f-stack/dpdk/drivers/net/txgbe/base/txgbe_phy.c

2818 lines
80 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2015-2020 Beijing WangXun Technology Co., Ltd.
* Copyright(c) 2010-2017 Intel Corporation
*/
#include "txgbe_hw.h"
#include "txgbe_eeprom.h"
#include "txgbe_mng.h"
#include "txgbe_phy.h"
static void txgbe_i2c_start(struct txgbe_hw *hw, u8 dev_addr);
static void txgbe_i2c_stop(struct txgbe_hw *hw);
static s32 txgbe_handle_bp_flow(u32 link_mode, struct txgbe_hw *hw);
static void txgbe_get_bp_ability(struct txgbe_backplane_ability *ability,
u32 link_partner, struct txgbe_hw *hw);
static s32 txgbe_check_bp_ability(struct txgbe_backplane_ability *local_ability,
struct txgbe_backplane_ability *lp_ability, struct txgbe_hw *hw);
static void txgbe_clear_bp_intr(u32 bit, u32 bit_high, struct txgbe_hw *hw);
static s32 txgbe_enable_kr_training(struct txgbe_hw *hw);
static s32 txgbe_disable_kr_training(struct txgbe_hw *hw, s32 post, s32 mode);
static s32 txgbe_check_kr_training(struct txgbe_hw *hw);
static void txgbe_read_phy_lane_tx_eq(u16 lane, struct txgbe_hw *hw,
s32 post, s32 mode);
static s32 txgbe_set_link_to_sfi(struct txgbe_hw *hw, u32 speed);
/**
* txgbe_identify_extphy - Identify a single address for a PHY
* @hw: pointer to hardware structure
* @phy_addr: PHY address to probe
*
* Returns true if PHY found
*/
static bool txgbe_identify_extphy(struct txgbe_hw *hw)
{
u16 phy_addr = 0;
if (!txgbe_validate_phy_addr(hw, phy_addr)) {
DEBUGOUT("Unable to validate PHY address 0x%04X",
phy_addr);
return false;
}
if (txgbe_get_phy_id(hw))
return false;
hw->phy.type = txgbe_get_phy_type_from_id(hw->phy.id);
if (hw->phy.type == txgbe_phy_unknown) {
u16 ext_ability = 0;
hw->phy.read_reg(hw, TXGBE_MD_PHY_EXT_ABILITY,
TXGBE_MD_DEV_PMA_PMD,
&ext_ability);
if (ext_ability & (TXGBE_MD_PHY_10GBASET_ABILITY |
TXGBE_MD_PHY_1000BASET_ABILITY))
hw->phy.type = txgbe_phy_cu_unknown;
else
hw->phy.type = txgbe_phy_generic;
}
return true;
}
/**
* txgbe_read_phy_if - Read TXGBE_ETHPHYIF register
* @hw: pointer to hardware structure
*
* Read TXGBE_ETHPHYIF register and save field values,
* and check for valid field values.
**/
static s32 txgbe_read_phy_if(struct txgbe_hw *hw)
{
hw->phy.media_type = hw->phy.get_media_type(hw);
/* Save NW management interface connected on board. This is used
* to determine internal PHY mode.
*/
hw->phy.nw_mng_if_sel = rd32(hw, TXGBE_ETHPHYIF);
/* If MDIO is connected to external PHY, then set PHY address. */
if (hw->phy.nw_mng_if_sel & TXGBE_ETHPHYIF_MDIO_ACT)
hw->phy.addr = TXGBE_ETHPHYIF_MDIO_BASE(hw->phy.nw_mng_if_sel);
if (!hw->phy.phy_semaphore_mask) {
if (hw->bus.lan_id)
hw->phy.phy_semaphore_mask = TXGBE_MNGSEM_SWPHY;
else
hw->phy.phy_semaphore_mask = TXGBE_MNGSEM_SWPHY;
}
return 0;
}
/**
* txgbe_identify_phy - Get physical layer module
* @hw: pointer to hardware structure
*
* Determines the physical layer module found on the current adapter.
**/
s32 txgbe_identify_phy(struct txgbe_hw *hw)
{
s32 err = TXGBE_ERR_PHY_ADDR_INVALID;
txgbe_read_phy_if(hw);
if (hw->phy.type != txgbe_phy_unknown)
return 0;
/* Raptor 10GBASE-T requires an external PHY */
if (hw->phy.media_type == txgbe_media_type_copper) {
err = txgbe_identify_extphy(hw);
} else if (hw->phy.media_type == txgbe_media_type_fiber) {
err = txgbe_identify_module(hw);
} else {
hw->phy.type = txgbe_phy_none;
return 0;
}
/* Return error if SFP module has been detected but is not supported */
if (hw->phy.type == txgbe_phy_sfp_unsupported)
return TXGBE_ERR_SFP_NOT_SUPPORTED;
return err;
}
/**
* txgbe_check_reset_blocked - check status of MNG FW veto bit
* @hw: pointer to the hardware structure
*
* This function checks the STAT.MNGVETO bit to see if there are
* any constraints on link from manageability. For MAC's that don't
* have this bit just return faluse since the link can not be blocked
* via this method.
**/
s32 txgbe_check_reset_blocked(struct txgbe_hw *hw)
{
u32 mmngc;
mmngc = rd32(hw, TXGBE_STAT);
if (mmngc & TXGBE_STAT_MNGVETO) {
DEBUGOUT("MNG_VETO bit detected.");
return true;
}
return false;
}
/**
* txgbe_validate_phy_addr - Determines phy address is valid
* @hw: pointer to hardware structure
* @phy_addr: PHY address
*
**/
bool txgbe_validate_phy_addr(struct txgbe_hw *hw, u32 phy_addr)
{
u16 phy_id = 0;
bool valid = false;
hw->phy.addr = phy_addr;
hw->phy.read_reg(hw, TXGBE_MD_PHY_ID_HIGH,
TXGBE_MD_DEV_PMA_PMD, &phy_id);
if (phy_id != 0xFFFF && phy_id != 0x0)
valid = true;
DEBUGOUT("PHY ID HIGH is 0x%04X", phy_id);
return valid;
}
/**
* txgbe_get_phy_id - Get the phy type
* @hw: pointer to hardware structure
*
**/
s32 txgbe_get_phy_id(struct txgbe_hw *hw)
{
u32 err;
u16 phy_id_high = 0;
u16 phy_id_low = 0;
err = hw->phy.read_reg(hw, TXGBE_MD_PHY_ID_HIGH,
TXGBE_MD_DEV_PMA_PMD,
&phy_id_high);
if (err == 0) {
hw->phy.id = (u32)(phy_id_high << 16);
err = hw->phy.read_reg(hw, TXGBE_MD_PHY_ID_LOW,
TXGBE_MD_DEV_PMA_PMD,
&phy_id_low);
hw->phy.id |= (u32)(phy_id_low & TXGBE_PHY_REVISION_MASK);
hw->phy.revision = (u32)(phy_id_low & ~TXGBE_PHY_REVISION_MASK);
}
DEBUGOUT("PHY_ID_HIGH 0x%04X, PHY_ID_LOW 0x%04X",
phy_id_high, phy_id_low);
return err;
}
/**
* txgbe_get_phy_type_from_id - Get the phy type
* @phy_id: PHY ID information
*
**/
enum txgbe_phy_type txgbe_get_phy_type_from_id(u32 phy_id)
{
enum txgbe_phy_type phy_type;
switch (phy_id) {
case TXGBE_PHYID_TN1010:
phy_type = txgbe_phy_tn;
break;
case TXGBE_PHYID_QT2022:
phy_type = txgbe_phy_qt;
break;
case TXGBE_PHYID_ATH:
phy_type = txgbe_phy_nl;
break;
case TXGBE_PHYID_MTD3310:
phy_type = txgbe_phy_cu_mtd;
break;
default:
phy_type = txgbe_phy_unknown;
break;
}
return phy_type;
}
static s32
txgbe_reset_extphy(struct txgbe_hw *hw)
{
u16 ctrl = 0;
int err, i;
err = hw->phy.read_reg(hw, TXGBE_MD_PORT_CTRL,
TXGBE_MD_DEV_GENERAL, &ctrl);
if (err != 0)
return err;
ctrl |= TXGBE_MD_PORT_CTRL_RESET;
err = hw->phy.write_reg(hw, TXGBE_MD_PORT_CTRL,
TXGBE_MD_DEV_GENERAL, ctrl);
if (err != 0)
return err;
/*
* Poll for reset bit to self-clear indicating reset is complete.
* Some PHYs could take up to 3 seconds to complete and need about
* 1.7 usec delay after the reset is complete.
*/
for (i = 0; i < 30; i++) {
msec_delay(100);
err = hw->phy.read_reg(hw, TXGBE_MD_PORT_CTRL,
TXGBE_MD_DEV_GENERAL, &ctrl);
if (err != 0)
return err;
if (!(ctrl & TXGBE_MD_PORT_CTRL_RESET)) {
usec_delay(2);
break;
}
}
if (ctrl & TXGBE_MD_PORT_CTRL_RESET) {
err = TXGBE_ERR_RESET_FAILED;
DEBUGOUT("PHY reset polling failed to complete.");
}
return err;
}
/**
* txgbe_reset_phy - Performs a PHY reset
* @hw: pointer to hardware structure
**/
s32 txgbe_reset_phy(struct txgbe_hw *hw)
{
s32 err = 0;
if (hw->phy.type == txgbe_phy_unknown)
err = txgbe_identify_phy(hw);
if (err != 0 || hw->phy.type == txgbe_phy_none)
return err;
/* Don't reset PHY if it's shut down due to overtemp. */
if (hw->phy.check_overtemp(hw) == TXGBE_ERR_OVERTEMP)
return err;
/* Blocked by MNG FW so bail */
if (txgbe_check_reset_blocked(hw))
return err;
switch (hw->phy.type) {
case txgbe_phy_cu_mtd:
err = txgbe_reset_extphy(hw);
break;
default:
break;
}
return err;
}
/**
* txgbe_read_phy_mdi - Reads a value from a specified PHY register without
* the SWFW lock
* @hw: pointer to hardware structure
* @reg_addr: 32 bit address of PHY register to read
* @device_type: 5 bit device type
* @phy_data: Pointer to read data from PHY register
**/
s32 txgbe_read_phy_reg_mdi(struct txgbe_hw *hw, u32 reg_addr, u32 device_type,
u16 *phy_data)
{
u32 command, data;
/* Setup and write the address cycle command */
command = TXGBE_MDIOSCA_REG(reg_addr) |
TXGBE_MDIOSCA_DEV(device_type) |
TXGBE_MDIOSCA_PORT(hw->phy.addr);
wr32(hw, TXGBE_MDIOSCA, command);
command = TXGBE_MDIOSCD_CMD_READ |
TXGBE_MDIOSCD_BUSY;
wr32(hw, TXGBE_MDIOSCD, command);
/*
* Check every 10 usec to see if the address cycle completed.
* The MDI Command bit will clear when the operation is
* complete
*/
if (!po32m(hw, TXGBE_MDIOSCD, TXGBE_MDIOSCD_BUSY,
0, NULL, 100, 100)) {
DEBUGOUT("PHY address command did not complete");
return TXGBE_ERR_PHY;
}
data = rd32(hw, TXGBE_MDIOSCD);
*phy_data = (u16)TXGBD_MDIOSCD_DAT(data);
return 0;
}
/**
* txgbe_read_phy_reg - Reads a value from a specified PHY register
* using the SWFW lock - this function is needed in most cases
* @hw: pointer to hardware structure
* @reg_addr: 32 bit address of PHY register to read
* @device_type: 5 bit device type
* @phy_data: Pointer to read data from PHY register
**/
s32 txgbe_read_phy_reg(struct txgbe_hw *hw, u32 reg_addr,
u32 device_type, u16 *phy_data)
{
s32 err;
u32 gssr = hw->phy.phy_semaphore_mask;
if (hw->mac.acquire_swfw_sync(hw, gssr))
return TXGBE_ERR_SWFW_SYNC;
err = hw->phy.read_reg_mdi(hw, reg_addr, device_type, phy_data);
hw->mac.release_swfw_sync(hw, gssr);
return err;
}
/**
* txgbe_write_phy_reg_mdi - Writes a value to specified PHY register
* without SWFW lock
* @hw: pointer to hardware structure
* @reg_addr: 32 bit PHY register to write
* @device_type: 5 bit device type
* @phy_data: Data to write to the PHY register
**/
s32 txgbe_write_phy_reg_mdi(struct txgbe_hw *hw, u32 reg_addr,
u32 device_type, u16 phy_data)
{
u32 command;
/* write command */
command = TXGBE_MDIOSCA_REG(reg_addr) |
TXGBE_MDIOSCA_DEV(device_type) |
TXGBE_MDIOSCA_PORT(hw->phy.addr);
wr32(hw, TXGBE_MDIOSCA, command);
command = TXGBE_MDIOSCD_CMD_WRITE |
TXGBE_MDIOSCD_DAT(phy_data) |
TXGBE_MDIOSCD_BUSY;
wr32(hw, TXGBE_MDIOSCD, command);
/* wait for completion */
if (!po32m(hw, TXGBE_MDIOSCD, TXGBE_MDIOSCD_BUSY,
0, NULL, 100, 100)) {
DEBUGOUT("PHY write cmd didn't complete");
return -TERR_PHY;
}
return 0;
}
/**
* txgbe_write_phy_reg - Writes a value to specified PHY register
* using SWFW lock- this function is needed in most cases
* @hw: pointer to hardware structure
* @reg_addr: 32 bit PHY register to write
* @device_type: 5 bit device type
* @phy_data: Data to write to the PHY register
**/
s32 txgbe_write_phy_reg(struct txgbe_hw *hw, u32 reg_addr,
u32 device_type, u16 phy_data)
{
s32 err;
u32 gssr = hw->phy.phy_semaphore_mask;
if (hw->mac.acquire_swfw_sync(hw, gssr))
err = TXGBE_ERR_SWFW_SYNC;
err = hw->phy.write_reg_mdi(hw, reg_addr, device_type,
phy_data);
hw->mac.release_swfw_sync(hw, gssr);
return err;
}
/**
* txgbe_setup_phy_link - Set and restart auto-neg
* @hw: pointer to hardware structure
*
* Restart auto-negotiation and PHY and waits for completion.
**/
s32 txgbe_setup_phy_link(struct txgbe_hw *hw)
{
s32 err = 0;
u16 autoneg_reg = TXGBE_MII_AUTONEG_REG;
bool autoneg = false;
u32 speed;
txgbe_get_copper_link_capabilities(hw, &speed, &autoneg);
/* Set or unset auto-negotiation 10G advertisement */
hw->phy.read_reg(hw, TXGBE_MII_10GBASE_T_AUTONEG_CTRL_REG,
TXGBE_MD_DEV_AUTO_NEG,
&autoneg_reg);
autoneg_reg &= ~TXGBE_MII_10GBASE_T_ADVERTISE;
if ((hw->phy.autoneg_advertised & TXGBE_LINK_SPEED_10GB_FULL) &&
(speed & TXGBE_LINK_SPEED_10GB_FULL))
autoneg_reg |= TXGBE_MII_10GBASE_T_ADVERTISE;
hw->phy.write_reg(hw, TXGBE_MII_10GBASE_T_AUTONEG_CTRL_REG,
TXGBE_MD_DEV_AUTO_NEG,
autoneg_reg);
hw->phy.read_reg(hw, TXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
TXGBE_MD_DEV_AUTO_NEG,
&autoneg_reg);
/* Set or unset auto-negotiation 5G advertisement */
autoneg_reg &= ~TXGBE_MII_5GBASE_T_ADVERTISE;
if ((hw->phy.autoneg_advertised & TXGBE_LINK_SPEED_5GB_FULL) &&
(speed & TXGBE_LINK_SPEED_5GB_FULL))
autoneg_reg |= TXGBE_MII_5GBASE_T_ADVERTISE;
/* Set or unset auto-negotiation 2.5G advertisement */
autoneg_reg &= ~TXGBE_MII_2_5GBASE_T_ADVERTISE;
if ((hw->phy.autoneg_advertised &
TXGBE_LINK_SPEED_2_5GB_FULL) &&
(speed & TXGBE_LINK_SPEED_2_5GB_FULL))
autoneg_reg |= TXGBE_MII_2_5GBASE_T_ADVERTISE;
/* Set or unset auto-negotiation 1G advertisement */
autoneg_reg &= ~TXGBE_MII_1GBASE_T_ADVERTISE;
if ((hw->phy.autoneg_advertised & TXGBE_LINK_SPEED_1GB_FULL) &&
(speed & TXGBE_LINK_SPEED_1GB_FULL))
autoneg_reg |= TXGBE_MII_1GBASE_T_ADVERTISE;
hw->phy.write_reg(hw, TXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
TXGBE_MD_DEV_AUTO_NEG,
autoneg_reg);
/* Set or unset auto-negotiation 100M advertisement */
hw->phy.read_reg(hw, TXGBE_MII_AUTONEG_ADVERTISE_REG,
TXGBE_MD_DEV_AUTO_NEG,
&autoneg_reg);
autoneg_reg &= ~(TXGBE_MII_100BASE_T_ADVERTISE |
TXGBE_MII_100BASE_T_ADVERTISE_HALF);
if ((hw->phy.autoneg_advertised & TXGBE_LINK_SPEED_100M_FULL) &&
(speed & TXGBE_LINK_SPEED_100M_FULL))
autoneg_reg |= TXGBE_MII_100BASE_T_ADVERTISE;
hw->phy.write_reg(hw, TXGBE_MII_AUTONEG_ADVERTISE_REG,
TXGBE_MD_DEV_AUTO_NEG,
autoneg_reg);
/* Blocked by MNG FW so don't reset PHY */
if (txgbe_check_reset_blocked(hw))
return err;
/* Restart PHY auto-negotiation. */
hw->phy.read_reg(hw, TXGBE_MD_AUTO_NEG_CONTROL,
TXGBE_MD_DEV_AUTO_NEG, &autoneg_reg);
autoneg_reg |= TXGBE_MII_RESTART;
hw->phy.write_reg(hw, TXGBE_MD_AUTO_NEG_CONTROL,
TXGBE_MD_DEV_AUTO_NEG, autoneg_reg);
return err;
}
/**
* txgbe_setup_phy_link_speed - Sets the auto advertised capabilities
* @hw: pointer to hardware structure
* @speed: new link speed
* @autoneg_wait_to_complete: unused
**/
s32 txgbe_setup_phy_link_speed(struct txgbe_hw *hw,
u32 speed,
bool autoneg_wait_to_complete)
{
UNREFERENCED_PARAMETER(autoneg_wait_to_complete);
/*
* Clear autoneg_advertised and set new values based on input link
* speed.
*/
hw->phy.autoneg_advertised = 0;
if (speed & TXGBE_LINK_SPEED_10GB_FULL)
hw->phy.autoneg_advertised |= TXGBE_LINK_SPEED_10GB_FULL;
if (speed & TXGBE_LINK_SPEED_5GB_FULL)
hw->phy.autoneg_advertised |= TXGBE_LINK_SPEED_5GB_FULL;
if (speed & TXGBE_LINK_SPEED_2_5GB_FULL)
hw->phy.autoneg_advertised |= TXGBE_LINK_SPEED_2_5GB_FULL;
if (speed & TXGBE_LINK_SPEED_1GB_FULL)
hw->phy.autoneg_advertised |= TXGBE_LINK_SPEED_1GB_FULL;
if (speed & TXGBE_LINK_SPEED_100M_FULL)
hw->phy.autoneg_advertised |= TXGBE_LINK_SPEED_100M_FULL;
if (speed & TXGBE_LINK_SPEED_10M_FULL)
hw->phy.autoneg_advertised |= TXGBE_LINK_SPEED_10M_FULL;
/* Setup link based on the new speed settings */
hw->phy.setup_link(hw);
return 0;
}
s32 txgbe_get_phy_fw_version(struct txgbe_hw *hw, u32 *fw_version)
{
u16 eeprom_verh, eeprom_verl;
hw->rom.readw_sw(hw, TXGBE_EEPROM_VERSION_H, &eeprom_verh);
hw->rom.readw_sw(hw, TXGBE_EEPROM_VERSION_L, &eeprom_verl);
*fw_version = (eeprom_verh << 16) | eeprom_verl;
return 0;
}
/**
* txgbe_get_copper_speeds_supported - Get copper link speeds from phy
* @hw: pointer to hardware structure
*
* Determines the supported link capabilities by reading the PHY auto
* negotiation register.
**/
static s32 txgbe_get_copper_speeds_supported(struct txgbe_hw *hw)
{
s32 err;
u16 speed_ability;
err = hw->phy.read_reg(hw, TXGBE_MD_PHY_SPEED_ABILITY,
TXGBE_MD_DEV_PMA_PMD,
&speed_ability);
if (err)
return err;
if (speed_ability & TXGBE_MD_PHY_SPEED_10G)
hw->phy.speeds_supported |= TXGBE_LINK_SPEED_10GB_FULL;
if (speed_ability & TXGBE_MD_PHY_SPEED_1G)
hw->phy.speeds_supported |= TXGBE_LINK_SPEED_1GB_FULL;
if (speed_ability & TXGBE_MD_PHY_SPEED_100M)
hw->phy.speeds_supported |= TXGBE_LINK_SPEED_100M_FULL;
return err;
}
/**
* txgbe_get_copper_link_capabilities - Determines link capabilities
* @hw: pointer to hardware structure
* @speed: pointer to link speed
* @autoneg: boolean auto-negotiation value
**/
s32 txgbe_get_copper_link_capabilities(struct txgbe_hw *hw,
u32 *speed,
bool *autoneg)
{
s32 err = 0;
*autoneg = true;
if (!hw->phy.speeds_supported)
err = txgbe_get_copper_speeds_supported(hw);
*speed = hw->phy.speeds_supported;
return err;
}
/**
* txgbe_check_phy_link_tnx - Determine link and speed status
* @hw: pointer to hardware structure
* @speed: current link speed
* @link_up: true is link is up, false otherwise
*
* Reads the VS1 register to determine if link is up and the current speed for
* the PHY.
**/
s32 txgbe_check_phy_link_tnx(struct txgbe_hw *hw, u32 *speed,
bool *link_up)
{
s32 err = 0;
u32 time_out;
u32 max_time_out = 10;
u16 phy_link = 0;
u16 phy_speed = 0;
u16 phy_data = 0;
/* Initialize speed and link to default case */
*link_up = false;
*speed = TXGBE_LINK_SPEED_10GB_FULL;
/*
* Check current speed and link status of the PHY register.
* This is a vendor specific register and may have to
* be changed for other copper PHYs.
*/
for (time_out = 0; time_out < max_time_out; time_out++) {
usec_delay(10);
err = hw->phy.read_reg(hw,
TXGBE_MD_VENDOR_SPECIFIC_1_STATUS,
TXGBE_MD_DEV_VENDOR_1,
&phy_data);
phy_link = phy_data & TXGBE_MD_VENDOR_SPECIFIC_1_LINK_STATUS;
phy_speed = phy_data &
TXGBE_MD_VENDOR_SPECIFIC_1_SPEED_STATUS;
if (phy_link == TXGBE_MD_VENDOR_SPECIFIC_1_LINK_STATUS) {
*link_up = true;
if (phy_speed ==
TXGBE_MD_VENDOR_SPECIFIC_1_SPEED_STATUS)
*speed = TXGBE_LINK_SPEED_1GB_FULL;
break;
}
}
return err;
}
/**
* txgbe_setup_phy_link_tnx - Set and restart auto-neg
* @hw: pointer to hardware structure
*
* Restart auto-negotiation and PHY and waits for completion.
**/
s32 txgbe_setup_phy_link_tnx(struct txgbe_hw *hw)
{
s32 err = 0;
u16 autoneg_reg = TXGBE_MII_AUTONEG_REG;
bool autoneg = false;
u32 speed;
txgbe_get_copper_link_capabilities(hw, &speed, &autoneg);
if (speed & TXGBE_LINK_SPEED_10GB_FULL) {
/* Set or unset auto-negotiation 10G advertisement */
hw->phy.read_reg(hw, TXGBE_MII_10GBASE_T_AUTONEG_CTRL_REG,
TXGBE_MD_DEV_AUTO_NEG,
&autoneg_reg);
autoneg_reg &= ~TXGBE_MII_10GBASE_T_ADVERTISE;
if (hw->phy.autoneg_advertised & TXGBE_LINK_SPEED_10GB_FULL)
autoneg_reg |= TXGBE_MII_10GBASE_T_ADVERTISE;
hw->phy.write_reg(hw, TXGBE_MII_10GBASE_T_AUTONEG_CTRL_REG,
TXGBE_MD_DEV_AUTO_NEG,
autoneg_reg);
}
if (speed & TXGBE_LINK_SPEED_1GB_FULL) {
/* Set or unset auto-negotiation 1G advertisement */
hw->phy.read_reg(hw, TXGBE_MII_AUTONEG_XNP_TX_REG,
TXGBE_MD_DEV_AUTO_NEG,
&autoneg_reg);
autoneg_reg &= ~TXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
if (hw->phy.autoneg_advertised & TXGBE_LINK_SPEED_1GB_FULL)
autoneg_reg |= TXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
hw->phy.write_reg(hw, TXGBE_MII_AUTONEG_XNP_TX_REG,
TXGBE_MD_DEV_AUTO_NEG,
autoneg_reg);
}
if (speed & TXGBE_LINK_SPEED_100M_FULL) {
/* Set or unset auto-negotiation 100M advertisement */
hw->phy.read_reg(hw, TXGBE_MII_AUTONEG_ADVERTISE_REG,
TXGBE_MD_DEV_AUTO_NEG,
&autoneg_reg);
autoneg_reg &= ~TXGBE_MII_100BASE_T_ADVERTISE;
if (hw->phy.autoneg_advertised & TXGBE_LINK_SPEED_100M_FULL)
autoneg_reg |= TXGBE_MII_100BASE_T_ADVERTISE;
hw->phy.write_reg(hw, TXGBE_MII_AUTONEG_ADVERTISE_REG,
TXGBE_MD_DEV_AUTO_NEG,
autoneg_reg);
}
/* Blocked by MNG FW so don't reset PHY */
if (txgbe_check_reset_blocked(hw))
return err;
/* Restart PHY auto-negotiation. */
hw->phy.read_reg(hw, TXGBE_MD_AUTO_NEG_CONTROL,
TXGBE_MD_DEV_AUTO_NEG, &autoneg_reg);
autoneg_reg |= TXGBE_MII_RESTART;
hw->phy.write_reg(hw, TXGBE_MD_AUTO_NEG_CONTROL,
TXGBE_MD_DEV_AUTO_NEG, autoneg_reg);
return err;
}
/**
* txgbe_identify_module - Identifies module type
* @hw: pointer to hardware structure
*
* Determines HW type and calls appropriate function.
**/
s32 txgbe_identify_module(struct txgbe_hw *hw)
{
s32 err = TXGBE_ERR_SFP_NOT_PRESENT;
switch (hw->phy.media_type) {
case txgbe_media_type_fiber:
err = txgbe_identify_sfp_module(hw);
break;
case txgbe_media_type_fiber_qsfp:
err = txgbe_identify_qsfp_module(hw);
break;
default:
hw->phy.sfp_type = txgbe_sfp_type_not_present;
err = TXGBE_ERR_SFP_NOT_PRESENT;
break;
}
return err;
}
/**
* txgbe_identify_sfp_module - Identifies SFP modules
* @hw: pointer to hardware structure
*
* Searches for and identifies the SFP module and assigns appropriate PHY type.
**/
s32 txgbe_identify_sfp_module(struct txgbe_hw *hw)
{
s32 err = TXGBE_ERR_PHY_ADDR_INVALID;
u32 vendor_oui = 0;
enum txgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
u8 identifier = 0;
u8 comp_codes_1g = 0;
u8 comp_codes_10g = 0;
u8 oui_bytes[3] = {0, 0, 0};
u8 cable_tech = 0;
u8 cable_spec = 0;
u16 enforce_sfp = 0;
if (hw->phy.media_type != txgbe_media_type_fiber) {
hw->phy.sfp_type = txgbe_sfp_type_not_present;
return TXGBE_ERR_SFP_NOT_PRESENT;
}
err = hw->phy.read_i2c_eeprom(hw, TXGBE_SFF_IDENTIFIER,
&identifier);
if (err != 0) {
ERR_I2C:
hw->phy.sfp_type = txgbe_sfp_type_not_present;
if (hw->phy.type != txgbe_phy_nl) {
hw->phy.id = 0;
hw->phy.type = txgbe_phy_unknown;
}
return TXGBE_ERR_SFP_NOT_PRESENT;
}
if (identifier != TXGBE_SFF_IDENTIFIER_SFP) {
hw->phy.type = txgbe_phy_sfp_unsupported;
return TXGBE_ERR_SFP_NOT_SUPPORTED;
}
err = hw->phy.read_i2c_eeprom(hw, TXGBE_SFF_1GBE_COMP_CODES,
&comp_codes_1g);
if (err != 0)
goto ERR_I2C;
err = hw->phy.read_i2c_eeprom(hw, TXGBE_SFF_10GBE_COMP_CODES,
&comp_codes_10g);
if (err != 0)
goto ERR_I2C;
err = hw->phy.read_i2c_eeprom(hw, TXGBE_SFF_CABLE_TECHNOLOGY,
&cable_tech);
if (err != 0)
goto ERR_I2C;
/* ID Module
* =========
* 0 SFP_DA_CU
* 1 SFP_SR
* 2 SFP_LR
* 3 SFP_DA_CORE0 - chip-specific
* 4 SFP_DA_CORE1 - chip-specific
* 5 SFP_SR/LR_CORE0 - chip-specific
* 6 SFP_SR/LR_CORE1 - chip-specific
* 7 SFP_act_lmt_DA_CORE0 - chip-specific
* 8 SFP_act_lmt_DA_CORE1 - chip-specific
* 9 SFP_1g_cu_CORE0 - chip-specific
* 10 SFP_1g_cu_CORE1 - chip-specific
* 11 SFP_1g_sx_CORE0 - chip-specific
* 12 SFP_1g_sx_CORE1 - chip-specific
*/
if (cable_tech & TXGBE_SFF_CABLE_DA_PASSIVE) {
if (hw->bus.lan_id == 0)
hw->phy.sfp_type = txgbe_sfp_type_da_cu_core0;
else
hw->phy.sfp_type = txgbe_sfp_type_da_cu_core1;
} else if (cable_tech & TXGBE_SFF_CABLE_DA_ACTIVE) {
err = hw->phy.read_i2c_eeprom(hw,
TXGBE_SFF_CABLE_SPEC_COMP, &cable_spec);
if (err != 0)
goto ERR_I2C;
if (cable_spec & TXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
hw->phy.sfp_type = (hw->bus.lan_id == 0
? txgbe_sfp_type_da_act_lmt_core0
: txgbe_sfp_type_da_act_lmt_core1);
} else {
hw->phy.sfp_type = txgbe_sfp_type_unknown;
}
} else if (comp_codes_10g &
(TXGBE_SFF_10GBASESR_CAPABLE |
TXGBE_SFF_10GBASELR_CAPABLE)) {
hw->phy.sfp_type = (hw->bus.lan_id == 0
? txgbe_sfp_type_srlr_core0
: txgbe_sfp_type_srlr_core1);
} else if (comp_codes_1g & TXGBE_SFF_1GBASET_CAPABLE) {
hw->phy.sfp_type = (hw->bus.lan_id == 0
? txgbe_sfp_type_1g_cu_core0
: txgbe_sfp_type_1g_cu_core1);
} else if (comp_codes_1g & TXGBE_SFF_1GBASESX_CAPABLE) {
hw->phy.sfp_type = (hw->bus.lan_id == 0
? txgbe_sfp_type_1g_sx_core0
: txgbe_sfp_type_1g_sx_core1);
} else if (comp_codes_1g & TXGBE_SFF_1GBASELX_CAPABLE) {
hw->phy.sfp_type = (hw->bus.lan_id == 0
? txgbe_sfp_type_1g_lx_core0
: txgbe_sfp_type_1g_lx_core1);
} else {
hw->phy.sfp_type = txgbe_sfp_type_unknown;
}
if (hw->phy.sfp_type != stored_sfp_type)
hw->phy.sfp_setup_needed = true;
/* Determine if the SFP+ PHY is dual speed or not. */
hw->phy.multispeed_fiber = false;
if (((comp_codes_1g & TXGBE_SFF_1GBASESX_CAPABLE) &&
(comp_codes_10g & TXGBE_SFF_10GBASESR_CAPABLE)) ||
((comp_codes_1g & TXGBE_SFF_1GBASELX_CAPABLE) &&
(comp_codes_10g & TXGBE_SFF_10GBASELR_CAPABLE)))
hw->phy.multispeed_fiber = true;
/* Determine PHY vendor */
if (hw->phy.type != txgbe_phy_nl) {
hw->phy.id = identifier;
err = hw->phy.read_i2c_eeprom(hw,
TXGBE_SFF_VENDOR_OUI_BYTE0, &oui_bytes[0]);
if (err != 0)
goto ERR_I2C;
err = hw->phy.read_i2c_eeprom(hw,
TXGBE_SFF_VENDOR_OUI_BYTE1, &oui_bytes[1]);
if (err != 0)
goto ERR_I2C;
err = hw->phy.read_i2c_eeprom(hw,
TXGBE_SFF_VENDOR_OUI_BYTE2, &oui_bytes[2]);
if (err != 0)
goto ERR_I2C;
vendor_oui = ((u32)oui_bytes[0] << 24) |
((u32)oui_bytes[1] << 16) |
((u32)oui_bytes[2] << 8);
switch (vendor_oui) {
case TXGBE_SFF_VENDOR_OUI_TYCO:
if (cable_tech & TXGBE_SFF_CABLE_DA_PASSIVE)
hw->phy.type = txgbe_phy_sfp_tyco_passive;
break;
case TXGBE_SFF_VENDOR_OUI_FTL:
if (cable_tech & TXGBE_SFF_CABLE_DA_ACTIVE)
hw->phy.type = txgbe_phy_sfp_ftl_active;
else
hw->phy.type = txgbe_phy_sfp_ftl;
break;
case TXGBE_SFF_VENDOR_OUI_AVAGO:
hw->phy.type = txgbe_phy_sfp_avago;
break;
case TXGBE_SFF_VENDOR_OUI_INTEL:
hw->phy.type = txgbe_phy_sfp_intel;
break;
default:
if (cable_tech & TXGBE_SFF_CABLE_DA_PASSIVE)
hw->phy.type = txgbe_phy_sfp_unknown_passive;
else if (cable_tech & TXGBE_SFF_CABLE_DA_ACTIVE)
hw->phy.type = txgbe_phy_sfp_unknown_active;
else
hw->phy.type = txgbe_phy_sfp_unknown;
break;
}
}
/* Allow any DA cable vendor */
if (cable_tech & (TXGBE_SFF_CABLE_DA_PASSIVE |
TXGBE_SFF_CABLE_DA_ACTIVE)) {
return 0;
}
/* Verify supported 1G SFP modules */
if (comp_codes_10g == 0 &&
!(hw->phy.sfp_type == txgbe_sfp_type_1g_cu_core1 ||
hw->phy.sfp_type == txgbe_sfp_type_1g_cu_core0 ||
hw->phy.sfp_type == txgbe_sfp_type_1g_lx_core0 ||
hw->phy.sfp_type == txgbe_sfp_type_1g_lx_core1 ||
hw->phy.sfp_type == txgbe_sfp_type_1g_sx_core0 ||
hw->phy.sfp_type == txgbe_sfp_type_1g_sx_core1)) {
hw->phy.type = txgbe_phy_sfp_unsupported;
return TXGBE_ERR_SFP_NOT_SUPPORTED;
}
hw->mac.get_device_caps(hw, &enforce_sfp);
if (!(enforce_sfp & TXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
!hw->allow_unsupported_sfp &&
!(hw->phy.sfp_type == txgbe_sfp_type_1g_cu_core0 ||
hw->phy.sfp_type == txgbe_sfp_type_1g_cu_core1 ||
hw->phy.sfp_type == txgbe_sfp_type_1g_lx_core0 ||
hw->phy.sfp_type == txgbe_sfp_type_1g_lx_core1 ||
hw->phy.sfp_type == txgbe_sfp_type_1g_sx_core0 ||
hw->phy.sfp_type == txgbe_sfp_type_1g_sx_core1)) {
DEBUGOUT("SFP+ module not supported");
hw->phy.type = txgbe_phy_sfp_unsupported;
return TXGBE_ERR_SFP_NOT_SUPPORTED;
}
return err;
}
/**
* txgbe_identify_qsfp_module - Identifies QSFP modules
* @hw: pointer to hardware structure
*
* Searches for and identifies the QSFP module and assigns appropriate PHY type
**/
s32 txgbe_identify_qsfp_module(struct txgbe_hw *hw)
{
s32 err = TXGBE_ERR_PHY_ADDR_INVALID;
u32 vendor_oui = 0;
enum txgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
u8 identifier = 0;
u8 comp_codes_1g = 0;
u8 comp_codes_10g = 0;
u8 oui_bytes[3] = {0, 0, 0};
u16 enforce_sfp = 0;
u8 connector = 0;
u8 cable_length = 0;
u8 device_tech = 0;
bool active_cable = false;
if (hw->phy.media_type != txgbe_media_type_fiber_qsfp) {
hw->phy.sfp_type = txgbe_sfp_type_not_present;
err = TXGBE_ERR_SFP_NOT_PRESENT;
goto out;
}
err = hw->phy.read_i2c_eeprom(hw, TXGBE_SFF_IDENTIFIER,
&identifier);
ERR_I2C:
if (err != 0) {
hw->phy.sfp_type = txgbe_sfp_type_not_present;
hw->phy.id = 0;
hw->phy.type = txgbe_phy_unknown;
return TXGBE_ERR_SFP_NOT_PRESENT;
}
if (identifier != TXGBE_SFF_IDENTIFIER_QSFP_PLUS) {
hw->phy.type = txgbe_phy_sfp_unsupported;
err = TXGBE_ERR_SFP_NOT_SUPPORTED;
goto out;
}
hw->phy.id = identifier;
err = hw->phy.read_i2c_eeprom(hw, TXGBE_SFF_QSFP_10GBE_COMP,
&comp_codes_10g);
if (err != 0)
goto ERR_I2C;
err = hw->phy.read_i2c_eeprom(hw, TXGBE_SFF_QSFP_1GBE_COMP,
&comp_codes_1g);
if (err != 0)
goto ERR_I2C;
if (comp_codes_10g & TXGBE_SFF_QSFP_DA_PASSIVE_CABLE) {
hw->phy.type = txgbe_phy_qsfp_unknown_passive;
if (hw->bus.lan_id == 0)
hw->phy.sfp_type = txgbe_sfp_type_da_cu_core0;
else
hw->phy.sfp_type = txgbe_sfp_type_da_cu_core1;
} else if (comp_codes_10g & (TXGBE_SFF_10GBASESR_CAPABLE |
TXGBE_SFF_10GBASELR_CAPABLE)) {
if (hw->bus.lan_id == 0)
hw->phy.sfp_type = txgbe_sfp_type_srlr_core0;
else
hw->phy.sfp_type = txgbe_sfp_type_srlr_core1;
} else {
if (comp_codes_10g & TXGBE_SFF_QSFP_DA_ACTIVE_CABLE)
active_cable = true;
if (!active_cable) {
hw->phy.read_i2c_eeprom(hw,
TXGBE_SFF_QSFP_CONNECTOR,
&connector);
hw->phy.read_i2c_eeprom(hw,
TXGBE_SFF_QSFP_CABLE_LENGTH,
&cable_length);
hw->phy.read_i2c_eeprom(hw,
TXGBE_SFF_QSFP_DEVICE_TECH,
&device_tech);
if (connector ==
TXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE &&
cable_length > 0 &&
((device_tech >> 4) ==
TXGBE_SFF_QSFP_TRANSMITTER_850NM_VCSEL))
active_cable = true;
}
if (active_cable) {
hw->phy.type = txgbe_phy_qsfp_unknown_active;
if (hw->bus.lan_id == 0)
hw->phy.sfp_type =
txgbe_sfp_type_da_act_lmt_core0;
else
hw->phy.sfp_type =
txgbe_sfp_type_da_act_lmt_core1;
} else {
/* unsupported module type */
hw->phy.type = txgbe_phy_sfp_unsupported;
err = TXGBE_ERR_SFP_NOT_SUPPORTED;
goto out;
}
}
if (hw->phy.sfp_type != stored_sfp_type)
hw->phy.sfp_setup_needed = true;
/* Determine if the QSFP+ PHY is dual speed or not. */
hw->phy.multispeed_fiber = false;
if (((comp_codes_1g & TXGBE_SFF_1GBASESX_CAPABLE) &&
(comp_codes_10g & TXGBE_SFF_10GBASESR_CAPABLE)) ||
((comp_codes_1g & TXGBE_SFF_1GBASELX_CAPABLE) &&
(comp_codes_10g & TXGBE_SFF_10GBASELR_CAPABLE)))
hw->phy.multispeed_fiber = true;
/* Determine PHY vendor for optical modules */
if (comp_codes_10g & (TXGBE_SFF_10GBASESR_CAPABLE |
TXGBE_SFF_10GBASELR_CAPABLE)) {
err = hw->phy.read_i2c_eeprom(hw,
TXGBE_SFF_QSFP_VENDOR_OUI_BYTE0,
&oui_bytes[0]);
if (err != 0)
goto ERR_I2C;
err = hw->phy.read_i2c_eeprom(hw,
TXGBE_SFF_QSFP_VENDOR_OUI_BYTE1,
&oui_bytes[1]);
if (err != 0)
goto ERR_I2C;
err = hw->phy.read_i2c_eeprom(hw,
TXGBE_SFF_QSFP_VENDOR_OUI_BYTE2,
&oui_bytes[2]);
if (err != 0)
goto ERR_I2C;
vendor_oui =
((oui_bytes[0] << 24) |
(oui_bytes[1] << 16) |
(oui_bytes[2] << 8));
if (vendor_oui == TXGBE_SFF_VENDOR_OUI_INTEL)
hw->phy.type = txgbe_phy_qsfp_intel;
else
hw->phy.type = txgbe_phy_qsfp_unknown;
hw->mac.get_device_caps(hw, &enforce_sfp);
if (!(enforce_sfp & TXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
/* Make sure we're a supported PHY type */
if (hw->phy.type == txgbe_phy_qsfp_intel) {
err = 0;
} else {
if (hw->allow_unsupported_sfp) {
DEBUGOUT("WARNING: Wangxun (R) Network Connections are quality tested using Wangxun (R) Ethernet Optics. "
"Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. "
"Wangxun Corporation is not responsible for any harm caused by using untested modules.");
err = 0;
} else {
DEBUGOUT("QSFP module not supported");
hw->phy.type =
txgbe_phy_sfp_unsupported;
err = TXGBE_ERR_SFP_NOT_SUPPORTED;
}
}
} else {
err = 0;
}
}
out:
return err;
}
/**
* txgbe_read_i2c_eeprom - Reads 8 bit EEPROM word over I2C interface
* @hw: pointer to hardware structure
* @byte_offset: EEPROM byte offset to read
* @eeprom_data: value read
*
* Performs byte read operation to SFP module's EEPROM over I2C interface.
**/
s32 txgbe_read_i2c_eeprom(struct txgbe_hw *hw, u8 byte_offset,
u8 *eeprom_data)
{
return hw->phy.read_i2c_byte(hw, byte_offset,
TXGBE_I2C_EEPROM_DEV_ADDR,
eeprom_data);
}
/**
* txgbe_read_i2c_sff8472 - Reads 8 bit word over I2C interface
* @hw: pointer to hardware structure
* @byte_offset: byte offset at address 0xA2
* @sff8472_data: value read
*
* Performs byte read operation to SFP module's SFF-8472 data over I2C
**/
s32 txgbe_read_i2c_sff8472(struct txgbe_hw *hw, u8 byte_offset,
u8 *sff8472_data)
{
return hw->phy.read_i2c_byte(hw, byte_offset,
TXGBE_I2C_EEPROM_DEV_ADDR2,
sff8472_data);
}
/**
* txgbe_write_i2c_eeprom - Writes 8 bit EEPROM word over I2C interface
* @hw: pointer to hardware structure
* @byte_offset: EEPROM byte offset to write
* @eeprom_data: value to write
*
* Performs byte write operation to SFP module's EEPROM over I2C interface.
**/
s32 txgbe_write_i2c_eeprom(struct txgbe_hw *hw, u8 byte_offset,
u8 eeprom_data)
{
return hw->phy.write_i2c_byte(hw, byte_offset,
TXGBE_I2C_EEPROM_DEV_ADDR,
eeprom_data);
}
/**
* txgbe_read_i2c_byte_unlocked - Reads 8 bit word over I2C
* @hw: pointer to hardware structure
* @byte_offset: byte offset to read
* @dev_addr: address to read from
* @data: value read
*
* Performs byte read operation to SFP module's EEPROM over I2C interface at
* a specified device address.
**/
s32 txgbe_read_i2c_byte_unlocked(struct txgbe_hw *hw, u8 byte_offset,
u8 dev_addr, u8 *data)
{
txgbe_i2c_start(hw, dev_addr);
/* wait tx empty */
if (!po32m(hw, TXGBE_I2CICR, TXGBE_I2CICR_TXEMPTY,
TXGBE_I2CICR_TXEMPTY, NULL, 100, 100)) {
return -TERR_TIMEOUT;
}
/* read data */
wr32(hw, TXGBE_I2CDATA,
byte_offset | TXGBE_I2CDATA_STOP);
wr32(hw, TXGBE_I2CDATA, TXGBE_I2CDATA_READ);
/* wait for read complete */
if (!po32m(hw, TXGBE_I2CICR, TXGBE_I2CICR_RXFULL,
TXGBE_I2CICR_RXFULL, NULL, 100, 100)) {
return -TERR_TIMEOUT;
}
txgbe_i2c_stop(hw);
*data = 0xFF & rd32(hw, TXGBE_I2CDATA);
return 0;
}
/**
* txgbe_read_i2c_byte - Reads 8 bit word over I2C
* @hw: pointer to hardware structure
* @byte_offset: byte offset to read
* @dev_addr: address to read from
* @data: value read
*
* Performs byte read operation to SFP module's EEPROM over I2C interface at
* a specified device address.
**/
s32 txgbe_read_i2c_byte(struct txgbe_hw *hw, u8 byte_offset,
u8 dev_addr, u8 *data)
{
u32 swfw_mask = hw->phy.phy_semaphore_mask;
int err = 0;
if (hw->mac.acquire_swfw_sync(hw, swfw_mask))
return TXGBE_ERR_SWFW_SYNC;
err = txgbe_read_i2c_byte_unlocked(hw, byte_offset, dev_addr, data);
hw->mac.release_swfw_sync(hw, swfw_mask);
return err;
}
/**
* txgbe_write_i2c_byte_unlocked - Writes 8 bit word over I2C
* @hw: pointer to hardware structure
* @byte_offset: byte offset to write
* @dev_addr: address to write to
* @data: value to write
*
* Performs byte write operation to SFP module's EEPROM over I2C interface at
* a specified device address.
**/
s32 txgbe_write_i2c_byte_unlocked(struct txgbe_hw *hw, u8 byte_offset,
u8 dev_addr, u8 data)
{
txgbe_i2c_start(hw, dev_addr);
/* wait tx empty */
if (!po32m(hw, TXGBE_I2CICR, TXGBE_I2CICR_TXEMPTY,
TXGBE_I2CICR_TXEMPTY, NULL, 100, 100)) {
return -TERR_TIMEOUT;
}
wr32(hw, TXGBE_I2CDATA, byte_offset | TXGBE_I2CDATA_STOP);
wr32(hw, TXGBE_I2CDATA, data | TXGBE_I2CDATA_WRITE);
/* wait for write complete */
if (!po32m(hw, TXGBE_I2CICR, TXGBE_I2CICR_RXFULL,
TXGBE_I2CICR_RXFULL, NULL, 100, 100)) {
return -TERR_TIMEOUT;
}
txgbe_i2c_stop(hw);
return 0;
}
/**
* txgbe_write_i2c_byte - Writes 8 bit word over I2C
* @hw: pointer to hardware structure
* @byte_offset: byte offset to write
* @dev_addr: address to write to
* @data: value to write
*
* Performs byte write operation to SFP module's EEPROM over I2C interface at
* a specified device address.
**/
s32 txgbe_write_i2c_byte(struct txgbe_hw *hw, u8 byte_offset,
u8 dev_addr, u8 data)
{
u32 swfw_mask = hw->phy.phy_semaphore_mask;
int err = 0;
if (hw->mac.acquire_swfw_sync(hw, swfw_mask))
return TXGBE_ERR_SWFW_SYNC;
err = txgbe_write_i2c_byte_unlocked(hw, byte_offset, dev_addr, data);
hw->mac.release_swfw_sync(hw, swfw_mask);
return err;
}
/**
* txgbe_i2c_start - Sets I2C start condition
* @hw: pointer to hardware structure
*
* Sets I2C start condition (High -> Low on SDA while SCL is High)
**/
static void txgbe_i2c_start(struct txgbe_hw *hw, u8 dev_addr)
{
wr32(hw, TXGBE_I2CENA, 0);
wr32(hw, TXGBE_I2CCON,
(TXGBE_I2CCON_MENA |
TXGBE_I2CCON_SPEED(1) |
TXGBE_I2CCON_RESTART |
TXGBE_I2CCON_SDIA));
wr32(hw, TXGBE_I2CTAR, dev_addr >> 1);
wr32(hw, TXGBE_I2CSSSCLHCNT, 200);
wr32(hw, TXGBE_I2CSSSCLLCNT, 200);
wr32(hw, TXGBE_I2CRXTL, 0); /* 1byte for rx full signal */
wr32(hw, TXGBE_I2CTXTL, 4);
wr32(hw, TXGBE_I2CSCLTMOUT, 0xFFFFFF);
wr32(hw, TXGBE_I2CSDATMOUT, 0xFFFFFF);
wr32(hw, TXGBE_I2CICM, 0);
wr32(hw, TXGBE_I2CENA, 1);
}
/**
* txgbe_i2c_stop - Sets I2C stop condition
* @hw: pointer to hardware structure
*
* Sets I2C stop condition (Low -> High on SDA while SCL is High)
**/
static void txgbe_i2c_stop(struct txgbe_hw *hw)
{
/* wait for completion */
if (!po32m(hw, TXGBE_I2CSTAT, TXGBE_I2CSTAT_MST,
0, NULL, 100, 100)) {
DEBUGOUT("i2c stop timeout.");
}
wr32(hw, TXGBE_I2CENA, 0);
}
static void
txgbe_set_sgmii_an37_ability(struct txgbe_hw *hw)
{
u32 value;
u8 device_type = hw->subsystem_device_id & 0xF0;
wr32_epcs(hw, VR_XS_OR_PCS_MMD_DIGI_CTL1, 0x3002);
/* for sgmii + external phy, set to 0x0105 (phy sgmii mode) */
/* for sgmii direct link, set to 0x010c (mac sgmii mode) */
if (device_type == TXGBE_DEV_ID_MAC_SGMII ||
hw->phy.media_type == txgbe_media_type_fiber)
wr32_epcs(hw, SR_MII_MMD_AN_CTL, 0x010C);
else if (device_type == TXGBE_DEV_ID_SGMII ||
device_type == TXGBE_DEV_ID_XAUI)
wr32_epcs(hw, SR_MII_MMD_AN_CTL, 0x0105);
wr32_epcs(hw, SR_MII_MMD_DIGI_CTL, 0x0200);
value = rd32_epcs(hw, SR_MII_MMD_CTL);
value = (value & ~0x1200) | (0x1 << 9);
if (hw->autoneg)
value |= SR_MII_MMD_CTL_AN_EN;
wr32_epcs(hw, SR_MII_MMD_CTL, value);
}
static s32
txgbe_set_link_to_kr(struct txgbe_hw *hw, bool autoneg)
{
u32 i;
u16 value;
s32 err = 0;
/* 1. Wait xpcs power-up good */
for (i = 0; i < 100; i++) {
if ((rd32_epcs(hw, VR_XS_OR_PCS_MMD_DIGI_STATUS) &
VR_XS_OR_PCS_MMD_DIGI_STATUS_PSEQ_MASK) ==
VR_XS_OR_PCS_MMD_DIGI_STATUS_PSEQ_POWER_GOOD)
break;
msec_delay(10);
}
if (i == 100) {
err = TXGBE_ERR_XPCS_POWER_UP_FAILED;
goto out;
}
BP_LOG("It is set to kr.\n");
wr32_epcs(hw, VR_AN_INTR_MSK, 0x7);
wr32_epcs(hw, TXGBE_PHY_TX_POWER_ST_CTL, 0x00FC);
wr32_epcs(hw, TXGBE_PHY_RX_POWER_ST_CTL, 0x00FC);
if (!autoneg) {
/* 2. Disable xpcs AN-73 */
wr32_epcs(hw, SR_AN_CTRL,
SR_AN_CTRL_AN_EN | SR_AN_CTRL_EXT_NP);
wr32_epcs(hw, VR_AN_KR_MODE_CL, VR_AN_KR_MODE_CL_PDET);
if (!(hw->devarg.auto_neg == 1)) {
wr32_epcs(hw, SR_AN_CTRL, 0);
wr32_epcs(hw, VR_AN_KR_MODE_CL, 0);
} else {
value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1);
value &= ~(1 << 6);
wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
}
if (hw->devarg.present == 1) {
value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1);
value |= TXGBE_PHY_TX_EQ_CTL1_DEF;
wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
}
if (hw->devarg.poll == 1) {
wr32_epcs(hw, VR_PMA_KRTR_TIMER_CTRL0,
VR_PMA_KRTR_TIMER_MAX_WAIT);
wr32_epcs(hw, VR_PMA_KRTR_TIMER_CTRL2, 0xA697);
}
/* 3. Set VR_XS_PMA_Gen5_12G_MPLLA_CTRL3 Register
* Bit[10:0](MPLLA_BANDWIDTH) = 11'd123 (default: 11'd16)
*/
wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL3,
TXGBE_PHY_MPLLA_CTL3_MULTIPLIER_BW_10GBASER_KR);
/* 4. Set VR_XS_PMA_Gen5_12G_MISC_CTRL0 Register
* Bit[12:8](RX_VREF_CTRL) = 5'hF (default: 5'h11)
*/
wr32_epcs(hw, TXGBE_PHY_MISC_CTL0, 0xCF00);
/* 5. Set VR_XS_PMA_Gen5_12G_RX_EQ_CTRL0 Register
* Bit[15:8](VGA1/2_GAIN_0) = 8'h77
* Bit[7:5](CTLE_POLE_0) = 3'h2
* Bit[4:0](CTLE_BOOST_0) = 4'hA
*/
wr32_epcs(hw, TXGBE_PHY_RX_EQ_CTL0, 0x774A);
/* 6. Set VR_MII_Gen5_12G_RX_GENCTRL3 Register
* Bit[2:0](LOS_TRSHLD_0) = 3'h4 (default: 3)
*/
wr32_epcs(hw, TXGBE_PHY_RX_GEN_CTL3, 0x0004);
/* 7. Initialize the mode by setting VR XS or PCS MMD Digital
* Control1 Register Bit[15](VR_RST)
*/
wr32_epcs(hw, VR_XS_OR_PCS_MMD_DIGI_CTL1, 0xA000);
/* Wait phy initialization done */
for (i = 0; i < 100; i++) {
if ((rd32_epcs(hw,
VR_XS_OR_PCS_MMD_DIGI_CTL1) &
VR_XS_OR_PCS_MMD_DIGI_CTL1_VR_RST) == 0)
break;
msleep(100);
}
if (i == 100) {
err = TXGBE_ERR_PHY_INIT_NOT_DONE;
goto out;
}
} else {
wr32_epcs(hw, VR_AN_KR_MODE_CL, 0x1);
}
if (hw->phy.ffe_set == TXGBE_BP_M_KR) {
value = (0x1804 & ~0x3F3F);
value |= hw->phy.ffe_main << 8 | hw->phy.ffe_pre;
wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0, value);
value = (0x50 & ~0x7F) | (1 << 6) | hw->phy.ffe_post;
wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
}
out:
return err;
}
static s32
txgbe_set_link_to_kx4(struct txgbe_hw *hw, bool autoneg)
{
u32 i;
s32 err = 0;
u32 value;
/* Check link status, if already set, skip setting it again */
if (hw->link_status == TXGBE_LINK_STATUS_KX4)
goto out;
BP_LOG("It is set to kx4.\n");
wr32_epcs(hw, TXGBE_PHY_TX_POWER_ST_CTL, 0);
wr32_epcs(hw, TXGBE_PHY_RX_POWER_ST_CTL, 0);
/* 1. Wait xpcs power-up good */
for (i = 0; i < 100; i++) {
if ((rd32_epcs(hw, VR_XS_OR_PCS_MMD_DIGI_STATUS) &
VR_XS_OR_PCS_MMD_DIGI_STATUS_PSEQ_MASK) ==
VR_XS_OR_PCS_MMD_DIGI_STATUS_PSEQ_POWER_GOOD)
break;
msec_delay(10);
}
if (i == 100) {
err = TXGBE_ERR_XPCS_POWER_UP_FAILED;
goto out;
}
wr32m(hw, TXGBE_MACTXCFG, TXGBE_MACTXCFG_TXE, ~TXGBE_MACTXCFG_TXE);
wr32m(hw, TXGBE_MACRXCFG, TXGBE_MACRXCFG_ENA, ~TXGBE_MACRXCFG_ENA);
hw->mac.disable_sec_tx_path(hw);
/* 2. Disable xpcs AN-73 */
if (!autoneg)
wr32_epcs(hw, SR_AN_CTRL, 0x0);
else
wr32_epcs(hw, SR_AN_CTRL, 0x3000);
/* Disable PHY MPLLA for eth mode change(after ECO) */
wr32_ephy(hw, 0x4, 0x250A);
txgbe_flush(hw);
msec_delay(1);
/* Set the eth change_mode bit first in mis_rst register
* for corresponding LAN port
*/
wr32(hw, TXGBE_RST, TXGBE_RST_ETH(hw->bus.lan_id));
/* Set SR PCS Control2 Register Bits[1:0] = 2'b01
* PCS_TYPE_SEL: non KR
*/
wr32_epcs(hw, SR_XS_PCS_CTRL2,
SR_PCS_CTRL2_TYPE_SEL_X);
/* Set SR PMA MMD Control1 Register Bit[13] = 1'b1
* SS13: 10G speed
*/
wr32_epcs(hw, SR_PMA_CTRL1,
SR_PMA_CTRL1_SS13_KX4);
value = (0xf5f0 & ~0x7F0) | (0x5 << 8) | (0x7 << 5) | 0xF0;
wr32_epcs(hw, TXGBE_PHY_TX_GENCTRL1, value);
if ((hw->subsystem_device_id & 0xFF) == TXGBE_DEV_ID_MAC_XAUI)
wr32_epcs(hw, TXGBE_PHY_MISC_CTL0, 0xCF00);
else
wr32_epcs(hw, TXGBE_PHY_MISC_CTL0, 0x4F00);
for (i = 0; i < 4; i++) {
if (i == 0)
value = (0x45 & ~0xFFFF) | (0x7 << 12) |
(0x7 << 8) | 0x6;
else
value = (0xff06 & ~0xFFFF) | (0x7 << 12) |
(0x7 << 8) | 0x6;
wr32_epcs(hw, TXGBE_PHY_RX_EQ_CTL0 + i, value);
}
value = 0x0 & ~0x7777;
wr32_epcs(hw, TXGBE_PHY_RX_EQ_ATT_LVL0, value);
wr32_epcs(hw, TXGBE_PHY_DFE_TAP_CTL0, 0x0);
value = (0x6db & ~0xFFF) | (0x1 << 9) | (0x1 << 6) | (0x1 << 3) | 0x1;
wr32_epcs(hw, TXGBE_PHY_RX_GEN_CTL3, value);
/* Set VR XS, PMA, or MII Gen5 12G PHY MPLLA
* Control 0 Register Bit[7:0] = 8'd40 //MPLLA_MULTIPLIER
*/
wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL0,
TXGBE_PHY_MPLLA_CTL0_MULTIPLIER_OTHER);
/* Set VR XS, PMA or MII Gen5 12G PHY MPLLA
* Control 3 Register Bit[10:0] = 11'd86 //MPLLA_BANDWIDTH
*/
wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL3,
TXGBE_PHY_MPLLA_CTL3_MULTIPLIER_BW_OTHER);
/* Set VR XS, PMA, or MII Gen5 12G PHY VCO
* Calibration Load 0 Register Bit[12:0] = 13'd1360 //VCO_LD_VAL_0
*/
wr32_epcs(hw, TXGBE_PHY_VCO_CAL_LD0,
TXGBE_PHY_VCO_CAL_LD0_OTHER);
/* Set VR XS, PMA, or MII Gen5 12G PHY VCO
* Calibration Load 1 Register Bit[12:0] = 13'd1360 //VCO_LD_VAL_1
*/
wr32_epcs(hw, TXGBE_PHY_VCO_CAL_LD1,
TXGBE_PHY_VCO_CAL_LD0_OTHER);
/* Set VR XS, PMA, or MII Gen5 12G PHY VCO
* Calibration Load 2 Register Bit[12:0] = 13'd1360 //VCO_LD_VAL_2
*/
wr32_epcs(hw, TXGBE_PHY_VCO_CAL_LD2,
TXGBE_PHY_VCO_CAL_LD0_OTHER);
/* Set VR XS, PMA, or MII Gen5 12G PHY VCO
* Calibration Load 3 Register Bit[12:0] = 13'd1360 //VCO_LD_VAL_3
*/
wr32_epcs(hw, TXGBE_PHY_VCO_CAL_LD3,
TXGBE_PHY_VCO_CAL_LD0_OTHER);
/* Set VR XS, PMA, or MII Gen5 12G PHY VCO
* Calibration Reference 0 Register Bit[5:0] = 6'd34 //VCO_REF_LD_0/1
*/
wr32_epcs(hw, TXGBE_PHY_VCO_CAL_REF0, 0x2222);
/* Set VR XS, PMA, or MII Gen5 12G PHY VCO
* Calibration Reference 1 Register Bit[5:0] = 6'd34 //VCO_REF_LD_2/3
*/
wr32_epcs(hw, TXGBE_PHY_VCO_CAL_REF1, 0x2222);
/* Set VR XS, PMA, or MII Gen5 12G PHY AFE-DFE
* Enable Register Bit[7:0] = 8'd0 //AFE_EN_0/3_1, DFE_EN_0/3_1
*/
wr32_epcs(hw, TXGBE_PHY_AFE_DFE_ENABLE, 0x0);
/* Set VR XS, PMA, or MII Gen5 12G PHY Rx
* Equalization Control 4 Register Bit[3:0] = 4'd0 //CONT_ADAPT_0/3_1
*/
wr32_epcs(hw, TXGBE_PHY_RX_EQ_CTL, 0x00F0);
/* Set VR XS, PMA, or MII Gen5 12G PHY Tx Rate
* Control Register Bit[14:12], Bit[10:8], Bit[6:4], Bit[2:0],
* all rates to 3'b010 //TX0/1/2/3_RATE
*/
wr32_epcs(hw, TXGBE_PHY_TX_RATE_CTL, 0x2222);
/* Set VR XS, PMA, or MII Gen5 12G PHY Rx Rate
* Control Register Bit[13:12], Bit[9:8], Bit[5:4], Bit[1:0],
* all rates to 2'b10 //RX0/1/2/3_RATE
*/
wr32_epcs(hw, TXGBE_PHY_RX_RATE_CTL, 0x2222);
/* Set VR XS, PMA, or MII Gen5 12G PHY Tx General
* Control 2 Register Bit[15:8] = 2'b01 //TX0/1/2/3_WIDTH: 10bits
*/
wr32_epcs(hw, TXGBE_PHY_TX_GEN_CTL2, 0x5500);
/* Set VR XS, PMA, or MII Gen5 12G PHY Rx General
* Control 2 Register Bit[15:8] = 2'b01 //RX0/1/2/3_WIDTH: 10bits
*/
wr32_epcs(hw, TXGBE_PHY_RX_GEN_CTL2, 0x5500);
/* Set VR XS, PMA, or MII Gen5 12G PHY MPLLA Control
* 2 Register Bit[10:8] = 3'b010
* MPLLA_DIV16P5_CLK_EN=0, MPLLA_DIV10_CLK_EN=1, MPLLA_DIV8_CLK_EN=0
*/
wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL2,
TXGBE_PHY_MPLLA_CTL2_DIV_CLK_EN_10);
wr32_epcs(hw, 0x1f0000, 0x0);
wr32_epcs(hw, 0x1f8001, 0x0);
wr32_epcs(hw, SR_MII_MMD_DIGI_CTL, 0x0);
/* 10. Initialize the mode by setting VR XS or PCS MMD Digital Control1
* Register Bit[15](VR_RST)
*/
wr32_epcs(hw, VR_XS_OR_PCS_MMD_DIGI_CTL1, 0xA000);
/* Wait phy initialization done */
for (i = 0; i < 100; i++) {
if ((rd32_epcs(hw, VR_XS_OR_PCS_MMD_DIGI_CTL1) &
VR_XS_OR_PCS_MMD_DIGI_CTL1_VR_RST) == 0)
break;
msleep(100);
}
/* If success, set link status */
hw->link_status = TXGBE_LINK_STATUS_KX4;
if (i == 100) {
err = TXGBE_ERR_PHY_INIT_NOT_DONE;
goto out;
}
if (hw->phy.ffe_set == TXGBE_BP_M_KX4) {
value = (0x1804 & ~0x3F3F);
value |= hw->phy.ffe_main << 8 | hw->phy.ffe_pre;
wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0, value);
value = (0x50 & ~0x7F) | (1 << 6) | hw->phy.ffe_post;
wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
} else if (hw->fw_version <= TXGBE_FW_N_TXEQ) {
value = (0x1804 & ~0x3F3F);
value |= 40 << 8;
wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0, value);
value = (0x50 & ~0x7F) | (1 << 6);
wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
}
out:
return err;
}
static s32
txgbe_set_link_to_kx(struct txgbe_hw *hw,
u32 speed,
bool autoneg)
{
u32 i;
s32 err = 0;
u32 wdata = 0;
u32 value;
/* Check link status, if already set, skip setting it again */
if (hw->link_status == TXGBE_LINK_STATUS_KX)
goto out;
BP_LOG("It is set to kx. speed =0x%x\n", speed);
wr32_epcs(hw, TXGBE_PHY_TX_POWER_ST_CTL, 0x00FC);
wr32_epcs(hw, TXGBE_PHY_RX_POWER_ST_CTL, 0x00FC);
/* 1. Wait xpcs power-up good */
for (i = 0; i < 100; i++) {
if ((rd32_epcs(hw, VR_XS_OR_PCS_MMD_DIGI_STATUS) &
VR_XS_OR_PCS_MMD_DIGI_STATUS_PSEQ_MASK) ==
VR_XS_OR_PCS_MMD_DIGI_STATUS_PSEQ_POWER_GOOD)
break;
msec_delay(10);
}
if (i == 100) {
err = TXGBE_ERR_XPCS_POWER_UP_FAILED;
goto out;
}
wr32m(hw, TXGBE_MACTXCFG, TXGBE_MACTXCFG_TXE, ~TXGBE_MACTXCFG_TXE);
wr32m(hw, TXGBE_MACRXCFG, TXGBE_MACRXCFG_ENA, ~TXGBE_MACRXCFG_ENA);
hw->mac.disable_sec_tx_path(hw);
/* 2. Disable xpcs AN-73 */
if (!autoneg)
wr32_epcs(hw, SR_AN_CTRL, 0x0);
else
wr32_epcs(hw, SR_AN_CTRL, 0x3000);
/* Disable PHY MPLLA for eth mode change(after ECO) */
wr32_ephy(hw, 0x4, 0x240A);
txgbe_flush(hw);
msec_delay(1);
/* Set the eth change_mode bit first in mis_rst register
* for corresponding LAN port
*/
wr32(hw, TXGBE_RST, TXGBE_RST_ETH(hw->bus.lan_id));
/* Set SR PCS Control2 Register Bits[1:0] = 2'b01
* PCS_TYPE_SEL: non KR
*/
wr32_epcs(hw, SR_XS_PCS_CTRL2,
SR_PCS_CTRL2_TYPE_SEL_X);
/* Set SR PMA MMD Control1 Register Bit[13] = 1'b0
* SS13: 1G speed
*/
wr32_epcs(hw, SR_PMA_CTRL1,
SR_PMA_CTRL1_SS13_KX);
/* Set SR MII MMD Control Register to corresponding speed: {Bit[6],
* Bit[13]}=[2'b00,2'b01,2'b10]->[10M,100M,1G]
*/
if (speed == TXGBE_LINK_SPEED_100M_FULL)
wdata = 0x2100;
else if (speed == TXGBE_LINK_SPEED_1GB_FULL)
wdata = 0x0140;
else if (speed == TXGBE_LINK_SPEED_10M_FULL)
wdata = 0x0100;
wr32_epcs(hw, SR_MII_MMD_CTL,
wdata);
value = (0xf5f0 & ~0x710) | (0x5 << 8) | 0x10;
wr32_epcs(hw, TXGBE_PHY_TX_GENCTRL1, value);
if (hw->devarg.sgmii == 1)
wr32_epcs(hw, TXGBE_PHY_MISC_CTL0, 0x4F00);
else
wr32_epcs(hw, TXGBE_PHY_MISC_CTL0, 0xCF00);
for (i = 0; i < 4; i++) {
if (i) {
value = 0xff06;
} else {
value = (0x45 & ~0xFFFF) | (0x7 << 12) |
(0x7 << 8) | 0x6;
}
wr32_epcs(hw, TXGBE_PHY_RX_EQ_CTL0 + i, value);
}
value = 0x0 & ~0x7;
wr32_epcs(hw, TXGBE_PHY_RX_EQ_ATT_LVL0, value);
wr32_epcs(hw, TXGBE_PHY_DFE_TAP_CTL0, 0x0);
value = (0x6db & ~0x7) | 0x4;
wr32_epcs(hw, TXGBE_PHY_RX_GEN_CTL3, value);
/* Set VR XS, PMA, or MII Gen5 12G PHY MPLLA Control
* 0 Register Bit[7:0] = 8'd32 //MPLLA_MULTIPLIER
*/
wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL0,
TXGBE_PHY_MPLLA_CTL0_MULTIPLIER_1GBASEX_KX);
/* Set VR XS, PMA or MII Gen5 12G PHY MPLLA Control
* 3 Register Bit[10:0] = 11'd70 //MPLLA_BANDWIDTH
*/
wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL3,
TXGBE_PHY_MPLLA_CTL3_MULTIPLIER_BW_1GBASEX_KX);
/* Set VR XS, PMA, or MII Gen5 12G PHY VCO
* Calibration Load 0 Register Bit[12:0] = 13'd1344 //VCO_LD_VAL_0
*/
wr32_epcs(hw, TXGBE_PHY_VCO_CAL_LD0,
TXGBE_PHY_VCO_CAL_LD0_1GBASEX_KX);
wr32_epcs(hw, TXGBE_PHY_VCO_CAL_LD1, 0x549);
wr32_epcs(hw, TXGBE_PHY_VCO_CAL_LD2, 0x549);
wr32_epcs(hw, TXGBE_PHY_VCO_CAL_LD3, 0x549);
/* Set VR XS, PMA, or MII Gen5 12G PHY VCO
* Calibration Reference 0 Register Bit[5:0] = 6'd42 //VCO_REF_LD_0
*/
wr32_epcs(hw, TXGBE_PHY_VCO_CAL_REF0,
TXGBE_PHY_VCO_CAL_REF0_LD0_1GBASEX_KX);
wr32_epcs(hw, TXGBE_PHY_VCO_CAL_REF1, 0x2929);
/* Set VR XS, PMA, or MII Gen5 12G PHY AFE-DFE
* Enable Register Bit[4], Bit[0] = 1'b0 //AFE_EN_0, DFE_EN_0
*/
wr32_epcs(hw, TXGBE_PHY_AFE_DFE_ENABLE,
0x0);
/* Set VR XS, PMA, or MII Gen5 12G PHY Rx
* Equalization Control 4 Register Bit[0] = 1'b0 //CONT_ADAPT_0
*/
wr32_epcs(hw, TXGBE_PHY_RX_EQ_CTL,
0x0010);
/* Set VR XS, PMA, or MII Gen5 12G PHY Tx Rate
* Control Register Bit[2:0] = 3'b011 //TX0_RATE
*/
wr32_epcs(hw, TXGBE_PHY_TX_RATE_CTL,
TXGBE_PHY_TX_RATE_CTL_TX0_RATE_1GBASEX_KX);
/* Set VR XS, PMA, or MII Gen5 12G PHY Rx Rate
* Control Register Bit[2:0] = 3'b011 //RX0_RATE
*/
wr32_epcs(hw, TXGBE_PHY_RX_RATE_CTL,
TXGBE_PHY_RX_RATE_CTL_RX0_RATE_1GBASEX_KX);
/* Set VR XS, PMA, or MII Gen5 12G PHY Tx General
* Control 2 Register Bit[9:8] = 2'b01 //TX0_WIDTH: 10bits
*/
wr32_epcs(hw, TXGBE_PHY_TX_GEN_CTL2,
TXGBE_PHY_TX_GEN_CTL2_TX0_WIDTH_OTHER);
/* Set VR XS, PMA, or MII Gen5 12G PHY Rx General
* Control 2 Register Bit[9:8] = 2'b01 //RX0_WIDTH: 10bits
*/
wr32_epcs(hw, TXGBE_PHY_RX_GEN_CTL2,
TXGBE_PHY_RX_GEN_CTL2_RX0_WIDTH_OTHER);
/* Set VR XS, PMA, or MII Gen5 12G PHY MPLLA Control
* 2 Register Bit[10:8] = 3'b010 //MPLLA_DIV16P5_CLK_EN=0,
* MPLLA_DIV10_CLK_EN=1, MPLLA_DIV8_CLK_EN=0
*/
wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL2,
TXGBE_PHY_MPLLA_CTL2_DIV_CLK_EN_10);
/* VR MII MMD AN Control Register Bit[8] = 1'b1 //MII_CTRL
* Set to 8bit MII (required in 10M/100M SGMII)
*/
wr32_epcs(hw, SR_MII_MMD_AN_CTL,
0x0100);
/* 10. Initialize the mode by setting VR XS or PCS MMD Digital Control1
* Register Bit[15](VR_RST)
*/
wr32_epcs(hw, VR_XS_OR_PCS_MMD_DIGI_CTL1, 0xA000);
/* Wait phy initialization done */
for (i = 0; i < 100; i++) {
if ((rd32_epcs(hw, VR_XS_OR_PCS_MMD_DIGI_CTL1) &
VR_XS_OR_PCS_MMD_DIGI_CTL1_VR_RST) == 0)
break;
msleep(100);
}
/* If success, set link status */
hw->link_status = TXGBE_LINK_STATUS_KX;
if (i == 100) {
err = TXGBE_ERR_PHY_INIT_NOT_DONE;
goto out;
}
if (hw->phy.ffe_set == TXGBE_BP_M_KX) {
value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0) & ~0x3F3F;
value |= hw->phy.ffe_main << 8 | hw->phy.ffe_pre;
wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0, value);
value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0) & ~0x7F;
value |= hw->phy.ffe_post | (1 << 6);
wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
} else if (hw->fw_version <= TXGBE_FW_N_TXEQ) {
value = (0x1804 & ~0x3F3F) | (40 << 8);
wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0, value);
value = (0x50 & ~0x7F) | (1 << 6);
wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
}
out:
return err;
}
static s32
txgbe_set_link_to_sfi(struct txgbe_hw *hw,
u32 speed)
{
u32 i;
s32 err = 0;
u32 value = 0;
/* Set the module link speed */
hw->mac.set_rate_select_speed(hw, speed);
/* 1. Wait xpcs power-up good */
for (i = 0; i < 100; i++) {
if ((rd32_epcs(hw, VR_XS_OR_PCS_MMD_DIGI_STATUS) &
VR_XS_OR_PCS_MMD_DIGI_STATUS_PSEQ_MASK) ==
VR_XS_OR_PCS_MMD_DIGI_STATUS_PSEQ_POWER_GOOD)
break;
msec_delay(10);
}
if (i == 100) {
err = TXGBE_ERR_XPCS_POWER_UP_FAILED;
goto out;
}
wr32m(hw, TXGBE_MACTXCFG, TXGBE_MACTXCFG_TXE, ~TXGBE_MACTXCFG_TXE);
wr32m(hw, TXGBE_MACRXCFG, TXGBE_MACRXCFG_ENA, ~TXGBE_MACRXCFG_ENA);
hw->mac.disable_sec_tx_path(hw);
/* 2. Disable xpcs AN-73 */
wr32_epcs(hw, SR_AN_CTRL, 0x0);
/* Disable PHY MPLLA for eth mode change(after ECO) */
wr32_ephy(hw, 0x4, 0x243A);
txgbe_flush(hw);
msec_delay(1);
/* Set the eth change_mode bit first in mis_rst register
* for corresponding LAN port
*/
wr32(hw, TXGBE_RST, TXGBE_RST_ETH(hw->bus.lan_id));
if (speed == TXGBE_LINK_SPEED_10GB_FULL) {
/* Set SR PCS Control2 Register Bits[1:0] = 2'b00
* PCS_TYPE_SEL: KR
*/
wr32_epcs(hw, SR_XS_PCS_CTRL2, 0);
value = rd32_epcs(hw, SR_PMA_CTRL1);
value = value | 0x2000;
wr32_epcs(hw, SR_PMA_CTRL1, value);
/* Set VR_XS_PMA_Gen5_12G_MPLLA_CTRL0 Register Bit[7:0] = 8'd33
* MPLLA_MULTIPLIER
*/
wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL0, 0x0021);
/* 3. Set VR_XS_PMA_Gen5_12G_MPLLA_CTRL3 Register
* Bit[10:0](MPLLA_BANDWIDTH) = 11'd0
*/
wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL3, 0);
value = rd32_epcs(hw, TXGBE_PHY_TX_GENCTRL1);
value = (value & ~0x700) | 0x500;
wr32_epcs(hw, TXGBE_PHY_TX_GENCTRL1, value);
/* 4. Set VR_XS_PMA_Gen5_12G_MISC_CTRL0 Register
* Bit[12:8](RX_VREF_CTRL) = 5'hF
*/
wr32_epcs(hw, TXGBE_PHY_MISC_CTL0, 0xCF00);
/* Set VR_XS_PMA_Gen5_12G_VCO_CAL_LD0 Register
* Bit[12:0] = 13'd1353 //VCO_LD_VAL_0
*/
wr32_epcs(hw, TXGBE_PHY_VCO_CAL_LD0, 0x0549);
/* Set VR_XS_PMA_Gen5_12G_VCO_CAL_REF0 Register
* Bit[5:0] = 6'd41 //VCO_REF_LD_0
*/
wr32_epcs(hw, TXGBE_PHY_VCO_CAL_REF0, 0x0029);
/* Set VR_XS_PMA_Gen5_12G_TX_RATE_CTRL Register
* Bit[2:0] = 3'b000 //TX0_RATE
*/
wr32_epcs(hw, TXGBE_PHY_TX_RATE_CTL, 0);
/* Set VR_XS_PMA_Gen5_12G_RX_RATE_CTRL Register
* Bit[2:0] = 3'b000 //RX0_RATE
*/
wr32_epcs(hw, TXGBE_PHY_RX_RATE_CTL, 0);
/* Set VR_XS_PMA_Gen5_12G_TX_GENCTRL2 Register Bit[9:8] = 2'b11
* TX0_WIDTH: 20bits
*/
wr32_epcs(hw, TXGBE_PHY_TX_GEN_CTL2, 0x0300);
/* Set VR_XS_PMA_Gen5_12G_RX_GENCTRL2 Register Bit[9:8] = 2'b11
* RX0_WIDTH: 20bits
*/
wr32_epcs(hw, TXGBE_PHY_RX_GEN_CTL2, 0x0300);
/* Set VR_XS_PMA_Gen5_12G_MPLLA_CTRL2 Register
* Bit[10:8] = 3'b110
* MPLLA_DIV16P5_CLK_EN=1
* MPLLA_DIV10_CLK_EN=1
* MPLLA_DIV8_CLK_EN=0
*/
wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL2, 0x0600);
if (hw->phy.sfp_type == txgbe_sfp_type_da_cu_core0 ||
hw->phy.sfp_type == txgbe_sfp_type_da_cu_core1) {
/* 7. Set VR_XS_PMA_Gen5_12G_RX_EQ_CTRL0 Register
* Bit[15:8](VGA1/2_GAIN_0) = 8'h77
* Bit[7:5](CTLE_POLE_0) = 3'h2
* Bit[4:0](CTLE_BOOST_0) = 4'hF
*/
wr32_epcs(hw, TXGBE_PHY_RX_EQ_CTL0, 0x774F);
} else {
/* 7. Set VR_XS_PMA_Gen5_12G_RX_EQ_CTRL0 Register
* Bit[15:8](VGA1/2_GAIN_0) = 8'h00
* Bit[7:5](CTLE_POLE_0) = 3'h2
* Bit[4:0](CTLE_BOOST_0) = 4'hA
*/
value = rd32_epcs(hw, TXGBE_PHY_RX_EQ_CTL0);
value = (value & ~0xFFFF) | (2 << 5) | 0x05;
wr32_epcs(hw, TXGBE_PHY_RX_EQ_CTL0, value);
}
value = rd32_epcs(hw, TXGBE_PHY_RX_EQ_ATT_LVL0);
value = (value & ~0x7) | 0x0;
wr32_epcs(hw, TXGBE_PHY_RX_EQ_ATT_LVL0, value);
if (hw->phy.sfp_type == txgbe_sfp_type_da_cu_core0 ||
hw->phy.sfp_type == txgbe_sfp_type_da_cu_core1) {
/* 8. Set VR_XS_PMA_Gen5_12G_DFE_TAP_CTRL0 Register
* Bit[7:0](DFE_TAP1_0) = 8'd20
*/
wr32_epcs(hw, TXGBE_PHY_DFE_TAP_CTL0, 0x0014);
value = rd32_epcs(hw, TXGBE_PHY_AFE_DFE_ENABLE);
value = (value & ~0x11) | 0x11;
wr32_epcs(hw, TXGBE_PHY_AFE_DFE_ENABLE, value);
} else {
/* 8. Set VR_XS_PMA_Gen5_12G_DFE_TAP_CTRL0 Register
* Bit[7:0](DFE_TAP1_0) = 8'd20
*/
wr32_epcs(hw, TXGBE_PHY_DFE_TAP_CTL0, 0xBE);
/* 9. Set VR_MII_Gen5_12G_AFE_DFE_EN_CTRL Register
* Bit[4](DFE_EN_0) = 1'b0, Bit[0](AFE_EN_0) = 1'b0
*/
value = rd32_epcs(hw, TXGBE_PHY_AFE_DFE_ENABLE);
value = (value & ~0x11) | 0x0;
wr32_epcs(hw, TXGBE_PHY_AFE_DFE_ENABLE, value);
}
value = rd32_epcs(hw, TXGBE_PHY_RX_EQ_CTL);
value = value & ~0x1;
wr32_epcs(hw, TXGBE_PHY_RX_EQ_CTL, value);
} else {
/* Set SR PCS Control2 Register Bits[1:0] = 2'b00
* PCS_TYPE_SEL: KR
*/
wr32_epcs(hw, SR_XS_PCS_CTRL2, 0x1);
/* Set SR PMA MMD Control1 Register Bit[13] = 1'b0
* SS13: 1G speed
*/
wr32_epcs(hw, SR_PMA_CTRL1, 0x0000);
/* Set SR MII MMD Control Register to corresponding speed */
wr32_epcs(hw, SR_MII_MMD_CTL, 0x0140);
value = rd32_epcs(hw, TXGBE_PHY_TX_GENCTRL1);
value = (value & ~0x710) | 0x500;
wr32_epcs(hw, TXGBE_PHY_TX_GENCTRL1, value);
/* 4. Set VR_XS_PMA_Gen5_12G_MISC_CTRL0 Register
* Bit[12:8](RX_VREF_CTRL) = 5'hF
*/
wr32_epcs(hw, TXGBE_PHY_MISC_CTL0, 0xCF00);
if (hw->phy.sfp_type == txgbe_sfp_type_da_cu_core0 ||
hw->phy.sfp_type == txgbe_sfp_type_da_cu_core1) {
wr32_epcs(hw, TXGBE_PHY_RX_EQ_CTL0, 0x774F);
} else {
/* 7. Set VR_XS_PMA_Gen5_12G_RX_EQ_CTRL0 Register
* Bit[15:8](VGA1/2_GAIN_0) = 8'h00
* Bit[7:5](CTLE_POLE_0) = 3'h2
* Bit[4:0](CTLE_BOOST_0) = 4'hA
*/
value = rd32_epcs(hw, TXGBE_PHY_RX_EQ_CTL0);
value = (value & ~0xFFFF) | 0x7706;
wr32_epcs(hw, TXGBE_PHY_RX_EQ_CTL0, value);
}
value = rd32_epcs(hw, TXGBE_PHY_RX_EQ_ATT_LVL0);
value = (value & ~0x7) | 0x0;
wr32_epcs(hw, TXGBE_PHY_RX_EQ_ATT_LVL0, value);
/* 8. Set VR_XS_PMA_Gen5_12G_DFE_TAP_CTRL0 Register
* Bit[7:0](DFE_TAP1_0) = 8'd00
*/
wr32_epcs(hw, TXGBE_PHY_DFE_TAP_CTL0, 0x0);
/* 9. Set VR_MII_Gen5_12G_AFE_DFE_EN_CTRL Register
* Bit[4](DFE_EN_0) = 1'b0, Bit[0](AFE_EN_0) = 1'b0
*/
value = rd32_epcs(hw, TXGBE_PHY_RX_GEN_CTL3);
value = (value & ~0x7) | 0x4;
wr32_epcs(hw, TXGBE_PHY_RX_GEN_CTL3, value);
wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL0, 0x0020);
wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL3, 0x0046);
wr32_epcs(hw, TXGBE_PHY_VCO_CAL_LD0, 0x0540);
wr32_epcs(hw, TXGBE_PHY_VCO_CAL_REF0, 0x002A);
wr32_epcs(hw, TXGBE_PHY_AFE_DFE_ENABLE, 0x0);
wr32_epcs(hw, TXGBE_PHY_RX_EQ_CTL, 0x0010);
wr32_epcs(hw, TXGBE_PHY_TX_RATE_CTL, 0x0003);
wr32_epcs(hw, TXGBE_PHY_RX_RATE_CTL, 0x0003);
wr32_epcs(hw, TXGBE_PHY_TX_GEN_CTL2, 0x0100);
wr32_epcs(hw, TXGBE_PHY_RX_GEN_CTL2, 0x0100);
wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL2, 0x0200);
wr32_epcs(hw, SR_MII_MMD_AN_CTL, 0x0100);
}
/* 10. Initialize the mode by setting VR XS or PCS MMD Digital Control1
* Register Bit[15](VR_RST)
*/
wr32_epcs(hw, VR_XS_OR_PCS_MMD_DIGI_CTL1, 0xA000);
/* Wait phy initialization done */
for (i = 0; i < 100; i++) {
if ((rd32_epcs(hw, VR_XS_OR_PCS_MMD_DIGI_CTL1) &
VR_XS_OR_PCS_MMD_DIGI_CTL1_VR_RST) == 0)
break;
msleep(100);
}
if (i == 100) {
err = TXGBE_ERR_PHY_INIT_NOT_DONE;
goto out;
}
if (hw->phy.ffe_set == TXGBE_BP_M_SFI) {
value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0) & ~0x3F3F;
value |= hw->phy.ffe_main << 8 | hw->phy.ffe_pre;
wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0, value);
value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0) & ~0x7F;
value |= hw->phy.ffe_post | (1 << 6);
wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
} else if (hw->fw_version <= TXGBE_FW_N_TXEQ) {
value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0);
value = (value & ~0x3F3F) | (24 << 8) | 4;
wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0, value);
value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1);
value = (value & ~0x7F) | 16 | (1 << 6);
wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
}
out:
return err;
}
/**
* txgbe_autoc_read - Hides MAC differences needed for AUTOC read
* @hw: pointer to hardware structure
*/
u64 txgbe_autoc_read(struct txgbe_hw *hw)
{
u64 autoc;
u32 sr_pcs_ctl;
u32 sr_pma_ctl1;
u32 sr_an_ctl;
u32 sr_an_adv_reg2;
u8 type = hw->subsystem_device_id & 0xFF;
autoc = hw->mac.autoc;
if (hw->phy.multispeed_fiber) {
autoc |= TXGBE_AUTOC_LMS_10G;
} else if (type == TXGBE_DEV_ID_SFP) {
autoc |= TXGBE_AUTOC_LMS_10G;
autoc |= TXGBE_AUTOC_10GS_SFI;
} else if (type == TXGBE_DEV_ID_QSFP) {
autoc = 0; /*TBD*/
} else if (type == TXGBE_DEV_ID_XAUI || type == TXGBE_DEV_ID_SFI_XAUI) {
autoc |= TXGBE_AUTOC_LMS_10G_LINK_NO_AN;
autoc |= TXGBE_AUTOC_10G_XAUI;
hw->phy.link_mode = TXGBE_PHYSICAL_LAYER_10GBASE_T;
} else if (type == TXGBE_DEV_ID_SGMII) {
autoc |= TXGBE_AUTOC_LMS_SGMII_1G_100M;
hw->phy.link_mode = TXGBE_PHYSICAL_LAYER_1000BASE_T |
TXGBE_PHYSICAL_LAYER_100BASE_TX;
} else if (type == TXGBE_DEV_ID_MAC_XAUI) {
autoc |= TXGBE_AUTOC_LMS_10G_LINK_NO_AN;
hw->phy.link_mode = TXGBE_PHYSICAL_LAYER_10GBASE_KX4;
} else if (type == TXGBE_DEV_ID_MAC_SGMII) {
autoc |= TXGBE_AUTOC_LMS_1G_LINK_NO_AN;
hw->phy.link_mode = TXGBE_PHYSICAL_LAYER_1000BASE_KX;
}
if (type != TXGBE_DEV_ID_KR_KX_KX4)
return autoc;
sr_pcs_ctl = rd32_epcs(hw, SR_XS_PCS_CTRL2);
sr_pma_ctl1 = rd32_epcs(hw, SR_PMA_CTRL1);
sr_an_ctl = rd32_epcs(hw, SR_AN_CTRL);
sr_an_adv_reg2 = rd32_epcs(hw, SR_AN_MMD_ADV_REG2);
if ((sr_pcs_ctl & SR_PCS_CTRL2_TYPE_SEL) == SR_PCS_CTRL2_TYPE_SEL_X &&
(sr_pma_ctl1 & SR_PMA_CTRL1_SS13) == SR_PMA_CTRL1_SS13_KX &&
(sr_an_ctl & SR_AN_CTRL_AN_EN) == 0) {
/* 1G or KX - no backplane auto-negotiation */
autoc |= TXGBE_AUTOC_LMS_1G_LINK_NO_AN |
TXGBE_AUTOC_1G_KX;
hw->phy.link_mode = TXGBE_PHYSICAL_LAYER_1000BASE_KX;
} else if ((sr_pcs_ctl & SR_PCS_CTRL2_TYPE_SEL) ==
SR_PCS_CTRL2_TYPE_SEL_X &&
(sr_pma_ctl1 & SR_PMA_CTRL1_SS13) == SR_PMA_CTRL1_SS13_KX4 &&
(sr_an_ctl & SR_AN_CTRL_AN_EN) == 0) {
autoc |= TXGBE_AUTOC_LMS_10G |
TXGBE_AUTOC_10G_KX4;
hw->phy.link_mode = TXGBE_PHYSICAL_LAYER_10GBASE_KX4;
} else if ((sr_pcs_ctl & SR_PCS_CTRL2_TYPE_SEL) ==
SR_PCS_CTRL2_TYPE_SEL_R &&
(sr_an_ctl & SR_AN_CTRL_AN_EN) == 0) {
/* 10 GbE serial link (KR -no backplane auto-negotiation) */
autoc |= TXGBE_AUTOC_LMS_10G |
TXGBE_AUTOC_10GS_KR;
hw->phy.link_mode = TXGBE_PHYSICAL_LAYER_10GBASE_KR;
} else if ((sr_an_ctl & SR_AN_CTRL_AN_EN)) {
/* KX/KX4/KR backplane auto-negotiation enable */
if (sr_an_adv_reg2 & SR_AN_MMD_ADV_REG2_BP_TYPE_KR)
autoc |= TXGBE_AUTOC_KR_SUPP;
if (sr_an_adv_reg2 & SR_AN_MMD_ADV_REG2_BP_TYPE_KX4)
autoc |= TXGBE_AUTOC_KX4_SUPP;
if (sr_an_adv_reg2 & SR_AN_MMD_ADV_REG2_BP_TYPE_KX)
autoc |= TXGBE_AUTOC_KX_SUPP;
autoc |= TXGBE_AUTOC_LMS_KX4_KX_KR;
hw->phy.link_mode = TXGBE_PHYSICAL_LAYER_10GBASE_KR |
TXGBE_PHYSICAL_LAYER_10GBASE_KX4 |
TXGBE_PHYSICAL_LAYER_1000BASE_KX;
}
return autoc;
}
/**
* txgbe_autoc_write - Hides MAC differences needed for AUTOC write
* @hw: pointer to hardware structure
* @autoc: value to write to AUTOC
*/
void txgbe_autoc_write(struct txgbe_hw *hw, u64 autoc)
{
bool autoneg;
u32 speed;
u32 mactxcfg = 0;
u8 device_type = hw->subsystem_device_id & 0xFF;
speed = TXGBD_AUTOC_SPEED(autoc);
autoc &= ~TXGBE_AUTOC_SPEED_MASK;
autoneg = (autoc & TXGBE_AUTOC_AUTONEG ? true : false);
autoc &= ~TXGBE_AUTOC_AUTONEG;
if (device_type == TXGBE_DEV_ID_KR_KX_KX4) {
if (!autoneg) {
switch (hw->phy.link_mode) {
case TXGBE_PHYSICAL_LAYER_10GBASE_KR:
txgbe_set_link_to_kr(hw, autoneg);
break;
case TXGBE_PHYSICAL_LAYER_10GBASE_KX4:
txgbe_set_link_to_kx4(hw, autoneg);
break;
case TXGBE_PHYSICAL_LAYER_1000BASE_KX:
txgbe_set_link_to_kx(hw, speed, autoneg);
break;
default:
return;
}
} else {
txgbe_set_link_to_kr(hw, !autoneg);
}
} else if (device_type == TXGBE_DEV_ID_XAUI ||
device_type == TXGBE_DEV_ID_SGMII ||
device_type == TXGBE_DEV_ID_MAC_XAUI ||
device_type == TXGBE_DEV_ID_MAC_SGMII ||
(device_type == TXGBE_DEV_ID_SFI_XAUI &&
hw->phy.media_type == txgbe_media_type_copper)) {
if (speed == TXGBE_LINK_SPEED_10GB_FULL) {
txgbe_set_link_to_kx4(hw, 0);
} else {
txgbe_set_link_to_kx(hw, speed, 0);
if (hw->devarg.auto_neg == 1)
txgbe_set_sgmii_an37_ability(hw);
}
} else if (hw->phy.media_type == txgbe_media_type_fiber) {
txgbe_set_link_to_sfi(hw, speed);
if (speed == TXGBE_LINK_SPEED_1GB_FULL)
txgbe_set_sgmii_an37_ability(hw);
}
hw->mac.enable_sec_tx_path(hw);
if (speed == TXGBE_LINK_SPEED_10GB_FULL)
mactxcfg = TXGBE_MACTXCFG_SPEED_10G;
else if (speed == TXGBE_LINK_SPEED_1GB_FULL)
mactxcfg = TXGBE_MACTXCFG_SPEED_1G;
/* enable mac transmitter */
wr32m(hw, TXGBE_MACTXCFG,
TXGBE_MACTXCFG_SPEED_MASK | TXGBE_MACTXCFG_TXE,
mactxcfg | TXGBE_MACTXCFG_TXE);
wr32m(hw, TXGBE_MACRXCFG, TXGBE_MACRXCFG_ENA, TXGBE_MACRXCFG_ENA);
}
void txgbe_bp_down_event(struct txgbe_hw *hw)
{
if (!(hw->devarg.auto_neg == 1))
return;
BP_LOG("restart phy power.\n");
wr32_epcs(hw, VR_AN_KR_MODE_CL, 0);
wr32_epcs(hw, SR_AN_CTRL, 0);
wr32_epcs(hw, VR_AN_INTR_MSK, 0);
msleep(1050);
txgbe_set_link_to_kr(hw, 0);
}
void txgbe_bp_mode_set(struct txgbe_hw *hw)
{
if (hw->phy.ffe_set == TXGBE_BP_M_SFI)
hw->subsystem_device_id = TXGBE_DEV_ID_WX1820_SFP;
else if (hw->phy.ffe_set == TXGBE_BP_M_KR)
hw->subsystem_device_id = TXGBE_DEV_ID_WX1820_KR_KX_KX4;
else if (hw->phy.ffe_set == TXGBE_BP_M_KX4)
hw->subsystem_device_id = TXGBE_DEV_ID_WX1820_MAC_XAUI;
else if (hw->phy.ffe_set == TXGBE_BP_M_KX)
hw->subsystem_device_id = TXGBE_DEV_ID_WX1820_MAC_SGMII;
}
void txgbe_set_phy_temp(struct txgbe_hw *hw)
{
u32 value;
if (hw->phy.ffe_set == TXGBE_BP_M_SFI) {
BP_LOG("Set SFI TX_EQ MAIN:%d PRE:%d POST:%d\n",
hw->phy.ffe_main, hw->phy.ffe_pre, hw->phy.ffe_post);
value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0);
value = (value & ~0x3F3F) | (hw->phy.ffe_main << 8) |
hw->phy.ffe_pre;
wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0, value);
value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1);
value = (value & ~0x7F) | hw->phy.ffe_post | (1 << 6);
wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
}
if (hw->phy.ffe_set == TXGBE_BP_M_KR) {
BP_LOG("Set KR TX_EQ MAIN:%d PRE:%d POST:%d\n",
hw->phy.ffe_main, hw->phy.ffe_pre, hw->phy.ffe_post);
value = (0x1804 & ~0x3F3F);
value |= hw->phy.ffe_main << 8 | hw->phy.ffe_pre;
wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0, value);
value = (0x50 & ~0x7F) | (1 << 6) | hw->phy.ffe_post;
wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
wr32_epcs(hw, 0x18035, 0x00FF);
wr32_epcs(hw, 0x18055, 0x00FF);
}
if (hw->phy.ffe_set == TXGBE_BP_M_KX) {
BP_LOG("Set KX TX_EQ MAIN:%d PRE:%d POST:%d\n",
hw->phy.ffe_main, hw->phy.ffe_pre, hw->phy.ffe_post);
value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0);
value = (value & ~0x3F3F) | (hw->phy.ffe_main << 8) |
hw->phy.ffe_pre;
wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0, value);
value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1);
value = (value & ~0x7F) | hw->phy.ffe_post | (1 << 6);
wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
wr32_epcs(hw, 0x18035, 0x00FF);
wr32_epcs(hw, 0x18055, 0x00FF);
}
}
/**
* txgbe_kr_handle - Handle the interrupt of auto-negotiation
* @hw: pointer to hardware structure
*/
s32 txgbe_kr_handle(struct txgbe_hw *hw)
{
u32 value;
s32 status = 0;
value = rd32_epcs(hw, VR_AN_INTR);
BP_LOG("AN INTERRUPT!! value: 0x%x\n", value);
if (!(value & VR_AN_INTR_PG_RCV)) {
wr32_epcs(hw, VR_AN_INTR, 0);
return status;
}
status = txgbe_handle_bp_flow(0, hw);
return status;
}
/**
* txgbe_handle_bp_flow - Handle backplane AN73 flow
* @hw: pointer to hardware structure
* @link_mode: local AN73 link mode
*/
static s32 txgbe_handle_bp_flow(u32 link_mode, struct txgbe_hw *hw)
{
u32 value, i, lp_reg, ld_reg;
s32 status = 0;
struct txgbe_backplane_ability local_ability, lp_ability;
local_ability.current_link_mode = link_mode;
/* 1. Get the local AN73 Base Page Ability */
BP_LOG("<1>. Get the local AN73 Base Page Ability ...\n");
txgbe_get_bp_ability(&local_ability, 0, hw);
/* 2. Check and clear the AN73 Interrupt Status */
BP_LOG("<2>. Check the AN73 Interrupt Status ...\n");
txgbe_clear_bp_intr(2, 0, hw);
/* 3.1. Get the link partner AN73 Base Page Ability */
BP_LOG("<3.1>. Get the link partner AN73 Base Page Ability ...\n");
txgbe_get_bp_ability(&lp_ability, 1, hw);
/* 3.2. Check the AN73 Link Ability with Link Partner */
BP_LOG("<3.2>. Check the AN73 Link Ability with Link Partner ...\n");
BP_LOG(" Local Link Ability: 0x%x\n", local_ability.link_ability);
BP_LOG(" Link Partner Link Ability: 0x%x\n", lp_ability.link_ability);
status = txgbe_check_bp_ability(&local_ability, &lp_ability, hw);
wr32_epcs(hw, SR_AN_CTRL, 0);
wr32_epcs(hw, VR_AN_KR_MODE_CL, 0);
/* 3.3. Check the FEC and KR Training for KR mode */
BP_LOG("<3.3>. Check the FEC for KR mode ...\n");
if ((local_ability.fec_ability & lp_ability.fec_ability) == 0x03) {
BP_LOG("Enable the Backplane KR FEC ...\n");
wr32_epcs(hw, SR_PMA_KR_FEC_CTRL, SR_PMA_KR_FEC_CTRL_EN);
} else {
BP_LOG("Backplane KR FEC is disabled.\n");
}
printf("Enter training.\n");
/* CL72 KR training on */
for (i = 0; i < 2; i++) {
/* 3.4. Check the CL72 KR Training for KR mode */
BP_LOG("<3.4>. Check the CL72 KR Training for KR mode ...\n");
BP_LOG("==================%d==================\n", i);
status = txgbe_enable_kr_training(hw);
BP_LOG("Check the Clause 72 KR Training status ...\n");
status |= txgbe_check_kr_training(hw);
lp_reg = rd32_epcs(hw, SR_PMA_KR_LP_CESTS);
lp_reg &= SR_PMA_KR_LP_CESTS_RR;
BP_LOG("SR PMA MMD 10GBASE-KR LP Coefficient Status Register: 0x%x\n",
lp_reg);
ld_reg = rd32_epcs(hw, SR_PMA_KR_LD_CESTS);
ld_reg &= SR_PMA_KR_LD_CESTS_RR;
BP_LOG("SR PMA MMD 10GBASE-KR LD Coefficient Status Register: 0x%x\n",
ld_reg);
if (hw->devarg.poll == 0 && status != 0)
lp_reg = SR_PMA_KR_LP_CESTS_RR;
if (lp_reg & ld_reg) {
BP_LOG("==================out==================\n");
status = txgbe_disable_kr_training(hw, 0, 0);
wr32_epcs(hw, SR_AN_CTRL, 0);
txgbe_clear_bp_intr(2, 0, hw);
txgbe_clear_bp_intr(1, 0, hw);
txgbe_clear_bp_intr(0, 0, hw);
for (i = 0; i < 10; i++) {
value = rd32_epcs(hw, SR_XS_PCS_KR_STS1);
if (value & SR_XS_PCS_KR_STS1_PLU) {
BP_LOG("\nINT_AN_INT_CMPLT =1, AN73 Done Success.\n");
wr32_epcs(hw, SR_AN_CTRL, 0);
return 0;
}
msec_delay(10);
}
msec_delay(1000);
txgbe_set_link_to_kr(hw, 0);
return 0;
}
status |= txgbe_disable_kr_training(hw, 0, 0);
}
txgbe_clear_bp_intr(2, 0, hw);
txgbe_clear_bp_intr(1, 0, hw);
txgbe_clear_bp_intr(0, 0, hw);
return status;
}
/**
* txgbe_get_bp_ability
* @hw: pointer to hardware structure
* @ability: pointer to blackplane ability structure
* @link_partner:
* 1: Get Link Partner Base Page
* 2: Get Link Partner Next Page
* (only get NXP Ability Register 1 at the moment)
* 0: Get Local Device Base Page
*/
static void txgbe_get_bp_ability(struct txgbe_backplane_ability *ability,
u32 link_partner, struct txgbe_hw *hw)
{
u32 value = 0;
/* Link Partner Base Page */
if (link_partner == 1) {
/* Read the link partner AN73 Base Page Ability Registers */
BP_LOG("Read the link partner AN73 Base Page Ability Registers...\n");
value = rd32_epcs(hw, SR_AN_MMD_LP_ABL1);
BP_LOG("SR AN MMD LP Base Page Ability Register 1: 0x%x\n",
value);
ability->next_page = SR_MMD_LP_ABL1_ADV_NP(value);
BP_LOG(" Next Page (bit15): %d\n", ability->next_page);
value = rd32_epcs(hw, SR_AN_MMD_LP_ABL2);
BP_LOG("SR AN MMD LP Base Page Ability Register 2: 0x%x\n",
value);
ability->link_ability =
value & SR_AN_MMD_LP_ABL2_BP_TYPE_KR_KX4_KX;
BP_LOG(" Link Ability (bit[15:0]): 0x%x\n",
ability->link_ability);
BP_LOG(" (0x20- KX_ONLY, 0x40- KX4_ONLY, 0x60- KX4_KX\n");
BP_LOG(" 0x80- KR_ONLY, 0xA0- KR_KX, 0xC0- KR_KX4, 0xE0- KR_KX4_KX)\n");
value = rd32_epcs(hw, SR_AN_MMD_LP_ABL3);
BP_LOG("SR AN MMD LP Base Page Ability Register 3: 0x%x\n",
value);
BP_LOG(" FEC Request (bit15): %d\n", ((value >> 15) & 0x01));
BP_LOG(" FEC Enable (bit14): %d\n", ((value >> 14) & 0x01));
ability->fec_ability = SR_AN_MMD_LP_ABL3_FCE(value);
} else if (link_partner == 2) {
/* Read the link partner AN73 Next Page Ability Registers */
BP_LOG("\nRead the link partner AN73 Next Page Ability Registers...\n");
value = rd32_epcs(hw, SR_AN_LP_XNP_ABL1);
BP_LOG(" SR AN MMD LP XNP Ability Register 1: 0x%x\n", value);
ability->next_page = SR_AN_LP_XNP_ABL1_NP(value);
BP_LOG(" Next Page (bit15): %d\n", ability->next_page);
} else {
/* Read the local AN73 Base Page Ability Registers */
BP_LOG("Read the local AN73 Base Page Ability Registers...\n");
value = rd32_epcs(hw, SR_AN_MMD_ADV_REG1);
BP_LOG("SR AN MMD Advertisement Register 1: 0x%x\n", value);
ability->next_page = SR_AN_MMD_ADV_REG1_NP(value);
BP_LOG(" Next Page (bit15): %d\n", ability->next_page);
value = rd32_epcs(hw, SR_AN_MMD_ADV_REG2);
BP_LOG("SR AN MMD Advertisement Register 2: 0x%x\n", value);
ability->link_ability =
value & SR_AN_MMD_ADV_REG2_BP_TYPE_KR_KX4_KX;
BP_LOG(" Link Ability (bit[15:0]): 0x%x\n",
ability->link_ability);
BP_LOG(" (0x20- KX_ONLY, 0x40- KX4_ONLY, 0x60- KX4_KX\n");
BP_LOG(" 0x80- KR_ONLY, 0xA0- KR_KX, 0xC0- KR_KX4, 0xE0- KR_KX4_KX)\n");
value = rd32_epcs(hw, SR_AN_MMD_ADV_REG3);
BP_LOG("SR AN MMD Advertisement Register 3: 0x%x\n", value);
BP_LOG(" FEC Request (bit15): %d\n", ((value >> 15) & 0x01));
BP_LOG(" FEC Enable (bit14): %d\n", ((value >> 14) & 0x01));
ability->fec_ability = SR_AN_MMD_ADV_REG3_FCE(value);
}
BP_LOG("done.\n");
}
/**
* txgbe_check_bp_ability
* @hw: pointer to hardware structure
* @ability: pointer to blackplane ability structure
*/
static s32 txgbe_check_bp_ability(struct txgbe_backplane_ability *local_ability,
struct txgbe_backplane_ability *lp_ability, struct txgbe_hw *hw)
{
u32 com_link_abi;
s32 ret = 0;
com_link_abi = local_ability->link_ability & lp_ability->link_ability;
BP_LOG("com_link_abi = 0x%x, local_ability = 0x%x, lp_ability = 0x%x\n",
com_link_abi, local_ability->link_ability,
lp_ability->link_ability);
if (!com_link_abi) {
BP_LOG("The Link Partner does not support any compatible speed mode.\n");
ret = -1;
} else if (com_link_abi & BP_TYPE_KR) {
if (local_ability->current_link_mode) {
BP_LOG("Link mode is not matched with Link Partner: [LINK_KR].\n");
BP_LOG("Set the local link mode to [LINK_KR] ...\n");
txgbe_set_link_to_kr(hw, 0);
ret = 1;
} else {
BP_LOG("Link mode is matched with Link Partner: [LINK_KR].\n");
ret = 0;
}
} else if (com_link_abi & BP_TYPE_KX4) {
if (local_ability->current_link_mode == 0x10) {
BP_LOG("Link mode is matched with Link Partner: [LINK_KX4].\n");
ret = 0;
} else {
BP_LOG("Link mode is not matched with Link Partner: [LINK_KX4].\n");
BP_LOG("Set the local link mode to [LINK_KX4] ...\n");
txgbe_set_link_to_kx4(hw, 1);
ret = 1;
}
} else if (com_link_abi & BP_TYPE_KX) {
if (local_ability->current_link_mode == 0x1) {
BP_LOG("Link mode is matched with Link Partner: [LINK_KX].\n");
ret = 0;
} else {
BP_LOG("Link mode is not matched with Link Partner: [LINK_KX].\n");
BP_LOG("Set the local link mode to [LINK_KX] ...\n");
txgbe_set_link_to_kx(hw, 1, 1);
ret = 1;
}
}
return ret;
}
/**
* txgbe_clear_bp_intr
* @hw: pointer to hardware structure
* @index: the bit will be cleared
* @index_high:
* index_high = 0: Only the index bit will be cleared
* index_high != 0: the [index_high, index] range will be cleared
*/
static void txgbe_clear_bp_intr(u32 bit, u32 bit_high, struct txgbe_hw *hw)
{
u32 rdata = 0, wdata, i;
rdata = rd32_epcs(hw, VR_AN_INTR);
BP_LOG("[Before clear]Read VR AN MMD Interrupt Register: 0x%x\n",
rdata);
BP_LOG("Interrupt: 0- AN_INT_CMPLT, 1- AN_INC_LINK, 2- AN_PG_RCV\n\n");
wdata = rdata;
if (bit_high) {
for (i = bit; i <= bit_high; i++)
wdata &= ~(1 << i);
} else {
wdata &= ~(1 << bit);
}
wr32_epcs(hw, VR_AN_INTR, wdata);
rdata = rd32_epcs(hw, VR_AN_INTR);
BP_LOG("[After clear]Read VR AN MMD Interrupt Register: 0x%x\n", rdata);
}
static s32 txgbe_enable_kr_training(struct txgbe_hw *hw)
{
s32 status = 0;
u32 value = 0;
BP_LOG("Enable Clause 72 KR Training ...\n");
if (CL72_KRTR_PRBS_MODE_EN != 0xFFFF) {
/* Set PRBS Timer Duration Control to maximum 6.7ms in
* VR_PMA_KRTR_PRBS_CTRL2 Register
*/
value = CL72_KRTR_PRBS_MODE_EN;
wr32_epcs(hw, VR_PMA_KRTR_PRBS_CTRL2, value);
/* Set PRBS Timer Duration Control to maximum 6.7ms in
* VR_PMA_KRTR_PRBS_CTRL1 Register
*/
wr32_epcs(hw, VR_PMA_KRTR_PRBS_CTRL1,
VR_PMA_KRTR_PRBS_TIME_LMT);
/* Enable PRBS Mode to determine KR Training Status by setting
* Bit 0 of VR_PMA_KRTR_PRBS_CTRL0 Register
*/
value = VR_PMA_KRTR_PRBS_MODE_EN;
}
#ifdef CL72_KRTR_PRBS31_EN
/* Enable PRBS Mode to determine KR Training Status by setting
* Bit 1 of VR_PMA_KRTR_PRBS_CTRL0 Register
*/
value = VR_PMA_KRTR_PRBS31_EN;
#endif
wr32_epcs(hw, VR_PMA_KRTR_PRBS_CTRL0, value);
/* Read PHY Lane0 TX EQ before Clause 72 KR Training. */
txgbe_read_phy_lane_tx_eq(0, hw, 0, 0);
/* Enable the Clause 72 start-up protocol
* by setting Bit 1 of SR_PMA_KR_PMD_CTRL Register.
* Restart the Clause 72 start-up protocol
* by setting Bit 0 of SR_PMA_KR_PMD_CTRL Register.
*/
wr32_epcs(hw, SR_PMA_KR_PMD_CTRL,
SR_PMA_KR_PMD_CTRL_EN_TR | SR_PMA_KR_PMD_CTRL_RS_TR);
return status;
}
static s32 txgbe_disable_kr_training(struct txgbe_hw *hw, s32 post, s32 mode)
{
s32 status = 0;
BP_LOG("Disable Clause 72 KR Training ...\n");
/* Read PHY Lane0 TX EQ before Clause 72 KR Training. */
txgbe_read_phy_lane_tx_eq(0, hw, post, mode);
wr32_epcs(hw, SR_PMA_KR_PMD_CTRL, SR_PMA_KR_PMD_CTRL_RS_TR);
return status;
}
static s32 txgbe_check_kr_training(struct txgbe_hw *hw)
{
s32 status = 0;
u32 value, test;
int i;
int times = hw->devarg.poll ? 35 : 20;
for (i = 0; i < times; i++) {
value = rd32_epcs(hw, SR_PMA_KR_LP_CEU);
BP_LOG("SR PMA MMD 10GBASE-KR LP Coefficient Update Register: 0x%x\n",
value);
value = rd32_epcs(hw, SR_PMA_KR_LP_CESTS);
BP_LOG("SR PMA MMD 10GBASE-KR LP Coefficient Status Register: 0x%x\n",
value);
value = rd32_epcs(hw, SR_PMA_KR_LD_CEU);
BP_LOG("SR PMA MMD 10GBASE-KR LD Coefficient Update: 0x%x\n",
value);
value = rd32_epcs(hw, SR_PMA_KR_LD_CESTS);
BP_LOG("SR PMA MMD 10GBASE-KR LD Coefficient Status: 0x%x\n",
value);
value = rd32_epcs(hw, SR_PMA_KR_PMD_STS);
BP_LOG("SR PMA MMD 10GBASE-KR Status Register: 0x%x\n", value);
BP_LOG(" Training Failure (bit3): %d\n",
((value >> 3) & 0x01));
BP_LOG(" Start-Up Protocol Status (bit2): %d\n",
((value >> 2) & 0x01));
BP_LOG(" Frame Lock (bit1): %d\n",
((value >> 1) & 0x01));
BP_LOG(" Receiver Status (bit0): %d\n",
((value >> 0) & 0x01));
test = rd32_epcs(hw, SR_PMA_KR_LP_CESTS);
if (test & SR_PMA_KR_LP_CESTS_RR) {
BP_LOG("TEST Coefficient Status Register: 0x%x\n",
test);
status = 1;
}
if (value & SR_PMA_KR_PMD_STS_TR_FAIL) {
BP_LOG("Training is completed with failure.\n");
txgbe_read_phy_lane_tx_eq(0, hw, 0, 0);
return 0;
}
if (value & SR_PMA_KR_PMD_STS_RCV) {
BP_LOG("Receiver trained and ready to receive data.\n");
txgbe_read_phy_lane_tx_eq(0, hw, 0, 0);
return 0;
}
msec_delay(20);
}
BP_LOG("ERROR: Check Clause 72 KR Training Complete Timeout.\n");
return status;
}
static void txgbe_read_phy_lane_tx_eq(u16 lane, struct txgbe_hw *hw,
s32 post, s32 mode)
{
u32 value = 0;
u32 addr;
u32 tx_main_cursor, tx_pre_cursor, tx_post_cursor, lmain;
addr = TXGBE_PHY_LANE0_TX_EQ_CTL1 | (lane << 8);
value = rd32_ephy(hw, addr);
BP_LOG("PHY LANE TX EQ Read Value: %x\n", lane);
tx_main_cursor = TXGBE_PHY_LANE0_TX_EQ_CTL1_MAIN(value);
BP_LOG("TX_MAIN_CURSOR: %x\n", tx_main_cursor);
UNREFERENCED_PARAMETER(tx_main_cursor);
addr = TXGBE_PHY_LANE0_TX_EQ_CTL2 | (lane << 8);
value = rd32_ephy(hw, addr);
tx_pre_cursor = value & TXGBE_PHY_LANE0_TX_EQ_CTL2_PRE;
tx_post_cursor = TXGBE_PHY_LANE0_TX_EQ_CTL2_POST(value);
BP_LOG("TX_PRE_CURSOR: %x\n", tx_pre_cursor);
BP_LOG("TX_POST_CURSOR: %x\n", tx_post_cursor);
if (mode == 1) {
lmain = 160 - tx_pre_cursor - tx_post_cursor;
if (lmain < 88)
lmain = 88;
if (post)
tx_post_cursor = post;
wr32_epcs(hw, TXGBE_PHY_EQ_INIT_CTL1, tx_post_cursor);
wr32_epcs(hw, TXGBE_PHY_EQ_INIT_CTL0,
tx_pre_cursor | (lmain << 8));
value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1);
value &= ~TXGBE_PHY_TX_EQ_CTL1_DEF;
wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
}
}