR_OFFSET, IDT_IO_INTS);
outb(IO_ICU1 + ICU_IMR_OFFSET, IRQ_MASK(ICU_SLAVEID));
outb(IO_ICU1 + ICU_IMR_OFFSET, MASTER_MODE);
outb(IO_ICU1 + ICU_IMR_OFFSET, 0xff);
outb(IO_ICU1, OCW3_SEL | OCW3_RR);
outb(IO_ICU2, ICW1_RESET | ICW1_IC4);
outb(IO_ICU2 + ICU_IMR_OFFSET, IDT_IO_INTS + 8);
outb(IO_ICU2 + ICU_IMR_OFFSET, ICU_SLAVEID);
outb(IO_ICU2 + ICU_IMR_OFFSET, SLAVE_MODE);
outb(IO_ICU2 + ICU_IMR_OFFSET, 0xff);
outb(IO_ICU2, OCW3_SEL | OCW3_RR);
}
#endif
/* Add a description to an active interrupt handler. */
int
intr_describe(u_int vector, void *ih, const char *descr)
{
struct intsrc *isrc;
int error;
isrc = intr_lookup_source(vector);
if (isrc == NULL)
return (EINVAL);
error = intr_event_describe_handler(isrc->is_event, ih, descr);
if (error)
return (error);
intrcnt_updatename(isrc);
return (0);
}
void
intr_reprogram(void)
{
struct intsrc *is;
u_int v;
sx_xlock(&intrsrc_lock);
for (v = 0; v < num_io_irqs; v++) {
is = interrupt_sources[v];
if (is == NULL)
continue;
if (is->is_pic->pic_reprogram_pin != NULL)
is->is_pic->pic_reprogram_pin(is);
}
sx_xunlock(&intrsrc_lock);
}
#ifdef DDB
/*
* Dump data about interrupt handlers
*/
DB_SHOW_COMMAND(irqs, db_show_irqs)
{
struct intsrc **isrc;
u_int i;
int verbose;
if (strcmp(modif, "v") == 0)
verbose = 1;
else
verbose = 0;
isrc = interrupt_sources;
for (i = 0; i < num_io_irqs && !db_pager_quit; i++, isrc++)
if (*isrc != NULL)
db_dump_intr_event((*isrc)->is_event, verbose);
}
#endif
#ifdef SMP
/*
* Support for balancing interrupt sources across CPUs. For now we just
* allocate CPUs round-robin.
*/
cpuset_t intr_cpus = CPUSET_T_INITIALIZER(0x1);
static int current_cpu[MAXMEMDOM];
static void
intr_init_cpus(void)
{
int i;
for (i = 0; i < vm_ndomains; i++) {
current_cpu[i] = 0;
if (!CPU_ISSET(current_cpu[i], &intr_cpus) ||
!CPU_ISSET(current_cpu[i], &cpuset_domain[i]))
intr_next_cpu(i);
}
}
/*
* Return the CPU that the next interrupt source should use. For now
* this just returns the next local APIC according to round-robin.
*/
u_int
intr_next_cpu(int domain)
{
u_int apic_id;
#ifdef EARLY_AP_STARTUP
MPASS(mp_ncpus == 1 || smp_started);
if (mp_ncpus == 1)
return (PCPU_GET(apic_id));
#else
/* Leave all interrupts on the BSP during boot. */
if (!assign_cpu)
return (PCPU_GET(apic_id));
#endif
mtx_lock_spin(&icu_lock);
apic_id = cpu_apic_ids[current_cpu[domain]];
do {
current_cpu[domain]++;
if (current_cpu[domain] > mp_maxid)
current_cpu[domain] = 0;
} while (!CPU_ISSET(current_cpu[domain], &intr_cpus) ||
!CPU_ISSET(current_cpu[domain], &cpuset_domain[domain]));
mtx_unlock_spin(&icu_lock);
return (apic_id);
}
/* Attempt to bind the specified IRQ to the specified CPU. */
int
intr_bind(u_int vector, u_char cpu)
{
struct intsrc *isrc;
isrc = intr_lookup_source(vector);
if (isrc == NULL)
return (EINVAL);
return (intr_event_bind(isrc->is_event, cpu));
}
/*
* Add a CPU to our mask of valid CPUs that can be destinations of
* interrupts.
*/
void
intr_add_cpu(u_int cpu)
{
if (cpu >= MAXCPU)
panic("%s: Invalid CPU ID", __func__);
if (bootverbose)
printf("INTR: Adding local APIC %d as a target\n",
cpu_apic_ids[cpu]);
CPU_SET(cpu, &intr_cpus);
}
#ifdef EARLY_AP_STARTUP
static void
intr_smp_startup(void *arg __unused)
{
intr_init_cpus();
return;
}
SYSINIT(intr_smp_startup, SI_SUB_SMP, SI_ORDER_SECOND, intr_smp_startup,
NULL);
#else
/*
* Distribute all the interrupt sources among the available CPUs once the
* AP's have been launched.
*/
static void
intr_shuffle_irqs(void *arg __unused)
{
struct intsrc *isrc;
u_int cpu, i;
intr_init_cpus();
/* Don't bother on UP. */
if (mp_ncpus == 1)
return;
/* Round-robin assign a CPU to each enabled source. */
sx_xlock(&intrsrc_lock);
assign_cpu = 1;
for (i = 0; i < num_io_irqs; i++) {
isrc = interrupt_sources[i];
if (isrc != NULL && isrc->is_handlers > 0) {
/*
* If this event is already bound to a CPU,
* then assign the source to that CPU instead
* of picking one via round-robin. Note that
* this is careful to only advance the
* round-robin if the CPU assignment succeeds.
*/
cpu = isrc->is_event->ie_cpu;
if (cpu == NOCPU)
cpu = current_cpu[isrc->is_domain];
if (isrc->is_pic->pic_assign_cpu(isrc,
cpu_apic_ids[cpu]) == 0) {
isrc->is_cpu = cpu;
if (isrc->is_event->ie_cpu == NOCPU)
intr_next_cpu(isrc->is_domain);
}
}
}
sx_xunlock(&intrsrc_lock);
}
SYSINIT(intr_shuffle_irqs, SI_SUB_SMP, SI_ORDER_SECOND, intr_shuffle_irqs,
NULL);
#endif
/*
* TODO: Export this information in a non-MD fashion, integrate with vmstat -i.
*/
static int
sysctl_hw_intrs(SYSCTL_HANDLER_ARGS)
{
struct sbuf sbuf;
struct intsrc *isrc;
u_int i;
int error;
error = sysctl_wire_old_buffer(req, 0);
if (error != 0)
return (error);
sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
sx_slock(&intrsrc_lock);
for (i = 0; i < num_io_irqs; i++) {
isrc = interrupt_sources[i];
if (isrc == NULL)
continue;
sbuf_printf(&sbuf, "%s:%d @cpu%d(domain%d): %ld\n",
isrc->is_event->ie_fullname,
isrc->is_index,
isrc->is_cpu,
isrc->is_domain,
*isrc->is_count);
}
sx_sunlock(&intrsrc_lock);
error = sbuf_finish(&sbuf);
sbuf_delete(&sbuf);
return (error);
}
SYSCTL_PROC(_hw, OID_AUTO, intrs,
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
0, 0, sysctl_hw_intrs, "A",
"interrupt:number @cpu: count");
/*
* Compare two, possibly NULL, entries in the interrupt source array
* by load.
*/
static int
intrcmp(const void *one, const void *two)
{
const struct intsrc *i1, *i2;
i1 = *(const struct intsrc * const *)one;
i2 = *(const struct intsrc * const *)two;
if (i1 != NULL && i2 != NULL)
return (*i1->is_count - *i2->is_count);
if (i1 != NULL)
return (1);
if (i2 != NULL)
return (-1);
return (0);
}
/*
* Balance IRQs across available CPUs according to load.
*/
static void
intr_balance(void *dummy __unused, int pending __unused)
{
struct intsrc *isrc;
int interval;
u_int cpu;
int i;
interval = intrbalance;
if (interval == 0)
goto out;
/*
* Sort interrupts according to count.
*/
sx_xlock(&intrsrc_lock);
memcpy(interrupt_sorted, interrupt_sources, num_io_irqs *
sizeof(interrupt_sorted[0]));
qsort(interrupt_sorted, num_io_irqs, sizeof(interrupt_sorted[0]),
intrcmp);
/*
* Restart the scan from the same location to avoid moving in the
* common case.
*/
intr_init_cpus();
/*
* Assign round-robin from most loaded to least.
*/
for (i = num_io_irqs - 1; i >= 0; i--) {
isrc = interrupt_sorted[i];
if (isrc == NULL || isrc->is_event->ie_cpu != NOCPU)
continue;
cpu = current_cpu[isrc->is_domain];
intr_next_cpu(isrc->is_domain);
if (isrc->is_cpu != cpu &&
isrc->is_pic->pic_assign_cpu(isrc,
cpu_apic_ids[cpu]) == 0)
isrc->is_cpu = cpu;
}
sx_xunlock(&intrsrc_lock);
out:
taskqueue_enqueue_timeout(taskqueue_thread, &intrbalance_task,
interval ? hz * interval : hz * 60);
}
static void
intr_balance_init(void *dummy __unused)
{
TIMEOUT_TASK_INIT(taskqueue_thread, &intrbalance_task, 0, intr_balance,
NULL);
taskqueue_enqueue_timeout(taskqueue_thread, &intrbalance_task, hz);
}
SYSINIT(intr_balance_init, SI_SUB_SMP, SI_ORDER_ANY, intr_balance_init, NULL);
#else
/*
* Always route interrupts to the current processor in the UP case.
*/
u_int
intr_next_cpu(int domain)
{
return (PCPU_GET(apic_id));
}
#endif