mirror of https://github.com/F-Stack/f-stack.git
5122 lines
138 KiB
C
5122 lines
138 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2015-2020 Beijing WangXun Technology Co., Ltd.
|
|
* Copyright(c) 2010-2017 Intel Corporation
|
|
*/
|
|
|
|
#include <sys/queue.h>
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <stdint.h>
|
|
#include <stdarg.h>
|
|
#include <unistd.h>
|
|
#include <inttypes.h>
|
|
|
|
#include <rte_byteorder.h>
|
|
#include <rte_common.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_log.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_ethdev.h>
|
|
#include <ethdev_driver.h>
|
|
#include <rte_security_driver.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_prefetch.h>
|
|
#include <rte_udp.h>
|
|
#include <rte_tcp.h>
|
|
#include <rte_sctp.h>
|
|
#include <rte_string_fns.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_ip.h>
|
|
#include <rte_net.h>
|
|
|
|
#include "txgbe_logs.h"
|
|
#include "base/txgbe.h"
|
|
#include "txgbe_ethdev.h"
|
|
#include "txgbe_rxtx.h"
|
|
|
|
#ifdef RTE_LIBRTE_IEEE1588
|
|
#define TXGBE_TX_IEEE1588_TMST RTE_MBUF_F_TX_IEEE1588_TMST
|
|
#else
|
|
#define TXGBE_TX_IEEE1588_TMST 0
|
|
#endif
|
|
|
|
/* Bit Mask to indicate what bits required for building TX context */
|
|
static const u64 TXGBE_TX_OFFLOAD_MASK = (RTE_MBUF_F_TX_IP_CKSUM |
|
|
RTE_MBUF_F_TX_OUTER_IPV6 |
|
|
RTE_MBUF_F_TX_OUTER_IPV4 |
|
|
RTE_MBUF_F_TX_IPV6 |
|
|
RTE_MBUF_F_TX_IPV4 |
|
|
RTE_MBUF_F_TX_VLAN |
|
|
RTE_MBUF_F_TX_L4_MASK |
|
|
RTE_MBUF_F_TX_TCP_SEG |
|
|
RTE_MBUF_F_TX_TUNNEL_MASK |
|
|
RTE_MBUF_F_TX_OUTER_IP_CKSUM |
|
|
RTE_MBUF_F_TX_OUTER_UDP_CKSUM |
|
|
#ifdef RTE_LIB_SECURITY
|
|
RTE_MBUF_F_TX_SEC_OFFLOAD |
|
|
#endif
|
|
TXGBE_TX_IEEE1588_TMST);
|
|
|
|
#define TXGBE_TX_OFFLOAD_NOTSUP_MASK \
|
|
(RTE_MBUF_F_TX_OFFLOAD_MASK ^ TXGBE_TX_OFFLOAD_MASK)
|
|
|
|
/*
|
|
* Prefetch a cache line into all cache levels.
|
|
*/
|
|
#define rte_txgbe_prefetch(p) rte_prefetch0(p)
|
|
|
|
static int
|
|
txgbe_is_vf(struct rte_eth_dev *dev)
|
|
{
|
|
struct txgbe_hw *hw = TXGBE_DEV_HW(dev);
|
|
|
|
switch (hw->mac.type) {
|
|
case txgbe_mac_raptor_vf:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* TX functions
|
|
*
|
|
**********************************************************************/
|
|
|
|
/*
|
|
* Check for descriptors with their DD bit set and free mbufs.
|
|
* Return the total number of buffers freed.
|
|
*/
|
|
static __rte_always_inline int
|
|
txgbe_tx_free_bufs(struct txgbe_tx_queue *txq)
|
|
{
|
|
struct txgbe_tx_entry *txep;
|
|
uint32_t status;
|
|
int i, nb_free = 0;
|
|
struct rte_mbuf *m, *free[RTE_TXGBE_TX_MAX_FREE_BUF_SZ];
|
|
|
|
/* check DD bit on threshold descriptor */
|
|
status = txq->tx_ring[txq->tx_next_dd].dw3;
|
|
if (!(status & rte_cpu_to_le_32(TXGBE_TXD_DD))) {
|
|
if (txq->nb_tx_free >> 1 < txq->tx_free_thresh)
|
|
txgbe_set32_masked(txq->tdc_reg_addr,
|
|
TXGBE_TXCFG_FLUSH, TXGBE_TXCFG_FLUSH);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* first buffer to free from S/W ring is at index
|
|
* tx_next_dd - (tx_free_thresh-1)
|
|
*/
|
|
txep = &txq->sw_ring[txq->tx_next_dd - (txq->tx_free_thresh - 1)];
|
|
for (i = 0; i < txq->tx_free_thresh; ++i, ++txep) {
|
|
/* free buffers one at a time */
|
|
m = rte_pktmbuf_prefree_seg(txep->mbuf);
|
|
txep->mbuf = NULL;
|
|
|
|
if (unlikely(m == NULL))
|
|
continue;
|
|
|
|
if (nb_free >= RTE_TXGBE_TX_MAX_FREE_BUF_SZ ||
|
|
(nb_free > 0 && m->pool != free[0]->pool)) {
|
|
rte_mempool_put_bulk(free[0]->pool,
|
|
(void **)free, nb_free);
|
|
nb_free = 0;
|
|
}
|
|
|
|
free[nb_free++] = m;
|
|
}
|
|
|
|
if (nb_free > 0)
|
|
rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
|
|
|
|
/* buffers were freed, update counters */
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_free_thresh);
|
|
txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_free_thresh);
|
|
if (txq->tx_next_dd >= txq->nb_tx_desc)
|
|
txq->tx_next_dd = (uint16_t)(txq->tx_free_thresh - 1);
|
|
|
|
return txq->tx_free_thresh;
|
|
}
|
|
|
|
/* Populate 4 descriptors with data from 4 mbufs */
|
|
static inline void
|
|
tx4(volatile struct txgbe_tx_desc *txdp, struct rte_mbuf **pkts)
|
|
{
|
|
uint64_t buf_dma_addr;
|
|
uint32_t pkt_len;
|
|
int i;
|
|
|
|
for (i = 0; i < 4; ++i, ++txdp, ++pkts) {
|
|
buf_dma_addr = rte_mbuf_data_iova(*pkts);
|
|
pkt_len = (*pkts)->data_len;
|
|
|
|
/* write data to descriptor */
|
|
txdp->qw0 = rte_cpu_to_le_64(buf_dma_addr);
|
|
txdp->dw2 = cpu_to_le32(TXGBE_TXD_FLAGS |
|
|
TXGBE_TXD_DATLEN(pkt_len));
|
|
txdp->dw3 = cpu_to_le32(TXGBE_TXD_PAYLEN(pkt_len));
|
|
|
|
rte_prefetch0(&(*pkts)->pool);
|
|
}
|
|
}
|
|
|
|
/* Populate 1 descriptor with data from 1 mbuf */
|
|
static inline void
|
|
tx1(volatile struct txgbe_tx_desc *txdp, struct rte_mbuf **pkts)
|
|
{
|
|
uint64_t buf_dma_addr;
|
|
uint32_t pkt_len;
|
|
|
|
buf_dma_addr = rte_mbuf_data_iova(*pkts);
|
|
pkt_len = (*pkts)->data_len;
|
|
|
|
/* write data to descriptor */
|
|
txdp->qw0 = cpu_to_le64(buf_dma_addr);
|
|
txdp->dw2 = cpu_to_le32(TXGBE_TXD_FLAGS |
|
|
TXGBE_TXD_DATLEN(pkt_len));
|
|
txdp->dw3 = cpu_to_le32(TXGBE_TXD_PAYLEN(pkt_len));
|
|
|
|
rte_prefetch0(&(*pkts)->pool);
|
|
}
|
|
|
|
/*
|
|
* Fill H/W descriptor ring with mbuf data.
|
|
* Copy mbuf pointers to the S/W ring.
|
|
*/
|
|
static inline void
|
|
txgbe_tx_fill_hw_ring(struct txgbe_tx_queue *txq, struct rte_mbuf **pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
volatile struct txgbe_tx_desc *txdp = &txq->tx_ring[txq->tx_tail];
|
|
struct txgbe_tx_entry *txep = &txq->sw_ring[txq->tx_tail];
|
|
const int N_PER_LOOP = 4;
|
|
const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
|
|
int mainpart, leftover;
|
|
int i, j;
|
|
|
|
/*
|
|
* Process most of the packets in chunks of N pkts. Any
|
|
* leftover packets will get processed one at a time.
|
|
*/
|
|
mainpart = (nb_pkts & ((uint32_t)~N_PER_LOOP_MASK));
|
|
leftover = (nb_pkts & ((uint32_t)N_PER_LOOP_MASK));
|
|
for (i = 0; i < mainpart; i += N_PER_LOOP) {
|
|
/* Copy N mbuf pointers to the S/W ring */
|
|
for (j = 0; j < N_PER_LOOP; ++j)
|
|
(txep + i + j)->mbuf = *(pkts + i + j);
|
|
tx4(txdp + i, pkts + i);
|
|
}
|
|
|
|
if (unlikely(leftover > 0)) {
|
|
for (i = 0; i < leftover; ++i) {
|
|
(txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
|
|
tx1(txdp + mainpart + i, pkts + mainpart + i);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline uint16_t
|
|
tx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct txgbe_tx_queue *txq = (struct txgbe_tx_queue *)tx_queue;
|
|
uint16_t n = 0;
|
|
|
|
/*
|
|
* Begin scanning the H/W ring for done descriptors when the
|
|
* number of available descriptors drops below tx_free_thresh. For
|
|
* each done descriptor, free the associated buffer.
|
|
*/
|
|
if (txq->nb_tx_free < txq->tx_free_thresh)
|
|
txgbe_tx_free_bufs(txq);
|
|
|
|
/* Only use descriptors that are available */
|
|
nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
|
|
if (unlikely(nb_pkts == 0))
|
|
return 0;
|
|
|
|
/* Use exactly nb_pkts descriptors */
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
|
|
|
|
/*
|
|
* At this point, we know there are enough descriptors in the
|
|
* ring to transmit all the packets. This assumes that each
|
|
* mbuf contains a single segment, and that no new offloads
|
|
* are expected, which would require a new context descriptor.
|
|
*/
|
|
|
|
/*
|
|
* See if we're going to wrap-around. If so, handle the top
|
|
* of the descriptor ring first, then do the bottom. If not,
|
|
* the processing looks just like the "bottom" part anyway...
|
|
*/
|
|
if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
|
|
n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
|
|
txgbe_tx_fill_hw_ring(txq, tx_pkts, n);
|
|
txq->tx_tail = 0;
|
|
}
|
|
|
|
/* Fill H/W descriptor ring with mbuf data */
|
|
txgbe_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
|
|
txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
|
|
|
|
/*
|
|
* Check for wrap-around. This would only happen if we used
|
|
* up to the last descriptor in the ring, no more, no less.
|
|
*/
|
|
if (txq->tx_tail >= txq->nb_tx_desc)
|
|
txq->tx_tail = 0;
|
|
|
|
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
|
|
(uint16_t)txq->port_id, (uint16_t)txq->queue_id,
|
|
(uint16_t)txq->tx_tail, (uint16_t)nb_pkts);
|
|
|
|
/* update tail pointer */
|
|
rte_wmb();
|
|
txgbe_set32_relaxed(txq->tdt_reg_addr, txq->tx_tail);
|
|
|
|
return nb_pkts;
|
|
}
|
|
|
|
uint16_t
|
|
txgbe_xmit_pkts_simple(void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
uint16_t nb_tx;
|
|
|
|
/* Try to transmit at least chunks of TX_MAX_BURST pkts */
|
|
if (likely(nb_pkts <= RTE_PMD_TXGBE_TX_MAX_BURST))
|
|
return tx_xmit_pkts(tx_queue, tx_pkts, nb_pkts);
|
|
|
|
/* transmit more than the max burst, in chunks of TX_MAX_BURST */
|
|
nb_tx = 0;
|
|
while (nb_pkts) {
|
|
uint16_t ret, n;
|
|
|
|
n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_TXGBE_TX_MAX_BURST);
|
|
ret = tx_xmit_pkts(tx_queue, &tx_pkts[nb_tx], n);
|
|
nb_tx = (uint16_t)(nb_tx + ret);
|
|
nb_pkts = (uint16_t)(nb_pkts - ret);
|
|
if (ret < n)
|
|
break;
|
|
}
|
|
|
|
return nb_tx;
|
|
}
|
|
|
|
static inline void
|
|
txgbe_set_xmit_ctx(struct txgbe_tx_queue *txq,
|
|
volatile struct txgbe_tx_ctx_desc *ctx_txd,
|
|
uint64_t ol_flags, union txgbe_tx_offload tx_offload,
|
|
__rte_unused uint64_t *mdata)
|
|
{
|
|
union txgbe_tx_offload tx_offload_mask;
|
|
uint32_t type_tucmd_mlhl;
|
|
uint32_t mss_l4len_idx;
|
|
uint32_t ctx_idx;
|
|
uint32_t vlan_macip_lens;
|
|
uint32_t tunnel_seed;
|
|
|
|
ctx_idx = txq->ctx_curr;
|
|
tx_offload_mask.data[0] = 0;
|
|
tx_offload_mask.data[1] = 0;
|
|
|
|
/* Specify which HW CTX to upload. */
|
|
mss_l4len_idx = TXGBE_TXD_IDX(ctx_idx);
|
|
type_tucmd_mlhl = TXGBE_TXD_CTXT;
|
|
|
|
tx_offload_mask.ptid |= ~0;
|
|
type_tucmd_mlhl |= TXGBE_TXD_PTID(tx_offload.ptid);
|
|
|
|
/* check if TCP segmentation required for this packet */
|
|
if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
|
|
tx_offload_mask.l2_len |= ~0;
|
|
tx_offload_mask.l3_len |= ~0;
|
|
tx_offload_mask.l4_len |= ~0;
|
|
tx_offload_mask.tso_segsz |= ~0;
|
|
mss_l4len_idx |= TXGBE_TXD_MSS(tx_offload.tso_segsz);
|
|
mss_l4len_idx |= TXGBE_TXD_L4LEN(tx_offload.l4_len);
|
|
} else { /* no TSO, check if hardware checksum is needed */
|
|
if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM) {
|
|
tx_offload_mask.l2_len |= ~0;
|
|
tx_offload_mask.l3_len |= ~0;
|
|
}
|
|
|
|
switch (ol_flags & RTE_MBUF_F_TX_L4_MASK) {
|
|
case RTE_MBUF_F_TX_UDP_CKSUM:
|
|
mss_l4len_idx |=
|
|
TXGBE_TXD_L4LEN(sizeof(struct rte_udp_hdr));
|
|
tx_offload_mask.l2_len |= ~0;
|
|
tx_offload_mask.l3_len |= ~0;
|
|
break;
|
|
case RTE_MBUF_F_TX_TCP_CKSUM:
|
|
mss_l4len_idx |=
|
|
TXGBE_TXD_L4LEN(sizeof(struct rte_tcp_hdr));
|
|
tx_offload_mask.l2_len |= ~0;
|
|
tx_offload_mask.l3_len |= ~0;
|
|
break;
|
|
case RTE_MBUF_F_TX_SCTP_CKSUM:
|
|
mss_l4len_idx |=
|
|
TXGBE_TXD_L4LEN(sizeof(struct rte_sctp_hdr));
|
|
tx_offload_mask.l2_len |= ~0;
|
|
tx_offload_mask.l3_len |= ~0;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
vlan_macip_lens = TXGBE_TXD_IPLEN(tx_offload.l3_len >> 1);
|
|
|
|
if (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
|
|
tx_offload_mask.outer_tun_len |= ~0;
|
|
tx_offload_mask.outer_l2_len |= ~0;
|
|
tx_offload_mask.outer_l3_len |= ~0;
|
|
tx_offload_mask.l2_len |= ~0;
|
|
tunnel_seed = TXGBE_TXD_ETUNLEN(tx_offload.outer_tun_len >> 1);
|
|
tunnel_seed |= TXGBE_TXD_EIPLEN(tx_offload.outer_l3_len >> 2);
|
|
|
|
switch (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
|
|
case RTE_MBUF_F_TX_TUNNEL_IPIP:
|
|
/* for non UDP / GRE tunneling, set to 0b */
|
|
break;
|
|
case RTE_MBUF_F_TX_TUNNEL_VXLAN:
|
|
case RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE:
|
|
case RTE_MBUF_F_TX_TUNNEL_GENEVE:
|
|
tunnel_seed |= TXGBE_TXD_ETYPE_UDP;
|
|
break;
|
|
case RTE_MBUF_F_TX_TUNNEL_GRE:
|
|
tunnel_seed |= TXGBE_TXD_ETYPE_GRE;
|
|
break;
|
|
default:
|
|
PMD_TX_LOG(ERR, "Tunnel type not supported");
|
|
return;
|
|
}
|
|
vlan_macip_lens |= TXGBE_TXD_MACLEN(tx_offload.outer_l2_len);
|
|
} else {
|
|
tunnel_seed = 0;
|
|
vlan_macip_lens |= TXGBE_TXD_MACLEN(tx_offload.l2_len);
|
|
}
|
|
|
|
if (ol_flags & RTE_MBUF_F_TX_VLAN) {
|
|
tx_offload_mask.vlan_tci |= ~0;
|
|
vlan_macip_lens |= TXGBE_TXD_VLAN(tx_offload.vlan_tci);
|
|
}
|
|
|
|
#ifdef RTE_LIB_SECURITY
|
|
if (ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD) {
|
|
union txgbe_crypto_tx_desc_md *md =
|
|
(union txgbe_crypto_tx_desc_md *)mdata;
|
|
tunnel_seed |= TXGBE_TXD_IPSEC_SAIDX(md->sa_idx);
|
|
type_tucmd_mlhl |= md->enc ?
|
|
(TXGBE_TXD_IPSEC_ESP | TXGBE_TXD_IPSEC_ESPENC) : 0;
|
|
type_tucmd_mlhl |= TXGBE_TXD_IPSEC_ESPLEN(md->pad_len);
|
|
tx_offload_mask.sa_idx |= ~0;
|
|
tx_offload_mask.sec_pad_len |= ~0;
|
|
}
|
|
#endif
|
|
|
|
txq->ctx_cache[ctx_idx].flags = ol_flags;
|
|
txq->ctx_cache[ctx_idx].tx_offload.data[0] =
|
|
tx_offload_mask.data[0] & tx_offload.data[0];
|
|
txq->ctx_cache[ctx_idx].tx_offload.data[1] =
|
|
tx_offload_mask.data[1] & tx_offload.data[1];
|
|
txq->ctx_cache[ctx_idx].tx_offload_mask = tx_offload_mask;
|
|
|
|
ctx_txd->dw0 = rte_cpu_to_le_32(vlan_macip_lens);
|
|
ctx_txd->dw1 = rte_cpu_to_le_32(tunnel_seed);
|
|
ctx_txd->dw2 = rte_cpu_to_le_32(type_tucmd_mlhl);
|
|
ctx_txd->dw3 = rte_cpu_to_le_32(mss_l4len_idx);
|
|
}
|
|
|
|
/*
|
|
* Check which hardware context can be used. Use the existing match
|
|
* or create a new context descriptor.
|
|
*/
|
|
static inline uint32_t
|
|
what_ctx_update(struct txgbe_tx_queue *txq, uint64_t flags,
|
|
union txgbe_tx_offload tx_offload)
|
|
{
|
|
/* If match with the current used context */
|
|
if (likely(txq->ctx_cache[txq->ctx_curr].flags == flags &&
|
|
(txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
|
|
(txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
|
|
& tx_offload.data[0])) &&
|
|
(txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
|
|
(txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
|
|
& tx_offload.data[1]))))
|
|
return txq->ctx_curr;
|
|
|
|
/* What if match with the next context */
|
|
txq->ctx_curr ^= 1;
|
|
if (likely(txq->ctx_cache[txq->ctx_curr].flags == flags &&
|
|
(txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
|
|
(txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
|
|
& tx_offload.data[0])) &&
|
|
(txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
|
|
(txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
|
|
& tx_offload.data[1]))))
|
|
return txq->ctx_curr;
|
|
|
|
/* Mismatch, use the previous context */
|
|
return TXGBE_CTX_NUM;
|
|
}
|
|
|
|
static inline uint32_t
|
|
tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
|
|
{
|
|
uint32_t tmp = 0;
|
|
|
|
if ((ol_flags & RTE_MBUF_F_TX_L4_MASK) != RTE_MBUF_F_TX_L4_NO_CKSUM) {
|
|
tmp |= TXGBE_TXD_CC;
|
|
tmp |= TXGBE_TXD_L4CS;
|
|
}
|
|
if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM) {
|
|
tmp |= TXGBE_TXD_CC;
|
|
tmp |= TXGBE_TXD_IPCS;
|
|
}
|
|
if (ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM) {
|
|
tmp |= TXGBE_TXD_CC;
|
|
tmp |= TXGBE_TXD_EIPCS;
|
|
}
|
|
if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
|
|
tmp |= TXGBE_TXD_CC;
|
|
/* implies IPv4 cksum */
|
|
if (ol_flags & RTE_MBUF_F_TX_IPV4)
|
|
tmp |= TXGBE_TXD_IPCS;
|
|
tmp |= TXGBE_TXD_L4CS;
|
|
}
|
|
if (ol_flags & RTE_MBUF_F_TX_VLAN)
|
|
tmp |= TXGBE_TXD_CC;
|
|
|
|
return tmp;
|
|
}
|
|
|
|
static inline uint32_t
|
|
tx_desc_ol_flags_to_cmdtype(uint64_t ol_flags)
|
|
{
|
|
uint32_t cmdtype = 0;
|
|
|
|
if (ol_flags & RTE_MBUF_F_TX_VLAN)
|
|
cmdtype |= TXGBE_TXD_VLE;
|
|
if (ol_flags & RTE_MBUF_F_TX_TCP_SEG)
|
|
cmdtype |= TXGBE_TXD_TSE;
|
|
if (ol_flags & RTE_MBUF_F_TX_MACSEC)
|
|
cmdtype |= TXGBE_TXD_LINKSEC;
|
|
return cmdtype;
|
|
}
|
|
|
|
static inline uint32_t
|
|
tx_desc_ol_flags_to_ptype(uint64_t oflags)
|
|
{
|
|
uint32_t ptype;
|
|
bool tun;
|
|
|
|
/* Only support flags in TXGBE_TX_OFFLOAD_MASK */
|
|
tun = !!(oflags & RTE_MBUF_F_TX_TUNNEL_MASK);
|
|
|
|
/* L2 level */
|
|
ptype = RTE_PTYPE_L2_ETHER;
|
|
if (oflags & RTE_MBUF_F_TX_VLAN)
|
|
ptype |= (tun ? RTE_PTYPE_INNER_L2_ETHER_VLAN : RTE_PTYPE_L2_ETHER_VLAN);
|
|
|
|
if (oflags & RTE_MBUF_F_TX_QINQ) /* tunnel + QINQ is not supported */
|
|
ptype |= RTE_PTYPE_L2_ETHER_VLAN;
|
|
|
|
/* L3 level */
|
|
if (oflags & (RTE_MBUF_F_TX_OUTER_IPV4 | RTE_MBUF_F_TX_OUTER_IP_CKSUM))
|
|
ptype |= RTE_PTYPE_L3_IPV4;
|
|
else if (oflags & (RTE_MBUF_F_TX_OUTER_IPV6))
|
|
ptype |= RTE_PTYPE_L3_IPV6;
|
|
|
|
if (oflags & (RTE_MBUF_F_TX_IPV4 | RTE_MBUF_F_TX_IP_CKSUM))
|
|
ptype |= (tun ? RTE_PTYPE_INNER_L3_IPV4 : RTE_PTYPE_L3_IPV4);
|
|
else if (oflags & (RTE_MBUF_F_TX_IPV6))
|
|
ptype |= (tun ? RTE_PTYPE_INNER_L3_IPV6 : RTE_PTYPE_L3_IPV6);
|
|
|
|
/* L4 level */
|
|
switch (oflags & (RTE_MBUF_F_TX_L4_MASK)) {
|
|
case RTE_MBUF_F_TX_TCP_CKSUM:
|
|
ptype |= (tun ? RTE_PTYPE_INNER_L4_TCP : RTE_PTYPE_L4_TCP);
|
|
break;
|
|
case RTE_MBUF_F_TX_UDP_CKSUM:
|
|
ptype |= (tun ? RTE_PTYPE_INNER_L4_UDP : RTE_PTYPE_L4_UDP);
|
|
break;
|
|
case RTE_MBUF_F_TX_SCTP_CKSUM:
|
|
ptype |= (tun ? RTE_PTYPE_INNER_L4_SCTP : RTE_PTYPE_L4_SCTP);
|
|
break;
|
|
}
|
|
|
|
if (oflags & RTE_MBUF_F_TX_TCP_SEG)
|
|
ptype |= (tun ? RTE_PTYPE_INNER_L4_TCP : RTE_PTYPE_L4_TCP);
|
|
|
|
/* Tunnel */
|
|
switch (oflags & RTE_MBUF_F_TX_TUNNEL_MASK) {
|
|
case RTE_MBUF_F_TX_TUNNEL_VXLAN:
|
|
case RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE:
|
|
ptype |= RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 |
|
|
RTE_PTYPE_TUNNEL_GRENAT;
|
|
break;
|
|
case RTE_MBUF_F_TX_TUNNEL_GRE:
|
|
ptype |= RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 |
|
|
RTE_PTYPE_TUNNEL_GRE;
|
|
ptype |= RTE_PTYPE_INNER_L2_ETHER;
|
|
break;
|
|
case RTE_MBUF_F_TX_TUNNEL_GENEVE:
|
|
ptype |= RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 |
|
|
RTE_PTYPE_TUNNEL_GENEVE;
|
|
ptype |= RTE_PTYPE_INNER_L2_ETHER;
|
|
break;
|
|
case RTE_MBUF_F_TX_TUNNEL_IPIP:
|
|
case RTE_MBUF_F_TX_TUNNEL_IP:
|
|
ptype |= RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 |
|
|
RTE_PTYPE_TUNNEL_IP;
|
|
break;
|
|
}
|
|
|
|
return ptype;
|
|
}
|
|
|
|
static inline uint8_t
|
|
tx_desc_ol_flags_to_ptid(uint64_t oflags)
|
|
{
|
|
uint32_t ptype;
|
|
|
|
ptype = tx_desc_ol_flags_to_ptype(oflags);
|
|
|
|
return txgbe_encode_ptype(ptype);
|
|
}
|
|
|
|
#ifndef DEFAULT_TX_FREE_THRESH
|
|
#define DEFAULT_TX_FREE_THRESH 32
|
|
#endif
|
|
|
|
/* Reset transmit descriptors after they have been used */
|
|
static inline int
|
|
txgbe_xmit_cleanup(struct txgbe_tx_queue *txq)
|
|
{
|
|
struct txgbe_tx_entry *sw_ring = txq->sw_ring;
|
|
volatile struct txgbe_tx_desc *txr = txq->tx_ring;
|
|
uint16_t last_desc_cleaned = txq->last_desc_cleaned;
|
|
uint16_t nb_tx_desc = txq->nb_tx_desc;
|
|
uint16_t desc_to_clean_to;
|
|
uint16_t nb_tx_to_clean;
|
|
uint32_t status;
|
|
|
|
/* Determine the last descriptor needing to be cleaned */
|
|
desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_free_thresh);
|
|
if (desc_to_clean_to >= nb_tx_desc)
|
|
desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
|
|
|
|
/* Check to make sure the last descriptor to clean is done */
|
|
desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
|
|
status = txr[desc_to_clean_to].dw3;
|
|
if (!(status & rte_cpu_to_le_32(TXGBE_TXD_DD))) {
|
|
PMD_TX_FREE_LOG(DEBUG,
|
|
"TX descriptor %4u is not done"
|
|
"(port=%d queue=%d)",
|
|
desc_to_clean_to,
|
|
txq->port_id, txq->queue_id);
|
|
if (txq->nb_tx_free >> 1 < txq->tx_free_thresh)
|
|
txgbe_set32_masked(txq->tdc_reg_addr,
|
|
TXGBE_TXCFG_FLUSH, TXGBE_TXCFG_FLUSH);
|
|
/* Failed to clean any descriptors, better luck next time */
|
|
return -(1);
|
|
}
|
|
|
|
/* Figure out how many descriptors will be cleaned */
|
|
if (last_desc_cleaned > desc_to_clean_to)
|
|
nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
|
|
desc_to_clean_to);
|
|
else
|
|
nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
|
|
last_desc_cleaned);
|
|
|
|
PMD_TX_FREE_LOG(DEBUG,
|
|
"Cleaning %4u TX descriptors: %4u to %4u "
|
|
"(port=%d queue=%d)",
|
|
nb_tx_to_clean, last_desc_cleaned, desc_to_clean_to,
|
|
txq->port_id, txq->queue_id);
|
|
|
|
/*
|
|
* The last descriptor to clean is done, so that means all the
|
|
* descriptors from the last descriptor that was cleaned
|
|
* up to the last descriptor with the RS bit set
|
|
* are done. Only reset the threshold descriptor.
|
|
*/
|
|
txr[desc_to_clean_to].dw3 = 0;
|
|
|
|
/* Update the txq to reflect the last descriptor that was cleaned */
|
|
txq->last_desc_cleaned = desc_to_clean_to;
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
|
|
|
|
/* No Error */
|
|
return 0;
|
|
}
|
|
|
|
static inline uint8_t
|
|
txgbe_get_tun_len(struct rte_mbuf *mbuf)
|
|
{
|
|
struct txgbe_genevehdr genevehdr;
|
|
const struct txgbe_genevehdr *gh;
|
|
uint8_t tun_len;
|
|
|
|
switch (mbuf->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
|
|
case RTE_MBUF_F_TX_TUNNEL_IPIP:
|
|
tun_len = 0;
|
|
break;
|
|
case RTE_MBUF_F_TX_TUNNEL_VXLAN:
|
|
case RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE:
|
|
tun_len = sizeof(struct txgbe_udphdr)
|
|
+ sizeof(struct txgbe_vxlanhdr);
|
|
break;
|
|
case RTE_MBUF_F_TX_TUNNEL_GRE:
|
|
tun_len = sizeof(struct txgbe_nvgrehdr);
|
|
break;
|
|
case RTE_MBUF_F_TX_TUNNEL_GENEVE:
|
|
gh = rte_pktmbuf_read(mbuf,
|
|
mbuf->outer_l2_len + mbuf->outer_l3_len,
|
|
sizeof(genevehdr), &genevehdr);
|
|
tun_len = sizeof(struct txgbe_udphdr)
|
|
+ sizeof(struct txgbe_genevehdr)
|
|
+ (gh->opt_len << 2);
|
|
break;
|
|
default:
|
|
tun_len = 0;
|
|
}
|
|
|
|
return tun_len;
|
|
}
|
|
|
|
static inline uint8_t
|
|
txgbe_parse_tun_ptid(struct rte_mbuf *tx_pkt)
|
|
{
|
|
uint64_t l2_none, l2_mac, l2_mac_vlan;
|
|
uint8_t ptid = 0;
|
|
|
|
if ((tx_pkt->ol_flags & (RTE_MBUF_F_TX_TUNNEL_VXLAN |
|
|
RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE)) == 0)
|
|
return ptid;
|
|
|
|
l2_none = sizeof(struct txgbe_udphdr) + sizeof(struct txgbe_vxlanhdr);
|
|
l2_mac = l2_none + sizeof(struct rte_ether_hdr);
|
|
l2_mac_vlan = l2_mac + sizeof(struct rte_vlan_hdr);
|
|
|
|
if (tx_pkt->l2_len == l2_none)
|
|
ptid = TXGBE_PTID_TUN_EIG;
|
|
else if (tx_pkt->l2_len == l2_mac)
|
|
ptid = TXGBE_PTID_TUN_EIGM;
|
|
else if (tx_pkt->l2_len == l2_mac_vlan)
|
|
ptid = TXGBE_PTID_TUN_EIGMV;
|
|
|
|
return ptid;
|
|
}
|
|
|
|
uint16_t
|
|
txgbe_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct txgbe_tx_queue *txq;
|
|
struct txgbe_tx_entry *sw_ring;
|
|
struct txgbe_tx_entry *txe, *txn;
|
|
volatile struct txgbe_tx_desc *txr;
|
|
volatile struct txgbe_tx_desc *txd;
|
|
struct rte_mbuf *tx_pkt;
|
|
struct rte_mbuf *m_seg;
|
|
uint64_t buf_dma_addr;
|
|
uint32_t olinfo_status;
|
|
uint32_t cmd_type_len;
|
|
uint32_t pkt_len;
|
|
uint16_t slen;
|
|
uint64_t ol_flags;
|
|
uint16_t tx_id;
|
|
uint16_t tx_last;
|
|
uint16_t nb_tx;
|
|
uint16_t nb_used;
|
|
uint64_t tx_ol_req;
|
|
uint32_t ctx = 0;
|
|
uint32_t new_ctx;
|
|
union txgbe_tx_offload tx_offload;
|
|
#ifdef RTE_LIB_SECURITY
|
|
uint8_t use_ipsec;
|
|
#endif
|
|
|
|
tx_offload.data[0] = 0;
|
|
tx_offload.data[1] = 0;
|
|
txq = tx_queue;
|
|
sw_ring = txq->sw_ring;
|
|
txr = txq->tx_ring;
|
|
tx_id = txq->tx_tail;
|
|
txe = &sw_ring[tx_id];
|
|
|
|
/* Determine if the descriptor ring needs to be cleaned. */
|
|
if (txq->nb_tx_free < txq->tx_free_thresh)
|
|
txgbe_xmit_cleanup(txq);
|
|
|
|
rte_prefetch0(&txe->mbuf->pool);
|
|
|
|
/* TX loop */
|
|
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
|
|
new_ctx = 0;
|
|
tx_pkt = *tx_pkts++;
|
|
pkt_len = tx_pkt->pkt_len;
|
|
|
|
/*
|
|
* Determine how many (if any) context descriptors
|
|
* are needed for offload functionality.
|
|
*/
|
|
ol_flags = tx_pkt->ol_flags;
|
|
#ifdef RTE_LIB_SECURITY
|
|
use_ipsec = txq->using_ipsec && (ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD);
|
|
#endif
|
|
|
|
/* If hardware offload required */
|
|
tx_ol_req = ol_flags & TXGBE_TX_OFFLOAD_MASK;
|
|
if (tx_ol_req) {
|
|
tx_offload.ptid = tx_desc_ol_flags_to_ptid(tx_ol_req);
|
|
if (tx_offload.ptid & TXGBE_PTID_PKT_TUN)
|
|
tx_offload.ptid |= txgbe_parse_tun_ptid(tx_pkt);
|
|
tx_offload.l2_len = tx_pkt->l2_len;
|
|
tx_offload.l3_len = tx_pkt->l3_len;
|
|
tx_offload.l4_len = tx_pkt->l4_len;
|
|
tx_offload.vlan_tci = tx_pkt->vlan_tci;
|
|
tx_offload.tso_segsz = tx_pkt->tso_segsz;
|
|
tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
|
|
tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
|
|
tx_offload.outer_tun_len = txgbe_get_tun_len(tx_pkt);
|
|
|
|
#ifdef RTE_LIB_SECURITY
|
|
if (use_ipsec) {
|
|
union txgbe_crypto_tx_desc_md *ipsec_mdata =
|
|
(union txgbe_crypto_tx_desc_md *)
|
|
rte_security_dynfield(tx_pkt);
|
|
tx_offload.sa_idx = ipsec_mdata->sa_idx;
|
|
tx_offload.sec_pad_len = ipsec_mdata->pad_len;
|
|
}
|
|
#endif
|
|
|
|
/* If new context need be built or reuse the exist ctx*/
|
|
ctx = what_ctx_update(txq, tx_ol_req, tx_offload);
|
|
/* Only allocate context descriptor if required */
|
|
new_ctx = (ctx == TXGBE_CTX_NUM);
|
|
ctx = txq->ctx_curr;
|
|
}
|
|
|
|
/*
|
|
* Keep track of how many descriptors are used this loop
|
|
* This will always be the number of segments + the number of
|
|
* Context descriptors required to transmit the packet
|
|
*/
|
|
nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
|
|
|
|
/*
|
|
* The number of descriptors that must be allocated for a
|
|
* packet is the number of segments of that packet, plus 1
|
|
* Context Descriptor for the hardware offload, if any.
|
|
* Determine the last TX descriptor to allocate in the TX ring
|
|
* for the packet, starting from the current position (tx_id)
|
|
* in the ring.
|
|
*/
|
|
tx_last = (uint16_t)(tx_id + nb_used - 1);
|
|
|
|
/* Circular ring */
|
|
if (tx_last >= txq->nb_tx_desc)
|
|
tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
|
|
|
|
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
|
|
" tx_first=%u tx_last=%u",
|
|
(uint16_t)txq->port_id,
|
|
(uint16_t)txq->queue_id,
|
|
(uint32_t)pkt_len,
|
|
(uint16_t)tx_id,
|
|
(uint16_t)tx_last);
|
|
|
|
/*
|
|
* Make sure there are enough TX descriptors available to
|
|
* transmit the entire packet.
|
|
* nb_used better be less than or equal to txq->tx_free_thresh
|
|
*/
|
|
if (nb_used > txq->nb_tx_free) {
|
|
PMD_TX_FREE_LOG(DEBUG,
|
|
"Not enough free TX descriptors "
|
|
"nb_used=%4u nb_free=%4u "
|
|
"(port=%d queue=%d)",
|
|
nb_used, txq->nb_tx_free,
|
|
txq->port_id, txq->queue_id);
|
|
|
|
if (txgbe_xmit_cleanup(txq) != 0) {
|
|
/* Could not clean any descriptors */
|
|
if (nb_tx == 0)
|
|
return 0;
|
|
goto end_of_tx;
|
|
}
|
|
|
|
/* nb_used better be <= txq->tx_free_thresh */
|
|
if (unlikely(nb_used > txq->tx_free_thresh)) {
|
|
PMD_TX_FREE_LOG(DEBUG,
|
|
"The number of descriptors needed to "
|
|
"transmit the packet exceeds the "
|
|
"RS bit threshold. This will impact "
|
|
"performance."
|
|
"nb_used=%4u nb_free=%4u "
|
|
"tx_free_thresh=%4u. "
|
|
"(port=%d queue=%d)",
|
|
nb_used, txq->nb_tx_free,
|
|
txq->tx_free_thresh,
|
|
txq->port_id, txq->queue_id);
|
|
/*
|
|
* Loop here until there are enough TX
|
|
* descriptors or until the ring cannot be
|
|
* cleaned.
|
|
*/
|
|
while (nb_used > txq->nb_tx_free) {
|
|
if (txgbe_xmit_cleanup(txq) != 0) {
|
|
/*
|
|
* Could not clean any
|
|
* descriptors
|
|
*/
|
|
if (nb_tx == 0)
|
|
return 0;
|
|
goto end_of_tx;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* By now there are enough free TX descriptors to transmit
|
|
* the packet.
|
|
*/
|
|
|
|
/*
|
|
* Set common flags of all TX Data Descriptors.
|
|
*
|
|
* The following bits must be set in all Data Descriptors:
|
|
* - TXGBE_TXD_DTYP_DATA
|
|
* - TXGBE_TXD_DCMD_DEXT
|
|
*
|
|
* The following bits must be set in the first Data Descriptor
|
|
* and are ignored in the other ones:
|
|
* - TXGBE_TXD_DCMD_IFCS
|
|
* - TXGBE_TXD_MAC_1588
|
|
* - TXGBE_TXD_DCMD_VLE
|
|
*
|
|
* The following bits must only be set in the last Data
|
|
* Descriptor:
|
|
* - TXGBE_TXD_CMD_EOP
|
|
*
|
|
* The following bits can be set in any Data Descriptor, but
|
|
* are only set in the last Data Descriptor:
|
|
* - TXGBE_TXD_CMD_RS
|
|
*/
|
|
cmd_type_len = TXGBE_TXD_FCS;
|
|
|
|
#ifdef RTE_LIBRTE_IEEE1588
|
|
if (ol_flags & RTE_MBUF_F_TX_IEEE1588_TMST)
|
|
cmd_type_len |= TXGBE_TXD_1588;
|
|
#endif
|
|
|
|
olinfo_status = 0;
|
|
if (tx_ol_req) {
|
|
if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
|
|
/* when TSO is on, paylen in descriptor is the
|
|
* not the packet len but the tcp payload len
|
|
*/
|
|
pkt_len -= (tx_offload.l2_len +
|
|
tx_offload.l3_len + tx_offload.l4_len);
|
|
pkt_len -=
|
|
(tx_pkt->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
|
|
? tx_offload.outer_l2_len +
|
|
tx_offload.outer_l3_len : 0;
|
|
}
|
|
|
|
/*
|
|
* Setup the TX Advanced Context Descriptor if required
|
|
*/
|
|
if (new_ctx) {
|
|
volatile struct txgbe_tx_ctx_desc *ctx_txd;
|
|
|
|
ctx_txd = (volatile struct txgbe_tx_ctx_desc *)
|
|
&txr[tx_id];
|
|
|
|
txn = &sw_ring[txe->next_id];
|
|
rte_prefetch0(&txn->mbuf->pool);
|
|
|
|
if (txe->mbuf != NULL) {
|
|
rte_pktmbuf_free_seg(txe->mbuf);
|
|
txe->mbuf = NULL;
|
|
}
|
|
|
|
txgbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
|
|
tx_offload,
|
|
rte_security_dynfield(tx_pkt));
|
|
|
|
txe->last_id = tx_last;
|
|
tx_id = txe->next_id;
|
|
txe = txn;
|
|
}
|
|
|
|
/*
|
|
* Setup the TX Advanced Data Descriptor,
|
|
* This path will go through
|
|
* whatever new/reuse the context descriptor
|
|
*/
|
|
cmd_type_len |= tx_desc_ol_flags_to_cmdtype(ol_flags);
|
|
olinfo_status |=
|
|
tx_desc_cksum_flags_to_olinfo(ol_flags);
|
|
olinfo_status |= TXGBE_TXD_IDX(ctx);
|
|
}
|
|
|
|
olinfo_status |= TXGBE_TXD_PAYLEN(pkt_len);
|
|
#ifdef RTE_LIB_SECURITY
|
|
if (use_ipsec)
|
|
olinfo_status |= TXGBE_TXD_IPSEC;
|
|
#endif
|
|
|
|
m_seg = tx_pkt;
|
|
do {
|
|
txd = &txr[tx_id];
|
|
txn = &sw_ring[txe->next_id];
|
|
rte_prefetch0(&txn->mbuf->pool);
|
|
|
|
if (txe->mbuf != NULL)
|
|
rte_pktmbuf_free_seg(txe->mbuf);
|
|
txe->mbuf = m_seg;
|
|
|
|
/*
|
|
* Set up Transmit Data Descriptor.
|
|
*/
|
|
slen = m_seg->data_len;
|
|
buf_dma_addr = rte_mbuf_data_iova(m_seg);
|
|
txd->qw0 = rte_cpu_to_le_64(buf_dma_addr);
|
|
txd->dw2 = rte_cpu_to_le_32(cmd_type_len | slen);
|
|
txd->dw3 = rte_cpu_to_le_32(olinfo_status);
|
|
txe->last_id = tx_last;
|
|
tx_id = txe->next_id;
|
|
txe = txn;
|
|
m_seg = m_seg->next;
|
|
} while (m_seg != NULL);
|
|
|
|
/*
|
|
* The last packet data descriptor needs End Of Packet (EOP)
|
|
*/
|
|
cmd_type_len |= TXGBE_TXD_EOP;
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
|
|
|
|
txd->dw2 |= rte_cpu_to_le_32(cmd_type_len);
|
|
}
|
|
|
|
end_of_tx:
|
|
|
|
rte_wmb();
|
|
|
|
/*
|
|
* Set the Transmit Descriptor Tail (TDT)
|
|
*/
|
|
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
|
|
(uint16_t)txq->port_id, (uint16_t)txq->queue_id,
|
|
(uint16_t)tx_id, (uint16_t)nb_tx);
|
|
txgbe_set32_relaxed(txq->tdt_reg_addr, tx_id);
|
|
txq->tx_tail = tx_id;
|
|
|
|
return nb_tx;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* TX prep functions
|
|
*
|
|
**********************************************************************/
|
|
uint16_t
|
|
txgbe_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
|
|
{
|
|
int i, ret;
|
|
uint64_t ol_flags;
|
|
struct rte_mbuf *m;
|
|
struct txgbe_tx_queue *txq = (struct txgbe_tx_queue *)tx_queue;
|
|
|
|
for (i = 0; i < nb_pkts; i++) {
|
|
m = tx_pkts[i];
|
|
ol_flags = m->ol_flags;
|
|
|
|
/**
|
|
* Check if packet meets requirements for number of segments
|
|
*
|
|
* NOTE: for txgbe it's always (40 - WTHRESH) for both TSO and
|
|
* non-TSO
|
|
*/
|
|
|
|
if (m->nb_segs > TXGBE_TX_MAX_SEG - txq->wthresh) {
|
|
rte_errno = -EINVAL;
|
|
return i;
|
|
}
|
|
|
|
if (ol_flags & TXGBE_TX_OFFLOAD_NOTSUP_MASK) {
|
|
rte_errno = -ENOTSUP;
|
|
return i;
|
|
}
|
|
|
|
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
|
|
ret = rte_validate_tx_offload(m);
|
|
if (ret != 0) {
|
|
rte_errno = ret;
|
|
return i;
|
|
}
|
|
#endif
|
|
ret = rte_net_intel_cksum_prepare(m);
|
|
if (ret != 0) {
|
|
rte_errno = ret;
|
|
return i;
|
|
}
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* RX functions
|
|
*
|
|
**********************************************************************/
|
|
/* @note: fix txgbe_dev_supported_ptypes_get() if any change here. */
|
|
static inline uint32_t
|
|
txgbe_rxd_pkt_info_to_pkt_type(uint32_t pkt_info, uint16_t ptid_mask)
|
|
{
|
|
uint16_t ptid = TXGBE_RXD_PTID(pkt_info);
|
|
|
|
ptid &= ptid_mask;
|
|
|
|
return txgbe_decode_ptype(ptid);
|
|
}
|
|
|
|
static inline uint64_t
|
|
txgbe_rxd_pkt_info_to_pkt_flags(uint32_t pkt_info)
|
|
{
|
|
static uint64_t ip_rss_types_map[16] __rte_cache_aligned = {
|
|
0, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
|
|
0, RTE_MBUF_F_RX_RSS_HASH, 0, RTE_MBUF_F_RX_RSS_HASH,
|
|
RTE_MBUF_F_RX_RSS_HASH, 0, 0, 0,
|
|
0, 0, 0, RTE_MBUF_F_RX_FDIR,
|
|
};
|
|
#ifdef RTE_LIBRTE_IEEE1588
|
|
static uint64_t ip_pkt_etqf_map[8] = {
|
|
0, 0, 0, RTE_MBUF_F_RX_IEEE1588_PTP,
|
|
0, 0, 0, 0,
|
|
};
|
|
int etfid = txgbe_etflt_id(TXGBE_RXD_PTID(pkt_info));
|
|
if (likely(-1 != etfid))
|
|
return ip_pkt_etqf_map[etfid] |
|
|
ip_rss_types_map[TXGBE_RXD_RSSTYPE(pkt_info)];
|
|
else
|
|
return ip_rss_types_map[TXGBE_RXD_RSSTYPE(pkt_info)];
|
|
#else
|
|
return ip_rss_types_map[TXGBE_RXD_RSSTYPE(pkt_info)];
|
|
#endif
|
|
}
|
|
|
|
static inline uint64_t
|
|
rx_desc_status_to_pkt_flags(uint32_t rx_status, uint64_t vlan_flags)
|
|
{
|
|
uint64_t pkt_flags;
|
|
|
|
/*
|
|
* Check if VLAN present only.
|
|
* Do not check whether L3/L4 rx checksum done by NIC or not,
|
|
* That can be found from rte_eth_rxmode.offloads flag
|
|
*/
|
|
pkt_flags = (rx_status & TXGBE_RXD_STAT_VLAN &&
|
|
vlan_flags & RTE_MBUF_F_RX_VLAN_STRIPPED)
|
|
? vlan_flags : 0;
|
|
|
|
#ifdef RTE_LIBRTE_IEEE1588
|
|
if (rx_status & TXGBE_RXD_STAT_1588)
|
|
pkt_flags = pkt_flags | RTE_MBUF_F_RX_IEEE1588_TMST;
|
|
#endif
|
|
return pkt_flags;
|
|
}
|
|
|
|
static inline uint64_t
|
|
rx_desc_error_to_pkt_flags(uint32_t rx_status)
|
|
{
|
|
uint64_t pkt_flags = 0;
|
|
|
|
/* checksum offload can't be disabled */
|
|
if (rx_status & TXGBE_RXD_STAT_IPCS) {
|
|
pkt_flags |= (rx_status & TXGBE_RXD_ERR_IPCS
|
|
? RTE_MBUF_F_RX_IP_CKSUM_BAD : RTE_MBUF_F_RX_IP_CKSUM_GOOD);
|
|
}
|
|
|
|
if (rx_status & TXGBE_RXD_STAT_L4CS) {
|
|
pkt_flags |= (rx_status & TXGBE_RXD_ERR_L4CS
|
|
? RTE_MBUF_F_RX_L4_CKSUM_BAD : RTE_MBUF_F_RX_L4_CKSUM_GOOD);
|
|
}
|
|
|
|
if (rx_status & TXGBE_RXD_STAT_EIPCS &&
|
|
rx_status & TXGBE_RXD_ERR_EIPCS) {
|
|
pkt_flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
|
|
}
|
|
|
|
#ifdef RTE_LIB_SECURITY
|
|
if (rx_status & TXGBE_RXD_STAT_SECP) {
|
|
pkt_flags |= RTE_MBUF_F_RX_SEC_OFFLOAD;
|
|
if (rx_status & TXGBE_RXD_ERR_SECERR)
|
|
pkt_flags |= RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED;
|
|
}
|
|
#endif
|
|
|
|
return pkt_flags;
|
|
}
|
|
|
|
/*
|
|
* LOOK_AHEAD defines how many desc statuses to check beyond the
|
|
* current descriptor.
|
|
* It must be a pound define for optimal performance.
|
|
* Do not change the value of LOOK_AHEAD, as the txgbe_rx_scan_hw_ring
|
|
* function only works with LOOK_AHEAD=8.
|
|
*/
|
|
#define LOOK_AHEAD 8
|
|
#if (LOOK_AHEAD != 8)
|
|
#error "PMD TXGBE: LOOK_AHEAD must be 8\n"
|
|
#endif
|
|
static inline int
|
|
txgbe_rx_scan_hw_ring(struct txgbe_rx_queue *rxq)
|
|
{
|
|
volatile struct txgbe_rx_desc *rxdp;
|
|
struct txgbe_rx_entry *rxep;
|
|
struct rte_mbuf *mb;
|
|
uint16_t pkt_len;
|
|
uint64_t pkt_flags;
|
|
int nb_dd;
|
|
uint32_t s[LOOK_AHEAD];
|
|
uint32_t pkt_info[LOOK_AHEAD];
|
|
int i, j, nb_rx = 0;
|
|
uint32_t status;
|
|
|
|
/* get references to current descriptor and S/W ring entry */
|
|
rxdp = &rxq->rx_ring[rxq->rx_tail];
|
|
rxep = &rxq->sw_ring[rxq->rx_tail];
|
|
|
|
status = rxdp->qw1.lo.status;
|
|
/* check to make sure there is at least 1 packet to receive */
|
|
if (!(status & rte_cpu_to_le_32(TXGBE_RXD_STAT_DD)))
|
|
return 0;
|
|
|
|
/*
|
|
* Scan LOOK_AHEAD descriptors at a time to determine which descriptors
|
|
* reference packets that are ready to be received.
|
|
*/
|
|
for (i = 0; i < RTE_PMD_TXGBE_RX_MAX_BURST;
|
|
i += LOOK_AHEAD, rxdp += LOOK_AHEAD, rxep += LOOK_AHEAD) {
|
|
/* Read desc statuses backwards to avoid race condition */
|
|
for (j = 0; j < LOOK_AHEAD; j++)
|
|
s[j] = rte_le_to_cpu_32(rxdp[j].qw1.lo.status);
|
|
|
|
rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
|
|
|
|
/* Compute how many status bits were set */
|
|
for (nb_dd = 0; nb_dd < LOOK_AHEAD &&
|
|
(s[nb_dd] & TXGBE_RXD_STAT_DD); nb_dd++)
|
|
;
|
|
|
|
for (j = 0; j < nb_dd; j++)
|
|
pkt_info[j] = rte_le_to_cpu_32(rxdp[j].qw0.dw0);
|
|
|
|
nb_rx += nb_dd;
|
|
|
|
/* Translate descriptor info to mbuf format */
|
|
for (j = 0; j < nb_dd; ++j) {
|
|
mb = rxep[j].mbuf;
|
|
pkt_len = rte_le_to_cpu_16(rxdp[j].qw1.hi.len) -
|
|
rxq->crc_len;
|
|
mb->data_len = pkt_len;
|
|
mb->pkt_len = pkt_len;
|
|
mb->vlan_tci = rte_le_to_cpu_16(rxdp[j].qw1.hi.tag);
|
|
|
|
/* convert descriptor fields to rte mbuf flags */
|
|
pkt_flags = rx_desc_status_to_pkt_flags(s[j],
|
|
rxq->vlan_flags);
|
|
pkt_flags |= rx_desc_error_to_pkt_flags(s[j]);
|
|
pkt_flags |=
|
|
txgbe_rxd_pkt_info_to_pkt_flags(pkt_info[j]);
|
|
mb->ol_flags = pkt_flags;
|
|
mb->packet_type =
|
|
txgbe_rxd_pkt_info_to_pkt_type(pkt_info[j],
|
|
rxq->pkt_type_mask);
|
|
|
|
if (likely(pkt_flags & RTE_MBUF_F_RX_RSS_HASH))
|
|
mb->hash.rss =
|
|
rte_le_to_cpu_32(rxdp[j].qw0.dw1);
|
|
else if (pkt_flags & RTE_MBUF_F_RX_FDIR) {
|
|
mb->hash.fdir.hash =
|
|
rte_le_to_cpu_16(rxdp[j].qw0.hi.csum) &
|
|
TXGBE_ATR_HASH_MASK;
|
|
mb->hash.fdir.id =
|
|
rte_le_to_cpu_16(rxdp[j].qw0.hi.ipid);
|
|
}
|
|
}
|
|
|
|
/* Move mbuf pointers from the S/W ring to the stage */
|
|
for (j = 0; j < LOOK_AHEAD; ++j)
|
|
rxq->rx_stage[i + j] = rxep[j].mbuf;
|
|
|
|
/* stop if all requested packets could not be received */
|
|
if (nb_dd != LOOK_AHEAD)
|
|
break;
|
|
}
|
|
|
|
/* clear software ring entries so we can cleanup correctly */
|
|
for (i = 0; i < nb_rx; ++i)
|
|
rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
|
|
|
|
return nb_rx;
|
|
}
|
|
|
|
static inline int
|
|
txgbe_rx_alloc_bufs(struct txgbe_rx_queue *rxq, bool reset_mbuf)
|
|
{
|
|
volatile struct txgbe_rx_desc *rxdp;
|
|
struct txgbe_rx_entry *rxep;
|
|
struct rte_mbuf *mb;
|
|
uint16_t alloc_idx;
|
|
__le64 dma_addr;
|
|
int diag, i;
|
|
|
|
/* allocate buffers in bulk directly into the S/W ring */
|
|
alloc_idx = rxq->rx_free_trigger - (rxq->rx_free_thresh - 1);
|
|
rxep = &rxq->sw_ring[alloc_idx];
|
|
diag = rte_mempool_get_bulk(rxq->mb_pool, (void *)rxep,
|
|
rxq->rx_free_thresh);
|
|
if (unlikely(diag != 0))
|
|
return -ENOMEM;
|
|
|
|
rxdp = &rxq->rx_ring[alloc_idx];
|
|
for (i = 0; i < rxq->rx_free_thresh; ++i) {
|
|
/* populate the static rte mbuf fields */
|
|
mb = rxep[i].mbuf;
|
|
if (reset_mbuf)
|
|
mb->port = rxq->port_id;
|
|
|
|
rte_mbuf_refcnt_set(mb, 1);
|
|
mb->data_off = RTE_PKTMBUF_HEADROOM;
|
|
|
|
/* populate the descriptors */
|
|
dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
|
|
TXGBE_RXD_HDRADDR(&rxdp[i], 0);
|
|
TXGBE_RXD_PKTADDR(&rxdp[i], dma_addr);
|
|
}
|
|
|
|
/* update state of internal queue structure */
|
|
rxq->rx_free_trigger = rxq->rx_free_trigger + rxq->rx_free_thresh;
|
|
if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
|
|
rxq->rx_free_trigger = rxq->rx_free_thresh - 1;
|
|
|
|
/* no errors */
|
|
return 0;
|
|
}
|
|
|
|
static inline uint16_t
|
|
txgbe_rx_fill_from_stage(struct txgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
|
|
int i;
|
|
|
|
/* how many packets are ready to return? */
|
|
nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
|
|
|
|
/* copy mbuf pointers to the application's packet list */
|
|
for (i = 0; i < nb_pkts; ++i)
|
|
rx_pkts[i] = stage[i];
|
|
|
|
/* update internal queue state */
|
|
rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
|
|
rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
|
|
|
|
return nb_pkts;
|
|
}
|
|
|
|
static inline uint16_t
|
|
txgbe_rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct txgbe_rx_queue *rxq = (struct txgbe_rx_queue *)rx_queue;
|
|
struct rte_eth_dev *dev = &rte_eth_devices[rxq->port_id];
|
|
uint16_t nb_rx = 0;
|
|
|
|
/* Any previously recv'd pkts will be returned from the Rx stage */
|
|
if (rxq->rx_nb_avail)
|
|
return txgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
|
|
|
|
/* Scan the H/W ring for packets to receive */
|
|
nb_rx = (uint16_t)txgbe_rx_scan_hw_ring(rxq);
|
|
|
|
/* update internal queue state */
|
|
rxq->rx_next_avail = 0;
|
|
rxq->rx_nb_avail = nb_rx;
|
|
rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
|
|
|
|
/* if required, allocate new buffers to replenish descriptors */
|
|
if (rxq->rx_tail > rxq->rx_free_trigger) {
|
|
uint16_t cur_free_trigger = rxq->rx_free_trigger;
|
|
|
|
if (txgbe_rx_alloc_bufs(rxq, true) != 0) {
|
|
int i, j;
|
|
|
|
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
|
|
"queue_id=%u", (uint16_t)rxq->port_id,
|
|
(uint16_t)rxq->queue_id);
|
|
|
|
dev->data->rx_mbuf_alloc_failed +=
|
|
rxq->rx_free_thresh;
|
|
|
|
/*
|
|
* Need to rewind any previous receives if we cannot
|
|
* allocate new buffers to replenish the old ones.
|
|
*/
|
|
rxq->rx_nb_avail = 0;
|
|
rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
|
|
for (i = 0, j = rxq->rx_tail; i < nb_rx; ++i, ++j)
|
|
rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* update tail pointer */
|
|
rte_wmb();
|
|
txgbe_set32_relaxed(rxq->rdt_reg_addr, cur_free_trigger);
|
|
}
|
|
|
|
if (rxq->rx_tail >= rxq->nb_rx_desc)
|
|
rxq->rx_tail = 0;
|
|
|
|
/* received any packets this loop? */
|
|
if (rxq->rx_nb_avail)
|
|
return txgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* split requests into chunks of size RTE_PMD_TXGBE_RX_MAX_BURST */
|
|
uint16_t
|
|
txgbe_recv_pkts_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
uint16_t nb_rx;
|
|
|
|
if (unlikely(nb_pkts == 0))
|
|
return 0;
|
|
|
|
if (likely(nb_pkts <= RTE_PMD_TXGBE_RX_MAX_BURST))
|
|
return txgbe_rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
|
|
|
|
/* request is relatively large, chunk it up */
|
|
nb_rx = 0;
|
|
while (nb_pkts) {
|
|
uint16_t ret, n;
|
|
|
|
n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_TXGBE_RX_MAX_BURST);
|
|
ret = txgbe_rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
|
|
nb_rx = (uint16_t)(nb_rx + ret);
|
|
nb_pkts = (uint16_t)(nb_pkts - ret);
|
|
if (ret < n)
|
|
break;
|
|
}
|
|
|
|
return nb_rx;
|
|
}
|
|
|
|
uint16_t
|
|
txgbe_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct txgbe_rx_queue *rxq;
|
|
volatile struct txgbe_rx_desc *rx_ring;
|
|
volatile struct txgbe_rx_desc *rxdp;
|
|
struct txgbe_rx_entry *sw_ring;
|
|
struct txgbe_rx_entry *rxe;
|
|
struct rte_mbuf *rxm;
|
|
struct rte_mbuf *nmb;
|
|
struct txgbe_rx_desc rxd;
|
|
uint64_t dma_addr;
|
|
uint32_t staterr;
|
|
uint32_t pkt_info;
|
|
uint16_t pkt_len;
|
|
uint16_t rx_id;
|
|
uint16_t nb_rx;
|
|
uint16_t nb_hold;
|
|
uint64_t pkt_flags;
|
|
|
|
nb_rx = 0;
|
|
nb_hold = 0;
|
|
rxq = rx_queue;
|
|
rx_id = rxq->rx_tail;
|
|
rx_ring = rxq->rx_ring;
|
|
sw_ring = rxq->sw_ring;
|
|
struct rte_eth_dev *dev = &rte_eth_devices[rxq->port_id];
|
|
while (nb_rx < nb_pkts) {
|
|
/*
|
|
* The order of operations here is important as the DD status
|
|
* bit must not be read after any other descriptor fields.
|
|
* rx_ring and rxdp are pointing to volatile data so the order
|
|
* of accesses cannot be reordered by the compiler. If they were
|
|
* not volatile, they could be reordered which could lead to
|
|
* using invalid descriptor fields when read from rxd.
|
|
*/
|
|
rxdp = &rx_ring[rx_id];
|
|
staterr = rxdp->qw1.lo.status;
|
|
if (!(staterr & rte_cpu_to_le_32(TXGBE_RXD_STAT_DD)))
|
|
break;
|
|
rxd = *rxdp;
|
|
|
|
/*
|
|
* End of packet.
|
|
*
|
|
* If the TXGBE_RXD_STAT_EOP flag is not set, the RX packet
|
|
* is likely to be invalid and to be dropped by the various
|
|
* validation checks performed by the network stack.
|
|
*
|
|
* Allocate a new mbuf to replenish the RX ring descriptor.
|
|
* If the allocation fails:
|
|
* - arrange for that RX descriptor to be the first one
|
|
* being parsed the next time the receive function is
|
|
* invoked [on the same queue].
|
|
*
|
|
* - Stop parsing the RX ring and return immediately.
|
|
*
|
|
* This policy do not drop the packet received in the RX
|
|
* descriptor for which the allocation of a new mbuf failed.
|
|
* Thus, it allows that packet to be later retrieved if
|
|
* mbuf have been freed in the mean time.
|
|
* As a side effect, holding RX descriptors instead of
|
|
* systematically giving them back to the NIC may lead to
|
|
* RX ring exhaustion situations.
|
|
* However, the NIC can gracefully prevent such situations
|
|
* to happen by sending specific "back-pressure" flow control
|
|
* frames to its peer(s).
|
|
*/
|
|
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
|
|
"ext_err_stat=0x%08x pkt_len=%u",
|
|
(uint16_t)rxq->port_id, (uint16_t)rxq->queue_id,
|
|
(uint16_t)rx_id, (uint32_t)staterr,
|
|
(uint16_t)rte_le_to_cpu_16(rxd.qw1.hi.len));
|
|
|
|
nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
|
|
if (nmb == NULL) {
|
|
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
|
|
"queue_id=%u", (uint16_t)rxq->port_id,
|
|
(uint16_t)rxq->queue_id);
|
|
dev->data->rx_mbuf_alloc_failed++;
|
|
break;
|
|
}
|
|
|
|
nb_hold++;
|
|
rxe = &sw_ring[rx_id];
|
|
rx_id++;
|
|
if (rx_id == rxq->nb_rx_desc)
|
|
rx_id = 0;
|
|
|
|
/* Prefetch next mbuf while processing current one. */
|
|
rte_txgbe_prefetch(sw_ring[rx_id].mbuf);
|
|
|
|
/*
|
|
* When next RX descriptor is on a cache-line boundary,
|
|
* prefetch the next 4 RX descriptors and the next 8 pointers
|
|
* to mbufs.
|
|
*/
|
|
if ((rx_id & 0x3) == 0) {
|
|
rte_txgbe_prefetch(&rx_ring[rx_id]);
|
|
rte_txgbe_prefetch(&sw_ring[rx_id]);
|
|
}
|
|
|
|
rxm = rxe->mbuf;
|
|
rxe->mbuf = nmb;
|
|
dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
|
|
TXGBE_RXD_HDRADDR(rxdp, 0);
|
|
TXGBE_RXD_PKTADDR(rxdp, dma_addr);
|
|
|
|
/*
|
|
* Initialize the returned mbuf.
|
|
* 1) setup generic mbuf fields:
|
|
* - number of segments,
|
|
* - next segment,
|
|
* - packet length,
|
|
* - RX port identifier.
|
|
* 2) integrate hardware offload data, if any:
|
|
* - RSS flag & hash,
|
|
* - IP checksum flag,
|
|
* - VLAN TCI, if any,
|
|
* - error flags.
|
|
*/
|
|
pkt_len = (uint16_t)(rte_le_to_cpu_16(rxd.qw1.hi.len) -
|
|
rxq->crc_len);
|
|
rxm->data_off = RTE_PKTMBUF_HEADROOM;
|
|
rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
|
|
rxm->nb_segs = 1;
|
|
rxm->next = NULL;
|
|
rxm->pkt_len = pkt_len;
|
|
rxm->data_len = pkt_len;
|
|
rxm->port = rxq->port_id;
|
|
|
|
pkt_info = rte_le_to_cpu_32(rxd.qw0.dw0);
|
|
/* Only valid if RTE_MBUF_F_RX_VLAN set in pkt_flags */
|
|
rxm->vlan_tci = rte_le_to_cpu_16(rxd.qw1.hi.tag);
|
|
|
|
pkt_flags = rx_desc_status_to_pkt_flags(staterr,
|
|
rxq->vlan_flags);
|
|
pkt_flags |= rx_desc_error_to_pkt_flags(staterr);
|
|
pkt_flags |= txgbe_rxd_pkt_info_to_pkt_flags(pkt_info);
|
|
rxm->ol_flags = pkt_flags;
|
|
rxm->packet_type = txgbe_rxd_pkt_info_to_pkt_type(pkt_info,
|
|
rxq->pkt_type_mask);
|
|
|
|
if (likely(pkt_flags & RTE_MBUF_F_RX_RSS_HASH)) {
|
|
rxm->hash.rss = rte_le_to_cpu_32(rxd.qw0.dw1);
|
|
} else if (pkt_flags & RTE_MBUF_F_RX_FDIR) {
|
|
rxm->hash.fdir.hash =
|
|
rte_le_to_cpu_16(rxd.qw0.hi.csum) &
|
|
TXGBE_ATR_HASH_MASK;
|
|
rxm->hash.fdir.id = rte_le_to_cpu_16(rxd.qw0.hi.ipid);
|
|
}
|
|
/*
|
|
* Store the mbuf address into the next entry of the array
|
|
* of returned packets.
|
|
*/
|
|
rx_pkts[nb_rx++] = rxm;
|
|
}
|
|
rxq->rx_tail = rx_id;
|
|
|
|
/*
|
|
* If the number of free RX descriptors is greater than the RX free
|
|
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
|
|
* register.
|
|
* Update the RDT with the value of the last processed RX descriptor
|
|
* minus 1, to guarantee that the RDT register is never equal to the
|
|
* RDH register, which creates a "full" ring situation from the
|
|
* hardware point of view...
|
|
*/
|
|
nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
|
|
if (nb_hold > rxq->rx_free_thresh) {
|
|
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
|
|
"nb_hold=%u nb_rx=%u",
|
|
(uint16_t)rxq->port_id, (uint16_t)rxq->queue_id,
|
|
(uint16_t)rx_id, (uint16_t)nb_hold,
|
|
(uint16_t)nb_rx);
|
|
rx_id = (uint16_t)((rx_id == 0) ?
|
|
(rxq->nb_rx_desc - 1) : (rx_id - 1));
|
|
txgbe_set32(rxq->rdt_reg_addr, rx_id);
|
|
nb_hold = 0;
|
|
}
|
|
rxq->nb_rx_hold = nb_hold;
|
|
return nb_rx;
|
|
}
|
|
|
|
/**
|
|
* txgbe_fill_cluster_head_buf - fill the first mbuf of the returned packet
|
|
*
|
|
* Fill the following info in the HEAD buffer of the Rx cluster:
|
|
* - RX port identifier
|
|
* - hardware offload data, if any:
|
|
* - RSS flag & hash
|
|
* - IP checksum flag
|
|
* - VLAN TCI, if any
|
|
* - error flags
|
|
* @head HEAD of the packet cluster
|
|
* @desc HW descriptor to get data from
|
|
* @rxq Pointer to the Rx queue
|
|
*/
|
|
static inline void
|
|
txgbe_fill_cluster_head_buf(struct rte_mbuf *head, struct txgbe_rx_desc *desc,
|
|
struct txgbe_rx_queue *rxq, uint32_t staterr)
|
|
{
|
|
uint32_t pkt_info;
|
|
uint64_t pkt_flags;
|
|
|
|
head->port = rxq->port_id;
|
|
|
|
/* The vlan_tci field is only valid when RTE_MBUF_F_RX_VLAN is
|
|
* set in the pkt_flags field.
|
|
*/
|
|
head->vlan_tci = rte_le_to_cpu_16(desc->qw1.hi.tag);
|
|
pkt_info = rte_le_to_cpu_32(desc->qw0.dw0);
|
|
pkt_flags = rx_desc_status_to_pkt_flags(staterr, rxq->vlan_flags);
|
|
pkt_flags |= rx_desc_error_to_pkt_flags(staterr);
|
|
pkt_flags |= txgbe_rxd_pkt_info_to_pkt_flags(pkt_info);
|
|
head->ol_flags = pkt_flags;
|
|
head->packet_type = txgbe_rxd_pkt_info_to_pkt_type(pkt_info,
|
|
rxq->pkt_type_mask);
|
|
|
|
if (likely(pkt_flags & RTE_MBUF_F_RX_RSS_HASH)) {
|
|
head->hash.rss = rte_le_to_cpu_32(desc->qw0.dw1);
|
|
} else if (pkt_flags & RTE_MBUF_F_RX_FDIR) {
|
|
head->hash.fdir.hash = rte_le_to_cpu_16(desc->qw0.hi.csum)
|
|
& TXGBE_ATR_HASH_MASK;
|
|
head->hash.fdir.id = rte_le_to_cpu_16(desc->qw0.hi.ipid);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* txgbe_recv_pkts_lro - receive handler for and LRO case.
|
|
*
|
|
* @rx_queue Rx queue handle
|
|
* @rx_pkts table of received packets
|
|
* @nb_pkts size of rx_pkts table
|
|
* @bulk_alloc if TRUE bulk allocation is used for a HW ring refilling
|
|
*
|
|
* Handles the Rx HW ring completions when RSC feature is configured. Uses an
|
|
* additional ring of txgbe_rsc_entry's that will hold the relevant RSC info.
|
|
*
|
|
* We use the same logic as in Linux and in FreeBSD txgbe drivers:
|
|
* 1) When non-EOP RSC completion arrives:
|
|
* a) Update the HEAD of the current RSC aggregation cluster with the new
|
|
* segment's data length.
|
|
* b) Set the "next" pointer of the current segment to point to the segment
|
|
* at the NEXTP index.
|
|
* c) Pass the HEAD of RSC aggregation cluster on to the next NEXTP entry
|
|
* in the sw_rsc_ring.
|
|
* 2) When EOP arrives we just update the cluster's total length and offload
|
|
* flags and deliver the cluster up to the upper layers. In our case - put it
|
|
* in the rx_pkts table.
|
|
*
|
|
* Returns the number of received packets/clusters (according to the "bulk
|
|
* receive" interface).
|
|
*/
|
|
static inline uint16_t
|
|
txgbe_recv_pkts_lro(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts,
|
|
bool bulk_alloc)
|
|
{
|
|
struct txgbe_rx_queue *rxq = rx_queue;
|
|
struct rte_eth_dev *dev = &rte_eth_devices[rxq->port_id];
|
|
volatile struct txgbe_rx_desc *rx_ring = rxq->rx_ring;
|
|
struct txgbe_rx_entry *sw_ring = rxq->sw_ring;
|
|
struct txgbe_scattered_rx_entry *sw_sc_ring = rxq->sw_sc_ring;
|
|
uint16_t rx_id = rxq->rx_tail;
|
|
uint16_t nb_rx = 0;
|
|
uint16_t nb_hold = rxq->nb_rx_hold;
|
|
uint16_t prev_id = rxq->rx_tail;
|
|
|
|
while (nb_rx < nb_pkts) {
|
|
bool eop;
|
|
struct txgbe_rx_entry *rxe;
|
|
struct txgbe_scattered_rx_entry *sc_entry;
|
|
struct txgbe_scattered_rx_entry *next_sc_entry = NULL;
|
|
struct txgbe_rx_entry *next_rxe = NULL;
|
|
struct rte_mbuf *first_seg;
|
|
struct rte_mbuf *rxm;
|
|
struct rte_mbuf *nmb = NULL;
|
|
struct txgbe_rx_desc rxd;
|
|
uint16_t data_len;
|
|
uint16_t next_id;
|
|
volatile struct txgbe_rx_desc *rxdp;
|
|
uint32_t staterr;
|
|
|
|
next_desc:
|
|
/*
|
|
* The code in this whole file uses the volatile pointer to
|
|
* ensure the read ordering of the status and the rest of the
|
|
* descriptor fields (on the compiler level only!!!). This is so
|
|
* UGLY - why not to just use the compiler barrier instead? DPDK
|
|
* even has the rte_compiler_barrier() for that.
|
|
*
|
|
* But most importantly this is just wrong because this doesn't
|
|
* ensure memory ordering in a general case at all. For
|
|
* instance, DPDK is supposed to work on Power CPUs where
|
|
* compiler barrier may just not be enough!
|
|
*
|
|
* I tried to write only this function properly to have a
|
|
* starting point (as a part of an LRO/RSC series) but the
|
|
* compiler cursed at me when I tried to cast away the
|
|
* "volatile" from rx_ring (yes, it's volatile too!!!). So, I'm
|
|
* keeping it the way it is for now.
|
|
*
|
|
* The code in this file is broken in so many other places and
|
|
* will just not work on a big endian CPU anyway therefore the
|
|
* lines below will have to be revisited together with the rest
|
|
* of the txgbe PMD.
|
|
*
|
|
* TODO:
|
|
* - Get rid of "volatile" and let the compiler do its job.
|
|
* - Use the proper memory barrier (rte_rmb()) to ensure the
|
|
* memory ordering below.
|
|
*/
|
|
rxdp = &rx_ring[rx_id];
|
|
staterr = rte_le_to_cpu_32(rxdp->qw1.lo.status);
|
|
|
|
if (!(staterr & TXGBE_RXD_STAT_DD))
|
|
break;
|
|
|
|
rxd = *rxdp;
|
|
|
|
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
|
|
"staterr=0x%x data_len=%u",
|
|
rxq->port_id, rxq->queue_id, rx_id, staterr,
|
|
rte_le_to_cpu_16(rxd.qw1.hi.len));
|
|
|
|
if (!bulk_alloc) {
|
|
nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
|
|
if (nmb == NULL) {
|
|
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed "
|
|
"port_id=%u queue_id=%u",
|
|
rxq->port_id, rxq->queue_id);
|
|
|
|
dev->data->rx_mbuf_alloc_failed++;
|
|
break;
|
|
}
|
|
} else if (nb_hold > rxq->rx_free_thresh) {
|
|
uint16_t next_rdt = rxq->rx_free_trigger;
|
|
|
|
if (!txgbe_rx_alloc_bufs(rxq, false)) {
|
|
rte_wmb();
|
|
txgbe_set32_relaxed(rxq->rdt_reg_addr,
|
|
next_rdt);
|
|
nb_hold -= rxq->rx_free_thresh;
|
|
} else {
|
|
PMD_RX_LOG(DEBUG, "RX bulk alloc failed "
|
|
"port_id=%u queue_id=%u",
|
|
rxq->port_id, rxq->queue_id);
|
|
|
|
dev->data->rx_mbuf_alloc_failed++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
nb_hold++;
|
|
rxe = &sw_ring[rx_id];
|
|
eop = staterr & TXGBE_RXD_STAT_EOP;
|
|
|
|
next_id = rx_id + 1;
|
|
if (next_id == rxq->nb_rx_desc)
|
|
next_id = 0;
|
|
|
|
/* Prefetch next mbuf while processing current one. */
|
|
rte_txgbe_prefetch(sw_ring[next_id].mbuf);
|
|
|
|
/*
|
|
* When next RX descriptor is on a cache-line boundary,
|
|
* prefetch the next 4 RX descriptors and the next 4 pointers
|
|
* to mbufs.
|
|
*/
|
|
if ((next_id & 0x3) == 0) {
|
|
rte_txgbe_prefetch(&rx_ring[next_id]);
|
|
rte_txgbe_prefetch(&sw_ring[next_id]);
|
|
}
|
|
|
|
rxm = rxe->mbuf;
|
|
|
|
if (!bulk_alloc) {
|
|
__le64 dma =
|
|
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
|
|
/*
|
|
* Update RX descriptor with the physical address of the
|
|
* new data buffer of the new allocated mbuf.
|
|
*/
|
|
rxe->mbuf = nmb;
|
|
|
|
rxm->data_off = RTE_PKTMBUF_HEADROOM;
|
|
TXGBE_RXD_HDRADDR(rxdp, 0);
|
|
TXGBE_RXD_PKTADDR(rxdp, dma);
|
|
} else {
|
|
rxe->mbuf = NULL;
|
|
}
|
|
|
|
/*
|
|
* Set data length & data buffer address of mbuf.
|
|
*/
|
|
data_len = rte_le_to_cpu_16(rxd.qw1.hi.len);
|
|
rxm->data_len = data_len;
|
|
|
|
if (!eop) {
|
|
uint16_t nextp_id;
|
|
/*
|
|
* Get next descriptor index:
|
|
* - For RSC it's in the NEXTP field.
|
|
* - For a scattered packet - it's just a following
|
|
* descriptor.
|
|
*/
|
|
if (TXGBE_RXD_RSCCNT(rxd.qw0.dw0))
|
|
nextp_id = TXGBE_RXD_NEXTP(staterr);
|
|
else
|
|
nextp_id = next_id;
|
|
|
|
next_sc_entry = &sw_sc_ring[nextp_id];
|
|
next_rxe = &sw_ring[nextp_id];
|
|
rte_txgbe_prefetch(next_rxe);
|
|
}
|
|
|
|
sc_entry = &sw_sc_ring[rx_id];
|
|
first_seg = sc_entry->fbuf;
|
|
sc_entry->fbuf = NULL;
|
|
|
|
/*
|
|
* If this is the first buffer of the received packet,
|
|
* set the pointer to the first mbuf of the packet and
|
|
* initialize its context.
|
|
* Otherwise, update the total length and the number of segments
|
|
* of the current scattered packet, and update the pointer to
|
|
* the last mbuf of the current packet.
|
|
*/
|
|
if (first_seg == NULL) {
|
|
first_seg = rxm;
|
|
first_seg->pkt_len = data_len;
|
|
first_seg->nb_segs = 1;
|
|
} else {
|
|
first_seg->pkt_len += data_len;
|
|
first_seg->nb_segs++;
|
|
}
|
|
|
|
prev_id = rx_id;
|
|
rx_id = next_id;
|
|
|
|
/*
|
|
* If this is not the last buffer of the received packet, update
|
|
* the pointer to the first mbuf at the NEXTP entry in the
|
|
* sw_sc_ring and continue to parse the RX ring.
|
|
*/
|
|
if (!eop && next_rxe) {
|
|
rxm->next = next_rxe->mbuf;
|
|
next_sc_entry->fbuf = first_seg;
|
|
goto next_desc;
|
|
}
|
|
|
|
/* Initialize the first mbuf of the returned packet */
|
|
txgbe_fill_cluster_head_buf(first_seg, &rxd, rxq, staterr);
|
|
|
|
/*
|
|
* Deal with the case, when HW CRC srip is disabled.
|
|
* That can't happen when LRO is enabled, but still could
|
|
* happen for scattered RX mode.
|
|
*/
|
|
first_seg->pkt_len -= rxq->crc_len;
|
|
if (unlikely(rxm->data_len <= rxq->crc_len)) {
|
|
struct rte_mbuf *lp;
|
|
|
|
for (lp = first_seg; lp->next != rxm; lp = lp->next)
|
|
;
|
|
|
|
first_seg->nb_segs--;
|
|
lp->data_len -= rxq->crc_len - rxm->data_len;
|
|
lp->next = NULL;
|
|
rte_pktmbuf_free_seg(rxm);
|
|
} else {
|
|
rxm->data_len -= rxq->crc_len;
|
|
}
|
|
|
|
/* Prefetch data of first segment, if configured to do so. */
|
|
rte_packet_prefetch((char *)first_seg->buf_addr +
|
|
first_seg->data_off);
|
|
|
|
/*
|
|
* Store the mbuf address into the next entry of the array
|
|
* of returned packets.
|
|
*/
|
|
rx_pkts[nb_rx++] = first_seg;
|
|
}
|
|
|
|
/*
|
|
* Record index of the next RX descriptor to probe.
|
|
*/
|
|
rxq->rx_tail = rx_id;
|
|
|
|
/*
|
|
* If the number of free RX descriptors is greater than the RX free
|
|
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
|
|
* register.
|
|
* Update the RDT with the value of the last processed RX descriptor
|
|
* minus 1, to guarantee that the RDT register is never equal to the
|
|
* RDH register, which creates a "full" ring situation from the
|
|
* hardware point of view...
|
|
*/
|
|
if (!bulk_alloc && nb_hold > rxq->rx_free_thresh) {
|
|
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
|
|
"nb_hold=%u nb_rx=%u",
|
|
rxq->port_id, rxq->queue_id, rx_id, nb_hold, nb_rx);
|
|
|
|
rte_wmb();
|
|
txgbe_set32_relaxed(rxq->rdt_reg_addr, prev_id);
|
|
nb_hold = 0;
|
|
}
|
|
|
|
rxq->nb_rx_hold = nb_hold;
|
|
return nb_rx;
|
|
}
|
|
|
|
uint16_t
|
|
txgbe_recv_pkts_lro_single_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
return txgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, false);
|
|
}
|
|
|
|
uint16_t
|
|
txgbe_recv_pkts_lro_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
return txgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, true);
|
|
}
|
|
|
|
uint64_t
|
|
txgbe_get_rx_queue_offloads(struct rte_eth_dev *dev __rte_unused)
|
|
{
|
|
return RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
|
|
}
|
|
|
|
uint64_t
|
|
txgbe_get_rx_port_offloads(struct rte_eth_dev *dev)
|
|
{
|
|
uint64_t offloads;
|
|
struct txgbe_hw *hw = TXGBE_DEV_HW(dev);
|
|
struct rte_eth_dev_sriov *sriov = &RTE_ETH_DEV_SRIOV(dev);
|
|
|
|
offloads = RTE_ETH_RX_OFFLOAD_IPV4_CKSUM |
|
|
RTE_ETH_RX_OFFLOAD_UDP_CKSUM |
|
|
RTE_ETH_RX_OFFLOAD_TCP_CKSUM |
|
|
RTE_ETH_RX_OFFLOAD_KEEP_CRC |
|
|
RTE_ETH_RX_OFFLOAD_VLAN_FILTER |
|
|
RTE_ETH_RX_OFFLOAD_RSS_HASH |
|
|
RTE_ETH_RX_OFFLOAD_SCATTER;
|
|
|
|
if (!txgbe_is_vf(dev))
|
|
offloads |= (RTE_ETH_RX_OFFLOAD_VLAN_FILTER |
|
|
RTE_ETH_RX_OFFLOAD_QINQ_STRIP |
|
|
RTE_ETH_RX_OFFLOAD_VLAN_EXTEND);
|
|
|
|
/*
|
|
* RSC is only supported by PF devices in a non-SR-IOV
|
|
* mode.
|
|
*/
|
|
if (hw->mac.type == txgbe_mac_raptor && !sriov->active)
|
|
offloads |= RTE_ETH_RX_OFFLOAD_TCP_LRO;
|
|
|
|
if (hw->mac.type == txgbe_mac_raptor)
|
|
offloads |= RTE_ETH_RX_OFFLOAD_MACSEC_STRIP;
|
|
|
|
offloads |= RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM;
|
|
|
|
#ifdef RTE_LIB_SECURITY
|
|
if (dev->security_ctx)
|
|
offloads |= RTE_ETH_RX_OFFLOAD_SECURITY;
|
|
#endif
|
|
|
|
return offloads;
|
|
}
|
|
|
|
static void __rte_cold
|
|
txgbe_tx_queue_release_mbufs(struct txgbe_tx_queue *txq)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (txq->sw_ring != NULL) {
|
|
for (i = 0; i < txq->nb_tx_desc; i++) {
|
|
if (txq->sw_ring[i].mbuf != NULL) {
|
|
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
|
|
txq->sw_ring[i].mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
txgbe_tx_done_cleanup_full(struct txgbe_tx_queue *txq, uint32_t free_cnt)
|
|
{
|
|
struct txgbe_tx_entry *swr_ring = txq->sw_ring;
|
|
uint16_t i, tx_last, tx_id;
|
|
uint16_t nb_tx_free_last;
|
|
uint16_t nb_tx_to_clean;
|
|
uint32_t pkt_cnt;
|
|
|
|
/* Start free mbuf from the next of tx_tail */
|
|
tx_last = txq->tx_tail;
|
|
tx_id = swr_ring[tx_last].next_id;
|
|
|
|
if (txq->nb_tx_free == 0 && txgbe_xmit_cleanup(txq))
|
|
return 0;
|
|
|
|
nb_tx_to_clean = txq->nb_tx_free;
|
|
nb_tx_free_last = txq->nb_tx_free;
|
|
if (!free_cnt)
|
|
free_cnt = txq->nb_tx_desc;
|
|
|
|
/* Loop through swr_ring to count the amount of
|
|
* freeable mubfs and packets.
|
|
*/
|
|
for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
|
|
for (i = 0; i < nb_tx_to_clean &&
|
|
pkt_cnt < free_cnt &&
|
|
tx_id != tx_last; i++) {
|
|
if (swr_ring[tx_id].mbuf != NULL) {
|
|
rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
|
|
swr_ring[tx_id].mbuf = NULL;
|
|
|
|
/*
|
|
* last segment in the packet,
|
|
* increment packet count
|
|
*/
|
|
pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
|
|
}
|
|
|
|
tx_id = swr_ring[tx_id].next_id;
|
|
}
|
|
|
|
if (pkt_cnt < free_cnt) {
|
|
if (txgbe_xmit_cleanup(txq))
|
|
break;
|
|
|
|
nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last;
|
|
nb_tx_free_last = txq->nb_tx_free;
|
|
}
|
|
}
|
|
|
|
return (int)pkt_cnt;
|
|
}
|
|
|
|
static int
|
|
txgbe_tx_done_cleanup_simple(struct txgbe_tx_queue *txq,
|
|
uint32_t free_cnt)
|
|
{
|
|
int i, n, cnt;
|
|
|
|
if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
|
|
free_cnt = txq->nb_tx_desc;
|
|
|
|
cnt = free_cnt - free_cnt % txq->tx_free_thresh;
|
|
|
|
for (i = 0; i < cnt; i += n) {
|
|
if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_free_thresh)
|
|
break;
|
|
|
|
n = txgbe_tx_free_bufs(txq);
|
|
|
|
if (n == 0)
|
|
break;
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
int
|
|
txgbe_dev_tx_done_cleanup(void *tx_queue, uint32_t free_cnt)
|
|
{
|
|
struct txgbe_tx_queue *txq = (struct txgbe_tx_queue *)tx_queue;
|
|
if (txq->offloads == 0 &&
|
|
#ifdef RTE_LIB_SECURITY
|
|
!(txq->using_ipsec) &&
|
|
#endif
|
|
txq->tx_free_thresh >= RTE_PMD_TXGBE_TX_MAX_BURST)
|
|
return txgbe_tx_done_cleanup_simple(txq, free_cnt);
|
|
|
|
return txgbe_tx_done_cleanup_full(txq, free_cnt);
|
|
}
|
|
|
|
static void __rte_cold
|
|
txgbe_tx_free_swring(struct txgbe_tx_queue *txq)
|
|
{
|
|
if (txq != NULL &&
|
|
txq->sw_ring != NULL)
|
|
rte_free(txq->sw_ring);
|
|
}
|
|
|
|
static void __rte_cold
|
|
txgbe_tx_queue_release(struct txgbe_tx_queue *txq)
|
|
{
|
|
if (txq != NULL && txq->ops != NULL) {
|
|
txq->ops->release_mbufs(txq);
|
|
txq->ops->free_swring(txq);
|
|
rte_free(txq);
|
|
}
|
|
}
|
|
|
|
void __rte_cold
|
|
txgbe_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
|
|
{
|
|
txgbe_tx_queue_release(dev->data->tx_queues[qid]);
|
|
}
|
|
|
|
/* (Re)set dynamic txgbe_tx_queue fields to defaults */
|
|
static void __rte_cold
|
|
txgbe_reset_tx_queue(struct txgbe_tx_queue *txq)
|
|
{
|
|
static const struct txgbe_tx_desc zeroed_desc = {0};
|
|
struct txgbe_tx_entry *txe = txq->sw_ring;
|
|
uint16_t prev, i;
|
|
|
|
/* Zero out HW ring memory */
|
|
for (i = 0; i < txq->nb_tx_desc; i++)
|
|
txq->tx_ring[i] = zeroed_desc;
|
|
|
|
/* Initialize SW ring entries */
|
|
prev = (uint16_t)(txq->nb_tx_desc - 1);
|
|
for (i = 0; i < txq->nb_tx_desc; i++) {
|
|
volatile struct txgbe_tx_desc *txd = &txq->tx_ring[i];
|
|
|
|
txd->dw3 = rte_cpu_to_le_32(TXGBE_TXD_DD);
|
|
txe[i].mbuf = NULL;
|
|
txe[i].last_id = i;
|
|
txe[prev].next_id = i;
|
|
prev = i;
|
|
}
|
|
|
|
txq->tx_next_dd = (uint16_t)(txq->tx_free_thresh - 1);
|
|
txq->tx_tail = 0;
|
|
|
|
/*
|
|
* Always allow 1 descriptor to be un-allocated to avoid
|
|
* a H/W race condition
|
|
*/
|
|
txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
|
|
txq->ctx_curr = 0;
|
|
memset((void *)&txq->ctx_cache, 0,
|
|
TXGBE_CTX_NUM * sizeof(struct txgbe_ctx_info));
|
|
}
|
|
|
|
static const struct txgbe_txq_ops def_txq_ops = {
|
|
.release_mbufs = txgbe_tx_queue_release_mbufs,
|
|
.free_swring = txgbe_tx_free_swring,
|
|
.reset = txgbe_reset_tx_queue,
|
|
};
|
|
|
|
/* Takes an ethdev and a queue and sets up the tx function to be used based on
|
|
* the queue parameters. Used in tx_queue_setup by primary process and then
|
|
* in dev_init by secondary process when attaching to an existing ethdev.
|
|
*/
|
|
void __rte_cold
|
|
txgbe_set_tx_function(struct rte_eth_dev *dev, struct txgbe_tx_queue *txq)
|
|
{
|
|
/* Use a simple Tx queue (no offloads, no multi segs) if possible */
|
|
if (txq->offloads == 0 &&
|
|
#ifdef RTE_LIB_SECURITY
|
|
!(txq->using_ipsec) &&
|
|
#endif
|
|
txq->tx_free_thresh >= RTE_PMD_TXGBE_TX_MAX_BURST) {
|
|
PMD_INIT_LOG(DEBUG, "Using simple tx code path");
|
|
dev->tx_pkt_burst = txgbe_xmit_pkts_simple;
|
|
dev->tx_pkt_prepare = NULL;
|
|
} else {
|
|
PMD_INIT_LOG(DEBUG, "Using full-featured tx code path");
|
|
PMD_INIT_LOG(DEBUG,
|
|
" - offloads = 0x%" PRIx64,
|
|
txq->offloads);
|
|
PMD_INIT_LOG(DEBUG,
|
|
" - tx_free_thresh = %lu [RTE_PMD_TXGBE_TX_MAX_BURST=%lu]",
|
|
(unsigned long)txq->tx_free_thresh,
|
|
(unsigned long)RTE_PMD_TXGBE_TX_MAX_BURST);
|
|
dev->tx_pkt_burst = txgbe_xmit_pkts;
|
|
dev->tx_pkt_prepare = txgbe_prep_pkts;
|
|
}
|
|
}
|
|
|
|
uint64_t
|
|
txgbe_get_tx_queue_offloads(struct rte_eth_dev *dev)
|
|
{
|
|
RTE_SET_USED(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint64_t
|
|
txgbe_get_tx_port_offloads(struct rte_eth_dev *dev)
|
|
{
|
|
uint64_t tx_offload_capa;
|
|
|
|
tx_offload_capa =
|
|
RTE_ETH_TX_OFFLOAD_VLAN_INSERT |
|
|
RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
|
|
RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
|
|
RTE_ETH_TX_OFFLOAD_TCP_CKSUM |
|
|
RTE_ETH_TX_OFFLOAD_SCTP_CKSUM |
|
|
RTE_ETH_TX_OFFLOAD_TCP_TSO |
|
|
RTE_ETH_TX_OFFLOAD_UDP_TSO |
|
|
RTE_ETH_TX_OFFLOAD_UDP_TNL_TSO |
|
|
RTE_ETH_TX_OFFLOAD_IP_TNL_TSO |
|
|
RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO |
|
|
RTE_ETH_TX_OFFLOAD_GRE_TNL_TSO |
|
|
RTE_ETH_TX_OFFLOAD_IPIP_TNL_TSO |
|
|
RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO |
|
|
RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
|
|
|
|
if (!txgbe_is_vf(dev))
|
|
tx_offload_capa |= RTE_ETH_TX_OFFLOAD_QINQ_INSERT;
|
|
|
|
tx_offload_capa |= RTE_ETH_TX_OFFLOAD_MACSEC_INSERT;
|
|
|
|
tx_offload_capa |= RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM |
|
|
RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM;
|
|
|
|
#ifdef RTE_LIB_SECURITY
|
|
if (dev->security_ctx)
|
|
tx_offload_capa |= RTE_ETH_TX_OFFLOAD_SECURITY;
|
|
#endif
|
|
return tx_offload_capa;
|
|
}
|
|
|
|
int __rte_cold
|
|
txgbe_dev_tx_queue_setup(struct rte_eth_dev *dev,
|
|
uint16_t queue_idx,
|
|
uint16_t nb_desc,
|
|
unsigned int socket_id,
|
|
const struct rte_eth_txconf *tx_conf)
|
|
{
|
|
const struct rte_memzone *tz;
|
|
struct txgbe_tx_queue *txq;
|
|
struct txgbe_hw *hw;
|
|
uint16_t tx_free_thresh;
|
|
uint64_t offloads;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = TXGBE_DEV_HW(dev);
|
|
|
|
offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
|
|
|
|
/*
|
|
* Validate number of transmit descriptors.
|
|
* It must not exceed hardware maximum, and must be multiple
|
|
* of TXGBE_ALIGN.
|
|
*/
|
|
if (nb_desc % TXGBE_TXD_ALIGN != 0 ||
|
|
nb_desc > TXGBE_RING_DESC_MAX ||
|
|
nb_desc < TXGBE_RING_DESC_MIN) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* The TX descriptor ring will be cleaned after txq->tx_free_thresh
|
|
* descriptors are used or if the number of descriptors required
|
|
* to transmit a packet is greater than the number of free TX
|
|
* descriptors.
|
|
* One descriptor in the TX ring is used as a sentinel to avoid a
|
|
* H/W race condition, hence the maximum threshold constraints.
|
|
* When set to zero use default values.
|
|
*/
|
|
tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
|
|
tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
|
|
if (tx_free_thresh >= (nb_desc - 3)) {
|
|
PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the number of "
|
|
"TX descriptors minus 3. (tx_free_thresh=%u "
|
|
"port=%d queue=%d)",
|
|
(unsigned int)tx_free_thresh,
|
|
(int)dev->data->port_id, (int)queue_idx);
|
|
return -(EINVAL);
|
|
}
|
|
|
|
if ((nb_desc % tx_free_thresh) != 0) {
|
|
PMD_INIT_LOG(ERR, "tx_free_thresh must be a divisor of the "
|
|
"number of TX descriptors. (tx_free_thresh=%u "
|
|
"port=%d queue=%d)", (unsigned int)tx_free_thresh,
|
|
(int)dev->data->port_id, (int)queue_idx);
|
|
return -(EINVAL);
|
|
}
|
|
|
|
/* Free memory prior to re-allocation if needed... */
|
|
if (dev->data->tx_queues[queue_idx] != NULL) {
|
|
txgbe_tx_queue_release(dev->data->tx_queues[queue_idx]);
|
|
dev->data->tx_queues[queue_idx] = NULL;
|
|
}
|
|
|
|
/* First allocate the tx queue data structure */
|
|
txq = rte_zmalloc_socket("ethdev TX queue",
|
|
sizeof(struct txgbe_tx_queue),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (txq == NULL)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Allocate TX ring hardware descriptors. A memzone large enough to
|
|
* handle the maximum ring size is allocated in order to allow for
|
|
* resizing in later calls to the queue setup function.
|
|
*/
|
|
tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
|
|
sizeof(struct txgbe_tx_desc) * TXGBE_RING_DESC_MAX,
|
|
TXGBE_ALIGN, socket_id);
|
|
if (tz == NULL) {
|
|
txgbe_tx_queue_release(txq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
txq->nb_tx_desc = nb_desc;
|
|
txq->tx_free_thresh = tx_free_thresh;
|
|
txq->pthresh = tx_conf->tx_thresh.pthresh;
|
|
txq->hthresh = tx_conf->tx_thresh.hthresh;
|
|
txq->wthresh = tx_conf->tx_thresh.wthresh;
|
|
txq->queue_id = queue_idx;
|
|
txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
|
|
queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
|
|
txq->port_id = dev->data->port_id;
|
|
txq->offloads = offloads;
|
|
txq->ops = &def_txq_ops;
|
|
txq->tx_deferred_start = tx_conf->tx_deferred_start;
|
|
#ifdef RTE_LIB_SECURITY
|
|
txq->using_ipsec = !!(dev->data->dev_conf.txmode.offloads &
|
|
RTE_ETH_TX_OFFLOAD_SECURITY);
|
|
#endif
|
|
|
|
/* Modification to set tail pointer for virtual function
|
|
* if vf is detected.
|
|
*/
|
|
if (hw->mac.type == txgbe_mac_raptor_vf) {
|
|
txq->tdt_reg_addr = TXGBE_REG_ADDR(hw, TXGBE_TXWP(queue_idx));
|
|
txq->tdc_reg_addr = TXGBE_REG_ADDR(hw, TXGBE_TXCFG(queue_idx));
|
|
} else {
|
|
txq->tdt_reg_addr = TXGBE_REG_ADDR(hw,
|
|
TXGBE_TXWP(txq->reg_idx));
|
|
txq->tdc_reg_addr = TXGBE_REG_ADDR(hw,
|
|
TXGBE_TXCFG(txq->reg_idx));
|
|
}
|
|
|
|
txq->tx_ring_phys_addr = TMZ_PADDR(tz);
|
|
txq->tx_ring = (struct txgbe_tx_desc *)TMZ_VADDR(tz);
|
|
|
|
/* Allocate software ring */
|
|
txq->sw_ring = rte_zmalloc_socket("txq->sw_ring",
|
|
sizeof(struct txgbe_tx_entry) * nb_desc,
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (txq->sw_ring == NULL) {
|
|
txgbe_tx_queue_release(txq);
|
|
return -ENOMEM;
|
|
}
|
|
PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%" PRIx64,
|
|
txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
|
|
|
|
/* set up scalar TX function as appropriate */
|
|
txgbe_set_tx_function(dev, txq);
|
|
|
|
txq->ops->reset(txq);
|
|
|
|
dev->data->tx_queues[queue_idx] = txq;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* txgbe_free_sc_cluster - free the not-yet-completed scattered cluster
|
|
*
|
|
* The "next" pointer of the last segment of (not-yet-completed) RSC clusters
|
|
* in the sw_rsc_ring is not set to NULL but rather points to the next
|
|
* mbuf of this RSC aggregation (that has not been completed yet and still
|
|
* resides on the HW ring). So, instead of calling for rte_pktmbuf_free() we
|
|
* will just free first "nb_segs" segments of the cluster explicitly by calling
|
|
* an rte_pktmbuf_free_seg().
|
|
*
|
|
* @m scattered cluster head
|
|
*/
|
|
static void __rte_cold
|
|
txgbe_free_sc_cluster(struct rte_mbuf *m)
|
|
{
|
|
uint16_t i, nb_segs = m->nb_segs;
|
|
struct rte_mbuf *next_seg;
|
|
|
|
for (i = 0; i < nb_segs; i++) {
|
|
next_seg = m->next;
|
|
rte_pktmbuf_free_seg(m);
|
|
m = next_seg;
|
|
}
|
|
}
|
|
|
|
static void __rte_cold
|
|
txgbe_rx_queue_release_mbufs(struct txgbe_rx_queue *rxq)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (rxq->sw_ring != NULL) {
|
|
for (i = 0; i < rxq->nb_rx_desc; i++) {
|
|
if (rxq->sw_ring[i].mbuf != NULL) {
|
|
rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
|
|
rxq->sw_ring[i].mbuf = NULL;
|
|
}
|
|
}
|
|
if (rxq->rx_nb_avail) {
|
|
for (i = 0; i < rxq->rx_nb_avail; ++i) {
|
|
struct rte_mbuf *mb;
|
|
|
|
mb = rxq->rx_stage[rxq->rx_next_avail + i];
|
|
rte_pktmbuf_free_seg(mb);
|
|
}
|
|
rxq->rx_nb_avail = 0;
|
|
}
|
|
}
|
|
|
|
if (rxq->sw_sc_ring)
|
|
for (i = 0; i < rxq->nb_rx_desc; i++)
|
|
if (rxq->sw_sc_ring[i].fbuf) {
|
|
txgbe_free_sc_cluster(rxq->sw_sc_ring[i].fbuf);
|
|
rxq->sw_sc_ring[i].fbuf = NULL;
|
|
}
|
|
}
|
|
|
|
static void __rte_cold
|
|
txgbe_rx_queue_release(struct txgbe_rx_queue *rxq)
|
|
{
|
|
if (rxq != NULL) {
|
|
txgbe_rx_queue_release_mbufs(rxq);
|
|
rte_free(rxq->sw_ring);
|
|
rte_free(rxq->sw_sc_ring);
|
|
rte_free(rxq);
|
|
}
|
|
}
|
|
|
|
void __rte_cold
|
|
txgbe_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
|
|
{
|
|
txgbe_rx_queue_release(dev->data->rx_queues[qid]);
|
|
}
|
|
|
|
/*
|
|
* Check if Rx Burst Bulk Alloc function can be used.
|
|
* Return
|
|
* 0: the preconditions are satisfied and the bulk allocation function
|
|
* can be used.
|
|
* -EINVAL: the preconditions are NOT satisfied and the default Rx burst
|
|
* function must be used.
|
|
*/
|
|
static inline int __rte_cold
|
|
check_rx_burst_bulk_alloc_preconditions(struct txgbe_rx_queue *rxq)
|
|
{
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Make sure the following pre-conditions are satisfied:
|
|
* rxq->rx_free_thresh >= RTE_PMD_TXGBE_RX_MAX_BURST
|
|
* rxq->rx_free_thresh < rxq->nb_rx_desc
|
|
* (rxq->nb_rx_desc % rxq->rx_free_thresh) == 0
|
|
* Scattered packets are not supported. This should be checked
|
|
* outside of this function.
|
|
*/
|
|
if (!(rxq->rx_free_thresh >= RTE_PMD_TXGBE_RX_MAX_BURST)) {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
|
|
"rxq->rx_free_thresh=%d, "
|
|
"RTE_PMD_TXGBE_RX_MAX_BURST=%d",
|
|
rxq->rx_free_thresh, RTE_PMD_TXGBE_RX_MAX_BURST);
|
|
ret = -EINVAL;
|
|
} else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
|
|
"rxq->rx_free_thresh=%d, "
|
|
"rxq->nb_rx_desc=%d",
|
|
rxq->rx_free_thresh, rxq->nb_rx_desc);
|
|
ret = -EINVAL;
|
|
} else if (!((rxq->nb_rx_desc % rxq->rx_free_thresh) == 0)) {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
|
|
"rxq->nb_rx_desc=%d, "
|
|
"rxq->rx_free_thresh=%d",
|
|
rxq->nb_rx_desc, rxq->rx_free_thresh);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Reset dynamic txgbe_rx_queue fields back to defaults */
|
|
static void __rte_cold
|
|
txgbe_reset_rx_queue(struct txgbe_adapter *adapter, struct txgbe_rx_queue *rxq)
|
|
{
|
|
static const struct txgbe_rx_desc zeroed_desc = {
|
|
{{0}, {0} }, {{0}, {0} } };
|
|
unsigned int i;
|
|
uint16_t len = rxq->nb_rx_desc;
|
|
|
|
/*
|
|
* By default, the Rx queue setup function allocates enough memory for
|
|
* TXGBE_RING_DESC_MAX. The Rx Burst bulk allocation function requires
|
|
* extra memory at the end of the descriptor ring to be zero'd out.
|
|
*/
|
|
if (adapter->rx_bulk_alloc_allowed)
|
|
/* zero out extra memory */
|
|
len += RTE_PMD_TXGBE_RX_MAX_BURST;
|
|
|
|
/*
|
|
* Zero out HW ring memory. Zero out extra memory at the end of
|
|
* the H/W ring so look-ahead logic in Rx Burst bulk alloc function
|
|
* reads extra memory as zeros.
|
|
*/
|
|
for (i = 0; i < len; i++)
|
|
rxq->rx_ring[i] = zeroed_desc;
|
|
|
|
/*
|
|
* initialize extra software ring entries. Space for these extra
|
|
* entries is always allocated
|
|
*/
|
|
memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
|
|
for (i = rxq->nb_rx_desc; i < len; ++i)
|
|
rxq->sw_ring[i].mbuf = &rxq->fake_mbuf;
|
|
|
|
rxq->rx_nb_avail = 0;
|
|
rxq->rx_next_avail = 0;
|
|
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
|
|
rxq->rx_tail = 0;
|
|
rxq->nb_rx_hold = 0;
|
|
rxq->pkt_first_seg = NULL;
|
|
rxq->pkt_last_seg = NULL;
|
|
}
|
|
|
|
int __rte_cold
|
|
txgbe_dev_rx_queue_setup(struct rte_eth_dev *dev,
|
|
uint16_t queue_idx,
|
|
uint16_t nb_desc,
|
|
unsigned int socket_id,
|
|
const struct rte_eth_rxconf *rx_conf,
|
|
struct rte_mempool *mp)
|
|
{
|
|
const struct rte_memzone *rz;
|
|
struct txgbe_rx_queue *rxq;
|
|
struct txgbe_hw *hw;
|
|
uint16_t len;
|
|
struct txgbe_adapter *adapter = TXGBE_DEV_ADAPTER(dev);
|
|
uint64_t offloads;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = TXGBE_DEV_HW(dev);
|
|
|
|
offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
|
|
|
|
/*
|
|
* Validate number of receive descriptors.
|
|
* It must not exceed hardware maximum, and must be multiple
|
|
* of TXGBE_ALIGN.
|
|
*/
|
|
if (nb_desc % TXGBE_RXD_ALIGN != 0 ||
|
|
nb_desc > TXGBE_RING_DESC_MAX ||
|
|
nb_desc < TXGBE_RING_DESC_MIN) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Free memory prior to re-allocation if needed... */
|
|
if (dev->data->rx_queues[queue_idx] != NULL) {
|
|
txgbe_rx_queue_release(dev->data->rx_queues[queue_idx]);
|
|
dev->data->rx_queues[queue_idx] = NULL;
|
|
}
|
|
|
|
/* First allocate the rx queue data structure */
|
|
rxq = rte_zmalloc_socket("ethdev RX queue",
|
|
sizeof(struct txgbe_rx_queue),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (rxq == NULL)
|
|
return -ENOMEM;
|
|
rxq->mb_pool = mp;
|
|
rxq->nb_rx_desc = nb_desc;
|
|
rxq->rx_free_thresh = rx_conf->rx_free_thresh;
|
|
rxq->queue_id = queue_idx;
|
|
rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
|
|
queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
|
|
rxq->port_id = dev->data->port_id;
|
|
if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
|
|
rxq->crc_len = RTE_ETHER_CRC_LEN;
|
|
else
|
|
rxq->crc_len = 0;
|
|
rxq->drop_en = rx_conf->rx_drop_en;
|
|
rxq->rx_deferred_start = rx_conf->rx_deferred_start;
|
|
rxq->offloads = offloads;
|
|
|
|
/*
|
|
* The packet type in RX descriptor is different for different NICs.
|
|
* So set different masks for different NICs.
|
|
*/
|
|
rxq->pkt_type_mask = TXGBE_PTID_MASK;
|
|
|
|
/*
|
|
* Allocate RX ring hardware descriptors. A memzone large enough to
|
|
* handle the maximum ring size is allocated in order to allow for
|
|
* resizing in later calls to the queue setup function.
|
|
*/
|
|
rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
|
|
RX_RING_SZ, TXGBE_ALIGN, socket_id);
|
|
if (rz == NULL) {
|
|
txgbe_rx_queue_release(rxq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Zero init all the descriptors in the ring.
|
|
*/
|
|
memset(rz->addr, 0, RX_RING_SZ);
|
|
|
|
/*
|
|
* Modified to setup VFRDT for Virtual Function
|
|
*/
|
|
if (hw->mac.type == txgbe_mac_raptor_vf) {
|
|
rxq->rdt_reg_addr =
|
|
TXGBE_REG_ADDR(hw, TXGBE_RXWP(queue_idx));
|
|
rxq->rdh_reg_addr =
|
|
TXGBE_REG_ADDR(hw, TXGBE_RXRP(queue_idx));
|
|
} else {
|
|
rxq->rdt_reg_addr =
|
|
TXGBE_REG_ADDR(hw, TXGBE_RXWP(rxq->reg_idx));
|
|
rxq->rdh_reg_addr =
|
|
TXGBE_REG_ADDR(hw, TXGBE_RXRP(rxq->reg_idx));
|
|
}
|
|
|
|
rxq->rx_ring_phys_addr = TMZ_PADDR(rz);
|
|
rxq->rx_ring = (struct txgbe_rx_desc *)TMZ_VADDR(rz);
|
|
|
|
/*
|
|
* Certain constraints must be met in order to use the bulk buffer
|
|
* allocation Rx burst function. If any of Rx queues doesn't meet them
|
|
* the feature should be disabled for the whole port.
|
|
*/
|
|
if (check_rx_burst_bulk_alloc_preconditions(rxq)) {
|
|
PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Rx Bulk Alloc "
|
|
"preconditions - canceling the feature for "
|
|
"the whole port[%d]",
|
|
rxq->queue_id, rxq->port_id);
|
|
adapter->rx_bulk_alloc_allowed = false;
|
|
}
|
|
|
|
/*
|
|
* Allocate software ring. Allow for space at the end of the
|
|
* S/W ring to make sure look-ahead logic in bulk alloc Rx burst
|
|
* function does not access an invalid memory region.
|
|
*/
|
|
len = nb_desc;
|
|
if (adapter->rx_bulk_alloc_allowed)
|
|
len += RTE_PMD_TXGBE_RX_MAX_BURST;
|
|
|
|
rxq->sw_ring = rte_zmalloc_socket("rxq->sw_ring",
|
|
sizeof(struct txgbe_rx_entry) * len,
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (!rxq->sw_ring) {
|
|
txgbe_rx_queue_release(rxq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Always allocate even if it's not going to be needed in order to
|
|
* simplify the code.
|
|
*
|
|
* This ring is used in LRO and Scattered Rx cases and Scattered Rx may
|
|
* be requested in txgbe_dev_rx_init(), which is called later from
|
|
* dev_start() flow.
|
|
*/
|
|
rxq->sw_sc_ring =
|
|
rte_zmalloc_socket("rxq->sw_sc_ring",
|
|
sizeof(struct txgbe_scattered_rx_entry) * len,
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (!rxq->sw_sc_ring) {
|
|
txgbe_rx_queue_release(rxq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
PMD_INIT_LOG(DEBUG, "sw_ring=%p sw_sc_ring=%p hw_ring=%p "
|
|
"dma_addr=0x%" PRIx64,
|
|
rxq->sw_ring, rxq->sw_sc_ring, rxq->rx_ring,
|
|
rxq->rx_ring_phys_addr);
|
|
|
|
dev->data->rx_queues[queue_idx] = rxq;
|
|
|
|
txgbe_reset_rx_queue(adapter, rxq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint32_t
|
|
txgbe_dev_rx_queue_count(void *rx_queue)
|
|
{
|
|
#define TXGBE_RXQ_SCAN_INTERVAL 4
|
|
volatile struct txgbe_rx_desc *rxdp;
|
|
struct txgbe_rx_queue *rxq;
|
|
uint32_t desc = 0;
|
|
|
|
rxq = rx_queue;
|
|
rxdp = &rxq->rx_ring[rxq->rx_tail];
|
|
|
|
while ((desc < rxq->nb_rx_desc) &&
|
|
(rxdp->qw1.lo.status &
|
|
rte_cpu_to_le_32(TXGBE_RXD_STAT_DD))) {
|
|
desc += TXGBE_RXQ_SCAN_INTERVAL;
|
|
rxdp += TXGBE_RXQ_SCAN_INTERVAL;
|
|
if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
|
|
rxdp = &(rxq->rx_ring[rxq->rx_tail +
|
|
desc - rxq->nb_rx_desc]);
|
|
}
|
|
|
|
return desc;
|
|
}
|
|
|
|
int
|
|
txgbe_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
|
|
{
|
|
struct txgbe_rx_queue *rxq = rx_queue;
|
|
volatile uint32_t *status;
|
|
uint32_t nb_hold, desc;
|
|
|
|
if (unlikely(offset >= rxq->nb_rx_desc))
|
|
return -EINVAL;
|
|
|
|
nb_hold = rxq->nb_rx_hold;
|
|
if (offset >= rxq->nb_rx_desc - nb_hold)
|
|
return RTE_ETH_RX_DESC_UNAVAIL;
|
|
|
|
desc = rxq->rx_tail + offset;
|
|
if (desc >= rxq->nb_rx_desc)
|
|
desc -= rxq->nb_rx_desc;
|
|
|
|
status = &rxq->rx_ring[desc].qw1.lo.status;
|
|
if (*status & rte_cpu_to_le_32(TXGBE_RXD_STAT_DD))
|
|
return RTE_ETH_RX_DESC_DONE;
|
|
|
|
return RTE_ETH_RX_DESC_AVAIL;
|
|
}
|
|
|
|
int
|
|
txgbe_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
|
|
{
|
|
struct txgbe_tx_queue *txq = tx_queue;
|
|
volatile uint32_t *status;
|
|
uint32_t desc;
|
|
|
|
if (unlikely(offset >= txq->nb_tx_desc))
|
|
return -EINVAL;
|
|
|
|
desc = txq->tx_tail + offset;
|
|
if (desc >= txq->nb_tx_desc) {
|
|
desc -= txq->nb_tx_desc;
|
|
if (desc >= txq->nb_tx_desc)
|
|
desc -= txq->nb_tx_desc;
|
|
}
|
|
|
|
status = &txq->tx_ring[desc].dw3;
|
|
if (*status & rte_cpu_to_le_32(TXGBE_TXD_DD))
|
|
return RTE_ETH_TX_DESC_DONE;
|
|
|
|
return RTE_ETH_TX_DESC_FULL;
|
|
}
|
|
|
|
void __rte_cold
|
|
txgbe_dev_clear_queues(struct rte_eth_dev *dev)
|
|
{
|
|
unsigned int i;
|
|
struct txgbe_adapter *adapter = TXGBE_DEV_ADAPTER(dev);
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
struct txgbe_tx_queue *txq = dev->data->tx_queues[i];
|
|
|
|
if (txq != NULL) {
|
|
txq->ops->release_mbufs(txq);
|
|
txq->ops->reset(txq);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
struct txgbe_rx_queue *rxq = dev->data->rx_queues[i];
|
|
|
|
if (rxq != NULL) {
|
|
txgbe_rx_queue_release_mbufs(rxq);
|
|
txgbe_reset_rx_queue(adapter, rxq);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
txgbe_dev_free_queues(struct rte_eth_dev *dev)
|
|
{
|
|
unsigned int i;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
txgbe_dev_rx_queue_release(dev, i);
|
|
dev->data->rx_queues[i] = NULL;
|
|
}
|
|
dev->data->nb_rx_queues = 0;
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
txgbe_dev_tx_queue_release(dev, i);
|
|
dev->data->tx_queues[i] = NULL;
|
|
}
|
|
dev->data->nb_tx_queues = 0;
|
|
}
|
|
|
|
/**
|
|
* Receive Side Scaling (RSS)
|
|
*
|
|
* Principles:
|
|
* The source and destination IP addresses of the IP header and the source
|
|
* and destination ports of TCP/UDP headers, if any, of received packets are
|
|
* hashed against a configurable random key to compute a 32-bit RSS hash result.
|
|
* The seven (7) LSBs of the 32-bit hash result are used as an index into a
|
|
* 128-entry redirection table (RETA). Each entry of the RETA provides a 3-bit
|
|
* RSS output index which is used as the RX queue index where to store the
|
|
* received packets.
|
|
* The following output is supplied in the RX write-back descriptor:
|
|
* - 32-bit result of the Microsoft RSS hash function,
|
|
* - 4-bit RSS type field.
|
|
*/
|
|
|
|
/*
|
|
* Used as the default key.
|
|
*/
|
|
static uint8_t rss_intel_key[40] = {
|
|
0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
|
|
0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
|
|
0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
|
|
0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
|
|
0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
|
|
};
|
|
|
|
static void
|
|
txgbe_rss_disable(struct rte_eth_dev *dev)
|
|
{
|
|
struct txgbe_hw *hw;
|
|
|
|
hw = TXGBE_DEV_HW(dev);
|
|
if (hw->mac.type == txgbe_mac_raptor_vf)
|
|
wr32m(hw, TXGBE_VFPLCFG, TXGBE_VFPLCFG_RSSENA, 0);
|
|
else
|
|
wr32m(hw, TXGBE_RACTL, TXGBE_RACTL_RSSENA, 0);
|
|
}
|
|
|
|
int
|
|
txgbe_dev_rss_hash_update(struct rte_eth_dev *dev,
|
|
struct rte_eth_rss_conf *rss_conf)
|
|
{
|
|
struct txgbe_hw *hw = TXGBE_DEV_HW(dev);
|
|
uint8_t *hash_key;
|
|
uint32_t mrqc;
|
|
uint32_t rss_key;
|
|
uint64_t rss_hf;
|
|
uint16_t i;
|
|
|
|
if (!txgbe_rss_update_sp(hw->mac.type)) {
|
|
PMD_DRV_LOG(ERR, "RSS hash update is not supported on this "
|
|
"NIC.");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
hash_key = rss_conf->rss_key;
|
|
if (hash_key) {
|
|
/* Fill in RSS hash key */
|
|
for (i = 0; i < 10; i++) {
|
|
rss_key = LS32(hash_key[(i * 4) + 0], 0, 0xFF);
|
|
rss_key |= LS32(hash_key[(i * 4) + 1], 8, 0xFF);
|
|
rss_key |= LS32(hash_key[(i * 4) + 2], 16, 0xFF);
|
|
rss_key |= LS32(hash_key[(i * 4) + 3], 24, 0xFF);
|
|
wr32at(hw, TXGBE_REG_RSSKEY, i, rss_key);
|
|
}
|
|
}
|
|
|
|
/* Set configured hashing protocols */
|
|
rss_hf = rss_conf->rss_hf & TXGBE_RSS_OFFLOAD_ALL;
|
|
if (hw->mac.type == txgbe_mac_raptor_vf) {
|
|
mrqc = rd32(hw, TXGBE_VFPLCFG);
|
|
mrqc &= ~TXGBE_VFPLCFG_RSSMASK;
|
|
if (rss_hf & RTE_ETH_RSS_IPV4)
|
|
mrqc |= TXGBE_VFPLCFG_RSSIPV4;
|
|
if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_TCP)
|
|
mrqc |= TXGBE_VFPLCFG_RSSIPV4TCP;
|
|
if (rss_hf & RTE_ETH_RSS_IPV6 ||
|
|
rss_hf & RTE_ETH_RSS_IPV6_EX)
|
|
mrqc |= TXGBE_VFPLCFG_RSSIPV6;
|
|
if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV6_TCP ||
|
|
rss_hf & RTE_ETH_RSS_IPV6_TCP_EX)
|
|
mrqc |= TXGBE_VFPLCFG_RSSIPV6TCP;
|
|
if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_UDP)
|
|
mrqc |= TXGBE_VFPLCFG_RSSIPV4UDP;
|
|
if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV6_UDP ||
|
|
rss_hf & RTE_ETH_RSS_IPV6_UDP_EX)
|
|
mrqc |= TXGBE_VFPLCFG_RSSIPV6UDP;
|
|
|
|
if (rss_hf)
|
|
mrqc |= TXGBE_VFPLCFG_RSSENA;
|
|
else
|
|
mrqc &= ~TXGBE_VFPLCFG_RSSENA;
|
|
|
|
if (dev->data->nb_rx_queues > 3)
|
|
mrqc |= TXGBE_VFPLCFG_RSSHASH(2);
|
|
else if (dev->data->nb_rx_queues > 1)
|
|
mrqc |= TXGBE_VFPLCFG_RSSHASH(1);
|
|
|
|
wr32(hw, TXGBE_VFPLCFG, mrqc);
|
|
} else {
|
|
mrqc = rd32(hw, TXGBE_RACTL);
|
|
mrqc &= ~TXGBE_RACTL_RSSMASK;
|
|
if (rss_hf & RTE_ETH_RSS_IPV4)
|
|
mrqc |= TXGBE_RACTL_RSSIPV4;
|
|
if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_TCP)
|
|
mrqc |= TXGBE_RACTL_RSSIPV4TCP;
|
|
if (rss_hf & RTE_ETH_RSS_IPV6 ||
|
|
rss_hf & RTE_ETH_RSS_IPV6_EX)
|
|
mrqc |= TXGBE_RACTL_RSSIPV6;
|
|
if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV6_TCP ||
|
|
rss_hf & RTE_ETH_RSS_IPV6_TCP_EX)
|
|
mrqc |= TXGBE_RACTL_RSSIPV6TCP;
|
|
if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_UDP)
|
|
mrqc |= TXGBE_RACTL_RSSIPV4UDP;
|
|
if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV6_UDP ||
|
|
rss_hf & RTE_ETH_RSS_IPV6_UDP_EX)
|
|
mrqc |= TXGBE_RACTL_RSSIPV6UDP;
|
|
|
|
if (rss_hf)
|
|
mrqc |= TXGBE_RACTL_RSSENA;
|
|
else
|
|
mrqc &= ~TXGBE_RACTL_RSSENA;
|
|
|
|
wr32(hw, TXGBE_RACTL, mrqc);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
txgbe_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_rss_conf *rss_conf)
|
|
{
|
|
struct txgbe_hw *hw = TXGBE_DEV_HW(dev);
|
|
uint8_t *hash_key;
|
|
uint32_t mrqc;
|
|
uint32_t rss_key;
|
|
uint64_t rss_hf;
|
|
uint16_t i;
|
|
|
|
hash_key = rss_conf->rss_key;
|
|
if (hash_key) {
|
|
/* Return RSS hash key */
|
|
for (i = 0; i < 10; i++) {
|
|
rss_key = rd32at(hw, TXGBE_REG_RSSKEY, i);
|
|
hash_key[(i * 4) + 0] = RS32(rss_key, 0, 0xFF);
|
|
hash_key[(i * 4) + 1] = RS32(rss_key, 8, 0xFF);
|
|
hash_key[(i * 4) + 2] = RS32(rss_key, 16, 0xFF);
|
|
hash_key[(i * 4) + 3] = RS32(rss_key, 24, 0xFF);
|
|
}
|
|
}
|
|
|
|
rss_hf = 0;
|
|
if (hw->mac.type == txgbe_mac_raptor_vf) {
|
|
mrqc = rd32(hw, TXGBE_VFPLCFG);
|
|
if (mrqc & TXGBE_VFPLCFG_RSSIPV4)
|
|
rss_hf |= RTE_ETH_RSS_IPV4;
|
|
if (mrqc & TXGBE_VFPLCFG_RSSIPV4TCP)
|
|
rss_hf |= RTE_ETH_RSS_NONFRAG_IPV4_TCP;
|
|
if (mrqc & TXGBE_VFPLCFG_RSSIPV6)
|
|
rss_hf |= RTE_ETH_RSS_IPV6 |
|
|
RTE_ETH_RSS_IPV6_EX;
|
|
if (mrqc & TXGBE_VFPLCFG_RSSIPV6TCP)
|
|
rss_hf |= RTE_ETH_RSS_NONFRAG_IPV6_TCP |
|
|
RTE_ETH_RSS_IPV6_TCP_EX;
|
|
if (mrqc & TXGBE_VFPLCFG_RSSIPV4UDP)
|
|
rss_hf |= RTE_ETH_RSS_NONFRAG_IPV4_UDP;
|
|
if (mrqc & TXGBE_VFPLCFG_RSSIPV6UDP)
|
|
rss_hf |= RTE_ETH_RSS_NONFRAG_IPV6_UDP |
|
|
RTE_ETH_RSS_IPV6_UDP_EX;
|
|
if (!(mrqc & TXGBE_VFPLCFG_RSSENA))
|
|
rss_hf = 0;
|
|
} else {
|
|
mrqc = rd32(hw, TXGBE_RACTL);
|
|
if (mrqc & TXGBE_RACTL_RSSIPV4)
|
|
rss_hf |= RTE_ETH_RSS_IPV4;
|
|
if (mrqc & TXGBE_RACTL_RSSIPV4TCP)
|
|
rss_hf |= RTE_ETH_RSS_NONFRAG_IPV4_TCP;
|
|
if (mrqc & TXGBE_RACTL_RSSIPV6)
|
|
rss_hf |= RTE_ETH_RSS_IPV6 |
|
|
RTE_ETH_RSS_IPV6_EX;
|
|
if (mrqc & TXGBE_RACTL_RSSIPV6TCP)
|
|
rss_hf |= RTE_ETH_RSS_NONFRAG_IPV6_TCP |
|
|
RTE_ETH_RSS_IPV6_TCP_EX;
|
|
if (mrqc & TXGBE_RACTL_RSSIPV4UDP)
|
|
rss_hf |= RTE_ETH_RSS_NONFRAG_IPV4_UDP;
|
|
if (mrqc & TXGBE_RACTL_RSSIPV6UDP)
|
|
rss_hf |= RTE_ETH_RSS_NONFRAG_IPV6_UDP |
|
|
RTE_ETH_RSS_IPV6_UDP_EX;
|
|
if (!(mrqc & TXGBE_RACTL_RSSENA))
|
|
rss_hf = 0;
|
|
}
|
|
|
|
rss_hf &= TXGBE_RSS_OFFLOAD_ALL;
|
|
|
|
rss_conf->rss_hf = rss_hf;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
txgbe_rss_configure(struct rte_eth_dev *dev)
|
|
{
|
|
struct rte_eth_rss_conf rss_conf;
|
|
struct txgbe_adapter *adapter = TXGBE_DEV_ADAPTER(dev);
|
|
struct txgbe_hw *hw = TXGBE_DEV_HW(dev);
|
|
uint32_t reta;
|
|
uint16_t i;
|
|
uint16_t j;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
/*
|
|
* Fill in redirection table
|
|
* The byte-swap is needed because NIC registers are in
|
|
* little-endian order.
|
|
*/
|
|
if (adapter->rss_reta_updated == 0) {
|
|
reta = 0;
|
|
for (i = 0, j = 0; i < RTE_ETH_RSS_RETA_SIZE_128; i++, j++) {
|
|
if (j == dev->data->nb_rx_queues)
|
|
j = 0;
|
|
reta = (reta >> 8) | LS32(j, 24, 0xFF);
|
|
if ((i & 3) == 3)
|
|
wr32at(hw, TXGBE_REG_RSSTBL, i >> 2, reta);
|
|
}
|
|
}
|
|
/*
|
|
* Configure the RSS key and the RSS protocols used to compute
|
|
* the RSS hash of input packets.
|
|
*/
|
|
rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
|
|
if (rss_conf.rss_key == NULL)
|
|
rss_conf.rss_key = rss_intel_key; /* Default hash key */
|
|
txgbe_dev_rss_hash_update(dev, &rss_conf);
|
|
}
|
|
|
|
#define NUM_VFTA_REGISTERS 128
|
|
#define NIC_RX_BUFFER_SIZE 0x200
|
|
|
|
static void
|
|
txgbe_vmdq_dcb_configure(struct rte_eth_dev *dev)
|
|
{
|
|
struct rte_eth_vmdq_dcb_conf *cfg;
|
|
struct txgbe_hw *hw;
|
|
enum rte_eth_nb_pools num_pools;
|
|
uint32_t mrqc, vt_ctl, queue_mapping, vlanctrl;
|
|
uint16_t pbsize;
|
|
uint8_t nb_tcs; /* number of traffic classes */
|
|
int i;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = TXGBE_DEV_HW(dev);
|
|
cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
|
|
num_pools = cfg->nb_queue_pools;
|
|
/* Check we have a valid number of pools */
|
|
if (num_pools != RTE_ETH_16_POOLS && num_pools != RTE_ETH_32_POOLS) {
|
|
txgbe_rss_disable(dev);
|
|
return;
|
|
}
|
|
/* 16 pools -> 8 traffic classes, 32 pools -> 4 traffic classes */
|
|
nb_tcs = (uint8_t)(RTE_ETH_VMDQ_DCB_NUM_QUEUES / (int)num_pools);
|
|
|
|
/*
|
|
* split rx buffer up into sections, each for 1 traffic class
|
|
*/
|
|
pbsize = (uint16_t)(NIC_RX_BUFFER_SIZE / nb_tcs);
|
|
for (i = 0; i < nb_tcs; i++) {
|
|
uint32_t rxpbsize = rd32(hw, TXGBE_PBRXSIZE(i));
|
|
|
|
rxpbsize &= (~(0x3FF << 10));
|
|
/* clear 10 bits. */
|
|
rxpbsize |= (pbsize << 10); /* set value */
|
|
wr32(hw, TXGBE_PBRXSIZE(i), rxpbsize);
|
|
}
|
|
/* zero alloc all unused TCs */
|
|
for (i = nb_tcs; i < RTE_ETH_DCB_NUM_USER_PRIORITIES; i++) {
|
|
uint32_t rxpbsize = rd32(hw, TXGBE_PBRXSIZE(i));
|
|
|
|
rxpbsize &= (~(0x3FF << 10));
|
|
/* clear 10 bits. */
|
|
wr32(hw, TXGBE_PBRXSIZE(i), rxpbsize);
|
|
}
|
|
|
|
if (num_pools == RTE_ETH_16_POOLS) {
|
|
mrqc = TXGBE_PORTCTL_NUMTC_8;
|
|
mrqc |= TXGBE_PORTCTL_NUMVT_16;
|
|
} else {
|
|
mrqc = TXGBE_PORTCTL_NUMTC_4;
|
|
mrqc |= TXGBE_PORTCTL_NUMVT_32;
|
|
}
|
|
wr32m(hw, TXGBE_PORTCTL,
|
|
TXGBE_PORTCTL_NUMTC_MASK | TXGBE_PORTCTL_NUMVT_MASK, mrqc);
|
|
|
|
vt_ctl = TXGBE_POOLCTL_RPLEN;
|
|
if (cfg->enable_default_pool)
|
|
vt_ctl |= TXGBE_POOLCTL_DEFPL(cfg->default_pool);
|
|
else
|
|
vt_ctl |= TXGBE_POOLCTL_DEFDSA;
|
|
|
|
wr32(hw, TXGBE_POOLCTL, vt_ctl);
|
|
|
|
queue_mapping = 0;
|
|
for (i = 0; i < RTE_ETH_DCB_NUM_USER_PRIORITIES; i++)
|
|
/*
|
|
* mapping is done with 3 bits per priority,
|
|
* so shift by i*3 each time
|
|
*/
|
|
queue_mapping |= ((cfg->dcb_tc[i] & 0x07) << (i * 3));
|
|
|
|
wr32(hw, TXGBE_RPUP2TC, queue_mapping);
|
|
|
|
wr32(hw, TXGBE_ARBRXCTL, TXGBE_ARBRXCTL_RRM);
|
|
|
|
/* enable vlan filtering and allow all vlan tags through */
|
|
vlanctrl = rd32(hw, TXGBE_VLANCTL);
|
|
vlanctrl |= TXGBE_VLANCTL_VFE; /* enable vlan filters */
|
|
wr32(hw, TXGBE_VLANCTL, vlanctrl);
|
|
|
|
/* enable all vlan filters */
|
|
for (i = 0; i < NUM_VFTA_REGISTERS; i++)
|
|
wr32(hw, TXGBE_VLANTBL(i), 0xFFFFFFFF);
|
|
|
|
wr32(hw, TXGBE_POOLRXENA(0),
|
|
num_pools == RTE_ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
|
|
|
|
wr32(hw, TXGBE_ETHADDRIDX, 0);
|
|
wr32(hw, TXGBE_ETHADDRASSL, 0xFFFFFFFF);
|
|
wr32(hw, TXGBE_ETHADDRASSH, 0xFFFFFFFF);
|
|
|
|
/* set up filters for vlan tags as configured */
|
|
for (i = 0; i < cfg->nb_pool_maps; i++) {
|
|
/* set vlan id in VF register and set the valid bit */
|
|
wr32(hw, TXGBE_PSRVLANIDX, i);
|
|
wr32(hw, TXGBE_PSRVLAN, (TXGBE_PSRVLAN_EA |
|
|
(cfg->pool_map[i].vlan_id & 0xFFF)));
|
|
|
|
wr32(hw, TXGBE_PSRVLANPLM(0), cfg->pool_map[i].pools);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* txgbe_dcb_config_tx_hw_config - Configure general DCB TX parameters
|
|
* @dev: pointer to eth_dev structure
|
|
* @dcb_config: pointer to txgbe_dcb_config structure
|
|
*/
|
|
static void
|
|
txgbe_dcb_tx_hw_config(struct rte_eth_dev *dev,
|
|
struct txgbe_dcb_config *dcb_config)
|
|
{
|
|
uint32_t reg;
|
|
struct txgbe_hw *hw = TXGBE_DEV_HW(dev);
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
/* Disable the Tx desc arbiter */
|
|
reg = rd32(hw, TXGBE_ARBTXCTL);
|
|
reg |= TXGBE_ARBTXCTL_DIA;
|
|
wr32(hw, TXGBE_ARBTXCTL, reg);
|
|
|
|
/* Enable DCB for Tx with 8 TCs */
|
|
reg = rd32(hw, TXGBE_PORTCTL);
|
|
reg &= TXGBE_PORTCTL_NUMTC_MASK;
|
|
reg |= TXGBE_PORTCTL_DCB;
|
|
if (dcb_config->num_tcs.pg_tcs == 8)
|
|
reg |= TXGBE_PORTCTL_NUMTC_8;
|
|
else
|
|
reg |= TXGBE_PORTCTL_NUMTC_4;
|
|
|
|
wr32(hw, TXGBE_PORTCTL, reg);
|
|
|
|
/* Enable the Tx desc arbiter */
|
|
reg = rd32(hw, TXGBE_ARBTXCTL);
|
|
reg &= ~TXGBE_ARBTXCTL_DIA;
|
|
wr32(hw, TXGBE_ARBTXCTL, reg);
|
|
}
|
|
|
|
/**
|
|
* txgbe_vmdq_dcb_hw_tx_config - Configure general VMDQ+DCB TX parameters
|
|
* @dev: pointer to rte_eth_dev structure
|
|
* @dcb_config: pointer to txgbe_dcb_config structure
|
|
*/
|
|
static void
|
|
txgbe_vmdq_dcb_hw_tx_config(struct rte_eth_dev *dev,
|
|
struct txgbe_dcb_config *dcb_config)
|
|
{
|
|
struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
|
|
&dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
|
|
struct txgbe_hw *hw = TXGBE_DEV_HW(dev);
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
/*PF VF Transmit Enable*/
|
|
wr32(hw, TXGBE_POOLTXENA(0),
|
|
vmdq_tx_conf->nb_queue_pools ==
|
|
RTE_ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
|
|
|
|
/*Configure general DCB TX parameters*/
|
|
txgbe_dcb_tx_hw_config(dev, dcb_config);
|
|
}
|
|
|
|
static void
|
|
txgbe_vmdq_dcb_rx_config(struct rte_eth_dev *dev,
|
|
struct txgbe_dcb_config *dcb_config)
|
|
{
|
|
struct rte_eth_vmdq_dcb_conf *vmdq_rx_conf =
|
|
&dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
|
|
struct txgbe_dcb_tc_config *tc;
|
|
uint8_t i, j;
|
|
|
|
/* convert rte_eth_conf.rx_adv_conf to struct txgbe_dcb_config */
|
|
if (vmdq_rx_conf->nb_queue_pools == RTE_ETH_16_POOLS) {
|
|
dcb_config->num_tcs.pg_tcs = RTE_ETH_8_TCS;
|
|
dcb_config->num_tcs.pfc_tcs = RTE_ETH_8_TCS;
|
|
} else {
|
|
dcb_config->num_tcs.pg_tcs = RTE_ETH_4_TCS;
|
|
dcb_config->num_tcs.pfc_tcs = RTE_ETH_4_TCS;
|
|
}
|
|
|
|
/* Initialize User Priority to Traffic Class mapping */
|
|
for (j = 0; j < TXGBE_DCB_TC_MAX; j++) {
|
|
tc = &dcb_config->tc_config[j];
|
|
tc->path[TXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
|
|
}
|
|
|
|
/* User Priority to Traffic Class mapping */
|
|
for (i = 0; i < RTE_ETH_DCB_NUM_USER_PRIORITIES; i++) {
|
|
j = vmdq_rx_conf->dcb_tc[i];
|
|
tc = &dcb_config->tc_config[j];
|
|
tc->path[TXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
|
|
(uint8_t)(1 << i);
|
|
}
|
|
}
|
|
|
|
static void
|
|
txgbe_dcb_vt_tx_config(struct rte_eth_dev *dev,
|
|
struct txgbe_dcb_config *dcb_config)
|
|
{
|
|
struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
|
|
&dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
|
|
struct txgbe_dcb_tc_config *tc;
|
|
uint8_t i, j;
|
|
|
|
/* convert rte_eth_conf.rx_adv_conf to struct txgbe_dcb_config */
|
|
if (vmdq_tx_conf->nb_queue_pools == RTE_ETH_16_POOLS) {
|
|
dcb_config->num_tcs.pg_tcs = RTE_ETH_8_TCS;
|
|
dcb_config->num_tcs.pfc_tcs = RTE_ETH_8_TCS;
|
|
} else {
|
|
dcb_config->num_tcs.pg_tcs = RTE_ETH_4_TCS;
|
|
dcb_config->num_tcs.pfc_tcs = RTE_ETH_4_TCS;
|
|
}
|
|
|
|
/* Initialize User Priority to Traffic Class mapping */
|
|
for (j = 0; j < TXGBE_DCB_TC_MAX; j++) {
|
|
tc = &dcb_config->tc_config[j];
|
|
tc->path[TXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
|
|
}
|
|
|
|
/* User Priority to Traffic Class mapping */
|
|
for (i = 0; i < RTE_ETH_DCB_NUM_USER_PRIORITIES; i++) {
|
|
j = vmdq_tx_conf->dcb_tc[i];
|
|
tc = &dcb_config->tc_config[j];
|
|
tc->path[TXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
|
|
(uint8_t)(1 << i);
|
|
}
|
|
}
|
|
|
|
static void
|
|
txgbe_dcb_rx_config(struct rte_eth_dev *dev,
|
|
struct txgbe_dcb_config *dcb_config)
|
|
{
|
|
struct rte_eth_dcb_rx_conf *rx_conf =
|
|
&dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
|
|
struct txgbe_dcb_tc_config *tc;
|
|
uint8_t i, j;
|
|
|
|
dcb_config->num_tcs.pg_tcs = (uint8_t)rx_conf->nb_tcs;
|
|
dcb_config->num_tcs.pfc_tcs = (uint8_t)rx_conf->nb_tcs;
|
|
|
|
/* Initialize User Priority to Traffic Class mapping */
|
|
for (j = 0; j < TXGBE_DCB_TC_MAX; j++) {
|
|
tc = &dcb_config->tc_config[j];
|
|
tc->path[TXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
|
|
}
|
|
|
|
/* User Priority to Traffic Class mapping */
|
|
for (i = 0; i < RTE_ETH_DCB_NUM_USER_PRIORITIES; i++) {
|
|
j = rx_conf->dcb_tc[i];
|
|
tc = &dcb_config->tc_config[j];
|
|
tc->path[TXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
|
|
(uint8_t)(1 << i);
|
|
}
|
|
}
|
|
|
|
static void
|
|
txgbe_dcb_tx_config(struct rte_eth_dev *dev,
|
|
struct txgbe_dcb_config *dcb_config)
|
|
{
|
|
struct rte_eth_dcb_tx_conf *tx_conf =
|
|
&dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
|
|
struct txgbe_dcb_tc_config *tc;
|
|
uint8_t i, j;
|
|
|
|
dcb_config->num_tcs.pg_tcs = (uint8_t)tx_conf->nb_tcs;
|
|
dcb_config->num_tcs.pfc_tcs = (uint8_t)tx_conf->nb_tcs;
|
|
|
|
/* Initialize User Priority to Traffic Class mapping */
|
|
for (j = 0; j < TXGBE_DCB_TC_MAX; j++) {
|
|
tc = &dcb_config->tc_config[j];
|
|
tc->path[TXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
|
|
}
|
|
|
|
/* User Priority to Traffic Class mapping */
|
|
for (i = 0; i < RTE_ETH_DCB_NUM_USER_PRIORITIES; i++) {
|
|
j = tx_conf->dcb_tc[i];
|
|
tc = &dcb_config->tc_config[j];
|
|
tc->path[TXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
|
|
(uint8_t)(1 << i);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* txgbe_dcb_rx_hw_config - Configure general DCB RX HW parameters
|
|
* @dev: pointer to eth_dev structure
|
|
* @dcb_config: pointer to txgbe_dcb_config structure
|
|
*/
|
|
static void
|
|
txgbe_dcb_rx_hw_config(struct rte_eth_dev *dev,
|
|
struct txgbe_dcb_config *dcb_config)
|
|
{
|
|
uint32_t reg;
|
|
uint32_t vlanctrl;
|
|
uint8_t i;
|
|
uint32_t q;
|
|
struct txgbe_hw *hw = TXGBE_DEV_HW(dev);
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
/*
|
|
* Disable the arbiter before changing parameters
|
|
* (always enable recycle mode; WSP)
|
|
*/
|
|
reg = TXGBE_ARBRXCTL_RRM | TXGBE_ARBRXCTL_WSP | TXGBE_ARBRXCTL_DIA;
|
|
wr32(hw, TXGBE_ARBRXCTL, reg);
|
|
|
|
reg = rd32(hw, TXGBE_PORTCTL);
|
|
reg &= ~(TXGBE_PORTCTL_NUMTC_MASK | TXGBE_PORTCTL_NUMVT_MASK);
|
|
if (dcb_config->num_tcs.pg_tcs == 4) {
|
|
reg |= TXGBE_PORTCTL_NUMTC_4;
|
|
if (dcb_config->vt_mode)
|
|
reg |= TXGBE_PORTCTL_NUMVT_32;
|
|
else
|
|
wr32(hw, TXGBE_POOLCTL, 0);
|
|
}
|
|
|
|
if (dcb_config->num_tcs.pg_tcs == 8) {
|
|
reg |= TXGBE_PORTCTL_NUMTC_8;
|
|
if (dcb_config->vt_mode)
|
|
reg |= TXGBE_PORTCTL_NUMVT_16;
|
|
else
|
|
wr32(hw, TXGBE_POOLCTL, 0);
|
|
}
|
|
|
|
wr32(hw, TXGBE_PORTCTL, reg);
|
|
|
|
if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
|
|
/* Disable drop for all queues in VMDQ mode*/
|
|
for (q = 0; q < TXGBE_MAX_RX_QUEUE_NUM; q++) {
|
|
u32 val = 1 << (q % 32);
|
|
wr32m(hw, TXGBE_QPRXDROP(q / 32), val, val);
|
|
}
|
|
} else {
|
|
/* Enable drop for all queues in SRIOV mode */
|
|
for (q = 0; q < TXGBE_MAX_RX_QUEUE_NUM; q++) {
|
|
u32 val = 1 << (q % 32);
|
|
wr32m(hw, TXGBE_QPRXDROP(q / 32), val, val);
|
|
}
|
|
}
|
|
|
|
/* VLNCTL: enable vlan filtering and allow all vlan tags through */
|
|
vlanctrl = rd32(hw, TXGBE_VLANCTL);
|
|
vlanctrl |= TXGBE_VLANCTL_VFE; /* enable vlan filters */
|
|
wr32(hw, TXGBE_VLANCTL, vlanctrl);
|
|
|
|
/* VLANTBL - enable all vlan filters */
|
|
for (i = 0; i < NUM_VFTA_REGISTERS; i++)
|
|
wr32(hw, TXGBE_VLANTBL(i), 0xFFFFFFFF);
|
|
|
|
/*
|
|
* Configure Rx packet plane (recycle mode; WSP) and
|
|
* enable arbiter
|
|
*/
|
|
reg = TXGBE_ARBRXCTL_RRM | TXGBE_ARBRXCTL_WSP;
|
|
wr32(hw, TXGBE_ARBRXCTL, reg);
|
|
}
|
|
|
|
static void
|
|
txgbe_dcb_hw_arbite_rx_config(struct txgbe_hw *hw, uint16_t *refill,
|
|
uint16_t *max, uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
|
|
{
|
|
txgbe_dcb_config_rx_arbiter_raptor(hw, refill, max, bwg_id,
|
|
tsa, map);
|
|
}
|
|
|
|
static void
|
|
txgbe_dcb_hw_arbite_tx_config(struct txgbe_hw *hw, uint16_t *refill,
|
|
uint16_t *max, uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
|
|
{
|
|
switch (hw->mac.type) {
|
|
case txgbe_mac_raptor:
|
|
txgbe_dcb_config_tx_desc_arbiter_raptor(hw, refill,
|
|
max, bwg_id, tsa);
|
|
txgbe_dcb_config_tx_data_arbiter_raptor(hw, refill,
|
|
max, bwg_id, tsa, map);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
#define DCB_RX_CONFIG 1
|
|
#define DCB_TX_CONFIG 1
|
|
#define DCB_TX_PB 1024
|
|
/**
|
|
* txgbe_dcb_hw_configure - Enable DCB and configure
|
|
* general DCB in VT mode and non-VT mode parameters
|
|
* @dev: pointer to rte_eth_dev structure
|
|
* @dcb_config: pointer to txgbe_dcb_config structure
|
|
*/
|
|
static int
|
|
txgbe_dcb_hw_configure(struct rte_eth_dev *dev,
|
|
struct txgbe_dcb_config *dcb_config)
|
|
{
|
|
int ret = 0;
|
|
uint8_t i, pfc_en, nb_tcs;
|
|
uint16_t pbsize, rx_buffer_size;
|
|
uint8_t config_dcb_rx = 0;
|
|
uint8_t config_dcb_tx = 0;
|
|
uint8_t tsa[TXGBE_DCB_TC_MAX] = {0};
|
|
uint8_t bwgid[TXGBE_DCB_TC_MAX] = {0};
|
|
uint16_t refill[TXGBE_DCB_TC_MAX] = {0};
|
|
uint16_t max[TXGBE_DCB_TC_MAX] = {0};
|
|
uint8_t map[TXGBE_DCB_TC_MAX] = {0};
|
|
struct txgbe_dcb_tc_config *tc;
|
|
uint32_t max_frame = dev->data->mtu +
|
|
RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN;
|
|
struct txgbe_hw *hw = TXGBE_DEV_HW(dev);
|
|
struct txgbe_bw_conf *bw_conf = TXGBE_DEV_BW_CONF(dev);
|
|
|
|
switch (dev->data->dev_conf.rxmode.mq_mode) {
|
|
case RTE_ETH_MQ_RX_VMDQ_DCB:
|
|
dcb_config->vt_mode = true;
|
|
config_dcb_rx = DCB_RX_CONFIG;
|
|
/*
|
|
* get dcb and VT rx configuration parameters
|
|
* from rte_eth_conf
|
|
*/
|
|
txgbe_vmdq_dcb_rx_config(dev, dcb_config);
|
|
/*Configure general VMDQ and DCB RX parameters*/
|
|
txgbe_vmdq_dcb_configure(dev);
|
|
break;
|
|
case RTE_ETH_MQ_RX_DCB:
|
|
case RTE_ETH_MQ_RX_DCB_RSS:
|
|
dcb_config->vt_mode = false;
|
|
config_dcb_rx = DCB_RX_CONFIG;
|
|
/* Get dcb TX configuration parameters from rte_eth_conf */
|
|
txgbe_dcb_rx_config(dev, dcb_config);
|
|
/*Configure general DCB RX parameters*/
|
|
txgbe_dcb_rx_hw_config(dev, dcb_config);
|
|
break;
|
|
default:
|
|
PMD_INIT_LOG(ERR, "Incorrect DCB RX mode configuration");
|
|
break;
|
|
}
|
|
switch (dev->data->dev_conf.txmode.mq_mode) {
|
|
case RTE_ETH_MQ_TX_VMDQ_DCB:
|
|
dcb_config->vt_mode = true;
|
|
config_dcb_tx = DCB_TX_CONFIG;
|
|
/* get DCB and VT TX configuration parameters
|
|
* from rte_eth_conf
|
|
*/
|
|
txgbe_dcb_vt_tx_config(dev, dcb_config);
|
|
/* Configure general VMDQ and DCB TX parameters */
|
|
txgbe_vmdq_dcb_hw_tx_config(dev, dcb_config);
|
|
break;
|
|
|
|
case RTE_ETH_MQ_TX_DCB:
|
|
dcb_config->vt_mode = false;
|
|
config_dcb_tx = DCB_TX_CONFIG;
|
|
/* get DCB TX configuration parameters from rte_eth_conf */
|
|
txgbe_dcb_tx_config(dev, dcb_config);
|
|
/* Configure general DCB TX parameters */
|
|
txgbe_dcb_tx_hw_config(dev, dcb_config);
|
|
break;
|
|
default:
|
|
PMD_INIT_LOG(ERR, "Incorrect DCB TX mode configuration");
|
|
break;
|
|
}
|
|
|
|
nb_tcs = dcb_config->num_tcs.pfc_tcs;
|
|
/* Unpack map */
|
|
txgbe_dcb_unpack_map_cee(dcb_config, TXGBE_DCB_RX_CONFIG, map);
|
|
if (nb_tcs == RTE_ETH_4_TCS) {
|
|
/* Avoid un-configured priority mapping to TC0 */
|
|
uint8_t j = 4;
|
|
uint8_t mask = 0xFF;
|
|
|
|
for (i = 0; i < RTE_ETH_DCB_NUM_USER_PRIORITIES - 4; i++)
|
|
mask = (uint8_t)(mask & (~(1 << map[i])));
|
|
for (i = 0; mask && (i < TXGBE_DCB_TC_MAX); i++) {
|
|
if ((mask & 0x1) && j < RTE_ETH_DCB_NUM_USER_PRIORITIES)
|
|
map[j++] = i;
|
|
mask >>= 1;
|
|
}
|
|
/* Re-configure 4 TCs BW */
|
|
for (i = 0; i < nb_tcs; i++) {
|
|
tc = &dcb_config->tc_config[i];
|
|
if (bw_conf->tc_num != nb_tcs)
|
|
tc->path[TXGBE_DCB_TX_CONFIG].bwg_percent =
|
|
(uint8_t)(100 / nb_tcs);
|
|
tc->path[TXGBE_DCB_RX_CONFIG].bwg_percent =
|
|
(uint8_t)(100 / nb_tcs);
|
|
}
|
|
for (; i < TXGBE_DCB_TC_MAX; i++) {
|
|
tc = &dcb_config->tc_config[i];
|
|
tc->path[TXGBE_DCB_TX_CONFIG].bwg_percent = 0;
|
|
tc->path[TXGBE_DCB_RX_CONFIG].bwg_percent = 0;
|
|
}
|
|
} else {
|
|
/* Re-configure 8 TCs BW */
|
|
for (i = 0; i < nb_tcs; i++) {
|
|
tc = &dcb_config->tc_config[i];
|
|
if (bw_conf->tc_num != nb_tcs)
|
|
tc->path[TXGBE_DCB_TX_CONFIG].bwg_percent =
|
|
(uint8_t)(100 / nb_tcs + (i & 1));
|
|
tc->path[TXGBE_DCB_RX_CONFIG].bwg_percent =
|
|
(uint8_t)(100 / nb_tcs + (i & 1));
|
|
}
|
|
}
|
|
|
|
rx_buffer_size = NIC_RX_BUFFER_SIZE;
|
|
|
|
if (config_dcb_rx) {
|
|
/* Set RX buffer size */
|
|
pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
|
|
uint32_t rxpbsize = pbsize << 10;
|
|
|
|
for (i = 0; i < nb_tcs; i++)
|
|
wr32(hw, TXGBE_PBRXSIZE(i), rxpbsize);
|
|
|
|
/* zero alloc all unused TCs */
|
|
for (; i < RTE_ETH_DCB_NUM_USER_PRIORITIES; i++)
|
|
wr32(hw, TXGBE_PBRXSIZE(i), 0);
|
|
}
|
|
if (config_dcb_tx) {
|
|
/* Only support an equally distributed
|
|
* Tx packet buffer strategy.
|
|
*/
|
|
uint32_t txpktsize = TXGBE_PBTXSIZE_MAX / nb_tcs;
|
|
uint32_t txpbthresh = (txpktsize / DCB_TX_PB) -
|
|
TXGBE_TXPKT_SIZE_MAX;
|
|
|
|
for (i = 0; i < nb_tcs; i++) {
|
|
wr32(hw, TXGBE_PBTXSIZE(i), txpktsize);
|
|
wr32(hw, TXGBE_PBTXDMATH(i), txpbthresh);
|
|
}
|
|
/* Clear unused TCs, if any, to zero buffer size*/
|
|
for (; i < RTE_ETH_DCB_NUM_USER_PRIORITIES; i++) {
|
|
wr32(hw, TXGBE_PBTXSIZE(i), 0);
|
|
wr32(hw, TXGBE_PBTXDMATH(i), 0);
|
|
}
|
|
}
|
|
|
|
/*Calculates traffic class credits*/
|
|
txgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
|
|
TXGBE_DCB_TX_CONFIG);
|
|
txgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
|
|
TXGBE_DCB_RX_CONFIG);
|
|
|
|
if (config_dcb_rx) {
|
|
/* Unpack CEE standard containers */
|
|
txgbe_dcb_unpack_refill_cee(dcb_config,
|
|
TXGBE_DCB_RX_CONFIG, refill);
|
|
txgbe_dcb_unpack_max_cee(dcb_config, max);
|
|
txgbe_dcb_unpack_bwgid_cee(dcb_config,
|
|
TXGBE_DCB_RX_CONFIG, bwgid);
|
|
txgbe_dcb_unpack_tsa_cee(dcb_config,
|
|
TXGBE_DCB_RX_CONFIG, tsa);
|
|
/* Configure PG(ETS) RX */
|
|
txgbe_dcb_hw_arbite_rx_config(hw, refill, max, bwgid, tsa, map);
|
|
}
|
|
|
|
if (config_dcb_tx) {
|
|
/* Unpack CEE standard containers */
|
|
txgbe_dcb_unpack_refill_cee(dcb_config,
|
|
TXGBE_DCB_TX_CONFIG, refill);
|
|
txgbe_dcb_unpack_max_cee(dcb_config, max);
|
|
txgbe_dcb_unpack_bwgid_cee(dcb_config,
|
|
TXGBE_DCB_TX_CONFIG, bwgid);
|
|
txgbe_dcb_unpack_tsa_cee(dcb_config,
|
|
TXGBE_DCB_TX_CONFIG, tsa);
|
|
/* Configure PG(ETS) TX */
|
|
txgbe_dcb_hw_arbite_tx_config(hw, refill, max, bwgid, tsa, map);
|
|
}
|
|
|
|
/* Configure queue statistics registers */
|
|
txgbe_dcb_config_tc_stats_raptor(hw, dcb_config);
|
|
|
|
/* Check if the PFC is supported */
|
|
if (dev->data->dev_conf.dcb_capability_en & RTE_ETH_DCB_PFC_SUPPORT) {
|
|
pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
|
|
for (i = 0; i < nb_tcs; i++) {
|
|
/* If the TC count is 8,
|
|
* and the default high_water is 48,
|
|
* the low_water is 16 as default.
|
|
*/
|
|
hw->fc.high_water[i] = (pbsize * 3) / 4;
|
|
hw->fc.low_water[i] = pbsize / 4;
|
|
/* Enable pfc for this TC */
|
|
tc = &dcb_config->tc_config[i];
|
|
tc->pfc = txgbe_dcb_pfc_enabled;
|
|
}
|
|
txgbe_dcb_unpack_pfc_cee(dcb_config, map, &pfc_en);
|
|
if (dcb_config->num_tcs.pfc_tcs == RTE_ETH_4_TCS)
|
|
pfc_en &= 0x0F;
|
|
ret = txgbe_dcb_config_pfc(hw, pfc_en, map);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void txgbe_configure_pb(struct rte_eth_dev *dev)
|
|
{
|
|
struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
|
|
struct txgbe_hw *hw = TXGBE_DEV_HW(dev);
|
|
|
|
int hdrm;
|
|
int tc = dev_conf->rx_adv_conf.dcb_rx_conf.nb_tcs;
|
|
|
|
/* Reserve 256KB(/512KB) rx buffer for fdir */
|
|
hdrm = 256; /*KB*/
|
|
|
|
hw->mac.setup_pba(hw, tc, hdrm, PBA_STRATEGY_EQUAL);
|
|
}
|
|
|
|
void txgbe_configure_port(struct rte_eth_dev *dev)
|
|
{
|
|
struct txgbe_hw *hw = TXGBE_DEV_HW(dev);
|
|
int i = 0;
|
|
uint16_t tpids[8] = {RTE_ETHER_TYPE_VLAN, RTE_ETHER_TYPE_QINQ,
|
|
0x9100, 0x9200,
|
|
0x0000, 0x0000,
|
|
0x0000, 0x0000};
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
/* default outer vlan tpid */
|
|
wr32(hw, TXGBE_EXTAG,
|
|
TXGBE_EXTAG_ETAG(RTE_ETHER_TYPE_ETAG) |
|
|
TXGBE_EXTAG_VLAN(RTE_ETHER_TYPE_QINQ));
|
|
|
|
/* default inner vlan tpid */
|
|
wr32m(hw, TXGBE_VLANCTL,
|
|
TXGBE_VLANCTL_TPID_MASK,
|
|
TXGBE_VLANCTL_TPID(RTE_ETHER_TYPE_VLAN));
|
|
wr32m(hw, TXGBE_DMATXCTRL,
|
|
TXGBE_DMATXCTRL_TPID_MASK,
|
|
TXGBE_DMATXCTRL_TPID(RTE_ETHER_TYPE_VLAN));
|
|
|
|
/* default vlan tpid filters */
|
|
for (i = 0; i < 8; i++) {
|
|
wr32m(hw, TXGBE_TAGTPID(i / 2),
|
|
(i % 2 ? TXGBE_TAGTPID_MSB_MASK
|
|
: TXGBE_TAGTPID_LSB_MASK),
|
|
(i % 2 ? TXGBE_TAGTPID_MSB(tpids[i])
|
|
: TXGBE_TAGTPID_LSB(tpids[i])));
|
|
}
|
|
|
|
/* default vxlan port */
|
|
wr32(hw, TXGBE_VXLANPORT, 4789);
|
|
}
|
|
|
|
/**
|
|
* txgbe_configure_dcb - Configure DCB Hardware
|
|
* @dev: pointer to rte_eth_dev
|
|
*/
|
|
void txgbe_configure_dcb(struct rte_eth_dev *dev)
|
|
{
|
|
struct txgbe_dcb_config *dcb_cfg = TXGBE_DEV_DCB_CONFIG(dev);
|
|
struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
/* check support mq_mode for DCB */
|
|
if (dev_conf->rxmode.mq_mode != RTE_ETH_MQ_RX_VMDQ_DCB &&
|
|
dev_conf->rxmode.mq_mode != RTE_ETH_MQ_RX_DCB &&
|
|
dev_conf->rxmode.mq_mode != RTE_ETH_MQ_RX_DCB_RSS)
|
|
return;
|
|
|
|
if (dev->data->nb_rx_queues > RTE_ETH_DCB_NUM_QUEUES)
|
|
return;
|
|
|
|
/** Configure DCB hardware **/
|
|
txgbe_dcb_hw_configure(dev, dcb_cfg);
|
|
}
|
|
|
|
/*
|
|
* VMDq only support for 10 GbE NIC.
|
|
*/
|
|
static void
|
|
txgbe_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
|
|
{
|
|
struct rte_eth_vmdq_rx_conf *cfg;
|
|
struct txgbe_hw *hw;
|
|
enum rte_eth_nb_pools num_pools;
|
|
uint32_t mrqc, vt_ctl, vlanctrl;
|
|
uint32_t vmolr = 0;
|
|
int i;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = TXGBE_DEV_HW(dev);
|
|
cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
|
|
num_pools = cfg->nb_queue_pools;
|
|
|
|
txgbe_rss_disable(dev);
|
|
|
|
/* enable vmdq */
|
|
mrqc = TXGBE_PORTCTL_NUMVT_64;
|
|
wr32m(hw, TXGBE_PORTCTL, TXGBE_PORTCTL_NUMVT_MASK, mrqc);
|
|
|
|
/* turn on virtualisation and set the default pool */
|
|
vt_ctl = TXGBE_POOLCTL_RPLEN;
|
|
if (cfg->enable_default_pool)
|
|
vt_ctl |= TXGBE_POOLCTL_DEFPL(cfg->default_pool);
|
|
else
|
|
vt_ctl |= TXGBE_POOLCTL_DEFDSA;
|
|
|
|
wr32(hw, TXGBE_POOLCTL, vt_ctl);
|
|
|
|
for (i = 0; i < (int)num_pools; i++) {
|
|
vmolr = txgbe_convert_vm_rx_mask_to_val(cfg->rx_mode, vmolr);
|
|
wr32(hw, TXGBE_POOLETHCTL(i), vmolr);
|
|
}
|
|
|
|
/* enable vlan filtering and allow all vlan tags through */
|
|
vlanctrl = rd32(hw, TXGBE_VLANCTL);
|
|
vlanctrl |= TXGBE_VLANCTL_VFE; /* enable vlan filters */
|
|
wr32(hw, TXGBE_VLANCTL, vlanctrl);
|
|
|
|
/* enable all vlan filters */
|
|
for (i = 0; i < NUM_VFTA_REGISTERS; i++)
|
|
wr32(hw, TXGBE_VLANTBL(i), UINT32_MAX);
|
|
|
|
/* pool enabling for receive - 64 */
|
|
wr32(hw, TXGBE_POOLRXENA(0), UINT32_MAX);
|
|
if (num_pools == RTE_ETH_64_POOLS)
|
|
wr32(hw, TXGBE_POOLRXENA(1), UINT32_MAX);
|
|
|
|
/*
|
|
* allow pools to read specific mac addresses
|
|
* In this case, all pools should be able to read from mac addr 0
|
|
*/
|
|
wr32(hw, TXGBE_ETHADDRIDX, 0);
|
|
wr32(hw, TXGBE_ETHADDRASSL, 0xFFFFFFFF);
|
|
wr32(hw, TXGBE_ETHADDRASSH, 0xFFFFFFFF);
|
|
|
|
/* set up filters for vlan tags as configured */
|
|
for (i = 0; i < cfg->nb_pool_maps; i++) {
|
|
/* set vlan id in VF register and set the valid bit */
|
|
wr32(hw, TXGBE_PSRVLANIDX, i);
|
|
wr32(hw, TXGBE_PSRVLAN, (TXGBE_PSRVLAN_EA |
|
|
TXGBE_PSRVLAN_VID(cfg->pool_map[i].vlan_id)));
|
|
/*
|
|
* Put the allowed pools in VFB reg. As we only have 16 or 64
|
|
* pools, we only need to use the first half of the register
|
|
* i.e. bits 0-31
|
|
*/
|
|
if (((cfg->pool_map[i].pools >> 32) & UINT32_MAX) == 0)
|
|
wr32(hw, TXGBE_PSRVLANPLM(0),
|
|
(cfg->pool_map[i].pools & UINT32_MAX));
|
|
else
|
|
wr32(hw, TXGBE_PSRVLANPLM(1),
|
|
((cfg->pool_map[i].pools >> 32) & UINT32_MAX));
|
|
}
|
|
|
|
/* Tx General Switch Control Enables VMDQ loopback */
|
|
if (cfg->enable_loop_back) {
|
|
wr32(hw, TXGBE_PSRCTL, TXGBE_PSRCTL_LBENA);
|
|
for (i = 0; i < 64; i++)
|
|
wr32m(hw, TXGBE_POOLETHCTL(i),
|
|
TXGBE_POOLETHCTL_LLB, TXGBE_POOLETHCTL_LLB);
|
|
}
|
|
|
|
txgbe_flush(hw);
|
|
}
|
|
|
|
/*
|
|
* txgbe_vmdq_tx_hw_configure - Configure general VMDq TX parameters
|
|
* @hw: pointer to hardware structure
|
|
*/
|
|
static void
|
|
txgbe_vmdq_tx_hw_configure(struct txgbe_hw *hw)
|
|
{
|
|
uint32_t reg;
|
|
uint32_t q;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
/*PF VF Transmit Enable*/
|
|
wr32(hw, TXGBE_POOLTXENA(0), UINT32_MAX);
|
|
wr32(hw, TXGBE_POOLTXENA(1), UINT32_MAX);
|
|
|
|
/* Disable the Tx desc arbiter */
|
|
reg = rd32(hw, TXGBE_ARBTXCTL);
|
|
reg |= TXGBE_ARBTXCTL_DIA;
|
|
wr32(hw, TXGBE_ARBTXCTL, reg);
|
|
|
|
wr32m(hw, TXGBE_PORTCTL, TXGBE_PORTCTL_NUMVT_MASK,
|
|
TXGBE_PORTCTL_NUMVT_64);
|
|
|
|
/* Disable drop for all queues */
|
|
for (q = 0; q < 128; q++) {
|
|
u32 val = 1 << (q % 32);
|
|
wr32m(hw, TXGBE_QPRXDROP(q / 32), val, val);
|
|
}
|
|
|
|
/* Enable the Tx desc arbiter */
|
|
reg = rd32(hw, TXGBE_ARBTXCTL);
|
|
reg &= ~TXGBE_ARBTXCTL_DIA;
|
|
wr32(hw, TXGBE_ARBTXCTL, reg);
|
|
|
|
txgbe_flush(hw);
|
|
}
|
|
|
|
static int __rte_cold
|
|
txgbe_alloc_rx_queue_mbufs(struct txgbe_rx_queue *rxq)
|
|
{
|
|
struct txgbe_rx_entry *rxe = rxq->sw_ring;
|
|
uint64_t dma_addr;
|
|
unsigned int i;
|
|
|
|
/* Initialize software ring entries */
|
|
for (i = 0; i < rxq->nb_rx_desc; i++) {
|
|
volatile struct txgbe_rx_desc *rxd;
|
|
struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
|
|
|
|
if (mbuf == NULL) {
|
|
PMD_INIT_LOG(ERR, "RX mbuf alloc failed queue_id=%u",
|
|
(unsigned int)rxq->queue_id);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
|
|
mbuf->port = rxq->port_id;
|
|
|
|
dma_addr =
|
|
rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
|
|
rxd = &rxq->rx_ring[i];
|
|
TXGBE_RXD_HDRADDR(rxd, 0);
|
|
TXGBE_RXD_PKTADDR(rxd, dma_addr);
|
|
rxe[i].mbuf = mbuf;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
txgbe_config_vf_rss(struct rte_eth_dev *dev)
|
|
{
|
|
struct txgbe_hw *hw;
|
|
uint32_t mrqc;
|
|
|
|
txgbe_rss_configure(dev);
|
|
|
|
hw = TXGBE_DEV_HW(dev);
|
|
|
|
/* enable VF RSS */
|
|
mrqc = rd32(hw, TXGBE_PORTCTL);
|
|
mrqc &= ~(TXGBE_PORTCTL_NUMTC_MASK | TXGBE_PORTCTL_NUMVT_MASK);
|
|
switch (RTE_ETH_DEV_SRIOV(dev).active) {
|
|
case RTE_ETH_64_POOLS:
|
|
mrqc |= TXGBE_PORTCTL_NUMVT_64;
|
|
break;
|
|
|
|
case RTE_ETH_32_POOLS:
|
|
mrqc |= TXGBE_PORTCTL_NUMVT_32;
|
|
break;
|
|
|
|
default:
|
|
PMD_INIT_LOG(ERR, "Invalid pool number in IOV mode with VMDQ RSS");
|
|
return -EINVAL;
|
|
}
|
|
|
|
wr32(hw, TXGBE_PORTCTL, mrqc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
txgbe_config_vf_default(struct rte_eth_dev *dev)
|
|
{
|
|
struct txgbe_hw *hw = TXGBE_DEV_HW(dev);
|
|
uint32_t mrqc;
|
|
|
|
mrqc = rd32(hw, TXGBE_PORTCTL);
|
|
mrqc &= ~(TXGBE_PORTCTL_NUMTC_MASK | TXGBE_PORTCTL_NUMVT_MASK);
|
|
switch (RTE_ETH_DEV_SRIOV(dev).active) {
|
|
case RTE_ETH_64_POOLS:
|
|
mrqc |= TXGBE_PORTCTL_NUMVT_64;
|
|
break;
|
|
|
|
case RTE_ETH_32_POOLS:
|
|
mrqc |= TXGBE_PORTCTL_NUMVT_32;
|
|
break;
|
|
|
|
case RTE_ETH_16_POOLS:
|
|
mrqc |= TXGBE_PORTCTL_NUMVT_16;
|
|
break;
|
|
default:
|
|
PMD_INIT_LOG(ERR,
|
|
"invalid pool number in IOV mode");
|
|
return 0;
|
|
}
|
|
|
|
wr32(hw, TXGBE_PORTCTL, mrqc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
txgbe_dev_mq_rx_configure(struct rte_eth_dev *dev)
|
|
{
|
|
if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
|
|
/*
|
|
* SRIOV inactive scheme
|
|
* any DCB/RSS w/o VMDq multi-queue setting
|
|
*/
|
|
switch (dev->data->dev_conf.rxmode.mq_mode) {
|
|
case RTE_ETH_MQ_RX_RSS:
|
|
case RTE_ETH_MQ_RX_DCB_RSS:
|
|
case RTE_ETH_MQ_RX_VMDQ_RSS:
|
|
txgbe_rss_configure(dev);
|
|
break;
|
|
|
|
case RTE_ETH_MQ_RX_VMDQ_DCB:
|
|
txgbe_vmdq_dcb_configure(dev);
|
|
break;
|
|
|
|
case RTE_ETH_MQ_RX_VMDQ_ONLY:
|
|
txgbe_vmdq_rx_hw_configure(dev);
|
|
break;
|
|
|
|
case RTE_ETH_MQ_RX_NONE:
|
|
default:
|
|
/* if mq_mode is none, disable rss mode.*/
|
|
txgbe_rss_disable(dev);
|
|
break;
|
|
}
|
|
} else {
|
|
/* SRIOV active scheme
|
|
* Support RSS together with SRIOV.
|
|
*/
|
|
switch (dev->data->dev_conf.rxmode.mq_mode) {
|
|
case RTE_ETH_MQ_RX_RSS:
|
|
case RTE_ETH_MQ_RX_VMDQ_RSS:
|
|
txgbe_config_vf_rss(dev);
|
|
break;
|
|
case RTE_ETH_MQ_RX_VMDQ_DCB:
|
|
case RTE_ETH_MQ_RX_DCB:
|
|
/* In SRIOV, the configuration is the same as VMDq case */
|
|
txgbe_vmdq_dcb_configure(dev);
|
|
break;
|
|
/* DCB/RSS together with SRIOV is not supported */
|
|
case RTE_ETH_MQ_RX_VMDQ_DCB_RSS:
|
|
case RTE_ETH_MQ_RX_DCB_RSS:
|
|
PMD_INIT_LOG(ERR,
|
|
"Could not support DCB/RSS with VMDq & SRIOV");
|
|
return -1;
|
|
default:
|
|
txgbe_config_vf_default(dev);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
txgbe_dev_mq_tx_configure(struct rte_eth_dev *dev)
|
|
{
|
|
struct txgbe_hw *hw = TXGBE_DEV_HW(dev);
|
|
uint32_t mtqc;
|
|
uint32_t rttdcs;
|
|
|
|
/* disable arbiter */
|
|
rttdcs = rd32(hw, TXGBE_ARBTXCTL);
|
|
rttdcs |= TXGBE_ARBTXCTL_DIA;
|
|
wr32(hw, TXGBE_ARBTXCTL, rttdcs);
|
|
|
|
if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
|
|
/*
|
|
* SRIOV inactive scheme
|
|
* any DCB w/o VMDq multi-queue setting
|
|
*/
|
|
if (dev->data->dev_conf.txmode.mq_mode == RTE_ETH_MQ_TX_VMDQ_ONLY)
|
|
txgbe_vmdq_tx_hw_configure(hw);
|
|
else
|
|
wr32m(hw, TXGBE_PORTCTL, TXGBE_PORTCTL_NUMVT_MASK, 0);
|
|
} else {
|
|
switch (RTE_ETH_DEV_SRIOV(dev).active) {
|
|
/*
|
|
* SRIOV active scheme
|
|
* FIXME if support DCB together with VMDq & SRIOV
|
|
*/
|
|
case RTE_ETH_64_POOLS:
|
|
mtqc = TXGBE_PORTCTL_NUMVT_64;
|
|
break;
|
|
case RTE_ETH_32_POOLS:
|
|
mtqc = TXGBE_PORTCTL_NUMVT_32;
|
|
break;
|
|
case RTE_ETH_16_POOLS:
|
|
mtqc = TXGBE_PORTCTL_NUMVT_16;
|
|
break;
|
|
default:
|
|
mtqc = 0;
|
|
PMD_INIT_LOG(ERR, "invalid pool number in IOV mode");
|
|
}
|
|
wr32m(hw, TXGBE_PORTCTL, TXGBE_PORTCTL_NUMVT_MASK, mtqc);
|
|
}
|
|
|
|
/* re-enable arbiter */
|
|
rttdcs &= ~TXGBE_ARBTXCTL_DIA;
|
|
wr32(hw, TXGBE_ARBTXCTL, rttdcs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* txgbe_get_rscctl_maxdesc
|
|
*
|
|
* @pool Memory pool of the Rx queue
|
|
*/
|
|
static inline uint32_t
|
|
txgbe_get_rscctl_maxdesc(struct rte_mempool *pool)
|
|
{
|
|
struct rte_pktmbuf_pool_private *mp_priv = rte_mempool_get_priv(pool);
|
|
|
|
uint16_t maxdesc =
|
|
RTE_IPV4_MAX_PKT_LEN /
|
|
(mp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM);
|
|
|
|
if (maxdesc >= 16)
|
|
return TXGBE_RXCFG_RSCMAX_16;
|
|
else if (maxdesc >= 8)
|
|
return TXGBE_RXCFG_RSCMAX_8;
|
|
else if (maxdesc >= 4)
|
|
return TXGBE_RXCFG_RSCMAX_4;
|
|
else
|
|
return TXGBE_RXCFG_RSCMAX_1;
|
|
}
|
|
|
|
/**
|
|
* txgbe_set_rsc - configure RSC related port HW registers
|
|
*
|
|
* Configures the port's RSC related registers.
|
|
*
|
|
* @dev port handle
|
|
*
|
|
* Returns 0 in case of success or a non-zero error code
|
|
*/
|
|
static int
|
|
txgbe_set_rsc(struct rte_eth_dev *dev)
|
|
{
|
|
struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
|
|
struct txgbe_hw *hw = TXGBE_DEV_HW(dev);
|
|
struct rte_eth_dev_info dev_info = { 0 };
|
|
bool rsc_capable = false;
|
|
uint16_t i;
|
|
uint32_t rdrxctl;
|
|
uint32_t rfctl;
|
|
|
|
/* Sanity check */
|
|
dev->dev_ops->dev_infos_get(dev, &dev_info);
|
|
if (dev_info.rx_offload_capa & RTE_ETH_RX_OFFLOAD_TCP_LRO)
|
|
rsc_capable = true;
|
|
|
|
if (!rsc_capable && (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO)) {
|
|
PMD_INIT_LOG(CRIT, "LRO is requested on HW that doesn't "
|
|
"support it");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* RSC global configuration */
|
|
|
|
if ((rx_conf->offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC) &&
|
|
(rx_conf->offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO)) {
|
|
PMD_INIT_LOG(CRIT, "LRO can't be enabled when HW CRC "
|
|
"is disabled");
|
|
return -EINVAL;
|
|
}
|
|
|
|
rfctl = rd32(hw, TXGBE_PSRCTL);
|
|
if (rsc_capable && (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO))
|
|
rfctl &= ~TXGBE_PSRCTL_RSCDIA;
|
|
else
|
|
rfctl |= TXGBE_PSRCTL_RSCDIA;
|
|
wr32(hw, TXGBE_PSRCTL, rfctl);
|
|
|
|
/* If LRO hasn't been requested - we are done here. */
|
|
if (!(rx_conf->offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO))
|
|
return 0;
|
|
|
|
/* Set PSRCTL.RSCACK bit */
|
|
rdrxctl = rd32(hw, TXGBE_PSRCTL);
|
|
rdrxctl |= TXGBE_PSRCTL_RSCACK;
|
|
wr32(hw, TXGBE_PSRCTL, rdrxctl);
|
|
|
|
/* Per-queue RSC configuration */
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
struct txgbe_rx_queue *rxq = dev->data->rx_queues[i];
|
|
uint32_t srrctl =
|
|
rd32(hw, TXGBE_RXCFG(rxq->reg_idx));
|
|
uint32_t psrtype =
|
|
rd32(hw, TXGBE_POOLRSS(rxq->reg_idx));
|
|
uint32_t eitr =
|
|
rd32(hw, TXGBE_ITR(rxq->reg_idx));
|
|
|
|
/*
|
|
* txgbe PMD doesn't support header-split at the moment.
|
|
*/
|
|
srrctl &= ~TXGBE_RXCFG_HDRLEN_MASK;
|
|
srrctl |= TXGBE_RXCFG_HDRLEN(128);
|
|
|
|
/*
|
|
* TODO: Consider setting the Receive Descriptor Minimum
|
|
* Threshold Size for an RSC case. This is not an obviously
|
|
* beneficiary option but the one worth considering...
|
|
*/
|
|
|
|
srrctl |= TXGBE_RXCFG_RSCENA;
|
|
srrctl &= ~TXGBE_RXCFG_RSCMAX_MASK;
|
|
srrctl |= txgbe_get_rscctl_maxdesc(rxq->mb_pool);
|
|
psrtype |= TXGBE_POOLRSS_L4HDR;
|
|
|
|
/*
|
|
* RSC: Set ITR interval corresponding to 2K ints/s.
|
|
*
|
|
* Full-sized RSC aggregations for a 10Gb/s link will
|
|
* arrive at about 20K aggregation/s rate.
|
|
*
|
|
* 2K inst/s rate will make only 10% of the
|
|
* aggregations to be closed due to the interrupt timer
|
|
* expiration for a streaming at wire-speed case.
|
|
*
|
|
* For a sparse streaming case this setting will yield
|
|
* at most 500us latency for a single RSC aggregation.
|
|
*/
|
|
eitr &= ~TXGBE_ITR_IVAL_MASK;
|
|
eitr |= TXGBE_ITR_IVAL_10G(TXGBE_QUEUE_ITR_INTERVAL_DEFAULT);
|
|
eitr |= TXGBE_ITR_WRDSA;
|
|
|
|
wr32(hw, TXGBE_RXCFG(rxq->reg_idx), srrctl);
|
|
wr32(hw, TXGBE_POOLRSS(rxq->reg_idx), psrtype);
|
|
wr32(hw, TXGBE_ITR(rxq->reg_idx), eitr);
|
|
|
|
/*
|
|
* RSC requires the mapping of the queue to the
|
|
* interrupt vector.
|
|
*/
|
|
txgbe_set_ivar_map(hw, 0, rxq->reg_idx, i);
|
|
}
|
|
|
|
dev->data->lro = 1;
|
|
|
|
PMD_INIT_LOG(DEBUG, "enabling LRO mode");
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __rte_cold
|
|
txgbe_set_rx_function(struct rte_eth_dev *dev)
|
|
{
|
|
uint16_t i;
|
|
struct txgbe_adapter *adapter = TXGBE_DEV_ADAPTER(dev);
|
|
|
|
/*
|
|
* Initialize the appropriate LRO callback.
|
|
*
|
|
* If all queues satisfy the bulk allocation preconditions
|
|
* (adapter->rx_bulk_alloc_allowed is TRUE) then we may use
|
|
* bulk allocation. Otherwise use a single allocation version.
|
|
*/
|
|
if (dev->data->lro) {
|
|
if (adapter->rx_bulk_alloc_allowed) {
|
|
PMD_INIT_LOG(DEBUG, "LRO is requested. Using a bulk "
|
|
"allocation version");
|
|
dev->rx_pkt_burst = txgbe_recv_pkts_lro_bulk_alloc;
|
|
} else {
|
|
PMD_INIT_LOG(DEBUG, "LRO is requested. Using a single "
|
|
"allocation version");
|
|
dev->rx_pkt_burst = txgbe_recv_pkts_lro_single_alloc;
|
|
}
|
|
} else if (dev->data->scattered_rx) {
|
|
/*
|
|
* Set the non-LRO scattered callback: there are bulk and
|
|
* single allocation versions.
|
|
*/
|
|
if (adapter->rx_bulk_alloc_allowed) {
|
|
PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
|
|
"allocation callback (port=%d).",
|
|
dev->data->port_id);
|
|
dev->rx_pkt_burst = txgbe_recv_pkts_lro_bulk_alloc;
|
|
} else {
|
|
PMD_INIT_LOG(DEBUG, "Using Regular (non-vector, "
|
|
"single allocation) "
|
|
"Scattered Rx callback "
|
|
"(port=%d).",
|
|
dev->data->port_id);
|
|
|
|
dev->rx_pkt_burst = txgbe_recv_pkts_lro_single_alloc;
|
|
}
|
|
/*
|
|
* Below we set "simple" callbacks according to port/queues parameters.
|
|
* If parameters allow we are going to choose between the following
|
|
* callbacks:
|
|
* - Bulk Allocation
|
|
* - Single buffer allocation (the simplest one)
|
|
*/
|
|
} else if (adapter->rx_bulk_alloc_allowed) {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
|
|
"satisfied. Rx Burst Bulk Alloc function "
|
|
"will be used on port=%d.",
|
|
dev->data->port_id);
|
|
|
|
dev->rx_pkt_burst = txgbe_recv_pkts_bulk_alloc;
|
|
} else {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
|
|
"satisfied, or Scattered Rx is requested "
|
|
"(port=%d).",
|
|
dev->data->port_id);
|
|
|
|
dev->rx_pkt_burst = txgbe_recv_pkts;
|
|
}
|
|
|
|
#ifdef RTE_LIB_SECURITY
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
struct txgbe_rx_queue *rxq = dev->data->rx_queues[i];
|
|
|
|
rxq->using_ipsec = !!(dev->data->dev_conf.rxmode.offloads &
|
|
RTE_ETH_RX_OFFLOAD_SECURITY);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Initializes Receive Unit.
|
|
*/
|
|
int __rte_cold
|
|
txgbe_dev_rx_init(struct rte_eth_dev *dev)
|
|
{
|
|
struct txgbe_hw *hw;
|
|
struct txgbe_rx_queue *rxq;
|
|
uint64_t bus_addr;
|
|
uint32_t fctrl;
|
|
uint32_t hlreg0;
|
|
uint32_t srrctl;
|
|
uint32_t rdrxctl;
|
|
uint32_t rxcsum;
|
|
uint16_t buf_size;
|
|
uint16_t i;
|
|
struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
|
|
int rc;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = TXGBE_DEV_HW(dev);
|
|
|
|
/*
|
|
* Make sure receives are disabled while setting
|
|
* up the RX context (registers, descriptor rings, etc.).
|
|
*/
|
|
wr32m(hw, TXGBE_MACRXCFG, TXGBE_MACRXCFG_ENA, 0);
|
|
wr32m(hw, TXGBE_PBRXCTL, TXGBE_PBRXCTL_ENA, 0);
|
|
|
|
/* Enable receipt of broadcasted frames */
|
|
fctrl = rd32(hw, TXGBE_PSRCTL);
|
|
fctrl |= TXGBE_PSRCTL_BCA;
|
|
wr32(hw, TXGBE_PSRCTL, fctrl);
|
|
|
|
/*
|
|
* Configure CRC stripping, if any.
|
|
*/
|
|
hlreg0 = rd32(hw, TXGBE_SECRXCTL);
|
|
if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
|
|
hlreg0 &= ~TXGBE_SECRXCTL_CRCSTRIP;
|
|
else
|
|
hlreg0 |= TXGBE_SECRXCTL_CRCSTRIP;
|
|
wr32(hw, TXGBE_SECRXCTL, hlreg0);
|
|
|
|
/*
|
|
* Configure jumbo frame support, if any.
|
|
*/
|
|
wr32m(hw, TXGBE_FRMSZ, TXGBE_FRMSZ_MAX_MASK,
|
|
TXGBE_FRMSZ_MAX(dev->data->mtu + TXGBE_ETH_OVERHEAD));
|
|
|
|
/*
|
|
* If loopback mode is configured, set LPBK bit.
|
|
*/
|
|
hlreg0 = rd32(hw, TXGBE_PSRCTL);
|
|
if (hw->mac.type == txgbe_mac_raptor &&
|
|
dev->data->dev_conf.lpbk_mode)
|
|
hlreg0 |= TXGBE_PSRCTL_LBENA;
|
|
else
|
|
hlreg0 &= ~TXGBE_PSRCTL_LBENA;
|
|
|
|
wr32(hw, TXGBE_PSRCTL, hlreg0);
|
|
|
|
/*
|
|
* Assume no header split and no VLAN strip support
|
|
* on any Rx queue first .
|
|
*/
|
|
rx_conf->offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
|
|
|
|
/* Setup RX queues */
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
rxq = dev->data->rx_queues[i];
|
|
|
|
/*
|
|
* Reset crc_len in case it was changed after queue setup by a
|
|
* call to configure.
|
|
*/
|
|
if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
|
|
rxq->crc_len = RTE_ETHER_CRC_LEN;
|
|
else
|
|
rxq->crc_len = 0;
|
|
|
|
/* Setup the Base and Length of the Rx Descriptor Rings */
|
|
bus_addr = rxq->rx_ring_phys_addr;
|
|
wr32(hw, TXGBE_RXBAL(rxq->reg_idx),
|
|
(uint32_t)(bus_addr & BIT_MASK32));
|
|
wr32(hw, TXGBE_RXBAH(rxq->reg_idx),
|
|
(uint32_t)(bus_addr >> 32));
|
|
wr32(hw, TXGBE_RXRP(rxq->reg_idx), 0);
|
|
wr32(hw, TXGBE_RXWP(rxq->reg_idx), 0);
|
|
|
|
srrctl = TXGBE_RXCFG_RNGLEN(rxq->nb_rx_desc);
|
|
|
|
/* Set if packets are dropped when no descriptors available */
|
|
if (rxq->drop_en)
|
|
srrctl |= TXGBE_RXCFG_DROP;
|
|
|
|
/*
|
|
* Configure the RX buffer size in the PKTLEN field of
|
|
* the RXCFG register of the queue.
|
|
* The value is in 1 KB resolution. Valid values can be from
|
|
* 1 KB to 16 KB.
|
|
*/
|
|
buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
|
|
RTE_PKTMBUF_HEADROOM);
|
|
buf_size = ROUND_DOWN(buf_size, 0x1 << 10);
|
|
srrctl |= TXGBE_RXCFG_PKTLEN(buf_size);
|
|
|
|
wr32(hw, TXGBE_RXCFG(rxq->reg_idx), srrctl);
|
|
|
|
/* It adds dual VLAN length for supporting dual VLAN */
|
|
if (dev->data->mtu + TXGBE_ETH_OVERHEAD +
|
|
2 * RTE_VLAN_HLEN > buf_size)
|
|
dev->data->scattered_rx = 1;
|
|
if (rxq->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP)
|
|
rx_conf->offloads |= RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
|
|
}
|
|
|
|
if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_SCATTER)
|
|
dev->data->scattered_rx = 1;
|
|
|
|
/*
|
|
* Device configured with multiple RX queues.
|
|
*/
|
|
txgbe_dev_mq_rx_configure(dev);
|
|
|
|
/*
|
|
* Setup the Checksum Register.
|
|
* Disable Full-Packet Checksum which is mutually exclusive with RSS.
|
|
* Enable IP/L4 checksum computation by hardware if requested to do so.
|
|
*/
|
|
rxcsum = rd32(hw, TXGBE_PSRCTL);
|
|
rxcsum |= TXGBE_PSRCTL_PCSD;
|
|
if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_CHECKSUM)
|
|
rxcsum |= TXGBE_PSRCTL_L4CSUM;
|
|
else
|
|
rxcsum &= ~TXGBE_PSRCTL_L4CSUM;
|
|
|
|
wr32(hw, TXGBE_PSRCTL, rxcsum);
|
|
|
|
if (hw->mac.type == txgbe_mac_raptor) {
|
|
rdrxctl = rd32(hw, TXGBE_SECRXCTL);
|
|
if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
|
|
rdrxctl &= ~TXGBE_SECRXCTL_CRCSTRIP;
|
|
else
|
|
rdrxctl |= TXGBE_SECRXCTL_CRCSTRIP;
|
|
wr32(hw, TXGBE_SECRXCTL, rdrxctl);
|
|
}
|
|
|
|
rc = txgbe_set_rsc(dev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
txgbe_set_rx_function(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initializes Transmit Unit.
|
|
*/
|
|
void __rte_cold
|
|
txgbe_dev_tx_init(struct rte_eth_dev *dev)
|
|
{
|
|
struct txgbe_hw *hw;
|
|
struct txgbe_tx_queue *txq;
|
|
uint64_t bus_addr;
|
|
uint16_t i;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = TXGBE_DEV_HW(dev);
|
|
|
|
/* Setup the Base and Length of the Tx Descriptor Rings */
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
txq = dev->data->tx_queues[i];
|
|
|
|
bus_addr = txq->tx_ring_phys_addr;
|
|
wr32(hw, TXGBE_TXBAL(txq->reg_idx),
|
|
(uint32_t)(bus_addr & BIT_MASK32));
|
|
wr32(hw, TXGBE_TXBAH(txq->reg_idx),
|
|
(uint32_t)(bus_addr >> 32));
|
|
wr32m(hw, TXGBE_TXCFG(txq->reg_idx), TXGBE_TXCFG_BUFLEN_MASK,
|
|
TXGBE_TXCFG_BUFLEN(txq->nb_tx_desc));
|
|
/* Setup the HW Tx Head and TX Tail descriptor pointers */
|
|
wr32(hw, TXGBE_TXRP(txq->reg_idx), 0);
|
|
wr32(hw, TXGBE_TXWP(txq->reg_idx), 0);
|
|
}
|
|
|
|
/* Device configured with multiple TX queues. */
|
|
txgbe_dev_mq_tx_configure(dev);
|
|
}
|
|
|
|
/*
|
|
* Set up link loopback mode Tx->Rx.
|
|
*/
|
|
static inline void __rte_cold
|
|
txgbe_setup_loopback_link_raptor(struct txgbe_hw *hw)
|
|
{
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
wr32m(hw, TXGBE_MACRXCFG, TXGBE_MACRXCFG_LB, TXGBE_MACRXCFG_LB);
|
|
|
|
msec_delay(50);
|
|
}
|
|
|
|
/*
|
|
* Start Transmit and Receive Units.
|
|
*/
|
|
int __rte_cold
|
|
txgbe_dev_rxtx_start(struct rte_eth_dev *dev)
|
|
{
|
|
struct txgbe_hw *hw;
|
|
struct txgbe_tx_queue *txq;
|
|
struct txgbe_rx_queue *rxq;
|
|
uint32_t dmatxctl;
|
|
uint32_t rxctrl;
|
|
uint16_t i;
|
|
int ret = 0;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = TXGBE_DEV_HW(dev);
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
txq = dev->data->tx_queues[i];
|
|
/* Setup Transmit Threshold Registers */
|
|
wr32m(hw, TXGBE_TXCFG(txq->reg_idx),
|
|
TXGBE_TXCFG_HTHRESH_MASK |
|
|
TXGBE_TXCFG_WTHRESH_MASK,
|
|
TXGBE_TXCFG_HTHRESH(txq->hthresh) |
|
|
TXGBE_TXCFG_WTHRESH(txq->wthresh));
|
|
}
|
|
|
|
dmatxctl = rd32(hw, TXGBE_DMATXCTRL);
|
|
dmatxctl |= TXGBE_DMATXCTRL_ENA;
|
|
wr32(hw, TXGBE_DMATXCTRL, dmatxctl);
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
txq = dev->data->tx_queues[i];
|
|
if (!txq->tx_deferred_start) {
|
|
ret = txgbe_dev_tx_queue_start(dev, i);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
rxq = dev->data->rx_queues[i];
|
|
if (!rxq->rx_deferred_start) {
|
|
ret = txgbe_dev_rx_queue_start(dev, i);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Enable Receive engine */
|
|
rxctrl = rd32(hw, TXGBE_PBRXCTL);
|
|
rxctrl |= TXGBE_PBRXCTL_ENA;
|
|
hw->mac.enable_rx_dma(hw, rxctrl);
|
|
|
|
/* If loopback mode is enabled, set up the link accordingly */
|
|
if (hw->mac.type == txgbe_mac_raptor &&
|
|
dev->data->dev_conf.lpbk_mode)
|
|
txgbe_setup_loopback_link_raptor(hw);
|
|
|
|
#ifdef RTE_LIB_SECURITY
|
|
if ((dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_SECURITY) ||
|
|
(dev->data->dev_conf.txmode.offloads & RTE_ETH_TX_OFFLOAD_SECURITY)) {
|
|
ret = txgbe_crypto_enable_ipsec(dev);
|
|
if (ret != 0) {
|
|
PMD_DRV_LOG(ERR,
|
|
"txgbe_crypto_enable_ipsec fails with %d.",
|
|
ret);
|
|
return ret;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
txgbe_dev_save_rx_queue(struct txgbe_hw *hw, uint16_t rx_queue_id)
|
|
{
|
|
u32 *reg = &hw->q_rx_regs[rx_queue_id * 8];
|
|
*(reg++) = rd32(hw, TXGBE_RXBAL(rx_queue_id));
|
|
*(reg++) = rd32(hw, TXGBE_RXBAH(rx_queue_id));
|
|
*(reg++) = rd32(hw, TXGBE_RXCFG(rx_queue_id));
|
|
}
|
|
|
|
void
|
|
txgbe_dev_store_rx_queue(struct txgbe_hw *hw, uint16_t rx_queue_id)
|
|
{
|
|
u32 *reg = &hw->q_rx_regs[rx_queue_id * 8];
|
|
wr32(hw, TXGBE_RXBAL(rx_queue_id), *(reg++));
|
|
wr32(hw, TXGBE_RXBAH(rx_queue_id), *(reg++));
|
|
wr32(hw, TXGBE_RXCFG(rx_queue_id), *(reg++) & ~TXGBE_RXCFG_ENA);
|
|
}
|
|
|
|
void
|
|
txgbe_dev_save_tx_queue(struct txgbe_hw *hw, uint16_t tx_queue_id)
|
|
{
|
|
u32 *reg = &hw->q_tx_regs[tx_queue_id * 8];
|
|
*(reg++) = rd32(hw, TXGBE_TXBAL(tx_queue_id));
|
|
*(reg++) = rd32(hw, TXGBE_TXBAH(tx_queue_id));
|
|
*(reg++) = rd32(hw, TXGBE_TXCFG(tx_queue_id));
|
|
}
|
|
|
|
void
|
|
txgbe_dev_store_tx_queue(struct txgbe_hw *hw, uint16_t tx_queue_id)
|
|
{
|
|
u32 *reg = &hw->q_tx_regs[tx_queue_id * 8];
|
|
wr32(hw, TXGBE_TXBAL(tx_queue_id), *(reg++));
|
|
wr32(hw, TXGBE_TXBAH(tx_queue_id), *(reg++));
|
|
wr32(hw, TXGBE_TXCFG(tx_queue_id), *(reg++) & ~TXGBE_TXCFG_ENA);
|
|
}
|
|
|
|
/*
|
|
* Start Receive Units for specified queue.
|
|
*/
|
|
int __rte_cold
|
|
txgbe_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
|
|
{
|
|
struct txgbe_hw *hw = TXGBE_DEV_HW(dev);
|
|
struct txgbe_rx_queue *rxq;
|
|
uint32_t rxdctl;
|
|
int poll_ms;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
rxq = dev->data->rx_queues[rx_queue_id];
|
|
|
|
/* Allocate buffers for descriptor rings */
|
|
if (txgbe_alloc_rx_queue_mbufs(rxq) != 0) {
|
|
PMD_INIT_LOG(ERR, "Could not alloc mbuf for queue:%d",
|
|
rx_queue_id);
|
|
return -1;
|
|
}
|
|
rxdctl = rd32(hw, TXGBE_RXCFG(rxq->reg_idx));
|
|
rxdctl |= TXGBE_RXCFG_ENA;
|
|
wr32(hw, TXGBE_RXCFG(rxq->reg_idx), rxdctl);
|
|
|
|
/* Wait until RX Enable ready */
|
|
poll_ms = RTE_TXGBE_REGISTER_POLL_WAIT_10_MS;
|
|
do {
|
|
rte_delay_ms(1);
|
|
rxdctl = rd32(hw, TXGBE_RXCFG(rxq->reg_idx));
|
|
} while (--poll_ms && !(rxdctl & TXGBE_RXCFG_ENA));
|
|
if (!poll_ms)
|
|
PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", rx_queue_id);
|
|
rte_wmb();
|
|
wr32(hw, TXGBE_RXRP(rxq->reg_idx), 0);
|
|
wr32(hw, TXGBE_RXWP(rxq->reg_idx), rxq->nb_rx_desc - 1);
|
|
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Stop Receive Units for specified queue.
|
|
*/
|
|
int __rte_cold
|
|
txgbe_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
|
|
{
|
|
struct txgbe_hw *hw = TXGBE_DEV_HW(dev);
|
|
struct txgbe_adapter *adapter = TXGBE_DEV_ADAPTER(dev);
|
|
struct txgbe_rx_queue *rxq;
|
|
uint32_t rxdctl;
|
|
int poll_ms;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
rxq = dev->data->rx_queues[rx_queue_id];
|
|
|
|
txgbe_dev_save_rx_queue(hw, rxq->reg_idx);
|
|
wr32m(hw, TXGBE_RXCFG(rxq->reg_idx), TXGBE_RXCFG_ENA, 0);
|
|
|
|
/* Wait until RX Enable bit clear */
|
|
poll_ms = RTE_TXGBE_REGISTER_POLL_WAIT_10_MS;
|
|
do {
|
|
rte_delay_ms(1);
|
|
rxdctl = rd32(hw, TXGBE_RXCFG(rxq->reg_idx));
|
|
} while (--poll_ms && (rxdctl & TXGBE_RXCFG_ENA));
|
|
if (!poll_ms)
|
|
PMD_INIT_LOG(ERR, "Could not disable Rx Queue %d", rx_queue_id);
|
|
|
|
rte_delay_us(RTE_TXGBE_WAIT_100_US);
|
|
txgbe_dev_store_rx_queue(hw, rxq->reg_idx);
|
|
|
|
txgbe_rx_queue_release_mbufs(rxq);
|
|
txgbe_reset_rx_queue(adapter, rxq);
|
|
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Start Transmit Units for specified queue.
|
|
*/
|
|
int __rte_cold
|
|
txgbe_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
|
|
{
|
|
struct txgbe_hw *hw = TXGBE_DEV_HW(dev);
|
|
struct txgbe_tx_queue *txq;
|
|
uint32_t txdctl;
|
|
int poll_ms;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
txq = dev->data->tx_queues[tx_queue_id];
|
|
wr32m(hw, TXGBE_TXCFG(txq->reg_idx), TXGBE_TXCFG_ENA, TXGBE_TXCFG_ENA);
|
|
|
|
/* Wait until TX Enable ready */
|
|
poll_ms = RTE_TXGBE_REGISTER_POLL_WAIT_10_MS;
|
|
do {
|
|
rte_delay_ms(1);
|
|
txdctl = rd32(hw, TXGBE_TXCFG(txq->reg_idx));
|
|
} while (--poll_ms && !(txdctl & TXGBE_TXCFG_ENA));
|
|
if (!poll_ms)
|
|
PMD_INIT_LOG(ERR, "Could not enable "
|
|
"Tx Queue %d", tx_queue_id);
|
|
|
|
rte_wmb();
|
|
wr32(hw, TXGBE_TXWP(txq->reg_idx), txq->tx_tail);
|
|
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Stop Transmit Units for specified queue.
|
|
*/
|
|
int __rte_cold
|
|
txgbe_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
|
|
{
|
|
struct txgbe_hw *hw = TXGBE_DEV_HW(dev);
|
|
struct txgbe_tx_queue *txq;
|
|
uint32_t txdctl;
|
|
uint32_t txtdh, txtdt;
|
|
int poll_ms;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
txq = dev->data->tx_queues[tx_queue_id];
|
|
|
|
/* Wait until TX queue is empty */
|
|
poll_ms = RTE_TXGBE_REGISTER_POLL_WAIT_10_MS;
|
|
do {
|
|
rte_delay_us(RTE_TXGBE_WAIT_100_US);
|
|
txtdh = rd32(hw, TXGBE_TXRP(txq->reg_idx));
|
|
txtdt = rd32(hw, TXGBE_TXWP(txq->reg_idx));
|
|
} while (--poll_ms && (txtdh != txtdt));
|
|
if (!poll_ms)
|
|
PMD_INIT_LOG(ERR,
|
|
"Tx Queue %d is not empty when stopping.",
|
|
tx_queue_id);
|
|
|
|
txgbe_dev_save_tx_queue(hw, txq->reg_idx);
|
|
wr32m(hw, TXGBE_TXCFG(txq->reg_idx), TXGBE_TXCFG_ENA, 0);
|
|
|
|
/* Wait until TX Enable bit clear */
|
|
poll_ms = RTE_TXGBE_REGISTER_POLL_WAIT_10_MS;
|
|
do {
|
|
rte_delay_ms(1);
|
|
txdctl = rd32(hw, TXGBE_TXCFG(txq->reg_idx));
|
|
} while (--poll_ms && (txdctl & TXGBE_TXCFG_ENA));
|
|
if (!poll_ms)
|
|
PMD_INIT_LOG(ERR, "Could not disable Tx Queue %d",
|
|
tx_queue_id);
|
|
|
|
rte_delay_us(RTE_TXGBE_WAIT_100_US);
|
|
txgbe_dev_store_tx_queue(hw, txq->reg_idx);
|
|
|
|
if (txq->ops != NULL) {
|
|
txq->ops->release_mbufs(txq);
|
|
txq->ops->reset(txq);
|
|
}
|
|
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
txgbe_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
|
|
struct rte_eth_rxq_info *qinfo)
|
|
{
|
|
struct txgbe_rx_queue *rxq;
|
|
|
|
rxq = dev->data->rx_queues[queue_id];
|
|
|
|
qinfo->mp = rxq->mb_pool;
|
|
qinfo->scattered_rx = dev->data->scattered_rx;
|
|
qinfo->nb_desc = rxq->nb_rx_desc;
|
|
|
|
qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
|
|
qinfo->conf.rx_drop_en = rxq->drop_en;
|
|
qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
|
|
qinfo->conf.offloads = rxq->offloads;
|
|
}
|
|
|
|
void
|
|
txgbe_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
|
|
struct rte_eth_txq_info *qinfo)
|
|
{
|
|
struct txgbe_tx_queue *txq;
|
|
|
|
txq = dev->data->tx_queues[queue_id];
|
|
|
|
qinfo->nb_desc = txq->nb_tx_desc;
|
|
|
|
qinfo->conf.tx_thresh.pthresh = txq->pthresh;
|
|
qinfo->conf.tx_thresh.hthresh = txq->hthresh;
|
|
qinfo->conf.tx_thresh.wthresh = txq->wthresh;
|
|
|
|
qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
|
|
qinfo->conf.offloads = txq->offloads;
|
|
qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
|
|
}
|
|
|
|
/*
|
|
* [VF] Initializes Receive Unit.
|
|
*/
|
|
int __rte_cold
|
|
txgbevf_dev_rx_init(struct rte_eth_dev *dev)
|
|
{
|
|
struct txgbe_hw *hw;
|
|
struct txgbe_rx_queue *rxq;
|
|
struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
|
|
uint64_t bus_addr;
|
|
uint32_t srrctl, psrtype;
|
|
uint16_t buf_size;
|
|
uint16_t i;
|
|
int ret;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = TXGBE_DEV_HW(dev);
|
|
|
|
if (rte_is_power_of_2(dev->data->nb_rx_queues) == 0) {
|
|
PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
|
|
"it should be power of 2");
|
|
return -1;
|
|
}
|
|
|
|
if (dev->data->nb_rx_queues > hw->mac.max_rx_queues) {
|
|
PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
|
|
"it should be equal to or less than %d",
|
|
hw->mac.max_rx_queues);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* When the VF driver issues a TXGBE_VF_RESET request, the PF driver
|
|
* disables the VF receipt of packets if the PF MTU is > 1500.
|
|
* This is done to deal with limitations that imposes
|
|
* the PF and all VFs to share the same MTU.
|
|
* Then, the PF driver enables again the VF receipt of packet when
|
|
* the VF driver issues a TXGBE_VF_SET_LPE request.
|
|
* In the meantime, the VF device cannot be used, even if the VF driver
|
|
* and the Guest VM network stack are ready to accept packets with a
|
|
* size up to the PF MTU.
|
|
* As a work-around to this PF behaviour, force the call to
|
|
* txgbevf_rlpml_set_vf even if jumbo frames are not used. This way,
|
|
* VF packets received can work in all cases.
|
|
*/
|
|
if (txgbevf_rlpml_set_vf(hw,
|
|
(uint16_t)dev->data->mtu + TXGBE_ETH_OVERHEAD)) {
|
|
PMD_INIT_LOG(ERR, "Set max packet length to %d failed.",
|
|
dev->data->mtu + TXGBE_ETH_OVERHEAD);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Assume no header split and no VLAN strip support
|
|
* on any Rx queue first .
|
|
*/
|
|
rxmode->offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
|
|
|
|
/* Set PSR type for VF RSS according to max Rx queue */
|
|
psrtype = TXGBE_VFPLCFG_PSRL4HDR |
|
|
TXGBE_VFPLCFG_PSRL4HDR |
|
|
TXGBE_VFPLCFG_PSRL2HDR |
|
|
TXGBE_VFPLCFG_PSRTUNHDR |
|
|
TXGBE_VFPLCFG_PSRTUNMAC;
|
|
wr32(hw, TXGBE_VFPLCFG, TXGBE_VFPLCFG_PSR(psrtype));
|
|
|
|
/* Setup RX queues */
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
rxq = dev->data->rx_queues[i];
|
|
|
|
/* Allocate buffers for descriptor rings */
|
|
ret = txgbe_alloc_rx_queue_mbufs(rxq);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Setup the Base and Length of the Rx Descriptor Rings */
|
|
bus_addr = rxq->rx_ring_phys_addr;
|
|
|
|
wr32(hw, TXGBE_RXBAL(i),
|
|
(uint32_t)(bus_addr & BIT_MASK32));
|
|
wr32(hw, TXGBE_RXBAH(i),
|
|
(uint32_t)(bus_addr >> 32));
|
|
wr32(hw, TXGBE_RXRP(i), 0);
|
|
wr32(hw, TXGBE_RXWP(i), 0);
|
|
|
|
/* Configure the RXCFG register */
|
|
srrctl = TXGBE_RXCFG_RNGLEN(rxq->nb_rx_desc);
|
|
|
|
/* Set if packets are dropped when no descriptors available */
|
|
if (rxq->drop_en)
|
|
srrctl |= TXGBE_RXCFG_DROP;
|
|
|
|
/*
|
|
* Configure the RX buffer size in the PKTLEN field of
|
|
* the RXCFG register of the queue.
|
|
* The value is in 1 KB resolution. Valid values can be from
|
|
* 1 KB to 16 KB.
|
|
*/
|
|
buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
|
|
RTE_PKTMBUF_HEADROOM);
|
|
buf_size = ROUND_UP(buf_size, 1 << 10);
|
|
srrctl |= TXGBE_RXCFG_PKTLEN(buf_size);
|
|
|
|
/*
|
|
* VF modification to write virtual function RXCFG register
|
|
*/
|
|
wr32(hw, TXGBE_RXCFG(i), srrctl);
|
|
|
|
if (rxmode->offloads & RTE_ETH_RX_OFFLOAD_SCATTER ||
|
|
/* It adds dual VLAN length for supporting dual VLAN */
|
|
(dev->data->mtu + TXGBE_ETH_OVERHEAD +
|
|
2 * RTE_VLAN_HLEN) > buf_size) {
|
|
if (!dev->data->scattered_rx)
|
|
PMD_INIT_LOG(DEBUG, "forcing scatter mode");
|
|
dev->data->scattered_rx = 1;
|
|
}
|
|
|
|
if (rxq->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP)
|
|
rxmode->offloads |= RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
|
|
}
|
|
|
|
/*
|
|
* Device configured with multiple RX queues.
|
|
*/
|
|
txgbe_dev_mq_rx_configure(dev);
|
|
|
|
txgbe_set_rx_function(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* [VF] Initializes Transmit Unit.
|
|
*/
|
|
void __rte_cold
|
|
txgbevf_dev_tx_init(struct rte_eth_dev *dev)
|
|
{
|
|
struct txgbe_hw *hw;
|
|
struct txgbe_tx_queue *txq;
|
|
uint64_t bus_addr;
|
|
uint16_t i;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = TXGBE_DEV_HW(dev);
|
|
|
|
/* Setup the Base and Length of the Tx Descriptor Rings */
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
txq = dev->data->tx_queues[i];
|
|
bus_addr = txq->tx_ring_phys_addr;
|
|
wr32(hw, TXGBE_TXBAL(i),
|
|
(uint32_t)(bus_addr & BIT_MASK32));
|
|
wr32(hw, TXGBE_TXBAH(i),
|
|
(uint32_t)(bus_addr >> 32));
|
|
wr32m(hw, TXGBE_TXCFG(i), TXGBE_TXCFG_BUFLEN_MASK,
|
|
TXGBE_TXCFG_BUFLEN(txq->nb_tx_desc));
|
|
/* Setup the HW Tx Head and TX Tail descriptor pointers */
|
|
wr32(hw, TXGBE_TXRP(i), 0);
|
|
wr32(hw, TXGBE_TXWP(i), 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* [VF] Start Transmit and Receive Units.
|
|
*/
|
|
void __rte_cold
|
|
txgbevf_dev_rxtx_start(struct rte_eth_dev *dev)
|
|
{
|
|
struct txgbe_hw *hw;
|
|
struct txgbe_tx_queue *txq;
|
|
struct txgbe_rx_queue *rxq;
|
|
uint32_t txdctl;
|
|
uint32_t rxdctl;
|
|
uint16_t i;
|
|
int poll_ms;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = TXGBE_DEV_HW(dev);
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
txq = dev->data->tx_queues[i];
|
|
/* Setup Transmit Threshold Registers */
|
|
wr32m(hw, TXGBE_TXCFG(txq->reg_idx),
|
|
TXGBE_TXCFG_HTHRESH_MASK |
|
|
TXGBE_TXCFG_WTHRESH_MASK,
|
|
TXGBE_TXCFG_HTHRESH(txq->hthresh) |
|
|
TXGBE_TXCFG_WTHRESH(txq->wthresh));
|
|
}
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
wr32m(hw, TXGBE_TXCFG(i), TXGBE_TXCFG_ENA, TXGBE_TXCFG_ENA);
|
|
|
|
poll_ms = 10;
|
|
/* Wait until TX Enable ready */
|
|
do {
|
|
rte_delay_ms(1);
|
|
txdctl = rd32(hw, TXGBE_TXCFG(i));
|
|
} while (--poll_ms && !(txdctl & TXGBE_TXCFG_ENA));
|
|
if (!poll_ms)
|
|
PMD_INIT_LOG(ERR, "Could not enable Tx Queue %d", i);
|
|
}
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
rxq = dev->data->rx_queues[i];
|
|
|
|
wr32m(hw, TXGBE_RXCFG(i), TXGBE_RXCFG_ENA, TXGBE_RXCFG_ENA);
|
|
|
|
/* Wait until RX Enable ready */
|
|
poll_ms = 10;
|
|
do {
|
|
rte_delay_ms(1);
|
|
rxdctl = rd32(hw, TXGBE_RXCFG(i));
|
|
} while (--poll_ms && !(rxdctl & TXGBE_RXCFG_ENA));
|
|
if (!poll_ms)
|
|
PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", i);
|
|
rte_wmb();
|
|
wr32(hw, TXGBE_RXWP(i), rxq->nb_rx_desc - 1);
|
|
}
|
|
}
|
|
|
|
int
|
|
txgbe_rss_conf_init(struct txgbe_rte_flow_rss_conf *out,
|
|
const struct rte_flow_action_rss *in)
|
|
{
|
|
if (in->key_len > RTE_DIM(out->key) ||
|
|
in->queue_num > RTE_DIM(out->queue))
|
|
return -EINVAL;
|
|
out->conf = (struct rte_flow_action_rss){
|
|
.func = in->func,
|
|
.level = in->level,
|
|
.types = in->types,
|
|
.key_len = in->key_len,
|
|
.queue_num = in->queue_num,
|
|
.key = memcpy(out->key, in->key, in->key_len),
|
|
.queue = memcpy(out->queue, in->queue,
|
|
sizeof(*in->queue) * in->queue_num),
|
|
};
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
txgbe_action_rss_same(const struct rte_flow_action_rss *comp,
|
|
const struct rte_flow_action_rss *with)
|
|
{
|
|
return (comp->func == with->func &&
|
|
comp->level == with->level &&
|
|
comp->types == with->types &&
|
|
comp->key_len == with->key_len &&
|
|
comp->queue_num == with->queue_num &&
|
|
!memcmp(comp->key, with->key, with->key_len) &&
|
|
!memcmp(comp->queue, with->queue,
|
|
sizeof(*with->queue) * with->queue_num));
|
|
}
|
|
|
|
int
|
|
txgbe_config_rss_filter(struct rte_eth_dev *dev,
|
|
struct txgbe_rte_flow_rss_conf *conf, bool add)
|
|
{
|
|
struct txgbe_hw *hw;
|
|
uint32_t reta;
|
|
uint16_t i;
|
|
uint16_t j;
|
|
struct rte_eth_rss_conf rss_conf = {
|
|
.rss_key = conf->conf.key_len ?
|
|
(void *)(uintptr_t)conf->conf.key : NULL,
|
|
.rss_key_len = conf->conf.key_len,
|
|
.rss_hf = conf->conf.types,
|
|
};
|
|
struct txgbe_filter_info *filter_info = TXGBE_DEV_FILTER(dev);
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = TXGBE_DEV_HW(dev);
|
|
|
|
if (!add) {
|
|
if (txgbe_action_rss_same(&filter_info->rss_info.conf,
|
|
&conf->conf)) {
|
|
txgbe_rss_disable(dev);
|
|
memset(&filter_info->rss_info, 0,
|
|
sizeof(struct txgbe_rte_flow_rss_conf));
|
|
return 0;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (filter_info->rss_info.conf.queue_num)
|
|
return -EINVAL;
|
|
/* Fill in redirection table
|
|
* The byte-swap is needed because NIC registers are in
|
|
* little-endian order.
|
|
*/
|
|
reta = 0;
|
|
for (i = 0, j = 0; i < RTE_ETH_RSS_RETA_SIZE_128; i++, j++) {
|
|
if (j == conf->conf.queue_num)
|
|
j = 0;
|
|
reta = (reta >> 8) | LS32(conf->conf.queue[j], 24, 0xFF);
|
|
if ((i & 3) == 3)
|
|
wr32at(hw, TXGBE_REG_RSSTBL, i >> 2, reta);
|
|
}
|
|
|
|
/* Configure the RSS key and the RSS protocols used to compute
|
|
* the RSS hash of input packets.
|
|
*/
|
|
if ((rss_conf.rss_hf & TXGBE_RSS_OFFLOAD_ALL) == 0) {
|
|
txgbe_rss_disable(dev);
|
|
return 0;
|
|
}
|
|
if (rss_conf.rss_key == NULL)
|
|
rss_conf.rss_key = rss_intel_key; /* Default hash key */
|
|
txgbe_dev_rss_hash_update(dev, &rss_conf);
|
|
|
|
if (txgbe_rss_conf_init(&filter_info->rss_info, &conf->conf))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|